ORACLE

Oracle Database 12¢ ox<<12-
PL/SQL Programming

Design and Deploy Powerful, Database-Centric
PL/SQL Applications

Michael McLaughlin
Oracle ACE ol

ORACLE" Oracle Press”

Oracle Database 12c¢
PL/SQL Programming

Michael McLaughlin

New York Chicago San Francisco
Athens London Madrid Mexico City
Milan New Delhi Singapore Sydney Toronto

Copyright © 2014 by McGraw-Hill Education (Publisher). All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without the prior written permission of publisher, with
the exception that the program listings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

ISBN: 978-0-07-181244-3

MHID: 0-07-181244-X

e-book conversion by Cenveo® Publisher Services
Version 1.0

The material in this e-book also appears in the print version of this title: ISBN: 978-0-07-181243-6,
MHID: 0-07-181243-1

McGraw-Hill Education e-books are available at special quantity discounts to use as premiums and sales
promotions, or for use in corporate training programs. To contact a representative, please visit the Contact Us
pages at www.mhprofessional.com.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. All other trademarks are the property of their
respective owners, and McGraw-Hill Education makes no claim of ownership by the mention of products that contain
these marks.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle
Corporation and/or its affiliates.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill Education
does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or
omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any
information contained in this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to
store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create
derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the
work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE
WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained
in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor
its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or
for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed
through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental,
special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of
them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

To Lisa, my eternal companion, inspiration, wife,
and best friend; and to Sarah, Joseph, Elise, lan, Ariel,
Callie, Nathan, Spencer, and Christianne—our terrific,

heaven-sent children. Thank you for your constant support,
patience, and sacrifice that made writing
yet another book possible.

About the Author

Michael McLaughlin is a professor at BYU-Idaho in the Computer Information Technology
Department of the Business and Communication College. He is also the founder of McLaughlin
Software, LLC, and is active in the Utah Oracle User’s Group. He is the author of eight other
Oracle Press books, such as Oracle Database 11g & MySQL 5.6 Developer Handbook, Oracle
Database 11g PL/SQL Programming, and Oracle Database 11g PL/SQL Workbook.

Michael has been writing PL/SQL since it was an add-on product for Oracle 6. He also writes
C, C++, Java, Perl, PHP, and Python.

Michael worked at Oracle Corporation for over eight years in consulting, development, and
support. While at Oracle, he led the release engineering efforts for the direct path CRM upgrade
of Oracle Applications 11/ (11.5.8 and 11.5.9) and led PL/SQL forward compatibility testing for
Oracle Applications 11/ with Oracle Database 9i. He is the inventor of the ATOMS transaction
architecture (U.S. Patents #7,206,805 and #7,290,056). The patents are assigned to Oracle
Corporation.

Prior to his tenure at Oracle Corporation, Michael worked as an Oracle developer, systems and
business analyst, and DBA beginning with Oracle 6. His blog is at http://blog.mclaughlinsoftware.com.
Michael lives in eastern Idaho within a two-hour drive to Caribou-Targhee National Forest,
Grand Teton National Park, and Yellowstone National Park. He enjoys outdoor activities with his

wife and children (six of nine of whom still live at home).

About the Contributing Author

John Harper currently works for the Church of Jesus Christ of Latter-day Saints as a principal
database engineer. He greatly enjoys working with the data warehousing, business intelligence,
and database engineers there.

John’s mentors include Michael McLaughlin, Robert Freeman, Danette McGilvary, and many
others who have spent considerable time becoming the experts in their industry. He is both awed
and inspired by their abilities and feels lucky to be associated with them.

Recently, John has had the opportunity to work closely with some of the top-notch minds in
database security. He hopes to produce a series of publications focused on Oracle products such
as Oracle Audit Vault and Database Firewall, and Oracle Data Redaction.

John enjoys Japanese martial arts. During his teenage years and early adulthood, he took
jujitsu, karate, judo, and aikido. He loves aikido and hopes to teach it one day. He would also
love to learn kyudo if he can find any spare time.

John lives with his wife of over 23 years in Northern Utah County, Utah. They have one adopted
daughter, whom they cherish and thoroughly spoil. He has been working with databases for the
past 14 years, specializing in Oracle administration, database architecture, database programming,
database security, and information quality.

About the Technical Editor

Joseph McLaughlin is an iPhone and Ruby web developer at Deseret Book in Salt Lake City, Utah.
He has extensive backend database development experience with Oracle, MySQL, and PostgreSQL.
His favorite development languages are Objective-C and Ruby.

Joseph is a recent graduate of BYU-Idaho with a degree in Computer Information Technology.
While a college student and independent consultant, Joseph designed, developed, and deployed
four mobile applications for the iPhone or iPod Touch.

Aside from programming, Joseph enjoys playing basketball and watching the Boston Red Sox
win, especially when they win the World Series.

N & G & W N =

10
11
12
13

PART I
Oracle PL/SQL

Oracle PL/SQL Development Overviewccciiiivnnenennennn. 3
New Features ittt 17
PL/SQL BaSICS . i ittt ittt ittt it ieneeeneeeneeaneenneennaannenn 43
Language Fundamentals i il 111
Control Structuresttt i i i i i it 153
Collectionsttt i i i i i i e i e 217
Error Management i i i e 261

PART 11

PL/SQL Programming

Functions and Proceduresottt 293
Packages e e e 347
Large Objects ...ttt i i e e e e, 385
Object TYPes . oo ittt i it i i ittt e et 449
L3 <] 491
Dynamic SQL ...ttt e e e e e et e 545

PART III

Appendixes and Glossary

Oracle Database Primerttt iin i ennennn 595
SQL PHIMer .ottt ittt ittt ittt ettt e e e 695

I 0 = m T N

Oracle Database 12c¢ PL/SQL Programming

SQL Built-in FUNCLIONS it ittt ittt it ieneennaannnnn 893
PL/SQL Built-in Packagesand Typescciiiiiiiiiiiiiiiinnnnnn, 965
Regular Expression Primer i i 999
Wrapping PL/SQL Code Primer i it iiiiiiiiiiineninennn. 1019
PL/SQL Hierarchical Profiler Primerottt iiiiiinnnnnnnn. 1029
PL/SQL Reserved Words and Keywords oL, 1045
Mastery Check Answers —........ ... ittt 1055
Glossary ..o e e e e e e e 1085

Acknowledgments ...
Introduction ..o

PART I
Oracle PL/SQL

Oracle PL/SQL Development Overview —cccviiininvnnenens
PL/SQLUs History and Background

Oracle Development Architecture
The Database
The PL/SQL Language i
The Oracle Processing Architecture
Two-Tier Model
N-Tier Model ...
SUMMANY o
Mastery Check o
New Features ittt ittt i,
New SQL Features
Data Catalog DIRECTORY Qualifies a LIBRARY Object
Define Tables with Valid-Time (VT) Support oo,
Enhanced Oracle Native LEFT OUTER JOIN Syntax —c.ovoun. ..
Default Values for Columns Based on Sequences
Default Values for Explicit Null Insertion
Identity Columns
Increased Size Limits of String and Raw Types
Pass Results from SQL Statements to External Programs —
Native SQL Support for Query Row Limits and Offsets
Oracle Database Driver for MySQL Applications
SQL CROSS APPLY, OUTER APPLY, and LATERAL
Bequeath CURRENT_USERViews i

Vili Oracle Database 12¢ PL/SQL Programming

New PL/SQL Features e e e e e e e 32
Caching of Invoker Rights Functions 32
Ability to White List PL/SQL Program Unit Callers 32
Native Client APl Support for PL/SQL Types, 34
New PL/SQL Package UTL_CALL_STACK, 34
DBMS_UTILITY Adds EXPAND_SQL_TEXT Subprogram 34
DBMS_SQL Adds a New Formal Schema
to the PARSE Procedure 35
PL/SQL Functions in SQLWITH Clause 35
PL/SQL-Specific Data Types Allowed in SQL 37
Implicit REF CURSOR Parameter Binding 40
SUppOrting SCripts 40
SUMMANY e e e e 41
Mastery Check ... 41
3 PL/SQLBASICS ..iviititen et ieeeteeaeeenaesenneseansnaannns 43
Block Structure 44
Execution Block ... o 44
Basic Block Structure 45
Declaration Blocko 48
Exception Block o 49
Behavior of Variables in Blocks 50
Anonymous Blocks ... 50
Nested Anonymous Blocks 55
Local Named Blockso 57
Stored Named Blocks 60
Basic Scalar and Composite Data TYpes ..ottt e 63
Scalar Data TYPES . oottt e e 63
Attribute and Table Anchoring 65
Composite Data Types 68
Control STrUCLUIES . . . o e e 81
Conditional Structures 81
lterative Structures 83
EXCEpPtions 92
User-Defined EXceptions it 93
Dynamic User-Defined Exceptions, 94
Bulk Operations 95
Functions, Procedures, and Packages i i 97
Functions 97
Procedures 99
Packages 100
Transaction SCOPe 106
Single Transaction SCOPE . ..ottt 106

Multiple Transaction SCopest 107

Contents

Database TrHgZersottt 108
SUMMATNY o e e e e 109
Mastery Check 109
Language Fundamentals o iiiiiiiiii, 111
Lexical Units 112
Delimiters 112
Identifiers 118

Literals ... 119
CommeNnts ... 121
Variables and Data Typesttt 122
Variable Data Typesttt 123

Scalar Data TYPES v v vttt e e 126

Large Objects (LOBS) e 142
Composite DataTypes 144

System Reference Cursorsuiueuiiu e, 147
SUMMANY o 150
Mastery Check o 150
Control Structureso it i i 153
Conditional Statements 154
IF Statements 162

CASE Statements 166
Conditional Compilation Statements 169
Iterative Statements 172
Simple Loop Statements 172

FOR Loop Statements 179

WHILE Loop Statements 181

Cursor StruCtUres 185
Implicit Cursors 185
Explicit Cursors 190

Bulk Statements 203
BULK COLLECT INTO Statements 203
FORALL Statements 208
Supporting SCripts 213
SUMmMary 214
Mastery Check 214
Collections i i i i i i i e e 217
Introduction to Collections 218
Object Types: Varray and Table Collections 221
Varray Collections 221

Table Collections 225
Associative Arrays 240

Defining and Using Associative Arrays 241

X

X Oracle Database 12c PL/SQL Programming

Oracle Collection APL
COUNT Method
DELETE Method
EXISTS Method
EXTEND Method
FIRST Method
LAST Method
LIMIT Method
NEXT Method
PRIOR Method
TRIM Method

SUppOrting SCripts

SUMMANY e e e e

Mastery Check ...

7 ErrorManagement i it e
Exception Types and SCOPEo ottt
Compilation Errors
Runtime Errors
Exception Management Built-in Functions o i
User-Defined EXCEPtiONs oot
Declaring User-Defined Exceptions —,
Dynamic User-Defined Exceptions i,
Exception Stack Functions
SUpPPOrting SCrPLS .. oo
SUMMANY
Mastery Check ... o

PART Il
PL/SQL Programming

8 Functionsand Proceduresttt i,
Function and Procedure Architecture
Transaction SCOPe

Calling Subroutines
Positional Notation
Named Notation
Mixed Notation
Exclusionary Notation
SQL Call Notationo
FUNCHIONS .
Function Model Choices
Creation Options
Pass-by-Value Functions —.......... ...
Pass-by-Reference Functions i

10

Contents

Procedures 338
Pass-by-Value Procedures 339
Pass-by-Reference Procedures 342
SUPPOrtiNg SCHPLS .. oo 345
SUMMATY e e e e e 345
Mastery Check ... 345
Packages ...t e e et e e 347
Package Architecture 348
Package Specification 354
Prototype Features 355
Serially Reusable Precompiler Directive 358
Variables .. 359

Types 361
Components: Functions and Procedures 364
Package Body 365
Prototype Features 366
Variables .. 368

Types 371
Components: Functions and Procedures 371
Definer vs. Invoker Rights Mechanics 375
Managing Packages in the Database Catalog 378
Finding, Validating, and Describing Packages 379
Checking Dependenciesot 380
Comparing Validation Methods: Timestamp vs. Signature 381
SUMMANY o 382
Mastery Check 382
Large Objects ... oottt i i e e e 385
Working with Internally Stored LOB Types 387
LOB Assignments Under 32K 387

LOB Assignments over 32K 389
Reading Files into Internally Stored Columns 398
Reading Local Files into CLOB or NCLOB Columns 399
Reading Local Files into BLOB Columns 402
Working with LOBs Through Web Pages 404
Working with Binary Files (BFILES) oo e 413
Creating and Using Virtual Directories 413
Reading Canonical Path Names and Filenames 419
Understanding the DBMS_LOB Package 427
Package Constants 427
Package Exceptions 428
Opening and Closing Methods 429
Manipulation Methods 430

Introspection Methods 436

Xi

Xii

11

12

Oracle Database 12c¢ PL/SQL Programming

BFILE Methods o 440
Temporary LOB Methods 441
Security Link Methods 442
SUppOrting SCriptso 446
The LONG to CLOB SCript ..ottt e e e 446
Manage LOBs from the File System 446
Manage CLOB and BLOB LOBs Throughthe Web 446
Manage BFILE LOBs Throughthe Web 446
SUMMANY o e e 446
Mastery Check ... 447
ObjectTypes ..ottt ittt i i ittt i it i it 449
ObJect BasiCs . ..ottt 453
Declaring Objects TYpes vt ittt e e e e 453
Implementing Object Bodies i 456
White Listing Object TYpes ... oo vt e 461
Getters and Setters 463
Static Member Methods L 465
Comparing Objects 467
Inheritance and Polymorphism 475
Declaring Subclasses 477
Implementing Subclasses 478
Type Evolution ... o 481
Implementing Object Type Collections 483
Declaring Object Type Collections, 483
Implementing Object Type Collections 483
SUpPPOrting SCrPLS .. oo 487
SUMMANY 487
Mastery Check ... o 488
TriggerS ottt i e it e e e e 491
Introduction to Triggers 492
Database Trigger Architecture 495
Data Definition Language Triggers 499
Event Attribute Functions L 501
Building DDLTrggersttt 512
Data Manipulation Language Triggers 515
Statement-Level Triggers 516
Row-Level Triggers 518
Compound Triggers 527
INSTEAD OF Triggers e 532
System and Database Event Triggers 536
Trigger Restrictions 538
Maximum Trigger Size 538
SQL Statements ... 538

LONG and LONG RAW Data Typesoouiiiniiniunienaen .. 539

13

Contents
Mutating Tables 539
System Triggers 540
SUpPPOrting SCHPLS .. oo 541
SUMMATNY o e e e e 541
Mastery Check ... 541
Dynamic SQL ..ot et e e e e 545
Dynamic SQL Architecture 547
Native Dynamic SQL (NDS) 547
Dynamic Statements 548
Dynamic Statements with Inputs L 550
Dynamic Statements with Inputs and Outputs — 554
Dynamic Statements with an Unknown Number of Inputs — 558
DBMS_SQL Packaget 560
Dynamic Statements 561
Dynamic Statements with InputVariables 564
Dynamic Statements with Variable Inputs and Fixed Outputs 566
Dynamic Statements with Variable Inputs and Outputs 571
DBMS_SQL Package Definition i 576
SUPPOItING SCHPLS . . oo 591
SUMMANY o 591
Mastery Check 591
PART IlI
Appendixes and Glossary
Oracle Database Primer ittt 595
Oracle Database Architecture 596
Starting and Stopping the
Oracle Database 12c Server 603
Unix or Linux Operations 604
Microsoft Windows Operationsoouiiuiiiian.. 609
Starting and Stopping the Oracle Listener —........ i, 610
Multiversion Concurrency Control o 615
DataTransactions i 616
DML Locking and Isolation Control 619
Definer Rights and Invoker Rights 620
Definer Rights 620
Invoker Rights 621
SQL Interactive and Batch Processingt 622
SQL*Plus Command-Line Interface 622
Oracle SQL Developer Interface i 644
Database Administration L. 652
Provisioning Users 652
Using Database CONStraintsouttnitne i 661

X

XiV Oracle Database 12¢ PL/SQL Programming

Security Hardening 670

Data GOVEINANCE . .ottt 681
SQLTUNING o 684
EXPLAIN PLAN Statemento 685
DBMS_XPLAN Packageot 686
SQLTraCING oo 690
Tracing Session Statements o 691
Convert Raw Trace Files to Readable Trace Files 693
SUMMANY o e e 694
B SQL PrIMer ...ttt i ittt e e ettt et e e 695
Oracle SQL Data TYPES . . oottt et e e e e 699
Data Definition Language (DDL)t i 703
CREATE Statemento e 704

ALTER Statement 773
RENAME Statement 791

DROP Statement 792
TRUNCATE Statemento e e 794
COMMENT Statement e 795

Data Manipulation Language (DML) i 795
ACID Compliant Transactionsuiuniun i, 795
INSERT Statement 799
UPDATE Statement 815
DELETE Statemento 829
MERGE Statement e 834
Transaction Control Language (TCL)ottt e 841
Queries: SELECT Statements 843
Queries that Return Columns or Results from Columns 845
Queries that Aggregatet 861
Queries that Return Columns or Results Selectively —..................... 866

JOIN ReSUILS . . 876
Joins that Splice Together Rows i 878

Joins that Splice Collections i 888
SUMMANY 891
C SQLBuilt-in Functionstiiintiiniiniieeneeennneennns 893
Character FUNCHIONS . ..ot e e e e e e 894
ASCI FUNCHON . e 894
ASCISTR Function ... e 895

CHR FuNction ... 895
CONCAT Function ... e e 896
INITCAP Function e 896

INSTR Function ... e 897
LENGTH Function ... ettt 897

LOWER Function e 898

Contents XV

LPAD FUNCHiON ... e 898
LTRIM FUNCtiON ... e 899
REPLACE Function e 899
REVERSE Function e 900
RPAD Function e 900
RTRIM FuNCtion e 901
UPPER FuncCtiono e 901
Data Type Conversion Functions 902
CAST FUNCHION . e 902
CONVERT FUNCLION .. e e et e e e 904
TO_CHAR FUNCHiON .. e e e e e e 905
TO_CLOB Function ... e e e e e 907
TO_DATE FUNCHioON ... e e e e 907
TO_LOB FUNCHON .. 908
TO_NCHAR Function e e e e e 910
TO_NCLOB FUNCHION .. e e e e 910
TO_NUMBER Function e e 910
Date-time Conversion FUNCLIONS e e 911
ADD_MONTHS Function e e 911
CURRENT_DATE FuNCtion e e e 911
CURRENT_TIMESTAMP Function 912
DBTIMEZONE Function e 912
EXTRACT FUNCHON ..o e e 912
FROM_TZ FUNCHION .. e e 913
LAST_DAY FuNnction e 913
LOCALTIMESTAMP Function i 914
MONTHS_BETWEEN Function 914
NEW_TIME Function e 915
ROUND Function e 916
SYSDATE Function e 916
SYSTIMESTAMP Function e 917
TO_CHAR(date) Function i 917
TO_DSINTERVAL Function e 918
TO_TIMESTAMP Function e e e e 918
TO_TIMESTAMP_TZ Function e e 919
TO_YMINTERVAL Function e 919
TRUNC(date) Function e 920
TZ_OFFSET FUNCtion ... e e e e e e 920
Collection Management Functions i, 921
CARDINALITY Function e e 921
COLLECT FUNCHION .. e e e e et e e 921
POWERMULTISET Function e 925
POWERMULTISET_BY_CARDINALITY Function 926

SET FUNCHiON .. e 926

XVI Oracle Database 12¢ PL/SQL Programming

Collection Set Operatorsttt 926
CARDINALITY Operatorot 928
EMPTY Operator 929
MULTISET Operatorot e e e 929
MULTISET EXCEPT Operatort 930
MULTISET INTERSECT Operatorottt 930
MULTISET UNION Operatorottt 931
SET Operator . ..o 932
SUBMULTISET OF Operator 933

Number FUNCHONS ... e e e e e 933
CEIL FUNCLION . . 933
FLOOR Function e 934
MOD Function 934
POWER Function 936
REMAINDER Function 937
ROUND FUunCtion e 938

Error Reporting Functions 938
SQLCODE FUuNCtion e e e e e 938
SQLERRM Function e 939

Miscellaneous FUNCHIONS . ..ottt 940
BFILENAME Function e 941
COALESCE Function . ..o e e 943
DECODE Function e 944
DUMP Function 945
EMPTY_BLOB Function e 945
EMPTY_CLOB Function e 948
GREATEST Function e e 949
LEAST Function 951
NANVL Function ... 953
NULLIF Function . ..o 953
NVL FUNCioN ... 954
SYS_CONTEXT Function e 954
TABLE Function 958
TREAT FUNCHON .. 960
USERENV Function 961
VSIZE FUNCLION . . 963

SUMMANY e e e e 963

D PL/SQL Built-in Packages and Typesooiiiiiiiiiiia, 965

Oracle Database 11g and 12c¢ New Packages oovou... 966

Examples of Package Use o 974
DBMS_APPLICATION_INFO Example i 974
DBMS_COMPARISON .. 979
DBMS_CRYPTO ..o e 986
DBMS _FGA 990

Case Study: Query Tool ... o 991

Contents
SUpPPOrtiNg SCHPtS . . .o 997
SUMMATNY o e e e e 997
Regular Expression Primer0 ittt 999
Regular Expression Introduction 1000
Character Classesot 1000
Collation Classes 1003
Metacharacters 1004
Metasequences 1006
Literals ... 1007
Regular Expression Implementation i 1007
REGEXP_COUNT Function 1007
REGEXP_INSTR Function i 1011
REGEXP_LIKE Function i 1013
REGEXP_REPLACE Function 1014
REGEXP_SUBSTR Function 1015
SUPPOIrting SCHPtS . . oo 1017
SUMMANY o 1017
Wrapping PL/SQL Code Primercoiiiiiiiiiininnnnennn.. 1019
Limitations of Wrapping PL/SQL 1020
Limitations of the PL/SQL wrap Utility —......... 1021
Limitations of the DBMS_DDL.WRAP Function 1021
Using the wrap Command-Line Utility —......... 1021
Using the DBMS_DDL Command-Line Utility — 1021
WRAP Function 1022
CREATE_WRAPPED Procedure 1026
SUMMary 1028
PL/SQL Hierarchical Profiler Primer e, 1029
Configuringthe Schema 1030
Collecting Profiler Data 1032
Understanding Profiler Data 1035
Reading the Raw Output i 1035
Defining the PL/SQL ProfilerTables —....... 1037
Querying the Analyzed Data i 1039
Using the plshprof Command-Line Utility 1040
Supporting SCripts 1043
SUMMAry 1043
PL/SQL Reserved Words and Keywords, 1045
SUMMArY 1053
Mastery Check Answersc.oiuiuiiiiinininiinenenenennnns 1055
Chapter T o 1056
Chapter 2 o 1058

Chapter 3 o 1060

XVil

XViii Oracle Database 12¢ PL/SQL Programming

Chapter 4 o
Chapter 5 o
Chapter 6 ...
Chapter 7 o
Chapter 8 ..o
Chapter O o o
Chapter TO ..o
Chapter T1 o
Chapter 12 o
Chapter 13 oo

Glossary ..o e e e e e e

team that made this book a possibility. There are many unsung heroes and heroines

in the production department because they’re behind the scenes. The production
department typesets, proofreads, and gives their all to make books real, and while I don’t
know all their names, they deserve acknowledgment for their meticulous work.

Many thanks go to Paul Carlstroem, Amanda Russell, Harry Popli, and the production

Special thanks goes to Bill McManus, the copy editor. He gave an awesome effort to
keep the book consistent, well written, and well organized! Special thanks for moral and
project support to Paul Carlstroem and Amanda Russell because they were critical to my
success, especially as the project went beyond a year. Thanks to Sheila Cepero, who manages
the Oracle Publishers Program, for her help with the Oracle Database 12c¢ beta testing cycle,
and to Lynn Snyder, who managed the Oracle Database 12c program.

Thanks to John Harper who contributed elements of Appendix A and wrote Appendix D.
John also acted as a second technical editor for the rest of the book, and his great eye for
detail certainly contributed to the quality of the book.

Thanks to Pablo Ribaldi for his contributions to Appendix A on data governance. As the
Information Governance Manager, he led the LDS Church’s Information Communication
Services team that won the Data Governance Best Practice Award from DebTech International
LLC.

Thanks to the many students and lab tutors who took an interest in this project, like Craig
Christensen, Jeremy Heiner, Matthew Mason, Alan Pynes, and Jordan Smith. Also, thanks to
Kent Jackson for reading elements of the book and providing suggestions for improvements,
and to Steve Rigby, my department chair, for his support in the project.

XIX

This page has been intentionally left blank

examples and techniques that can help you build robust database-centric applications.

Appendix A shows you the basics of what you should know as an Applications DBA
or developer, like starting and stopping the Oracle database and listener, using SQL*Plus as
the command-line interface, SQL Developer as the free cross-platform GUI interface, and
techniques for SQL tuning. Appendixes B, C, and D show you how to write SQL, use SQL
built-in functions, and use PL/SQL built-in packages. The remaining appendixes show you
how to use regular expression functions, obfuscate your PL/SQL code through wrapping it,
use the hierarchical profiler for PL/SQL, and discover reserved and keywords.

T his book shows you how to use the PL/SQL programming language. It is full of

As an author, the Introduction typically is either the last thing you write or the first thing
you write. Unlike my strategy for the previous edition, this time | drafted the introduction
before writing anything else, and that helped me to make sure | stayed true to a planned
course. As indicated in my Acknowledgments page, the production staff also helps clear up
what | write, and their talent is critical to bringing a quality book into print.

The introduction covers the following:

B The “Book Outline” section summarizes each chapter in a sentence or two, and
should be worth a quick look to give you an overview of how this book is structured.

B The “Lexicon” section gives you the rationale for variable naming conventions in
the book and provides recommended time-saving techniques you can use when
debugging your code.

B The “Data Model and Source Code to Download” section describes the basis
for the examples and tells you where to find the code that creates and seeds the
sample video store database.

XXI

XXil Oracle Database 12¢ PL/SQL Programming

Book Outline

The book has three parts: “PL/SQL Fundamentals,” “PL/SQL Programming,” and “Appendixes and
Glossary.” In the first two parts of the book, each major section of each chapter ends with a
“Review Section” that lists the key points presented in that section. Also, each of the chapters in
the first two parts concludes with a “Mastery Check,” containing ten true-or-false questions and
five multiple-choice questions to help you ensure that you understand the material covered in the
chapter. The answers are provided in Appendix I.

The third part, “Appendixes and Glossary,” contains primers on Oracle Database 12¢, SQL,
SQL built-in functions, PL/SQL built-in packages, regular expressions, wrapping PL/SQL code,
the PL/SQL hierarchical profiler, and reserved word and keywords. As mentioned, Appendix |
provides the answers to the “Mastery Check” sections. A glossary follows the last appendix.

Part I: PL/SQL Fundamentals

B Chapter 1, “Oracle PL/SQL Development Overview,” explains the history and
background of PL/SQL and describes the Oracle development architecture. The history
and background section explains how SQL is the primary interface, and how PL/SQL
extends the behavior of SQL with a built-in imperative programming language, enables
the implementation of object-relational features, and allows DBAs and developers to
exploit the power of the Oracle 12¢ Database. The Oracle development architecture
section covers how the SQL interface works as an interactive and call command-line
interface (CLI), and how two-tier and n-tier models work with the Oracle Database 12¢
database.

B Chapter 2, “New Features,” introduces the Oracle Database 12¢ SQL and PL/SQL new
features. This chapter assumes you have a background in the Oracle Database 11g features.
The new SQL features cover invisible and identity columns, expanded length of the
VARCHAR?2 data type, and enhanced outer join operations. The new PL/SQL features
cover invoker rights result cache functions, white listing PL/SQL callers, new error stack
management features, embedding functions in the SQL WITH clause, and using local
PL/SQL data types in embedded SQL statements.

B Chapter 3, “PL/SQL Basics,” explains and provides examples of basic features of the
PL/SQL programming languages. This chapter covers PL/SQL block structures, behaviors
of variables in blocks, basic scalar and composite data types, control structures, exceptions,
bulk operations, functions, procedures, packages, transaction scopes, and database
triggers. You will find examples of all basic elements of PL/SQL syntax in Chapter 3. It's
also the best place to start if you would need a review or introduction to the basics of
how you write PL/SQL programs.

B Chapter 4, “Language Fundamentals,” covers lexical units (delimiters, identifiers, literals,
and comments) and variable and data types. In Chapter 4, you learn the basic building
blocks of PL/SQL program units. You also learn what data types are available and how
you declare variables of these data types. The subsequent chapters assume you know what
data types are available and how to declare them in anonymous and named PL/SQL blocks,
which makes it an important chapter to read or pursue before digging into the core
features of the PL/SQL language.

Introduction XXl

B Chapter 5, “Control Structures,” describes the conditional statements, iterative statements,
cursor structures, and bulk statements. This chapter takes a complete look at IF statements
and loops. Oracle implements the IF statement or CASE statement to manage conditional
logic, and simple, FOR, and WHILE loops to manage iterative statements. The discussion
of loops qualifies guard and sentinel values, and safeguards for dynamic sentinel values.
This chapter covers how you manage cursors in loops and how you manage bulk processing
DML statements.

B Chapter 6, “Collections,” shows how you can work with SQL varray and table collections,
as well as PL/SQL associative arrays (previously known as PL/SQL tables or index-by
tables). This chapter’s discussion of varray and table collections explains how you
can work with both Attribute Data Types (ADTs) and user-defined types (UDT). It also
describes the differences between how to use and work with ADT and UDT variables.
This chapter also covers how to work with PL/SQL-only associative arrays that use scalar
data types or composite data types, which may be record types or object types. This
chapter also qualifies the functions and procedures of the Oracle Collection API, and
provides examples of using these functions and procedures.

B Chapter 7, “Error Management,” explains how you use exceptions in PL/SQL. This chapter
covers exception type and scope, exception management built-in functions, user-defined
exceptions, and exception stack functions. This chapter shows you how to find and solve
the typical errors that can occur when writing PL/SQL programs. This chapter also shows
you how to write exception handlers that manage unexpected runtime exceptions. You
also learn how to manage exception stacks.

Part 1I: PL/SQL Programming

B Chapter 8, “Functions and Procedures,” explains the architecture of PL/SQL functions and
procedures, transaction scope, function options and implementations, and procedure
implementations. The architecture section covers how pass-by-value and pass-by-reference
functions and procedures work, including how to white list stand-alone functions and
procedures in the Oracle Database 12c. This chapter also covers SQL positional, named,
mixed, and exclusionary call notation. It also describes the various ways you can define
functions, like deterministic, parallel-enabled, pipelined, and result cache functions. It
shows you how to object table functions that return collections of user-defined types.
This chapter also covers how you write recursive and autonomous functions.

B Chapter 9, “Packages,” explores how you can work with and use packages. This chapter
covers package architecture, specifications, and bodies. It also compares definer rights
and invoker rights mechanics, and describes how the database catalog manages the status
and validity of package specifications and bodies. This chapter reviews the concepts of
how to write forward-referencing stubs and how to overload functions and procedures.
It also shows you how to white list package specifications.

B Chapter 10, “Large Objects,” shows you how to work with the BLOB, CLOB, and NCLOB
internally managed data types and the BFILE externally managed data type. This chapter
shows you how to create and work with character and binary large object that are internally
managed, and how to work with externally managed binary files.

XXIV Oracle Database 12c PL/SQL Programming

B Chapter 11, “Object Types,” covers how you work with object types. This chapter shows

you how to declare, implement, and white list object types, as well as how to implement
getters, setters, and object comparison functions. After covering those basics, this chapter
covers inheritance and polymorphism before implementing object type collections.

Chapter 12, “Triggers,” provides an introduction to database triggers and then shows you how
to understand and implement various types of triggers, including DDL, DML, compound,
instead-of, and system and database event triggers. It also introduces trigger restrictions.

Chapter 13, “Dynamic SQL” explains the basics of dynamic SQL statements. This chapter
covers Native Dynamic SQL (NDS) and the dbms_sqgl package. All four methods of
dynamic SQL statements are covered, such as static DDL and DML statements, dynamic
DML statements, dynamic SELECT statements with static SELECT-lists, and dynamic
SELECT statements with dynamic SELECT-lists.

Part I11: Appendixes and Glossary

Appendix A, “Oracle Database Primer,” explains the Oracle Database 12c architecture,
how to start and stop the Oracle Database 12¢ server and the Oracle listener, Multiversion
Concurrency Control, definer rights and invoker rights, SQL interactive and batch processing,
database administration, SQL tuning, and SQL tracing.

Appendix B, “SQL Primer,” describes how to use SQL in Oracle Database 12c. This appendix
covers SQL data types, DDL statements, DML statements, TCL statements, SELECT
statements, and collection SET statements. This appendix also shows you how to unnest
queries and how to work with persistent object types.

Appendix C, “SQL Built-in Functions,” provides code complete samples that show you
how to use key SQL built-in functions of Oracle Database 12c. This appendix covers
character functions, data type conversion functions, datetime functions, collection
management functions, collection SET operators, number functions, error handling
functions, and miscellaneous functions.

Appendix D, “PL/SQL Built-in Packages and Types,” explains how to use SQL the Oracle
Database 12c. This appendix provides an introduction to new PL/SQL built-in packages
and provides some examples of key packages.

Appendix E, “Regular Expression Primer,” describes how to use regular expressions in
SQL and PL/SQL.

Appendix F, “Wrapping PL/SQL Code Primer,” shows you how to use the
create wrapped or wrap procedures of the dbms_dd1 package.

Appendix G, “PL/SQL Hierarchical Profiler Primer,” describes how to use the PL/SQL
Hierarchical Profiler. This chapter shows you how to configure the schema, collect profile
data, understand profiler output, and use the plshprof command-line utility.

Appendix H, “PL/SQL Reserved Words and Keywords,” identifies which reserved words
and keywords exist in Oracle Database 12c.

Appendix I, “Mastery Check Answers,” provides the answers to all the “Mastery Check”
sections of the chapters.

The Glossary provides definitions of the key concepts identified in the book.

Introduction XXV

Lexicon

There are many ways to write programs, and they generally differ between programming languages.
SQL and PL/SQL code share that commonality: they are different languages and require different
approaches. The three subsections cover, respectively, SQL lexicon, PL/SQL stored programs, and
other conventions in syntax.

SQL Lexicon

My recommendation on SQL statements is that you align your keywords on the left. That means

placing SELECT list commas and WHERE clause logical AND [NOT] or OR [NOT] syntax on

the left, because it allows you to sight read your code for errors. That recommendation is easy to

follow, but my recommendations on how to write join syntax are more complex, because you

may write joins that use ANSI SQL-89 or ANSI SQL-92. Whereas ANSI SQL-89 lets you organize

tables as comma-delimited lists, ANSI SQL-92 has you specify the type of join using keywords.
These are my suggestions on join syntax:

B Always use table aliases, because they ensure you won’t run into an ambiguous column
error when the SELECT list can return two or more columns with the same name. This
can happen when you join tables that share the same column name. It’s also a good
practice to use aliases when you write a query from a single table, because you may
subsequently add another table through a join. Appendix B covers the SELECT statement
and syntax that supports this recommendation.

B When using ANSI SQL-89 and comma-delimited tables, place each table on its own line
and the separating columns on the left, like SELECT list columns. This lets you sight read
your programs. This doesn’t apply to multiple-table UPDATE and DELETE statements
found in Appendix B, and you should refer to those chapters for examples.

B When using ANSI SQL-92, you put the join conditions inside the FROM clause by using
either the ON subclause or the USING subclause. Two common approaches seem to work
best for most developers inside the FROM clause with the ON or USING subclause. In
small (two or at maximum three) table joins, place the ON or USING subclause after the
join on the same line. In large joins (three or more), place the ON or USING subclause
on the line below the joining statement. When joins involve multiple columns, left-align
logical AND [NOT] or OR [NOT] syntax to allow you to sight read your code. This is the
same recommendation as | made for the WHERE clause at the beginning of the section,
and it really works well generally.

B ANSI SQL-92 lets you use fully descriptive keywords or use only required keywords. While
most of us would like to type the least amount of words possible, ultimately, our code
goes to support staff, and its clarity can help avoid frivolous bug reports. Therefore, consider
using INNER JOIN instead of JOIN, LEFT OUTER JOIN or RIGHT OUTER JOIN
instead of LEFT JOIN and RIGHT JOIN, and FULL OUTER JOIN instead of FULL
JOIN. I've shortened syntax in the book solely because the page-width constraints put a
70-character limit on code lines (or require shrinking the font, which make it less readable).

Now that I've written that, let me share my experience at not following syntax advice. The
advice was given to me by my instructor at IBM’s Santa Teresa Lab (now IBM’s Silicon Valley Lab)
when he taught me how to write SQL (actually SQL/DS [Structured Query Language/Data System])

XXVI Oracle Database 12c PL/SQL Programming

A Word on Tools

This book focuses on writing SQL at the command line, because that’s how it'll work inside
your C++, C#, Java, or PHP programs, but CASE (Computer-Aided Software Engineering)
tools are nice. They help you discover syntax and possibilities, provided you don’t use them
as a crutch.

The best developers aren’t those business users who know how to talk a great game, use
all the catchwords properly, and market themselves. The best developers are folks who learn
how to solve business problems by understanding which technology truly provides the best
solution.

Those who apply good engineering skills aren’t members of an exclusive club when they
lock themselves into only using what a CASE tool provides them. That’s true because CASE
tools generally only solve the general problems through a drag-and-drop interface. Those
folks who advocate NoSQL solutions are typically those who never understood how to use a
database or how databases help meet critical day-to-day transactional business needs.

In short, use a tool to learn; don’t become a slave to it. Always ask why something works
and how it might work better. If you do, you’ll find that CASE tools are a blessing for getting
your job done, not a potentially career-limiting curse (as many have found over the past
few years).

in 1985. He told me to put the commas on the left and save myself hours of hunting for missing
commas. | ignored the advice and put them on the right, at the end of the line, for a couple of
months before realizing he was right. He repeated this maxim to me often that week: “Good
programming follows simple principles.”

At school now, | emphasize this advice term after term. Some students accept it and use it,
and some don't. Those students who don’t accept it struggle with the syntax throughout the course
because they’re always trying to find that missing comma or component in their SQL statement.
SQL is not an easy thing to learn because it requires creating a spatial map of data, which isn't a
skill all developers possess immediately. Sometimes it takes quite a while to sort through seeing
the relationships between data in a relational database. It becomes easier with practice, provided
you strive to maintain the clarity of your statements, the consistencies of your approach, and
consistent choice of using portable SQL syntax.

PL/SQL Stored Programs

PL/SQL is a fully fledged programming language. It allows you to write programs stored in the
database that manage collections of SQL statements as a complete transaction.

Variable naming conventions can be controversial in some organizations, because many
developers believe variables should be semantically meaningful. The argument against naming
conventions is that the conventions, such as prefixes, decrease code readability. This controversy
is simply a conflict of ideas. Both sides have merit, and there are always situations in which
choosing one practice over the other is logical. From my perspective, the key is finding balance
between what adds stability to the company or corporate enterprise while providing meaningful
variable names.

Introduction XXVII

Here in the book, I've tried to be consistent and use prefixes. In some places, I've opted for
semantic clarity in variable names (such as the Oracle session or bind variable : whom in Chapter 2).
| believe that using prefixes increases readability in your code, and I suggest using the prefixes in
Table 1.

Some advanced variable data types, known as composite variables, require both prefixes and
suffixes. The suffix identifies the type of composite variable. These requirements are unique to the
Oracle database. Table 2 qualifies my recommended suffixes (with a lead-in underscore) for
Oracle composite data types. Table 2 shows you long and short name versions for the suffixes.

Using suffixes for composite data types is a generally accepted practice because they are
UDTs. However, it isn’t a rule or requirement in the PL/SQL programming language.

PL/SQL is a strongly typed language with declaration, execution, and exception blocks. Blocked
programs use keywords to start and end program units, as opposed to the use of curly braces in
C++, C#, Java, and PHP. As found in the GeSHi (Generic Syntax Highlighter) libraries, PL/SQL
block keywords are in uppercase letters, and I've adopted that convention throughout the book.

Other Conventions

Sometimes code blocks need clarity. Line numbers are provided throughout the PL/SQL and SQL
examples for Oracle because they're a display feature of the SQL*Plus environment.

The text conventions for the book cover highlighting, italicizing, and separating syntax. They
are qualified in Table 3.

Hopefully, these conventions make reading the book easier. You'll also find that sidebars appear
in gray-shaded boxes throughout the book.

Prefix Example Description

cv cv_input var Represents cursor parameter variables. These are pass-
by-value input parameters to cursors in PL/SQL stored
programs.

1v lv_target var Represents local variables defined inside PL/SQL stored
programs.

pv pv_exchange var Represents parameters to PL/SQL stored functions and

procedures. They’re not exclusively input parameters
because PL/SQL supports input and output parameters in
both stored functions and procedures.

sv sv_global var Represents session variables. They act as global variables
for the duration of a client connection to the database.
Oracle lets you share the values in these variables between
anonymous blocks by using a colon before the variable
name (:sv_global var) inside the block. Also known
as bind variables.

TABLE 1. PL/SQL Variable Prefixes

XXViii Oracle Database 12c PL/SQL Programming

Suffix
Long Short
_ATABLE _ATAB
_AARRAY _AA
_ CURSOR _CUR
_C
_EXCEPTION _EXCEPT
_EX
_E
_OBJECT _OBJ
0
_NTABLE _NTAB
_TABLE _TAB
_RECORD _REC
R
_TYPE T
_VARRAY _VARR
VA

Description

_ATABLE, AARRAY, ATAB, and AA are used to describe
associative arrays in PL/SQL. My preference is the ATABLE
or _ATAB suffix because the other suffixes aren’t intuitively
obvious and require documentation in your code.

_CURSOR, CUR, and _C are used to describe variables based
on a cursor structure defined in a local declaration block

or a package specification in PL/SQL. My preference is the
_CURSOR or _C suffix.

_EXCEPTION, EXCEPT, EX, and E are used to describe
user-defined exceptions in PL/SQL. My preference is the
_EXCEPTION or _E suffix.

_OBJECT, OBJ, and _0 are used to describe user-defined
types (UDTs) in both SQL and PL/SQL. Object types can

act like PL/SQL RECORD data types, which are record data
structures. They differ because they’re schema-level SQL UDTs
and not exclusively PL/SQL UDTs. Object types can also be
instantiable objects such as C++, C#, and Java classes. My
preference is the OBJECT or 0 suffix.

_NTABLE, TABLE, NTAB, and TAB are used to describe
nested tables, which are collection types in SQL and PL/SQL.
They act like lists because they have no upward limit on how
many elements can be in the collection. My preference is the
_TABLE or _TAB suffix because a nested table is the collection
most like a list in other programming languages.

_RECORD, REC, and R are used to describe UDTs
exclusively in PL/SQL. They are a PL/SQL implementation
of a record data structure. They can be elements of PL/SQL
collections but not of SQL collections. My preference is the
_RECORD or _R suffix because they're fully descriptive or
shorthand, but many developers opt for REC.

_TYPE and _T are used to describe UDTs, like subtypes of normal
scalar data types described in Chapter 4. Either suffix works for
me, but _TYPE seems more frequent in code repositories.

_VARRAY, VARR, and VA are used to describe the VARRAY
(my mnemonic for this Oracle data type is virtual array). The
VARRAY collection is the collection most like a standard array
in programming languages, because it has a maximum size
and must always have sequential index values. It can be used
to define SQL and PL/SQL collections. My preference is the
_VARRAY or VA suffix because _VARR too closely resembles
generic variable shorthand.

TABLE 2. PL/SQL Variable Suffixes

Introduction XXIX

Convention Meaning
Boldface Focuses attention on specific lines of code in sample programs.
Italics Focuses attention on new words or concepts.

Monospaced All code blocks are monospaced.

UPPERCASE Denotes keywords used in SQL and PL/SQL, and SQL built-in function names.
COURIER

lowercase Denotes the names of user-defined tables, views, columns, functions,
courier procedures, packages, and types.

(] Designates optional syntax and appears in the prototypes.

{} Groups lists of options, which are separated by a single pipe symbol (|).

| Indicates a logical OR operator between option lists.
Indicates that content repeats or was removed for space conservation.

TABLE 3. Text Conventions

Data Model and Source Code to Download

The data model is a small video store. The source code to create and seed the data model for Oracle
is found on the publisher’s web site for the book:

www.OraclePressBooks.com

Figure 1 shows the basic, or core, tables used in the example programs.

One table in the model may require some explanation, and that’s the common_lookup table.
The common_lookup table is a table of tables, as shown in Figure 2.

A set of attributes (columns) that uniquely identify rows is the natural key. It consists of the
table and column names plus the type. Types are uppercase strings joined by underscores that
make querying these lookup sets easier. The common_lookup meaning column provides the
information that you'd provide to an end user making a choice in a drop-down list box.

The primary key of the common_1ookup table is a surrogate key column, common lookup id
(following the practice of using the table name and an _id suffix for primary key column names).
A copy of this value is stored in the table and column, such as item and item type. With this
type of design, you can change the display value of XBOX to Xbox in a single location, and all
code modules and table values would be unchanged. It’s a powerful modeling device because it
prevents placing components like gender, race, or yes/no answers in web forms (embedded options),
and it reduces management costs of your application after deployment.

Let’s examine an approach to leveraging common lookup tables in a web-based application.
The explanation starts with data stored in a join between two tables—the member and contact

‘uosssiuwed Inoum Aem AU Ui pBIIPOW 10 paINGLISIPRI 8] 03 10N D717 ‘SBUIp|oH uoieonp3 BqolD ||IH-MeIDON @ WBLAdOD *[9T/40/50] T [L€T'92T 0vz 'S8 AvsleAlun edenisdeH | Aq papeojumoq

XXX Oracle Database 12c PL/SQL Programming

"] street_address ¥
strest_address_id INT(10} _I

@ address_id IMT(10) |
strest_address (HAR(3D) =

4 mare...

] member v
member_id INT{10)

smember_type INT{10)
account_number CHAR{10)
credit_card_num ber THAR{19)
credit_card_bype INT(100

—————

dmare...

t

}

| common_lookup v
common_lookup_id INT(10)
common_lookup_table Y ARCHAR{30)
comm on_lookup_column Y ARCHAR{E0)
common_lookup_twpe CHAR{30)
common_lookup_code W ARCHAR(30)
common_lookup_meaning CHAR(30) l

dmore...

i

|

k

] item v
ikern_id INT(10)
»ikern_barcaode CHAR(14)
G ibem_type INT(10) I
»ibem_title CHAR{&0) |
ibem_subtie CHAR{&0) |
»ikem_rating CHAR(S) =
release_date DATE

4 more...

] telephone v

"] address v
address_jd INT(10)
2 contact_id INT(10}
address_type INT{10) |
city CHAR(3O) I—'-é
state_province CHAR{S0)
postd_code CHAR(Z0)
dmare...
>
L
|
i
] contact v
contact_jd IMT{10)
»member_id INT{10) T
contack_type INT{10)
» first_name CHAR(20)
icdl CHERg2D) B
middle_name -
»last_name CHAR{Z0) -
4 more... bl
= -t
==
i -
| -
* -t
=t
] rental v -
rentd _jid INT(10) = =
)

& customer_id INT{10)
check_out_date DATE
return_date DATE

4 more...

i
|

b4
D:| rental _item v "
rentd_item_id INT{10)
@ rentd _id INT(10)
»item_id INT(109
rentd _jkem_price INT(11})
> rentd_item_type INT(10)

dmare...

& contack_id IMT{10)
> address_jd INT{10)

telephone_id INT{10)

telephone_type INT{10)
country_code CHARL3)
area_code CHAR(E)
telephone_number CTHAR(1O)

dmare...

 FREE AR
I
I
;

L 1 1L 1

T T T T

| system _user v
systemn _user_id INT{10)
system _user_name CHAR(ZD)
system _user_group_id INT{10)
system _user_twpe INT{10)
first_name CHARL20)
middle_name HAR(20)
last_name CHAR{ZO)

4 mare...

TrrFfsfsdt
La La

£.14

| price v
price_id INT{10)

»ibem_jd INT{10)

2 price_type INT(10)
active Flag EMUMY',' N
start_date DATE
end_date DATE
amount DOUBLE

=

<4 mare...

FIGURE 1.

Video Store entity-relationship diagram (ERD)

Introduction XXXI

common_lookup_id common_lookup_table common_lookup_column common_lookup_type commeon_lookup_meaning

p |1 SYSTEM_LISER system_user_jd SYSTEM_ADMIN Syskem Adrministrakar
E SYSTEM_LISER syskem_user_id DEA Database Administrator
e 3 CONTACT CONTACT_THPE EMPLOYEE Employes
e 4 COMTACT CONTACT _TYPE CUSTOMER Cuskamer
e 5 MEMBER. MEMBER._TYPE INDIVIDUAL Individual Membership
i [} MEMEER. MEMBER _T¥PE GROUP Group Membership
e 7 MEMBER. CREDIT_CARD_TYPE DISCOWER _CARD Discover Card
Wy g MEMBER. CREDIT_CARD_TYPE MASTER_CARD Master Card
i 9 MEMBER. CREDIT_CARD_TYPE WISA_CARD VISA Card
e 10 ADDRESS ADDRESS_TYPE HZME Harne
e 11 ADDRESS ADDRESS_TYPE WORK Work
e 1z ITEM ITEM_TYPE DWD_FULL_SCREEM DWD: Full Screen
e 13 ITEM ITEM_TYPE DD _WIDE_SCREEN DWD: Wide Screen
e 14 ITEM ITEM_TY¥PE MINTEMDO _GAMECLEE Mintendo GameCube
Wy 15 ITEM ITEM_TY¥PE PLAYSTATIONZ PlayStation2
i 16 ITEM ITEM_TYPE ABOK HBOR
e 17 ITEM ITEM_TYPE WH5_SIMNGLE_TAPE YH3: Single Tape
e 15 ITEM ITEM_TYPE WHS_DOUELE_TAPE WH3S: Double Tape
e 19 TELEPHOME TELEPHOME_TYPE HOME Home
e 0 TELEPHOME TELEPHOME_TYPE WORK Work.
e 21 PRICE ACTIVE_FLAG YES Yes
Wy 22 PRICE ACTIVE_FLAG MO N

FIGURE 2. The common_lookup table (table of tables)

tables. The internal lookup uses the customer’s name (the natural key) from the contact table to
find the membership account information in the member table.

SELECT

’

’

’

FROM
ON
WHERE
AND
AND

m
m

m.credit card number

m
C
C
C
(]

member m

m
C
C
C

.account number
.member type

.credit card type
.first name
.middle name
.last _name
.contact_type

.member id = c.member id
.first name = 'Harry'
.middle name = 'James'
.last _name = 'Potter';

-- A fk to common lookup table.

-- A fk to common_ lookup table.

-- A fk to common_ lookup table.
INNER JOIN contact c

The preceding query returns the following display when you run it through the dbms_sqgl
Method 4 code example from Chapter 13, which displays column names on the left and column
values on the right. You should note that the member type, credit card type, and

XXXil Oracle Database 12c PL/SQL Programming

contact_type columns hold foreign key values based on the common_1lookup_1id surrogate
key column.

account_number: SLC-BOOBB6
member_type: 6
credit_card_number: 6011-B0A0-B0BB-BB8G

credit_card_type: 7

first_name: Harry

middle_name: James

last_name: Potter

contact_type: 4

You have the option of using these values to connect the data through a join or through function
calls to the common_1ookup table. The common_1ookup table contains values that are frequently
displayed in application software forms.

The following join connects all three foreign keys to three separate rows in the
common_lookup table:

g SELECT m.account number

, cll.common lookup meaning -- Customer friendly display.
, m.credit card number
, cl2.common lookup meaning -- Customer friendly display.

, c.first_name
, c.middle name
, c.last_name

, cl3.common lookup meaning -- Customer friendly display.

FROM member m INNER JOIN contact c

ON m.member id = c.member id JOIN common lookup cll

ON cll.common lookup_id = m.member type JOIN common_ lookup cl2

ON cl2.common lookup id = m.credit card type JOIN common lookup cl3
ON cl3.common lookup_ id = c.contact_ type

WHERE c.first name = 'Harry'

AND c.middle name = 'James'

AND c.last _name = 'Potter';

The preceding join yields the following meaningful business information:

account_number: SLC-BOBBAGL
common_lookup_meaning: Group
credit_card_number: 6011-000A-A0AA—BO86

common_lookup_meaning: Discover Card

first_name: Harry

middle_name: James

last_name: Potter

common_Jlookup_meaning: Customer

The data returned from any query is symmetrical, which means all columns return the same
number of rows. The results of the preceding query are the business results from three lookup
activities, and they return the previously chosen values by a business user. However, the results
are not what you’d want to display in a web form that presents the ability to change values,
such as the member, credit card, or contact types. The reason they’re not the correct values to
display is that you need the currently selected values and the list of alternative values that an end
user can choose when working in an application software form (as shown in Figure 3). Queries
don't deliver that capability because result sets are limited to symmetrical data, like that shown
from the last query.

Introduction XXXIII

%) Select Option Sample - Mozilla Firefox o]
File Edit Wiew History Bookmarks Tools Help

|.Se|ect Option Sample | + |
é > localhaost foptions2imulkiple_lo [| |B - Google R | i

Membersiip Account Informuation

Account# [SLC-000008 [Group =

Credit Card # |6011-0000-0000-0086 | Discover Card |

Dhiscover Card
Master Card
SA Card

First Mane Middle Mem:

Customer ILin ILuna

Type ICustDmer 'I

Submit |

FIGURE 3. Web form selectivity fields

You need to get the current and possible values by using the foreign key as a parameter to
a function call, and in this example you actually need to make a call by using the table name,
column name, and current value. In an HTML web form, the function would return a set of
HTML option tags to embed within an HTML select tag. The currently selected value from
the lookups would be the selected HTML option tag, and the other possible values would

be the unselected HTML option tags. This approach would return an asymmetrical result set
like the following:

fi{x) fi{x) fix)
¥ L ¥
Select Type Select Type Select Type
|5LC-000006 | Group 6011-0000-0000-0086 |Discover card|Lily |Luna |Potter [Customer
Individual Master card Employee
Visa card

Taking this type of approach to commonly referenced values lets your application code
leverage reusable modules more readily. Naturally, this type of function would be more ideally
suited to a PL/SQL result cache function in an Oracle Database 12c application.

This page has been intentionally left blank

PART

Oracle PL/SQL

This page has been intentionally left blank

CHAPTER
1

Oracle PL/SQL
Development Overview

4 Oracle Database 12¢ PL/SQL Programming

and why of a programming language provides a strong foundation for learning how to use

This chapter introduces you to Oracle PL/SQL development. Understanding the how, what,
the programming language effectively to solve problems.

This chapter covers the following:

B PL/SQLSs history and background

B Oracle development architecture

The development examples in this book are presented using the SQL*Plus tool because it's
the lowest common denominator when it comes to Oracle development. Although development
tools such as Dell’s Toad and Oracle SQL Developer are great in many ways, they also have a few
weaknesses. Their greatness lies in simplifying tasks and disclosing metadata that otherwise might be
hidden for months or years. Their weaknesses are more subtle. Tools provide opportunities to solve
problems without requiring that you understand either the problem or the solution. Occasionally,
this may lead you to choose a suggested solution that is suboptimal or incorrect. Relying on tools
also stymies the learning process for new developers. While SQL*Plus is also a tool, it’s the
foundational tool upon which all other integrated development environments (IDEs) are based.
A solid understanding of Oracle basics and SQL*Plus lets you use IDE tools more effectively.

PL/SQL’s History and Background

This is the short version of how Oracle Corporation came to exist in its present form. In the 1970s,
Larry Ellison recognized a business opportunity in the idea of relational database management
systems (RDBMSs). Along with a few friends, Ellison formed the company Software Development
Laboratories (SDL) in 1977. A few years later, the founders changed the company name to
Relational Software, Inc. (RSI), and subsequently changed it first to Oracle Systems Corporation
and finally to Oracle Corporation. Through a combination of its own internal development and
the acquisition of multiple companies over the past three and a half decades, Oracle, as it is
commonly called, has captured the majority of the RDBMS market.

The concept of an RDBMS is complex. More or less, the idea is to (a) store information about
how data is stored or structured, (b) store the data, and (c) access and manage both the structure
and data through a common language. Structured Query Language (SQL) is that language
(pronounced “sequel” in this book).

Oracle innovated beyond the original specification of SQL and created its own SQL dialect,
Procedural Language/Structured Query Language (PL/SQL). While many of the new features of
PL/SQL were adopted by the ANSI 92 SQL standard, some remain proprietary to Oracle Database.
Those proprietary features give Oracle a competitive edge. Unlike some companies, Oracle isn’t
content to simply be the leader. It maintains its lead and competitive edge because it continues to
innovate. Likewise, Oracle currently sets the industry standard for relational and object-relational
databases.

Oracle created PL/SQL in the late 1980s, recognizing the need for a procedural extension to
SQL. PL/SQL was and remains an innovative imperative language that supports both event-driven
and object-oriented programming. Perhaps the most important aspect of PL/SQL is that you can
call SQL statements from inside it, and call PL/SQL from SQL. People still shy away from PL/SQL
because they want to remain database agnostic, which is a fancy way to say they want SQL
solutions that are easily portable to other platforms. Although major competitors have added
stored procedures to their competing database products, they’ve failed to deliver the same power
and capability of PL/SQL. The single exception is IBM, which simply implemented PL/SQL very

Chapter 1: Oracle PL/SQL Development Overview 5

similarly to how it works in Oracle Database. Unfortunately for IBM, the collections of Oracle SQL
and PL/SQL built-ins and proprietary SQL extensions leave Oracle in the RDBMS technology lead.

In the late 1990s, Oracle saw the need for an object-relational extension to SQL. In response,
it introduced object types in the Oracle 8 database and transformed the Oracle database server. It
went from a relational database management system (RDBMS) to an object-relational database
management system (ORDBMS). Oracle continued to improve how object types work in the
Oracle 8i, 9i, 10g, 11g, and 12c releases. PL/SQL is a natural gateway to both creating and using
these object types. Clearly, PL/SQL enabled the deployment and evolution of object-relational
technologies in the Oracle database.

NOTE

The term object-relational model is interchangeable with the term
extended-relational model, but Oracle prefers the former term over the
latter.

Oracle also recognized, in 1998, the importance of implementing a Java Virtual Machine
(JVM) inside the database. Oracle introduced a JVM in Oracle 9/ Database. Oracle made
improvements in the implementation of the JVM in Oracle Database 10g, 11g, and 12c. PL/SQL
interfaces are used to access internal Java libraries that run in the JVM and to access external
libraries in C-callable languages. The full functionality of an ORDBMS is possible because of the
powerful combination of PL/SQL and an embedded JVM. In fact, PL/SQL has made possible the
object-relational model we know as the Oracle database.

Figure 1-1 shows a timeline that covers the evolution of PL/SQL in the Oracle database.
Interestingly, Oracle has provided 12 major feature upgrades during the 28-year history of the
language. You'll note that Pascal is all but dead and gone, and Ada has had only four upgrades in
the past 30+ years. The only language other than PL/SQL showing such feature investment is Java,
which Oracle now owns.

From my years of experience with the product and other databases, | conclude that Oracle
made the right call by adding PL/SQL to the Oracle database. PL/SQL is an extremely valuable and
powerful tool for leveraging the database server. The ability to exploit the Oracle Database 12¢
server is critical to developing dynamic and effective database-centric applications.

Review Section
This section has presented the following details about the history and background of Oracle
database:

B Oracle evolved from Relational Software, Inc. (RSI), which evolved from Software
Development Laboratories (SDL).

B The SQL language is the interface to the Oracle Database 12¢ database engine, and
Oracle extensions provide a competitive advantage.

B The PL/SQL language extends the behavior of SQL and has enabled the evolution of
object-relational technologies.

B PL/SQL wraps access to embedded Java libraries.
B PL/SQL makes possible the implementation of an object-relational Oracle database.

B PL/SQL enables developers to exploit the Oracle Database 12c¢ server.

6 Oracle Database 12¢ PL/SQL Programming

[/

1970 1975 1980 1985 1990 1995 2000 2005 2013 |} ‘

Pascal
Pascal ICS Multiple
Systems

Pascal CDC ADA ISO ADA 2006

FIGURE 1-1. PL/SQL language timeline

Oracle Development Architecture

The architecture of a database has many levels. At the core of Oracle Database 12¢ is SQL. SQL
is the interface to the Oracle Database 12¢ database engine, analogous to the steering wheel,
brakes, and dashboard of a car. Analogous to the car engine is the server software, which includes
an “engine” that stores and processes data, a “transmission” that governs transactions, and an
enhanced “odometer” that logs what the system does to files. The server software also includes
support programs that manage the system’s content integrity, which are analogous to tires, body
components, seat cushions, and bumpers. You can find much more about the Oracle Database
12c¢ architecture in Appendix A.

Good mechanics must be aware of all the components that make up the vehicle. Likewise,
database administrators (DBAs) must be aware of the many components related to an Oracle
database system. The DBA is the primary mechanic who works with the engine, with the database

Chapter 1: Oracle PL/SQL Development Overview 7

developer getting involved from time to time. The rest of the time, the database developer drives
the car, which means they focus mostly on the data and working with SQL.

Just as a mechanic maintains and tunes a car’s engine to optimize its performance and
longevity, a DBA works with the numerous details of the database engine to get the most value
from an Oracle database. Many of the details related to RDBMS management don't involve
developers. That's because developers focus on interacting with the data, much like how a racecar
driver who reports performance problems as they arise. While developers do worry about
performance, they often defer resolution of performance problems to DBAs. Those developers
who don't take the work to the mechanic (DBA) all the time often cross the line between the DBA
and developer roles. By crossing that line, developers often learn new diagnostic skills. Developers
who frequently cross that line between DBA and developer roles often become known as
application DBAs.

Driving a car requires skill handling the steering wheel, accelerator, and brakes, and driving
the “Oracle car” requires skill with SQL statements. While some SQL statements let you build
database instances (cars), like a factory, others let you maintain, repair, and tune the database.
Still other SQL statements let you interact with data, allowing you to insert, update, delete, and
query database data. SQL statements that let you interact with data are sometimes called CRUD
functions, representing create, read, update, and delete (check Appendix B for more details).

Developers who drive the Oracle car often work on small to medium-sized projects, and
they’re only exposed to the necessary tables, views, and stored programs that support a business
application. Application developers like this only work with a small subset of the SQL interface,
similar to how drivers of real cars focus on the steering wheel, accelerator, brakes, and fuel gauge.

The following section explains how DBAs can use PL/SQL to maintain and tune the engine
and how developers can use PL/SQL to optimize performance. While the details of how you
maintain and tune the engine are interesting on their own, this book is targeted at showing you
how to use SQL and PL/SQL to solve database-centric application programming problems.

NOTE

Appendix A describes the database environment, the database
components, and the primary interface points—the SQL*Plus
command-line interface (CLI) and the Oracle SQL Developer graphical
user interface (GUI). Appendix B describes Oracle’s implementation
of SQL, which is the most complete in the industry.

Before | explain how to drive the “Oracle car,” | need to give you a quick tour of the engine
that runs the car. First, you need to understand some terminology if you're new to the Oracle
database. Second, the same SQL that manufactures the database lets you “drive” the database.
Likewise, SQL actually runs beneath the wizards that Oracle provides.

The Database

An Oracle database is composed of a series of files, a set of processes, and a single database
catalog. You create a database by using a tool, such as the Oracle Database Configuration Assistant
(whose executable name is dbca in all operating systems). The Database Configuration Assistant
is one of the programs that you install on the server tier when you install the Oracle product.
Collectively, these programs are called a relational database management system (RDBMS). The
Database Configuration Assistant is a wizard that simplifies how you create an Oracle database.

Oracle Database 12c PL/SQL Programming

When you use a wizard to create a database, it creates the necessary files, processes, and
database catalog. The database catalog is a set of tables that knows everything about the structures
and algorithms of the database. You probably have heard the database catalog or dictionary called
metadata, or data about data. Metadata is nothing more than a bunch of tables that define what
you can store, manipulate, and access in a database. An Oracle database is also known as a
database instance. More or less, the RDBMS creates databases like a factory creates cars. Oracle
Database 12¢ can create more than one database instance on any server, provided the server has
enough memory and disk space. With Oracle Database 12c’s multitenant architecture, you also
have the ability to create container databases (CDBs) and pluggable databases (PDBs).

The easiest analogy for an RDBMS would be a word-processing program, such as Microsoft
Word, Corel WordPerfect, or Apple Pages. After installing one of these programs on your computer,
it becomes a factory that lets you produce documents. Another name that might fit these programs
is document management system (DMS), but they’re not quite that capable. In short, they provide
a user interface (Ul) that lets you create and edit documents. This Ul is like the steering wheel,
accelerator, brakes, and dashboard that enable you to drive a car, but the dashboard probably
promotes the Ul to a graphical user interface (GUI).

Oracle also provides you with a Ul, known as SQL*Plus. Oracle actually originally called its
SQL*Plus command-line interface the Advanced Friendly Interface (AFl), as still evidenced by the
default temporary file buffer, afiedt .buf. As an experienced user, | can testify that it isn't that
advanced by today’s standards, nor is it that friendly. At least that's true until you try the CLIs of
MySQL and SQL Server. After using either, you'd probably conclude, as I have, that SQL*Plus is
both advanced and friendly by comparison.

The CLI is the basic U, but most users adopt GUI tools, such as Dell’s Toad (expensive) or
Oracle SQL Developer (free). (Appendix A provides guidance on installing, configuring, and
working with SQL*Plus and SQL Developer.) Neither the SQL*Plus CLI nor the SQL Developer
GUI is difficult to use once you understand the basics of how connections work (also covered in

Multitenant Architecture

Oracle Database 12c introduces the multitenant architecture, which is like an apartment
complex for Oracle Database instances. While apartment complexes can be located in a
single building or in multiple buildings, they generally have one location that manages the
complex. Very large apartment complexes may have a centralized management office and
local management offices in each of the buildings.

Oracle’s multitentant architecture isn’t too different from a large, multiple-building
apartment complex with a centralized management office. The container database (CDB) is
the centralized management office, and pluggable databases (PDBs) are the apartment
buildings with local management offices.

Like an apartment complex’s centralized management office, the CDB holds the master
sys and system schemas. Individual PDBs hold an ADMIN user that enjoys sysdba
privileges for the PDB, like the sys schema does in the CDB. PDBs also hold a system
schema that works discretely with an individual PDB. The local PDB ADMIN user’s sys and
system schemas are like the local building manager in a very large apartment complex.
Appendix A describes how you configure a PDB.

Chapter 1: Oracle PL/SQL Development Overview 9

Appendix A). You need to understand how to use at least one of these tools to operate the Oracle
database more effectively.

The command line is an essential tool when you write production code. Production code
must be rerunnable, which means you can run the command when it has already been run
before. To make production code rerunnable, you package together a set of related SQL and/or
PL/SQL commands that you previously typed into a console interactively, and then put them
into a file. The file, also known as a script file, could, for instance, drop a table before trying to
re-create it. Dropping the table before re-creating it differently avoids an ORA-00955 error, which
tells you that you're trying to reuse a name already stored in the data catalog.

You run the script file from the command line, or from another script that calls scripts, which is
why I'll show you how to use the command line in the “Two-Tier Model” section later in the chapter.

The PL/SQL Language

The PL/SQL language is a robust tool with many options. PL/SQL lets you write code once
and deploy it in the database nearest the data. PL/SQL can simplify application development,
optimize execution, and improve resource utilization in the database. PL/SQL isn’t a replacement
for SQL, which is a set-based declarative language that lets you interact with data and the
database. As mentioned, PL/SQL is a powerful imperative language with both event-driven and
object-oriented features.

Is PL/SQL Programming a Black Art?

Early on, PL/SQL 1.0 was little more than a reporting tool. Now the CASE statement in SQL
delivers most of that original functionality. In the mid-1990s, developers described PL/SQL
2.x programming as a “black art.” This label was appropriate then: there was little written
about the language, and the availability of code samples on the Web was limited because
the Web didn’t really exist as you know it today.

Today, there are still some who see PL/SQL as a black art. They also are passionate about
writing database-neutral code in Java or other languages. This is politically correct speak for
avoiding PL/SQL solutions notwithstanding their advantages. Why is Oracle PL/SQL still
considered a black art to these people when there are so many PL/SQL books published
today?

Perhaps the reason is the cursors, but the cursors exist in any program that connects
through the Oracle Call Interface (OCI) or Java Database Connectivity (JDBC). If not cursors,
perhaps it's the syntax, user-defined types, or nuances of functions and procedures. Are
those really that much different from their equivalents in other programming languages? If
you answer “no” to this question, you've been initiated into the world of PL/SQL. If you
answer “yes” or think there’s some other magic to the language, you haven’t been initiated.

How do you become initiated? The cute answer is to read this book. The real answer is
to disambiguate the Oracle jargon that shrouds the PL/SQL language. For example, a
variable is always a variable of some type, and a function or procedure is always a
subroutine that manages formal parameters by reference or by value and the subroutine
may or may not return a result as a right operand. These types of simple rules hold true for
every component in the PL/SQL language.

10 Oracle Database 12¢ PL/SQL Programming

The language is a case-insensitive programming language, like SQL. This has led to numerous
formatting best practice directions. Rather than repeat those arguments for one style or another, it
seems best to recommend that you find a style consistent with your organization’s standards and
consistently apply it. The PL/SQL code in this book uses all uppercase letters for command words
and all lowercase letters for variables, column names, and stored program calls.

PL/SQL was developed by modeling concepts of structured programming, static data typing,
modularity, exception management, and parallel (concurrent) processing found in the Ada
programming language. The Ada programming language, developed for the United States
Department of Defense, was designed to support military real-time and safety-critical embedded
systems, such as those in airplanes and missiles. The Ada programming language borrowed
significant syntax from the Pascal programming language, including the assignment and
comparison operators and the single-quote delimiters.

These choices also enabled the direct inclusion of SQL statements in PL/SQL code blocks.
They were important because SQL adopted the same Pascal operators, string delimiters, and
declarative scalar data types. Both Pascal and Ada have declarative scalar data types. Declarative
data types do not change at runtime and are known as strong data types. Strong data types are
critical to tightly integrating the Oracle SQL and PL/SQL languages. PL/SQL supports dynamic
data types by mapping them at runtime against types defined in the Oracle Database 12c¢ database
catalog. Matching operators and string delimiters means simplified parsing because SQL statements
are natively embedded in PL/SQL programming units.

NOTE
Primitives in the Java programming language describe scalar variables,
which hold only one thing at a time.

The original PL/SQL development team made these choices carefully. The Oracle database
has been rewarded over the years because of those choices. One choice that stands out as an
awesome decision is letting you link PL/SQL variables to the database catalog or cursor. This is a
form of runtime type inheritance, and is best implemented when you inherit from a cursor rather
than from a table or column.

You use the $TYPE and $ROWTYPE pseudo types to inherit from the strongly typed variables
defined in the database catalog. Oracle calls this type of inheritance anchoring, and you can read
a complete treatment in the “Attribute and Table Anchoring” section of Chapter 3.

Anchoring PL/SQL variables to database catalog objects is an effective form of structural
coupling. It can minimize the number of changes you need to make to your PL/SQL programs.
At least, it limits how often you recode when a table’s column changes size. However, structural
coupling like this is expensive because it causes context switches inside the database server.

Oracle also made another strategic decision when it limited the number of SQL base types
and allowed users to subtype base types in the database catalog, enabling them to create a
multiple-hierarchy object tree. This type of object tree can continue to grow and mature over
time. These types of changes increase the object-oriented features of the Oracle database.

The PL/SQL runtime engine exists as a resource inside the SQL*Plus environment. The
SQL*Plus environment has both an interactive mode and a callable server mode. Every time you
connect to the Oracle Database 12c¢ database, the database creates a new session. Calls from the
server’s CLI or a remote client’s CLI may open an interactive session, while calls from external
programs open a server mode session. In either type of session, you can run SQL or PL/SQL
statements from the SQL*Plus environment. PL/SQL program units can then run SQL statements

Chapter 1: Oracle PL/SQL Development Overview 11

or external procedures, as shown in Figure 1-2. SQL statements may also call PL/SQL stored
functions or procedures. SQL statements interact directly with the actual data.

Calls directly to PL/SQL can be made through the Oracle Call Interface (OCI) or Java Database
Connectivity (JDBC). This lets you leverage PL/SQL directly in your database applications. This
is important because it lets you manage transaction scope in your stored PL/SQL program units.
This tremendously simplifies the myriad tasks often placed in the data abstraction layer of
applications.

PL/SQL also supports building SQL statements at runtime. Runtime SQL statements are
dynamic SQL. You can use two approaches for dynamic SQL: one is Native Dynamic SQL (NDS),
and the other is the DBMS _SQL package. Chapter 13 demonstrates dynamic SQL and covers both
NDS and the DBMS _SQL package.

»
SQL*Plus | SQL Statement
Environment < Engine

PL/SQL External
Engine Procedures
Read Write
External External External External

Input Output Output

FIGURE 1-2. Database processing architecture

12 Oracle Database 12¢ PL/SQL Programming

You now have a high-level view of the PL/SQL language. Chapter 3 provides an overview of
PL/SQL block structures and programming basics.

The Oracle Processing Architecture

Figure 1-2 shows the Oracle processing architecture, or how you “operate the car.” Notice that all
input goes in through the SQL*Plus environment and all results or notifications return through the
same environment. That means you're interfacing with the SQL*Plus CLI when you’re working in
the SQL Developer GUI, or through an external programming language such as PHP or Java. The
only difference between external programming languages and PL/SQL is that you lose access to
the interactive features of SQL*Plus when working through external calls in PHP or Java. You
access the call mode of SQL*Plus when you call it through the Open Database Connectivity
(ODBC) interface or JDBC interface.

As you can see in Figure 1-2, PL/SQL serves as the interface between the database and
internally deployed Java libraries, file I/O (input/output) operations, and external procedures. SQL
is the only point of access to the physical data, and as such it serves as an “automatic transmission”
to the many processes that keep the Oracle Database 12¢ database running smoothly.

As covered in Appendix B, the SQL statement engine processes all types of SQL statements,
which includes the following:

B Data Definition Language (DDL) statements CREATE, ALTER, DROP, RENAME,
TRUNCATE, and COMMENT. They allow you to create, alter, drop, rename, truncate, and
comment tables and other objects.

B Data Manipulation Language (DML) statements SELECT, INSERT, UPDATE, DELETE,
and MERGE. They let you query, insert, change, and merge data in the database and
remove data from the database.

B Data Control Language (DCL) statements GRANT and REVOKE. They let you grant and
revoke privileges and groups of privileges (known as roles).

B Transaction Control Language (TCL) statements COMMIT, ROLLBACK, and
SAVEPOINT. They let you control when to make data permanent or undo temporary
changes. They enable you to control all-or-nothing behavior that's ACID compliant (check
Appendix A for the details).

A SQL statement can call a named PL/SQL program unit, and a PL/SQL block can call a SQL
statement. A named PL/SQL program unit is a function or procedure stored in the database
catalog. A PL/SQL call to a SQL statement can only include SQL data types and named PL/SQL
program units stored in the database catalog. That means it can’t call a locally defined function
inside a SQL statement. Procedures can’t be called inside a SQL statement directly; they must be
contained inside a stored function. The reason that you can’t call a local function inside a SQL
statement is that the SQL engine doesn’t have access to a local function.

A complete book would be required to cover all the features in the Oracle SQL implementation,
but Appendix B certainly exposes the majority of core features that any reader will use to develop
applications or administer a database. SQL is like the automatic transmission to all the complex
engine parts that run the Oracle database. Beyond an introduction to SQL, Appendix C covers SQL
built-in functions and Appendix D covers PL/SQL built-in packages.

Chapter 1: Oracle PL/SQL Development Overview 13

The next two sections discuss the connection mechanism for Oracle databases. The basics of
the two-tier computing model are described first, followed by a discussion of the more complex
three-tier model, which is really an n-tier model. Understanding these models is essential to
understanding how you can use SQL or PL/SQL.

Two-Tier Model

All databases adopt a two-tier model: the engine and the interface. The server is the database
engine and a database listener. A [istener implements the object-oriented analysis and design
observer pattern. The observer pattern is mainly used to implement distributed event-handling
systems. Oracle’s listener is a program that listens for incoming requests on an ephemeral (or
short-lived) port, and forwards them to a SQL*Plus session. The client is the interface that lets you
issue SQL commands and, in Oracle, lets you call PL/SQL blocks.

TCP/IP

Client Network Server

A typical installation of the Oracle database installs both the client and the server on the
database server. That'’s because the mechanic (or DBA) who maintains the engine uses the same
interface to manage many of the parts. Other server-side utilities let the DBA manage part
replacement when the server is shut down. (Similar to how you’d replace parts in an engine,
you'd shut off the engine before taking it apart to replace something.)

Our focus in this book is the interface to the running engine. We use the database server copy
of the client software when we drive the database from the local server. Sometimes we want to
drive the database remotely from a laptop. We have several ways to accomplish that process. One
is to install a copy of the Oracle Client software on a remote machine. Another is to use a tool,
such as SQL Developer, to connect across the network.

N-Tier Model

All databases support a three-tier model, because it’s really just a middleware solution. As you
can see in Figure 1-3, the middle tier of a three-tier model may have many moving parts, and they
work like tiers. That's why the industry adopted the n-tier model over the original three-tier model.
An n-tier model more aptly describes what’s actually happening in web-based applications. The
middleware

B Can have a multithreaded JServlet, Apache module, or general software appliance
B Can have a metric server layer to balance load across multiple devices
B Creates a pool of connections to the Oracle database and shares the connections with

requests made by other clients

Typically in an n-tier model, the client-to-middleware communication doesn’t enjoy a state-
aware connection (see Figure 1-3). In fact, it’s often stateless through the HTTP/HTTPS protocols.

14 Oracle Database 12¢ PL/SQL Programming

5 TCP/TCPS :
{ Redirects to appropriate E
I Start
| HTTP/HTTPS |Apache Module h !
Browser Internet _| Li / S j ! DBMS
i istener '
HTTP/HTTPS F strts v ‘lm!
Start . Apache N Apache E Database
Apache | Daemon Modules] Server
‘ B TCP
I 8 { q
| m =
: Locally mod_php |
{ 4 1
I Stored]
| Programs | € mmeslipitien N
' < 1
1 52 !
‘ Writes *]
E pa— % Temp File E
‘ Moves Cache ;
E v]
E Local File]
! Storage ™ Moves from security E
| quarantine area]

FIGURE 1-3. N-tier computing model

This shift in communication semantics means changes are automatic and permanent when
they occur. If you submit a data change via an INSERT, UPDATE, or DELETE statement across
HTTP/HTTPS and receive acknowledgement of success, that change is permanent. This is known
as an optimistic processing model. It alone is a reason for stored procedures that manage
transactions across multiple tables in any database.

The exception to an optimistic process occurs when the middleware maintains a lock on the
data and manages your transaction scope for you. This type of implementation is done for you by
default in Oracle Enterprise Manager (OEM) or Oracle Application Express (APEX). Describing the
mechanics of how this works would require a chapter of its own. Suffice it to say, this is a possible
architecture for your internally developed applications.

Review Section
This section has described the following points about Oracle database architecture:

B SQL is the interface that lets you manage, maintain, and use the Oracle Database 12¢
database engine.

B Oracle provides a SQL*Plus CLI and several GUIs that all interact with SQL and PL/SQL.

Chapter 1: Oracle PL/SQL Development Overview 15

B The SQL language is the “automatic transmission” to the data and many processes that
keep the Oracle Database 12¢ database running smoothly. SQL replaces imperative
languages as the interface to relational data and RDBMS management.

B The two-tier model represents how SQL works with the data, with the SQL*Plus CLI or
SQL GUI acting as the client and the database engine acting as the server.

B The n-tier model represents how web-based applications engage the data through a
middle tier, which can be three or more tiers in depth.

Summary

This chapter has provided a tour of the Oracle development environment for client- and server-
side PL/SQL development. In conjunction with Appendixes A and B, you should be positioned to
understand, work with, and experiment with the examples in the subsequent chapters.

Mastery Check

The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix | for answers to
these questions.

True or False:

___Relational Software, Inc. became Oracle Corporation.

__Relational databases store information about how data is stored.

___Relational databases store data.

___SQL is an imperative language that lets you work in the Oracle database.

___The relational database model evolved from the object-relational database model.
__ PL/SQL is the procedural extension of SQL.

___PL/SQL is an imperative language that is both event-driven and object-oriented.

NS RN

__The Oracle database relies on an external Java Virtual Machine to run stored Java
libraries.

©

A two-tier model works between a browser and a database server.

10. __ A three-tier model is a specialized form of an n-tier model.

Multiple Choice:

11. Which of the following describes the roles of the Oracle listener? (Multiple answers possible)
A. Listen for incoming client requests

Send outgoing requests to client software

Forward requests to the PL/SQL engine

Forward requests to a SQL*Plus session

mO 0w

Forward requests to the SQL engine

16 Oracle Database 12¢ PL/SQL Programming

12. Which of the following converts a relational model to an object-relational model?
(Multiple answers possible)

A.

13.

14.

15.

mUnNw®

A data catalog

A set of tables

An object data type

An imperative language that lets you build native object types
A JVM inside the database

SQL*Plus provides which of the following? (Multiple answers possible)

mO 0>

.

An interactive mode
A call mode

A server mode

A client mode

All of the above

Which of the following is a capability of PL/SQL?

mOOn = >

Call sQL

Implement object types
Wrap C-callable programs
Wrap Java programs

All of the above

Which of the following are types of SQL statements? (Multiple answers possible)
A.

mUnNw®

Data Definition Language (DDL) statements

Data Manipulation Language (DML) statements

Data Control Language (DCL) statements

Create, replace, update, and delete (CRUD) statements

Transaction Control Language (TCL) statements

CHAPTER

New Features

18 Oracle Database 12¢ PL/SQL Programming

manage Oracle PL/SQL programs. At the time of writing, | can’t guarantee that an additional
new feature or two won't get added late in this release cycle or in the next release cycle,
so check the Oracle Database New features Guide for the latest updates.

This chapter covers the new SQL and PL/SQL features that directly affect how you write and

Coverage of the new features in this chapter is divided into the two languages:

B New SQL features
B New PL/SQL features

Some of the features lend themselves to multiple-page descriptions with examples, while others
require only a brief introduction because they are described elsewhere in the book—in which case
you are referred to the chapter in which the feature is covered. If you're new to PL/SQL, you may
want to skip directly to Chapter 3 to read about PL/SQL basics and then return to this chapter.

New SQL Features

Oracle offers a number of new features in Oracle Database 12c. The SQL syntax changes are
fairly numerous, so we'll concentrate here on the changes that have an impact of functionality.

B Oracle Database 12c enables you to use virtual directories in the LIBRARY path for
external procedures.

B Flashback technology improves with the introduction of valid-time (VT) dimensions.

B The functionality of Oracle’s ANSI 92 join syntax grew in Oracle Database 12c. You can
now perform a LEFT OUTER JOIN against two or more tables on the left side of the join.

B Default column values can now hold references to the .nextval and .currval
pseudocolumns, which is a neat feature.

B Oracle Database 12c¢ introduces identity columns that maintain auto-incrementing
sequences for surrogate keys.

B Oracle Database 12¢ adds the ON NULL clause to default values, which closes the door
to explicit overrides with a null in the list of values.

B Oracle Database 12c increases the size of VARCHAR2, NVARCHAR2, and RAW data types,
at least when you set a database parameter correctly.

B Like Microsoft SQL Server, Oracle Database 12c enables you to pass the results of
queries directly to external programs.

B Oracle Database 12c provides native SQL support for query row limits and offsets.

B Oracle Database 12c adds a new driver as a drop-in replacement for the MySQL 5.5
client library.

B SQL has gained CROSS APPLY, OUTER APPLY, and LATERAL syntax for when you
work with nested tables.

B You can now create views with either definer rights—the old way and current default—
or with invoker rights. The only difference is the syntax: the definer rights model uses
BEQUEATH DEFINER and the invoker rights model uses BEQUEATH INVOKER.

Chapter 2: New Features 19

Data Catalog DIRECTORY Qualifies a LIBRARY Object

LIBRARY objects are repositories for external libraries. External libraries are written in C or a
C-callable programming language. They require you to put the physical files in a directory and
then specify the name of that directory in the 1istener.ora file and the CREATE LIBRARY
statement.

Oracle Database 12c adds the capability to replace a physical directory with a virtual
directory. The following syntax shows you how to create a library with a physical directory:

g SQL> CREATE OR REPLACE LIBRARY demo IS
2 '<oracle home directorys/<custom library>/<file name>.<file ext>';

3/
You can create a LIBRARY object by using this new syntax against a virtual directory:

g SQL> CREATE OR REPLACE LIBRARY demo IS '<library name.so>' IN
2 virtual directory name;

The second argument is a virtual directory. You can learn how to create virtual directories in
the “Virtual Directories” section of Appendix B. That process remains unchanged with the Oracle
Database 12c release.

Define Tables with Valid-Time (VT) Support

A valid-time (VT) support dimension is now available in Oracle Database 12c. Valid time differs
from transaction time (TT). VT maps the effective date of a business event, such as a hiring,
promotion, or termination. TT maps to the physical point at which a row is inserted or updated.

Oracle Database 11g introduced Flashback Data Archive, which uses TT. Flashback lets you
look back in time to see query trends, report differences, and audit trails. These are flashback
dimensions because they segment data by time intervals.

Oracle Database 12c¢ introduces a VT support dimension by formalizing two approaches in
table definitions. One defines periods with explicit column assignments. The other defines periods
with implicit columns. The new SQL phrase for VT is PERIOD FOR, as qualified in the CREATE
TABLE examples presented in the following subsections.

It's important to note that VT rather than TT drives flashback operations. You use VT to manage
your Information Lifecycle Management (ILM) process.

Table with Explicit VT Columns

Let’s examine an example rental table. It has both check out date and return date
columns. Prior to Oracle Database 12c, these columns were managed by your application
programming interface (API). They contain important business logic for how a video store, like
Redbox, bills customers. The VT feature can now identify these critical columns explicitly, like this:

=1 SQL> CREATE TABLE rental

2 (rental id NUMBER GENERATED ALWAYS AS IDENTITY

3 , customer id NUMBER CONSTRAINT nn rental 01 NOT NULL
4 , check out date DATE CONSTRAINT nn rental 02 NOT NULL
5 , return date DATE

6 , created by NUMBER CONSTRAINT nn rental 03 NOT NULL
7 , creation date DATE CONSTRAINT nn rental 04 NOT NULL
8 , last updated by NUMBER CONSTRAINT nn rental 05 NOT NULL

20 Oracle Database 12¢ PL/SQL Programming

9 , last_update_date DATE CONSTRAINT nn_rental 06 NOT NULL
10 , PERIOD FOR rental event (check out date, return date)

11 , CONSTRAINT pk rental PRIMARY KEY (rental id)

12 , CONSTRAINT fk rental 01 FOREIGN KEY (customer_ id)

13 REFERENCES contact (contact_id)

14 , CONSTRAINT fk rental 02 FOREIGN KEY (created by)

15 REFERENCES system user (system user id)

16 , CONSTRAINT fk rental 03 FOREIGN KEY (last_updated by)

17 REFERENCES system user (system user id)) ;

Lines 4 and 5 hold the business logic VT columns. Line 10 explicitly assigns an identifier to
the period matching the business rule. This enables flashback queries against the period.
An example query with VT logic is

g SQL> SELECT *

2 rental AS OF PERIOD FOR rental event
3 TO_TIMESTAMP ('04-AUG-2013 12:00:00 AM') ;

You also have options to use the AS OF field against VT intervals when you're using the
dbms_flashback archive package. | recommend the explicit VT column approach.

Table with Implicit VT Columns

Options are always available when Oracle introduces features. VT columns aren’t an exception.
You can define a table with implicit columns by removing any reference to columns in the table.
In our preceding rental table example, that would mean changing line 10, like this:

g 10 , PERIOD FOR rental event

Line 10 omits the columns from the CREATE TABLE statement.

Enhanced Oracle Native LEFT OUTER JOIN Syntax

The Oracle Database 12c¢ database now supports LEFT OUTER JOIN syntax, which enables
you to have two or more tables on the left side of the join. Prior to the new release, you were
limited to a single table on the left side of a join. Any attempt to use two tables in Oracle
Database 11g release raised an ORA-01417 error.

The benefits are this new feature include the following:

B Merging joins on the left side of the join allows more reordering, which also improves
possible execution plans.

B Supporting multiple views simplifies the effort of developers writing outer join operations.

The downside of the enhanced Oracle native LEFT OUTER JOIN statement is that it’s not
portable. The upside is that you get more effective outer join operations.

Default Values for Columns Based on Sequences

Oracle Database 12¢ provides the capability to associate sequences directly with tables. There are
two alternatives. One lets you create a sequence and directly map it to a column of a table. The
other lets you leverage identity columns (another new feature). While the latter approach doesn’t
benefit well from default independent sequence values, the former does.

Chapter 2: New Features 21

Let’s examine an example customer table, which, to keep it simple, has only two columns.
The first column is a surrogate key column, and it holds a sequence value. Sequence values are
unrelated to the data of any table, and should have a one-to-one mapping to the table’s natural
key. Natural keys are one or more (generally more) not-null columns that uniquely identify each
row in table. The customer_name column is our natural key in the example. While it's clearly
unlikely that a single customer name column could ever be a legitimate natural key, it simplifies
our example and lets us focus on the default column values.

Before we create the table, we need to create the sequence for this example. That's a departure
from what we’ve done historically in the Oracle database, but this is our brave new world of
Oracle Database 12c. We create a generic sequence that starts with the number 1 like

g SQL> CREATE SEQUENCE customer s;

The sequence needs to be created first because we reference it when we create the table with
a default column value:

g SQL> CREATE TABLE customer
2 (customer_id NUMBER DEFAULT customer_s.nextval
3 , customer name VARCHAR2(20)) ;

Since we want to demonstrate how to manage primary and foreign key values in the scope of a
transaction, we need to create another sequence and table. The example creates the preference s
sequence and preference table.

Rather than separate it, like we did before, the code is combined:

@ SQL> CREATE SEQUENCE preference s;
SQL> CREATE TABLE preference

2 (preference id NUMBER DEFAULT preference s.nextval
3 , customer_id NUMBER DEFAULT customer_ s.currval
4 , preference name VARCHAR2 (20));

The DEFAULT sequence values eliminate the need to write ON INSERT triggers. They also
avoid requiring us to explicitly reference the .nextval and . currval pseudocolumns in
sequenced INSERT statements. However, it’s critical to understand that the dependency between
.nextval and .currval hasn’t changed. You must call . nextval for a sequence before you
call . currval for the same sequence in a session.

NOTE

I recommend caution when deciding whether to adopt this
technique, because of the dependency between the two sequence
pseudocolumns.

We can now insert rows into both tables by using override signatures. Override signatures are
lists of all mandatory and desired optional columns that we want to insert into a table. The inserts
into these two tables should ensure that the customer id columns hold values that match. That
way, they support equijoins between the customer and preference tables.

g SQL> INSERT INTO customer (customer name) VALUES ('Mr. Scott');
SQL> INSERT INTO preference (preference name) VALUES ('Romulan Ale');

22 Oracle Database 12¢ PL/SQL Programming

Having inserted both rows without any explicit surrogate key values, let’s check to see if
Oracle Database 12c¢ got it right. Using a simple query joining the result, like

=1 SQL> SELECT *
2 FROM customer c INNER JOIN preference p USING (customer id) ;

should return

=1 CUSTOMER_ID CUSTOMER NAME PREFERENCE ID PREFERENCE NAME

1 Mr. Scott 1 Romulan Ale

The results show that this approach works. The upcoming “Identity Columns” section shows
how to use those columns.

Default Values for Explicit Null Insertion
Oracle Database has long allowed you to enter default values for any column. Although you
could override that behavior, it required you to explicitly provide a null value during an INSERT

statement. Oracle Database 12c¢ now lets you assign a default value when you opt to provide an
explicit null value:

= SOL> CREATE TABLE essay

2 (essay name VARCHAR2 (30) DEFAULT essay_s.nextval
3 , essayist VARCHAR2 (30)

4 , published DATE DEFAULT TRUNC (SYSDATE)

5 , text CLOB

6 , CONSTRAINT essay pk

7 PRIMARY KEY (essay name, essayist, published)) ;

Line 4 guarantees that any attempt to exclude a published date results in the insertion of
the current date. As qualified in Appendix C on SQL built-in functions, the TRUNC function shaves
off the hours and minutes of any date-time data type. All DATE data types are date-time stamps in
an Oracle database.

The following INSERT statement adds a row to the essay table. It works the same way in
Oracle Database 11g as it does in Oracle Database 12c. It inserts the current date minus the
hours, minutes, and seconds into the published column. It does so because the published
column isn’t in the list of columns in the override signature.

INSERT INTO essay
(essay name
, essayist
, text)
VALUES
('Why Would I Want to be Superman'
,'21-SEP-2011"
, 'At one point or another, everyone has wanted to be someone ...');

If you add the published column to the override signature, then you can insert an explicit
null value. That explicit null value overrides the standard default value. Prior to Oracle Database 12c,

Chapter 2: New Features 23

there was no way to prevent that overriding value. Oracle Database 12c¢ provides the ON NULL
phrase to enable you to prevent an explicit null from being inserted in the column.
You change the value by making this change to line 4 of the CREATE TABLE statement:

=1 4 , published DATE DEFAULT ON NULL TRUNC (SYSDATE)

The ON NULL phrase ensures that you can’t insert a null value into the published column.
This type of change eliminates the need for a database trigger, which would prevent the insertion
of a null value in an Oracle Database 11g database.

Identity Columns

The database community at large (competitors) has maligned Oracle because they didn’t have
identity columns. An identity column supports automatic numbering of rows. This type of column
typically holds a surrogate key, which is an artificial numbering sequence.

Oracle Database 12¢ delivers an identity operator. Perhaps the better news is that Oracle
Database 12c provides options for how you generate identity values. The basic identity column
typically uses 1d as its label, and Oracle supports that convention unless you change the column
name.

TIP
Using the table name with the _1id suffix rather than the id suffix as
the identity column name is a better practice.

The following creates a table with two columns, an identity column and a text column:

g1 SQL> CREATE TABLE identity
2 (id NUMBER GENERATED ALWAYS AS IDENTITY
3 , text VARCHAR2(10));

The sample table allows us to exclude the 1d column from an INSERT statement. If we only
had one column, we'd have to provide a value for the 1d column. It's simpler to write an override
signature, which is a form of named notation. An override signature adds a column-list between
the table name and VALUES or subquery clauses.

The present identity table example is as barebones as it gets because the default identity
behavior is ALWAYS, which means you can’t manually enter an identity value in the id column
and, since there are no other columns in the table, you can’t enter a row. You can only insert rows
into a table with an identity column when the table has two or more columns in it, like we've
done in the example.

The correct way to work with an INSERT statement excludes the id identity column from the
column-list, like this:

=1 SQL> INSERT INTO identity (text) VALUES ('One');

Why did Oracle choose ALWAYS as the default? The Oracle documentation doesn’t explain,
but let me venture a guess: If you use BY DEFAULT and enter a number higher than the current
generated sequence value, you can duplicate a column value without a primary key or unique
constraint and cause an insert into the table to fail when it has a primary key or unique constraint.

24 Oracle Database 12¢ PL/SQL Programming

Appendix B has an “Identity Columns” section that describes how to work with identity columns.
The short version is that you will become familiar with the RETURNING INTO clause of an INSERT
statement, because the identity column’s sequence is a system-generated sequence that you can’t
readily access. You can check the “Mapping Identity Columns to Sequences” sidebar in Appendix
B for the details.

Identity columns change how we can work in the Oracle database. At least, they change how
we can work when we're not supporting legacy code, such as the Oracle E-Business Suite’s code
base. Oracle Database 12c¢’s identity approach should mean we stop using sequence .nextval
and sequence. currval. That model let us manage the surrogate primary and foreign key values
in the scope of a transaction.

Identity columns require that we use the RETURNING INTO clause of the INSERT statement.
It lets us capture the last sequence value from an INSERT statement in a local variable. Then, we
can reuse the local variable and assign it as the foreign key to a dependent table. Naturally, this
assumes that we’re managing the insert to these tables in a transaction unit within a PL/SQL block.

Increased Size Limits of String and Raw Types

The maximum size of VARCHAR2, NVARCHAR2, and RAW data types is now configurable in SQL.
You can let it remain 4,000 bytes when the max string size parameter is set to STANDARD.
Alternatively, you can set the max_string size parameter to EXTENDED and the maximum
size becomes 32,767 bytes.

The positive aspect of this increased size limit should be clear to developers upgrading from
Oracle Database 11g. There you could have a PL/SQL VARCHAR2, NVARCHAR2, or RAW that was
32,767 bytes, but you couldn’t store it in a column of the same data type. Now you can do that.

Pass Results from SQL Statements to External Programs

Prior to Oracle Database 12¢, you had to return a SELECT statement into a SQL or PL/SQL data
type. That meant you had more steps to get to embedded queries in your PL/SQL programs.
External programs had to access the results by using a matching scalar or composite data type.
The composite data types were typically SQL tables, PL/SQL system reference cursors, or SQL
result sets from pipelined table functions.

Oracle Database 12¢ provides you with a new return results procedure in the dbms
sgl package. This section contains an example that shows you how to use this procedure and
package.

The functionality mirrors Microsoft’s Shared Source Common Language Infrastructure (CLI).
According to a March 2002 article by David Stutz, “The Microsoft Shared Source CLI Implementation,”
posted on the Microsoft Developer Network (MSDN), “Microsoft has built the Shared Source CLI
so that researchers, students, professors, and other interested developers can teach, learn, and
experiment with advanced computer language infrastructure.” The same article indicates that
Microsoft licenses the Shared Source CLI Implementation to anyone who agrees to modify its CLI
code for noncommercial purposes only. However, in 2009, Microsoft added C# and CLI to the list
of specifications that the Community Promise applies to. That should mean (though I’'m not an
attorney) that anyone could safely implement it without fearing a patent lawsuit from Microsoft.

Wikipedia has a nice article on CLI at this URL:

http://en.wikipedia.org/wiki/Common_Language_Infrastructure

Chapter 2: New Features 25

While Oracle’s documentation doesn’t cover any licensing issue, it appears Oracle must rely
on the Community Promise or have resolved any issue with using it. You can parameterize a
function in CLI, like this example:

g CREATE FUNCTION mydb.getConguistador
(@nationality AS VARCHAR (30))
RETURNS TABLE
RETURN SELECT * FROM mydb.conquistador WHERE nationality = @nationality;

The Shared Source CLI function passes a reference to a result set as the return value of a
function. Oracle’s approach differs. Oracle uses the pass-by-reference get next result
and return_results procedures from the dbms_sql package. The specification for the
get next result and return results procedures are covered in Table 2-1.

The following is an anonymous block program that shows you how to return an implicit
cursor result:

g SQL> COLUMN item title FORMAT A30
SQL> COLUMN item subtitle FORMAT A40
SQL> DECLARE

2 /* Declare a cursor. */

3 lv_cursor SYS_REFCURSOR;

4 BEGIN

5 /* Open a static cursor. */
6 OPEN 1lv cursor FOR

7 SELECT i.item title

Procedure Description

get_next_result Theget next result procedure has two parameters. The first parameter
is an IN mode pass-by-value parameter, and it is a reference to a dbms_ sqgl
cursor reference. The second parameter is an overloaded OUT mode
pass-by-reference parameter. It retrieves either a single PL/SQL system
reference cursor or a reference to a PL/SQL system reference cursor. You are
disallowed from referring explicitly to the OUT mode rc parameter. It has
the following prototypes:
GET_NEXT RESULT(c, rc)
GET_NEXT RESULT(c, rc)

return_results The return results procedure has two parameters. The first parameter
is an IN OUT mode pass-by-reference overloaded parameter. The rc
parameter is either a single or collection of PL/SQL system reference cursors
or a reference to a single or collection of PL/SQL system reference cursors.
The second parameter is a Boolean pass-by-value parameter with a default
TRUE value. It has the following prototypes:
RETURN RESULTS(rc, to_client [DEFAULT TRUE])
RETURN_ RESULTS(rc, to_client [DEFAULT TRUE])

TABLE 2-1. Procedures of the dbms_sql Package that Pass Implicit Result Sets

26 Oracle Database 12c PL/SQL Programming

8 p i.item subtitle

9 FROM item i

10 WHERE REGEXP LIKE(i.item title,'”Star.*');
11

12 /* Call the dbms_sqgl.return result procedure. */
13 dbms sqgl.return result(lv_cursor);

14 END;

15 /

Line 3 declares a PL/SQL system reference cursor. Lines 6 through 10 open a static query into
the local PL/SQL system reference cursor. Line 13 takes the local PL/SQL system reference cursor
and returns it a client scope.

The anonymous block prints the following because the results of the cursor are passed back to
the calling scope by reference implicitly:

=1 ITEM TITLE ITEM SUBTITLE
Star Wars I Phantom Menace
Star Wars II Attack of the Clones
Star Wars III Revenge of the Sith

You actually return two or more result sets when the anonymous block holds two or more local
system reference cursors and you have made two or more calls to the return_results procedure
of the dbms_sql package. The get next result procedure returns a single result set.

New external library functions have been added to work with implicit result sets (IRSs). For
example, the OCI8 2.0 library added the oci get implicit resultset () function call.
You can use it with all of the oci_fecth * functions.

This presents interesting alternatives to the use of system reference cursors and either pipelined
table or object table functions. Again, for newbies, Oracle Database 10g forward lets you create
object table functions, and use the TABLE function to return scalar and composite collections
from the Oracle database as a relational result set.

Native SQL Support for Query Row Limits and Offsets

Prior to Oracle Database 12c¢, you could only limit the number of rows returned by using a less-

than row number (ROWNUM) operation. That changes with the new FETCH FIRST and OFFSET

clauses. Oracle Database 12c now gives you an expanded set of options to perform a top-n query.
You limit the query to one row with the following:

@1 SOL> SELECT i.item title
2 FROM item i
3 FETCH FIRST 1 ROWS ONLY;

Line 3 shows how the FETCH FIRST clause works to return a single row. The funniest thing,
if “funny” is the right word, is that you must use the plural ROWS ONLY keywords.
As you might imagine you return the first five rows by changing line 3 to this:

g 3 FETCH FIRST 5 ROWS ONLY;

Let’s say you didn’t know how many rows would be returned, and you didn’t want to limit the
number to 20, 50, 100, or 500 (the most common breaking points). Oracle has also provided you

Chapter 2: New Features 27

with syntax to return a portion of the total rows. That's accomplished by adding the PERCENT
keyword to the FETCH FIRST clause, like this replacement to line 3:

= 3 FETCH FIRST 20 PERCENT ROWS ONLY;

Oracle Database 12c¢ also enables you to skip rows before reading a limited set of records.
It's a top-n query from someplace in the midst of the return set. The syntax is for a modified line 3:

g 3 OFFSET 20 ROWS FETCH FIRST 20 ROWS ONLY;

The minimum valid OFFSET value is 0. That’s important to know when you parameterize a
top-n query.
You can parameterize the statement by using bind variables, like this:

=1 3 OFFSET :bv offset ROWS FETCH FIRST :bv rows ROWS ONLY;

You should always use the OFFSET clause when you want to parameterize a top-n query
because it lets you write a single statement for two purposes. One lets you read from the beginning
of the record set when you provide a zero OFFSET value to the statement. The other lets you read
from any point other than the beginning of the set. You only read to the end of actual rows when
the :bv_rows value exceeds the remaining records.

It's also possible to use the FETCH FIRST and OFFSET clauses inside PL/SQL blocks as
implicit. You can use them in a SELECT- INTO statement or as the definition of a static cursor.
You can also use bind variables inside an anonymous PL/SQL block.

The following shows how to use a SELECT-INTO query:

=1 SQL> DECLARE

2 /* Declare a local variable. */

3 lv_item title VARCHAR2 (60) ;

4 BEGIN

5 /* Select the variable into a local variable. */
6 SELECT i.item title

7 INTO lv_item title

8 FROM item i

9 FETCH FIRST 1 ROWS ONLY;

10 dbms_output.put line('['||lv_item titlel|']"');
11 END;

12/

Line 9 fetches only the first row from the query. It's also possible to include the OFFSET
clause on line 9, like

g O OFFSET 5 ROWS FETCH FIRST 1 ROWS ONLY;

As mentioned, you can embed bind variables inside an anonymous PL/SQL block. You would
use the following, provided the value of :bv_sizeis 1:

= 9 OFFSET :bv_offset ROWS FETCH FIRST :bv_size ROWS ONLY;

The limitation of 1 on the value of the :bv_rows variable exists because a SELECT- INTO
statement can only return one row. If the :bv_rows value was greater than 1, you'd return an
ORA-01422 exception, which tells you that the row returns too many rows.

28 Oracle Database 12¢ PL/SQL Programming

You can eliminate the risk of too many rows being returned by embedding a dynamic query
in an external program. You can do this by using Open Database Connectivity (ODBC) or Java
Database Connectivity (JDBC) libraries.

The following demonstrates the technique of a dynamic top-n query in PHP:

g 15 // Declare a SQL statement.

16 $sgl = "SELECT i.item title "

17 . "FROM item i "

18 . "OFFSET :bv offset ROWS FETCH FIRST :bv_rows ROWS ONLY";
19

20 // Prepare the statement and bind the two strings.
21 $stmt = oci parse(sc, $sql);

22

23 // Bind local variables into PHP statement.

24 oci_bind by name($stmt, ":bv offset", S$offset);

25 oci_bind by name($stmt, ":bv rows", $rows);
26

27 // Execute the PL/SQL statement.

28 if (oci_execute($stmt)) {

The next example shows an offset top-n query in a static cursor:

SQL> DECLARE

2 /* Declare a local variable. */

3 lv_item title VARCHAR2 (60);

4 /* Declare a static cursor. */

5 CURSOR ¢ IS

6 SELECT i.item title

7 FROM item i

8 OFFSET 10 ROWS FETCH FIRST 1 ROWS ONLY;

9 BEGIN

10 /* Open, fetch, print, and close the cursor. */
11 OPEN c;

12 FETCH c¢ INTO lv_item_title;

13 dbms_output.put line('['|]|lv_item title]||']");
14 CLOSE c;

15 END;

16 /

Line 8 uses literal values to set the OFFSET value and number of rows returned. You can’t
substitute variables for the literal values—at least, you can't substitute them in the production
version of Oracle Database 12c¢ Release 1.

Here’s an attempt to use a dynamic cursor:

SQL> DECLARE

2 /* Declare a local variable. */
lv_item title VARCHAR2 (60);
/* Declare a static cursor. */

CURSOR ¢
(cv_offset NUMBER
, cv_size NUMBER) IS

0w J O Ul b W

SELECT i.item title

Chapter 2: New Features 29

9 FROM item i
10 OFFSET cv_offset ROWS FETCH FIRST cv_size ROWS ONLY;
11 BEGIN
12 NULL;
13 END;
14 /

Line 10 sets the top-n query limits with the cv_offset and cv_size cursor parameters.
Line 12 prevents a parsing error by providing a statement within the execution block. The block
fails to parse, raises an exception, and disconnects from the active session with this error stack:

g ERROR:

ORA-03114: not connected to ORACLE

DECLARE
*

ERROR at line 1:

ORA-03113: end-of-file on communication channel
Process ID: 4148

Session ID: 31 Serial number: 3187

This type of exception is an unhandled exception. They don’t exist very often for long. This
type of error gives me the impression that it'll be fixed in due course by Oracle. Although, it's
possible that it could be simply documented as a limitation. At any rate, it should be resolved by
the time this book publishes.

Oracle Database Driver for MySQL Applications

Oracle Database 12¢ provides a database driver for MySQL applications. It is a drop-in replacement
for the MySQL 5.5 client library. It enables applications and tools built on languages that leverage
the MySQL C API, like PHP, Ruby, Perl, and Python. The benefit is that users can reuse their
MySQL applications against both MySQL and Oracle databases. This improves cross portability
of these scripting language solutions.

SQL CROSS APPLY, OUTER APPLY, and LATERAL

The APPLY SQL syntax lets you invoke a table-valued function for each row returned by a query’s
outer table expression. The join treats the table-valued function as the right operand and the outer
table expression as the left operand. The join evaluates each row from the right for each row on
the left, and the results are combined for the final result set.

There are two variations of this type of operation. The CROSS APPLY performs a variation of
an inner join. It returns rows from the table or set of tables on the left side of the CROSS APPLY
operation with rows that match on the left side that are found to match a WHERE clause inside the
inline view on the right.

This is an example that implements a CROSS APPLY join:

=1 SQL> SELECT i.item title
2 FROM item i CROSS APPLY
(SELECT *
FROM rental item ri
WHERE i.item id = ri.item id
OFFSET 0 ROWS FETCH FIRST 1 ROWS ONLY) ;

o Ul W

30 Oracle Database 12c PL/SQL Programming

The OUTER APPLY is a variation of a left join operation. The OUTER APPLY works to create
an outer join between a table or set of joined tables and an inline view. The inline view must
contain a WHERE clause that resolves the relationship between the result set on the left and the
inline view on the right. All rows from the table on the left side of the join are returned with
matching results from the collection or null values.

This is an example that implements an OUTER APPLY join:

=1 SQL> SELECT i.item title

2 FROM item i OUTER APPLY

3 (SELECT *

4 FROM rental_ item ri

5 WHERE i.item id = ri.item id

6 OFFSET 0 ROWS FETCH FIRST 1 ROWS ONLY) ;

The LATERAL clause designates a subquery as a lateral inline view. You can specify the tables
that appear to the left of the lateral inline view within the FROM clause of a query. You encounter
some restrictions when you use a lateral inline view, such as:

B You can’t use the PIVOT clause, UNPIVOT clause, or table reference clause.

B You can't use a left correlation when a lateral inline view contains a query partition
clause and appears on the right side of a join clause.

B You can’t use a left correlation to the first table in a right outer join or full outer join
within a lateral view.

The LATERAL clause, part of the ANSI SQL standard, extends Oracle’s inline view syntax.
While the following query could easily be rewritten as an INNER JOIN, it demonstrates the
limitation fixed by Oracle Database 12¢’s LATERAL clause:

g SQL> SELECT *

2 FROM contact ¢ CROSS JOIN

3 (SELECT *

4 FROM member m

5 WHERE c.member id = m.member id) ;

The previous query attempts to write an inline view that contains a correlated subquery. It
generates the following error message:

—— WHERE c.member_id = m.member id)

*

ERROR at line 5:
ORA-00904: "C"."MEMBER ID": invalid identifier

The error means that it can’t find the contact table’s alias c. The inline view can’t find the
table’s alias because it's unavailable until after the FROM clause is completely parsed. That's why
Oracle raises the invalid identifier error (check Chapter 4 for details on identifiers if they’re new to
you). This same type of error can occur with the CROSS APPLY or OUTER APPLY join operations.

The LATERAL clause lets an inline view resolve tables on the left side of a CROSS JOIN
operation. It does this by parsing everything before the LATERAL keyword separately. Separating
the parsing operation into two pieces lets an inline view on the right side of the LATERAL

Chapter 2: New Features 31

keyword resolve the identifier. That means an inline view can now include correlated behaviors,
as shown here:

=1 SQL> SELECT *

2 FROM contact ¢ CROSS JOIN

3 LATERAL (SELECT *

4 FROM member m

5 WHERE c.member id = m.member id);

The LATERAL keyword on line 3 lets the subquery find any table on the left side of the
CROSS JOIN operation. It doesn’t work when the unresolved identifier is on the right because
the order of operation for lateral operations is left to right.

Bequeath CURRENT_USER Views

Prior to Oracle Database 12¢, views always behaved like definer rights units. The definer rights
privilege is the default for functions, procedures, packages, and types. While not required because
it’s the default, you would use the AUTHID DEFINER clause when defining stored program units.
Oracle Database 12c adds the ability to define the behavior privileges of views. The default
behavior is BEQUEATH DEFINER, and it acts like AUTHID DEFINER for stored program units.
You override the default privileges by creating views with the BEQUEATH CURRENT user privilege.

Review Section
This section has described the following points about Oracle Database 12¢ new SQL features:

B Oracle Database 12c¢ goes beyond simply referring to environment variables in
LIBRARY path statements, and lets you use a virtual DIRECTORY.

B Oracle Database 12c lets you define explicit and implicit valid-time (VT) dimensions
to improve flashback controls for the DBA.

B Oracle Database 12c expands the role of the LEFT OUTER JOIN to include multiple
tables on the left side of the join.

B Oracle Database 12c¢ introduces the CROSS APPLY, OUTER APPLY, and LATERAL
syntax for working with nested tables.

B Oracle Database 12c¢ supports default columns that can hold the .nextval and
.currval pseudocolumns for named sequences.

B Oracle Database 12c introduces identity columns that maintain auto-incrementing
sequences for surrogate keys.

B Oracle Database 12c¢ adds the ON NULL clause to default values, which eliminates
manual overrides with explicit null values when inserting or updating tables.

B Oracle Database 12c lets you set a parameter to increase the length of VARCHAR2,
NVARCHAR2, and RAW data types to 32,767 bytes, which is equivalent to their size in
PL/SQL.

B Oracle Database 12c enables definer or invoker rights models for views through the
BEQUEATH keyword.

32 Oracle Database 12c PL/SQL Programming

New PL/SQL Features

PL/SQL gains a number of new features in Oracle Database 12c:

B [t lets you cache invoker rights functions.

B A key new enhancement lets you white list callers to stored functions, procedures, packages,
and types.

It provides native support for binding PL/SQL package and Boolean data types as
parameters. It also provides native client APl support for PL/SQL data types.

Itadds the utl call stack package.

It adds a new expand sgl text procedure to the dbms_utility package.

The parse procedure has a new formal schema to resolve unqualified object names.
You can now add PL/SQL functions in a SQL WITH clause.

It's now possible to define local PL/SQL types and use them in embedded SQL statements.

Oracle Data Provider for NET (ODP.NET) can now bind REF CURSOR parameters for
stored procedures.

The following sections cover each of these new PL/SQL features in turn.

Caching of Invoker Rights Functions

Oracle Database 12c lets you cache the results of invoker rights functions. It supports this capability
by adding the current user identity to the cached results. By so doing, it stores different results
from a single invoker rights program. That means you can cache deterministic invoker rights
functions, which are those that rely on values in the CURRENT USER database.

The introduction of invoker rights functions changes how you can approach problems. It lets
you achieve improved throughput with invoker rights functions in a distributed environment, like
pluggable databases.

Ability to White List PL/SQL Program Unit Callers

Oracle Database 12¢ enables you maintain a white list of users who have permission to call your
function, procedure, package, or object type. White listing a user authorizes that user to call a
stored routine. It supplements your security options. A user granted privileges to execute a stored
routine in a schema must also be on the authorized user list.

Oracle Database 12c¢ documentation introduces a new way of describing stored routines. It
uses the generic unit_kind to describe functions, procedures, packages, and object types. The
ACCESSIBLE BY clause is the key to white listing stored programs when you create or replace
them.

The Oracle documentation provides this type of prototype:

g [ACCESSIBLE BY (unit_kind [schema.]unit_ name
[, unit_kind [schema.]unit name]

[,... 1)1

Chapter 2: New Features 33

It's direct and short, but an expanded prototype might provide better clarity, because the keyword
for the unit kind must precede the stored program’s name:

= [ACCESSIBLE BY

, [{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]unit name)]

e e .

!
([{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]lunit name)
[
[

111

The following short example shows how to write a white-listing function. It white lists functions,

procedures, packages, and types to provide a complete description.

=1 SQL> CREATE OR REPLACE FUNCTION library

2

W J O Ul b W

11
12
13

(pv_message VARCHAR2) RETURN VARCHAR2
ACCESSIBLE BY

(FUNCTION video.gateway

, PROCEDURE video.backdoor

, PACKAGE video.api

, TYPE video.hobbit) IS
lv_message VARCHAR2(20) := 'Hello ';

BEGIN
lv_message := lv _message || pv_message || '!';
RETURN 1lv_message;

END;

/

Lines 3 through 7 declare the white list of authorized callers. Any of these can call the library

function successfully, while no other function, procedure, package, or type can call it. An attempt
to create a new function that calls the white-listed function, like this,

=1 SQL> CREATE OR REPLACE FUNCTION black knight

2

3
4
5
6

(pv_message VARCHAR2) RETURN VARCHAR2 IS
BEGIN

RETURN library (pv_message) ;
END;

/

raises a compilation error, which means you need to show the error stack:

g SQL> show errors
Errors for FUNCTION BLACK_ KNIGHT:
LINE/COL ERROR

4/10

PL/SQL: Statement ignored
PLS-00904: insufficient privilege to access object LIBRARY

White listing callers is a prudent and long-overdue enhancement, one that no other database

currently implements.

34 Oracle Database 12¢ PL/SQL Programming

Native Client API Support for PL/SQL Types

This feature enables the Oracle client APIs to describe and bind PL/SQL package types and Boolean
types. You use the OCI and JDBC APIs to bind these. You can also use any C-based applications to
bind and execute PL/SQL functions or procedures.

New PL/SQL Package UTL_CALL_STACK

Oracle Database 12c introduces the utl call stack package. It provides a number of features
that improve error stack handling. An error stack is the sequence of exceptions raised and passed
up the chain of a programming call. Chapter 6 covers what's in the ut1l call stack package,
and how to use it.

DBMS_UTILITY Adds EXPAND_SQL_TEXT Subprogram

Oracle Database 12¢ adds an expand_sgl_text procedure to the dbms_utility package.
The new procedure lets you expand a view that depends on other views into a single query. It's
very useful when you want to see the complete picture of how the code works.

It appears that you should leverage the expand sgl_text procedure to discover how views
built on views resolve to tables. At least it’s the simplest solution available short of you manually
refactoring the code one view at a time. The problem with Oracle’s expand sgl text function
is that it takes an inbound CLOB and returns an outbound CLOB, while views are stored in LONG
data type columns. Converting a LONG data type to a CLOB isn't a trivial task. That’s why | wrote a
function to do it for you. You can find the long_to_clob function in Chapter 10.

Even with the long to_clob function, effectlvely using the expand_sqgl_text procedure
requires some other steps, as shown in the following function:

g1 SQL> CREATE OR REPLACE FUNCTION expand view

2 (pv_view_name VARCHAR2) RETURN CLOB IS
3
4 /* Declare containers for views. */
5 lv_input_view CLOB;
6 lv_output view CLOB;
7
8 /* Declare a target variable, because of the limit of SELECT-INTO. */
9 lv_long view LONG;
10
11 /* Declare a dynamic cursor. */
12 CURSCOR c (cv_view_name VARCHAR2) IS
13 SELECT text
14 FROM user views
15 WHERE view name = cv_view name;
16
17 BEGIN
18 /* Open, fetch, and close cursor to capture view text. */
19 OPEN c (pv_view name) ;
20 FETCH c INTO lv_long view;
21 CLOSE c;

22

Chapter 2: New Features 35

23 /* Convert a LONG return type to a CLOB. */

24 lv_input view := long to clob(pv view name, LENGTH(lv long view)) ;
25

26 /* Send in the view text and receive the complete text. */

27 dbms utility.expand sql text(lv_input view, 1lv_ output view);

28

29 /* Return the output CLOB value. */

30 RETURN lv output view;

31 END;

32/

While it pains me to use LONG data types (true dinosaurs in the Oracle database), doing so is
necessary to show you how to use this cool feature. Line 9 declares a 1v_long view variable
that uses the LONG data type. Although the parameterized cursor is overkill, good practices should
be consistently reinforced. A SELECT- INTO statement can’t replace it because you can’t use a
SELECT-INTO statement with a LONG data type. The FETCH INTO clause does support the
assignment of a LONG data type, and that’s why we make that left-to-right assignment on line 20.

Next, we call our long to_clob function with a view name and the length of the view’s
text column. Although this is a double query to the catalog, because our long to_ clob
remakes the query, the double query is necessary to avoid a character-by-character assignment
from the LONG data type to a CLOB data type. Oracle doesn’t provide many options when
working with LONG data types. For example, the to_clob function doesn’t accept a LONG data
type as a call parameter.

Check the full details of the long to_clob function in Chapter 10. The short version is that
it leverages the dbms_sqgl and dbms_1ob packages to convert a LONG to a CLOB data type. You
can find more about the dbms_sql package in Chapter 13. Chapter 10 covers the dbms_1ob
package and how you work with large objects.

Line 27 calls the expand sqgl text procedure, and line 30 returns the outbound CLOB
from the expand_sqgl_text procedure. The result of the function gives you a CLOB, which
contains the full query based on tables. Once you have it, you need to analyze its performance.

DBMS_SQL Adds a New Formal Schema
to the PARSE Procedure

The dbms_sql package adds a new formal schema to the parse procedure. The parse
procedure now resolves unqualified object names. This lets a definer rights program unit control
the name resolution of dynamic SQL statements that it runs. For example, it now lets you issue a
DROP TABLE statement from within a stored procedure when you use the dbms_sql.parse
procedure.

PL/SQL Functions in SQL WITH Clause

Oracle Database 12c introduces PL/SQL functions inside the WITH clause. The only catch comes
when you try to run them, because they have embedded semicolons. Let’s say you run the command
from inside SQL*Plus. You would first disable the default SQL terminator, a semicolon (;), with
this SQL*Plus command:

g SET SQLTERMINATOR OFF

36 Oracle Database 12c PL/SQL Programming

Then, you would create a local function in your WITH statement, like

g SQL> COLUMN person FORMAT Al8

SQL> WITH
2 FUNCTION glue
3 (pv_first name VARCHAR2
4 , pv_last name VARCHAR2) RETURN VARCHAR2 IS
5 lv_full name VARCHAR2(100);
6 BEGIN
7 lv_full name := pv_first name || ' ' || pv_last name;
8 RETURN 1v_full name;
9 END;
10 SELECT glue(a.first name,a.last name) AS person
11 FROM actor a

12 /

The function on lines 2 through 9 simply concatenates two strings with a single-character
white space between them. The semicolons are treated as ordinary characters in the query since
the default SQL terminator is disabled. You should also note that the SQL statement is run by the
SQL*Plus forward slash and that the complete statement doesn’t have a terminating semicolon
on line 11.

In this simple example, the actor table contains two actors’ names (from the /ron Man movie
franchise), and the query returns

Robert Downey
Gwyneth Paltrow

You will encounter some parsing difficulty running queries like this when you submit them
through tools like Oracle SQL Developer. The easiest fix to those problems is to wrap the query
in a view because a view eliminates the need to change the SQLTERMINATOR value at runtime.
This creates a view based on an embedded PL/SQL function within a WITH statement:

g SQL> CREATE OR REPLACE VIEW actor v AS
2 WITH

3 FUNCTION glue

4 (pv_first name VARCHAR2

5 , pv_last name VARCHAR2) RETURN VARCHAR2 IS

6 BEGIN

7 RETURN pv_first name || ' ' || pv_last name;

8 END;

9 SELECT glue(a.first name,a.last name) AS person
10 FROM actor a

11/

As you know, a view is nothing more than a stored query. The actor_ v view shrinks the
glue function by two lines. It removes the declaration of 1v_full name, and replaces the
assignment of the concatenated values with a direct return of the result on line 7.

Chapter 2: New Features 37

If you want to run ordinary SQL commands with the default semicolon, you should reenable
the default SQL terminator:

=1 SET SQLTERMINATOR ON

The obvious benefit of the WITH clause is that it runs once and can be used multiple times in
the scope of the query. Likewise, you can embed functions that have a local scope to a single query.
Why use a WITH clause when you can use the global temporary table? Tom Kyte has answered
that question in his Ask Tom column (http://asktom.oracle.com), explaining more or less that the
optimizer can merge a WITH clause with the rest of the statement, while a global temporary table can't.

PL/SQL-Specific Data Types Allowed in SQL

The ability to pass Oracle-specific PL/SQL data types is a great feature in Oracle Database 12c.
There is one trick to making it work: you have to declare the local variable inside the stored
program and then use the local variable in an embedded SQL statement.

Let’s demonstrate this feature with a PL/SQL collection and both a named PL/SQL block and
an unnamed PL/SQL block. Demonstrating how it works is a five-step process. A sixth step shows
you how to fail, which should save you time and explain why pipelined table functions are still
needed in Oracle Database 12c.

The first step creates a bodiless type defs package. A bodiless package has only type and
cursor definitions in a package specification. You set up a bodiless package when you want to
share types and cursors among other program units.

The following package specification creates only a single PL/SQL-only associative array,
which is a sparsely indexed collection:

g SQL> CREATE OR REPLACE PACKAGE type defs IS
2 TYPE plsgl_table IS TABLE OF VARCHAR2 (20)
3 INDEX BY BINARY INTEGER;
4 END type defs;
5 /

The second step creates a honeymooner table with an identity column and a person
column. The person column matches the scalar data type of the associative array, and we'll use
the data from the table to populate the PL/SQL associative array.

The definition of the table is

=1 SQL> CREATE TABLE honeymooner
2 (honeymooner_id NUMBER GENERATED ALWAYS AS IDENTITY
3 , person VARCHAR?2 (20)) ;

The third step inserts four rows into the honeymooner table:

7

g SQL> INSERT INTO honeymooner (person) VALUES ('Ralph Kramden')
SQL> INSERT INTO honeymooner (person) VALUES ('Alice Kramden') ;
SQL> INSERT INTO honeymooner (person) VALUES ('Edward Norton') ;
SQL> INSERT INTO honeymooner (person) VALUES ('Thelma Norton')

7

The first three steps create a bodiless plsgl table package, create a honeymooner table,
and seed the honeymooner table with four rows. The fourth step creates an implicit convert

38 Oracle Database 12c PL/SQL Programming

function that reads the four rows from the table and puts them into a PL/SQL associative array.
It then returns the PL/SQL associative array, as shown here:

=¥ SQL> CREATE OR REPLACE FUNCTION implicit convert

2 RETURN type defs.plsql table IS

3 lv_index NUMBER := 1; -- Counter variable.

4 lv_1list TYPE DEFS.PLSQL TABLE; -- Collection variable.
5 CURSOR c IS SELECT person FROM honeymooners;

6 BEGIN

7 FOR 1 IN c LOOP

8 lv_1list(lv_index) := i.person;

9 lv_index := 1lv_index + 1;
10 END LOOP;
11 RETURN lv list; -- Return locally scope PL/SQL collection.
12 END;
13 /

Line 2 defines the RETURN type as a PL/SQL associative array. Line 4 declares a local variable
of the same PL/SQL associative array as the return type. The loop populates the local variable,
and line 11 returns the local variable as a PL/SQL associative array.

The fifth step implements an anonymous block that calls the implicit convert function.
Inside the execution block, the local PL/SQL associative array is passed to a SQL statement,
which reads it successfully with the TABLE function.

The unnamed block follows:

=1 SQL> DECLARE

2 list TYPE DEFS.PLSQL TABLE;

3 BEGIN

4 list := implicit convert;

5 FOR i IN (SELECT column value

6 FROM TABLE (1ist)) LOOP

7 dbms output.put line (i.column_ value) ;
8 END LOOP;

9 END;

10 /

Line 2 declares a variable by using the plsgl table type from the type defs package.
Line 4 calls the implicit convert function and assigns the returned PL/SQL associative array
to the local variable. Lines 5 and 6 hold a SELECT statement that uses the locally declared PL/SQL
variable inside the TABLE function.

Prior to Oracle Database 12¢, the TABLE function can only translate a varray or table collection
into a SQL result set. The TABLE function can now translate a local PL/SQL associative array
variable in a SQL scope.

The program fails when you comment out the assignment to the /ocal variable on line 4, and
replace the local variable with a call to the implicit convert function on line 6. The changes
follow:

e 4 --list := implicit convert;
5 FOR i IN (SELECT column_ value
6 FROM TABLE (implicit convert)) LOOP

Chapter 2: New Features 39

These changes raise the following error stack:

—— FROM TABLE (implicit_ convert)) LOOP

*

ERROR at line 6:

ORA-06550: line 6, column 28:

PLS-00382: expression is of wrong type

ORA-06550: line 6, column 22:

PL/SQL: ORA-22905: cannot access rows from a non-nested table item

ORA-06550: line 5, column 13:

PL/SQL: SQL Statement ignored

ORA-06550: line 7, column 26:

PLS-00364: loop index variable 'I' use is invalid

ORA-06550: line 7, column 5:

PL/SQL: Statement ignored

There’s good news about this type of failure. You can convert the PL/SQL associative array by
wrapping it in a pipelined table function. Yes, pipelined table functions still have a key purpose in
our PL/SQL world. Let’s say you want to eliminate the bodiless package in which you've defined
the PL/SQL associative array. To do so, you would refactor the code into an anonymous block

unit, like
g SQL> DECLARE

2 TYPE local table IS TABLE OF VARCHAR2 (20)
3 INDEX BY BINARY INTEGER;
4 lv_index NUMBER := 1; -- Counter variable.
5 lv_1list LOCAL TABLE; -- Local PL/SQL collection.
6 CURSOR ¢ IS SELECT person FROM honeymooners;
7 BEGIN
8 FOR i IN c LOOP
9 lv_1list(lv_index) := i.person;

10 lv_index := 1lv_index + 1;

11 END LOOP;

12 FOR i IN (SELECT column_value

13 FROM TABLE (1v_list)) LOOP

14 dbms_output.put line (i.column_ value) ;

15 END LOOP;

16 END;

17/

This block unit fails, but not for the same reason that trying to process the associative array as
a return value from a PL/SQL function fails, although the error stack might lead you to conclude
they fail for the same reason. This one fails because the PL/SQL type isn’t defined in the database
catalog, and Oracle Database has no way to look it up. That means Oracle Database doesn't
know what it’s translating to an equivalent SQL data type.

Although Oracle doesn’t explain how it performs magic like this conversion, | can venture a
guess. Right or wrong, my guess is that Oracle maps the implicit PL/SQL collection to an explicit
SQL table collection. If that’s too technical for you at this early point in the book, don’t be concerned.
Chapter 6 explains these composite data types (collections) in great depth.

In short, you can assign a local PL/SQL variable to a local SQL context. You can't, at present,
assign a non-local PL/SQL associative array result from a function.

40 Oracle Database 12c¢ PL/SQL Programming

Implicit REF CURSOR Parameter Binding

Oracle Data Provider for .NET (ODP.NET) can now bind REF CURSOR parameters for stored
procedures without binding them explicitly. ODP.NET accomplishes this when you provide metadata
as part of the .NET configuration files.

Review Section
This section has described the following points about Oracle Database 12¢ new PL/SQL features:

Oracle Database 12c enables you to cache results from invoker rights functions.

Oracle Database 12c¢ lets you white list the callers of stored functions, procedures,
packages, and object types.

Oracle Database 12¢ provides native client API support for PL/SQL data types.

Oracle Database 12¢ provides new error stack management through the utl call
stack package.

Oracle Database 12c¢ lets you expand the full text of views that depend on views with
the new expand_sql_ text procedure in the dbms_utility package.

The dbms_sqgl package adds a new formal schema, which lets it resolve unqualified
object names.

Oracle Database 12¢ supports embedding PL/SQL functions inside SQL WITH clause
statements.

Oracle Database 12¢ adds the ability to use local PL/SQL data types in local SQL
statements.

Oracle Database 12¢ supports implicit binding of the PL/SQL REF CURSOR data type
in ODP.NET.

Supporting Scripts

This section describes programs placed on the McGraw-Hill Professional website to support the book.

The dynamic topnguery.php program contains the fully functional example
excerpted in this chapter.

The white list.sqgl program contains all functions, procedures, packages, and types
to support the white-listing examples for this chapter.

The expanding_ view.sgl program contains the functions necessary to convert
a LONG to a CLOB and successfully call the dbms_utility.expand sql text
procedure shown in this chapter.

Chapter 2: New Features 41

Summary

This chapter has given you insight into new features unique to Oracle Database 12c¢ databases.
Throughout the book, you'll also be given insights into the differences between the current and
older versions of the Oracle Database and Oracle Database 12c.

Mastery Check

The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix | for answers to
these questions.

True or False:

1. __ Valid-time (VT) indicates the point at which transactions commit.

2. __ltis possible to define a default column that uses the .nextval pseudocolumn for a
sequence.

3. __ltis possible to define a default column that uses the . currval pseudocolumn for a
sequence.

4. __ The .currval pseudocolumn no longer has a dependency on a preceding

.nextval pseudocolumn call in a session.

5. Oracle Database 12c doesn’t provide a means to prevent the entry of an explicit null
in an INSERT statement, which means you can still override a DEFAULT column value.

___ldentity columns let you automatically number the values of a surrogate key column.

___VARCHAR2, NVARCHAR?2, and RAW data types are now always 32,767 bytes in the
Oracle Database 12c¢ database.

8. __ APL/SQL function can return a PL/SQL associative array directly into a SQL statement
with the changes introduced in Oracle Database 12c.

9. __ Oracle Database 12¢ now supports top-n query results without an offset value.

10. __ You can embed a PL/SQL function inside a query’s WITH clause and call it from
external programs.

Multiple Choice:

11. Which of the following keywords work when you define a view? (Multiple answers possible)
A. The AUTHID DEFINER keywords

The BEQUEATH INVOKER keywords

The AUTHID CURRENT_ USER keywords

The BEQUEATH DEFINER keywords

All of the above

mO 0w

42 Oracle Database 12¢ PL/SQL Programming

12. Which of the following are correct about caching invoker rights functions? (Multiple
answers possible)

13.

14.

15.

mOOnO = >

A different result set exists for each invoker.

The same result set exists for each invoker.

A cached invoker rights function must be deterministic.

A cached invoker rights function may be non-deterministic.
All of the above.

Which of the following support expanding the SQL text of LONG columns into CLOB
columns when working with the CDB_, DBA , ALL , and USER _VIEWS in the Oracle
Database 12c¢ database? (Multiple answers possible)

A.

D.
E.

You can use the to_lob built-in function to convert LONG data types to CLOB data
types.

You can use the to_clob built-in function to convert LONG data types to CLOB data
types.

You can use the dbms_sgl package to convert LONG data types to VARCHAR2 data
types.

You can use the 1ength built-in function to discover the size of a LONG data type.

You can use the dbms_1lob package to create a temporary CLOB data type.

Which of the following is true about which PL/SQL data types you can access in an
embedded SQL statement? (Multiple answers possible)

A.
B.

C.
D.
E.

The PL/SQL data type must be declared in a package.

The SQL statement needs to be embedded in the PL/SQL block where the type is
defined.

The PL/SQL data type must be locally defined.
The PL/SQL data type may be a return from a PL/SQL function.
All of the above.

Which of the following lets you access a surrogate primary key from an identity column
for use in a subsequent INSERT statement as a foreign key value?

A.
B.
C.
D.
E.

RETURN INTO
RETURNING INTO
.nextval
.currval

None of the above

CHAPTER

PL/SQL Basics

44 Oracle Database 12¢ PL/SQL Programming

the basic language components of PL/SQL. This chapter introduces you to those components.
Subsequent chapters develop details of the components and explain why the PL/SQL
language is a robust tool with many options.

To learn how to program with PL/SQL in Oracle Database 12c, you first need to understand

As an introduction to PL/SQL basics, this chapter introduces and discusses

Block structure

Behavior of variables in blocks

Basic scalar and composite data types
Control structures

Exceptions

Bulk operations

Functions, procedures, and packages

Transaction scope

Database triggers

PL/SQL is a case-insensitive programming language, like SQL. That means programmers can
choose their own conventions to apply when writing code. No standard approach exists. Most
programmers choose to differentiate language components by using various combinations of
uppercase, lowercase, title case, or mixed case.

Block Structure

PL/SQL was developed by modeling concepts of structured programming, static data typing,
modularity, and exception management. It extends the ADA programming language. ADA
extended the Pascal programming language, including the assignment and comparison operators
and single-quote string delimiters.

Unlike many other modern programming languages that use curly braces ({}) to define
programming blocks, PL/SQL uses keywords to define program blocks. The basic prototype for
both anonymous and named block PL/SQL programs is shown in Figure 3-1. An anonymous
block has limited use and no prior definition in the data catalog. Named programs are stored in
the database catalog and they are the reusable subroutines of the database.

Execution Block

As shown in the Figure 3-1 prototype, PL/SQL requires only the execution section for an anonymous
block program. The execution section starts with a BEGIN keyword and stops at the beginning of
the optional exception block or the END keyword. A semicolon ends the anonymous PL/SQL
block and the forward slash executes the block.

PL/SQL Standard Usage for this Book

The PL/SQL code in this book uses all uppercase letters for command words and all lowercase
letters for variables, column names, and stored program calls.

Chapter 3: PL/SQL Basics 45

Declaration
Block

Execution
Block

Declaration
Block

Execution
Block

Exception
Block

Exception
Block

FIGURE 3-1. Anonymous block structure

Declaration sections can contain variable definitions and declarations, user-defined PL/SQL
type definitions, cursor definitions, reference cursor definitions, local function or local procedure
definitions. Execution sections can contain variable assignments, object initializations, conditional
structures, iterative structures, nested anonymous PL/SQL blocks, or calls to local or stored named
PL/SQL blocks. Exception sections can contain error handling phrases that can use all of the same
items as the execution section. All statements end with a semicolon regardless of which block you
put them in.

Basic Block Structure

The simplest PL/SQL block does nothing. You must have a minimum of one statement inside any
execution block, even if it's a NULL statement. As mentioned, the forward slash executes an
anonymous PL/SQL block. The following illustrates the most basic anonymous block program,
which does absolutely nothing other than run without an error:

SQL> BEGIN

2 NULL;
3 END;
4/

46 Oracle Database 12c PL/SQL Programming

A block without an execution statement raises an exception because PL/SQL doesn’t support
an empty block. For example, this unnamed block fails:

=1 SQL> BEGIN

2 END;
3/

It raises the following exception:
I END;
*

ERROR at line 2:

ORA-06550: line 2, column 1:

PLS-00103: Encountered the symbol "END" when expecting one of the following:
(begin case declare exit for goto if loop mod null pragma

raise return select update while with <an identifiers

<a double-quoted delimited-identifier> <a bind variable> <<

continue close current delete fetch lock insert open rollback

savepoint set sgl execute commit forall merge pipe purge

The asterisk (*) underneath the END keyword indicates that the block ending with the END
keyword is empty or malformed. It's a parsing error and occurs before the PL/SQL block can run.

NOTE
Every PL/SQL block must contain something, at least a NULL
statement, or it will fail runtime compilation, also known as parsing.

You must enable the SQL*Plus SERVEROUTPUT environment variable to print content to the
console. The SERVEROUTPUT environment variable can take a physical size or the UNLIMITED
keyword, but it's recommended that you use the UNLIMITED keyword.

Let’s say you put the following in a hello world.sql script file:

= SQL> SET SERVEROUTPUT ON SIZE UNLIMITED

SQL> BEGIN
2 dbms_output.put line('Hello World.');
3 END;
4/

The SQL*Plus SERVEROUTPUT environment variable opens an output buffer, and the dbms
output.put_line function prints a line of output. All declarations, statements, and blocks are
terminated by a semicolon.

You run anonymous blocks by calling them from Oracle SQL*Plus. The @ symbol in Oracle
SQL*Plus loads and executes a script file. The default file extension is . sq1, but you can override
it with another extension. This means you can call a filename without its . sg1l extension.

(If these processes are new to you, Appendix A provides a SQL*Plus and SQL Developer tutorial
that explains them.)

Then, you call the program from the current working directory where you entered the
SQL*Plus environment:

g @hello world.sgl

Chapter 3: PL/SQL Basics 47

It would print this message to console:

g Hello World.

You can enter single- or multiple-line comments in PL/SQL. Use two dashes to enter a
single-line comment:

=1 -- This is a single-line comment.
Use the /* and */ delimiters to enter a multiple-line comment:

= /* This is a multiple-line comment.
Style and indentation should follow your company standards. */

PL/SQL supports two types of programs: anonymous (or unnamed) block programs and named
block programs. Both types of programs have declaration, execution, and exception handling
blocks. Anonymous blocks support batch scripting, which is a collection of SQL statements and
anonymous PL/SQL blocks that are run as a program unit. Named blocks are stored programming
units that act similarly to shared libraries in other programming languages.

You can use anonymous block programs in scripts or nested inside other named program
units. They have scope only in the context of the program unit or script where you put them. You
can’t call anonymous blocks by name from other blocks because, as the term anonymous
indicates, anonymous blocks don’t have names. All variables are passed to these local blocks by
reference, except substitution variables. Substitution variables are typically numeric or string
literals, and as such they don’t have memory allocation as do variables. You can pass substitution
variables to anonymous blocks only when calling them from the SQL*Plus environment.

Figure 3-1 shows you the basic flow of anonymous block programs.

An anonymous block with a substitution variable would look like this:

=1 SQL> BEGIN

2 dbms_output.put_line('['|]|'&input'||']");
3 END;
4 /

The ampersand (&) is the default value for the SQL*Plus DEFINE environment variable. It
signifies that whatever follows is the name of a substitution variable unless you disable it in
SQL*Plus. That means SQL*Plus displays the following when you run the dynamic anonymous
block:

g Enter value for input:
The anonymous block prints the following when you enter a “Hello Linux World.” text string:
e [Hello Linux World.]

Inside the call to the dbms_output.put_line function, piped concatenation glues the
closed brackets together with the input text string. Note that the input value can have intervening
white space without wrapping the text in quotes.

Whatever you type at the SQL*Plus prompt becomes the value of the &input substitution
variable. Substitution variables are assumed to be numeric, and you must enclose string substitution

48 Oracle Database 12¢ PL/SQL Programming

values with single quotes. You see the following exception when you forget to provide the single
quotes and enter “Goodbye”:

g dbms output.put line('['||Goodbye||']");
*
ERROR at line 2:
ORA-06550: line 2, column 29:
PLS-00201: identifier 'GOODBYE' must be declared
ORA-06550: line 2, column 3:
PL/SQL: Statement ignored

The PLS-00201 error isn’t too meaningful unless you know what an identifier is in your
program. The error means the case-insensitive string GOODBYE isn’t an identifier. Chapter 4 covers
identifiers in depth, but for now you simply need to know that they're reserved words, predefined
identifiers, quoted identifiers, user-defined variables, subroutines, or user-defined types.

Oracle also lets you use session (or bind) variables, which are similar to substitution variables
in anonymous PL/SQL blocks. Session variables differ from substitution variables because they
have a memory scope in the context of any connection or database session.

You declare a bind variable in a SQL*Plus session like this:

= VARIABLE bind variable VARCHAR2 (20)

The assignment operator in PL/SQL is a colon plus an equal sign (:=). PL/SQL string literals
are delimited by single quotes. (Date, numeric, and string literals are covered in Chapter 4.) You
assign a value to a bind (or session) variable inside a PL/SQL block by placing a colon before the
bind variable name, like this:

=1 SQL> BEGIN

2 :bind variable := 'Hello Krypton.';
3 dbms_output.put_line('['|]|:bind variable]||']"');
4 END;
5 /

Line 2 assigns a “Hello Krypton.” text string to the session-level bind variable, and line 3
prints it. After assigning a value to the :bind variable session variable, you can query it by
prefacing the session variable’s name with a colon:

g SELECT :bind variable FROM dual;

You can declare a bind variable in the session, assign values in PL/SQL blocks, and then
access the bind variable in SQL statements or other PL/SQL blocks. You can find more details on
using session variables in the Appendix A section “Setting a Session Variable Inside PL/SQL.”

Declaration Block

The optional declaration block starts with the DECLARE keyword and ends with the BEGIN
keyword for anonymous blocks. The declaration block starts with the name of a subroutine, such
as a function or procedure, its lists of formal parameters, and a return type (for a function). Unlike
functions, procedures don't return a value; instead, procedures mimic functions or methods that
return a void data type in C, C++, C#, and Java. You can find more information on subroutines
later in this chapter, in the “Functions, Procedures, and Packages” section.

Chapter 3: PL/SQL Basics 49

The following anonymous block declares an 1v_input local variable in the declaration
section and assigns the value of the :bind variable to that local variable. That means you
need to run the prior program first to set the bind variable before you run the next program.

=1 SQL> DECLARE

2 lv_input VARCHAR2 (30) ;

3 BEGIN

4 lv_input := :bind variable,

5 dbms_output.put_line('['||lv_input]||']"');
6 END;

7/

Line 2 defines the local 1v_input variable as a variable-length string. Line 4 assigns the
previously initialized :bind variable to the local 1v_input variable, and then it prints the
local variable’s value on line 5.

Exception Block

The last block to introduce is the optional exception block. Exception blocks manage raised
runtime errors, and a generic exception handler manages any raised error. You use a WHEN block
to catch an error, and you use a WHEN OTHERS block to catch any error raised in the program
unit.

The following program demonstrates how an exception block manages an error, such as when
an identifier isn’t previously declared:

g SQL> BEGIN

2 dbms_output.put_line('['||&input||']")
3 EXCEPTION

4 WHEN OTHERS THEN

5 dbms_output.put_ line (SQLERRM) ;

6 END;

7/

Line 2 places the &input substitution variable in a piped concatenation string without
delimiting single quotes (or apostrophes). Even with the exception block, the program still raises
an error, because the error is a parsing problem and the exception block only captures runtime
exceptions. The only way to fix the problem is to replace &input with '&input' between the
concatenation pipes.

Review Section
This section has described the following points about block structures:

B PL/SQL has one mandatory block, the execution block. Instead of being enclosed in
curly braces, as required in other modern programming languages, the execution block
starts with a BEGIN keyword and ends with an EXCEPTION keyword.

B There are two optional blocks—the declaration block and the exception block.

(continued)

50 Oracle Database 12c PL/SQL Programming

B The declaration block starts with a DECLARE keyword in an anonymous block
and with the subroutine signature in a named block (shown later in this chapter’s
“Functions, Procedures, and Packages” section) and ends with a BEGIN keyword.

B The exception block starts with an EXCEPTION keyword and ends with an END keyword.

B PL/SQL supports single- and multiple-line comments, which are assumed to be numeric
unless enclosed in single quotes.

B Anonymous blocks support substitution variables, and substitution variables are assumed
to be numeric unless enclosed in single quotes.

B Anonymous blocks support session-level bind variables, which have a data type after
they’re defined in SQL*Plus (see Appendix A for a primer on SQL*Plus).

The next section discusses variable scope and assignments. It takes the preceding small
example to a new level and shows you how to manage runtime errors.

Behavior of Variables in Blocks

PL/SQL also supports scalar and composite variables. Scalar variables hold only one thing, while
composite variables hold more than one thing.

This section covers the scope and behavior of variables in anonymous blocks, nested
anonymous blocks, local named blocks, and stored named blocks.

Anonymous Blocks

Variable names begin with letters and can contain alphabetical characters, ordinal numbers (0 to
9), and the $, , and # symbols. Variables have local scope only, which means they're available
only in the scope of a given PL/SQL block. The exceptions to that rule are nested anonymous
blocks. Nested anonymous blocks operate inside the defining block. This lets them access variables
from the containing block. Unfortunately, you can’t access variables from the containing block
when you've declared variables that share the same name in both the containing and nested
anonymous block. Two example anonymous blocks are provided a bit later in the “Nested
Anonymous Blocks” section, and those two examples demonstrate the concepts of variable
scope in PL/SQL programs.

Scalar and Composite Variables

Scalar variables hold only one thing at a time and are frequently labeled as primitives; these
include numbers, strings, and timestamps. Oracle timestamps are dates precise to one
thousandth of a second. You can also define compound variables, alternatively labeled
composite variables. There’s not much difference in the words, but Oracle Database 12c
documentation uses the term composite variables. So, this book uses “composite variables”
to describe arrays, structures, and objects. Composite variables are variables built from
primitives in a programming language.

Chapter 3: PL/SQL Basics 51

Declaring a number variable without explicitly assigning the variable causes the initial value
to be null. That's because the declaration block does two things:

B Defines the variable by giving it a name and data type

B Assigns an implicit null value to the variable

As a strongly typed programming language, PL/SQL assigns a null value implicitly to any
variable that you haven’t assigned a value to. All variables must be defined in the language,
which means you declare them by giving them a name and type and by assigning them a value.

The following prototype of an anonymous block shows that you can assign a value later in the
execution block:

g SQL> DECLARE

2 lv_sample NUMBER;

3 BEGIN

4 dbms_output.put_line('Value is ['||1lv_sample]||']"');
5 END;

6 /

This would print the string literal information with nothing between the square brackets. Note
on line 4 that a locally declared variable no longer requires delimiting single quotes because it
has a declared data type. The output from the program is

g Value is []

You can define a variable with something other than a null value by explicitly assigning a
value. The declaration block lets you assign default values by using an assignment operator or the
DEFAULT reserved word (which are interchangeable) after the data type. Alternatively, you can
declare the variable with a null value and assign a new value in the execution block.

The following shows a prototype:

g DECLARE
lv_sample [CONSTANT] NUMBER [:= | DEFAULT] 1;
BEGIN

END;
/

You don’t need to assign values in the declaration block, and typically you would only do so
when they’re constants or act like constants. Variables act like constants when you do two things:

B Declare the variable with a static value in the declaration block

B Opt not to reassign a value in the execution block or the exception block

Assigning an unchanging (or constant) value to a variable is known as a static assignment.
Static assignments aren’t as common as dynamic assignments, in which values are assigned at
runtime and can change during execution.

As a critical note, you should never assign dynamic values in a declaration block, because
any errors that occur as the result of the assignment won’t be caught by the local exception block.

52 Oracle Database 12¢ PL/SQL Programming

The local exception block handles runtime exceptions only in the execution and exception
blocks, not in the declaration block.

Let’s look at a quick example of a badly designed dynamic assignment. It uses our now
familiar ' &input' (quote delimited) substitution variable run in SQL*Plus:

=1 SQL> DECLARE

2 lv_input VARCHAR2 (10) := '&input';

3 BEGIN

4 dbms_output.put line('['||lv_input]||']"');
5 EXCEPTION

6 WHEN OTHERS THEN

7 dbms_output.put line (SQLERRM) ;

8 END;

9 /

When prompted for the input value, we enter a value that is too large for our variable-length
string data type:

g Enter value for input: James Tiberius Kirk

The program passes the parsing phase because we enclosed the substitution variable in
delimiting single quotes. It displays the substitution of our entered value for the substitution variable:

= old 2: 1lv_input VARCHAR2(10) := '&input';
new 2: lv_input VARCHAR2 (10)

'James Tiberius Kirk';
Then, it throws a runtime error back to the calling scope:
= 1 DECLARE
*

ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character string buffer too small
ORA-06512: at line 2

This error means that our exception handler was ignored. That's because assignments in a
declaration block aren’t managed as runtime errors. Moving the dynamic assignment from line 2
of the previous declaration block to line 4 of the following execution block puts the assignment
into the program’s runtime scope. That simple change enables our exception handler to catch and
handle the error.

g SQL> DECLARE

2 lv_input VARCHAR2 (10) ;

3 BEGIN

4 lv_input := '&input';

5 dbms_output.put_line('['||1lv_input]||']1");
6 EXCEPTION

7 WHEN OTHERS THEN

8 dbms_output.put_ line (SQLERRM) ;

9 END;
0 /

Chapter 3: PL/SQL Basics 53

Entering the full name of Captain Kirk (from Star Trek’s fictional universe) now raises our
handled exception rather than the full error stack (Chapter 7 covers error stacks):

g ORA-06502: PL/SQL: numeric or value error: character string buffer too small

The SQLERRM function returns only the assignment error, not the complete stack of errors
that aborted execution to the calling scope. Chapter 7 and Appendix C explain the SQLERRM
function. What you should learn here is that you should never make dynamic assignments a
declaration block! This rule also applies to the declaration block of stored functions and procedures.
Dynamic assignments in declaration blocks are harder to manage because every calling program
must anticipate and manage their outcomes.

The Assignment Model and Language

All programming languages assign values to variables. They typically assign a value to a
variable on the left. That’s why we've positioned the truck on the left and the cargo being
loaded from the right. The truck is our variable, or a location in memory. The cargo or
freight is the value we assign to the variable. The assignment process loads the freight into
the truck, or assigns the value to the variable.

The prototype for generic assignment in any programming language is

left operand assignment operator right operand statement terminator
This assigns the right operand to the left operand. You implement it in PL/SQL as follows:
left operand := right operand;

The left operand must always be a variable. The right operand can be a value, a variable,
or a function. Functions must return a variable when they’re right operands. This is convenient
in PL/SQL because all functions return values. That’s the treat. The trick is that only functions
returning a SQL data type can be called in SQL statements. Functions returning a PL/SQL data
type only work inside PL/SQL blocks.

Right-to-left assignment is possible with the SELECT- INTO statement. The prototype
for it is

SELECT [literal value | column value]

INTO local variable
FROM [table name | pseudo table name]
WHERE comparison statements;

(continued)

54 Oracle Database 12¢ PL/SQL Programming

The following assigns a string literal to a local variable:

SQL> VARIABLE sv_reader VARCHAR2 (20)
SQL> SELECT 'Hello reader.' AS "Output"

2 INTO :sv_reader
3 FROM dual;
It prints
Output

Hello reader.

While the right-to-left assignment differs from the routine, it does present you with a
valuable option. It's most frequently used when returning a single scalar value or set of
columns in a single row from a SQL cursor. A SQL cursor is a PL/SQL structure that lets you
access the result of a query row by row or as a bulk operation.

Dynamic assignments also have other behaviors that we need to manage in our programs.
For example, suppose you attempt to assign a real number of 4.67 to a variable with a NUMBER
data type, like this:

g1 SQL> DECLARE

2 lv_input INTEGER;

3 BEGIN

4 lv_input := 4.67;

5 dbms_output.put line('['||lv_input]|']");
6 EXCEPTION

7 WHEN OTHERS THEN

8 dbms_output.put line('['||SQLERRM||']");
9 END;

0 /

It doesn't trigger an exception even though the value is equivalent to a DOUBLE, FLOAT, or
NUMBER data type while the assignment target (left operand) variable’s data type is an INTEGER.
The program simply prints

g Value is [5]

This happens because Oracle Database 12¢ and its predecessors implicitly cast the value
between the two data types. The assignment on line 4 inherits the data type of the target variable
on the left of the assignment, and because integers don’t have decimals, the assignment rounds
the value up. This process is known as casting, and the value suffers a loss of precision when you
cast from a decimal number to an integer. Oracle Database 12¢ would round down if we were to
rewrite the program and assign a value of 4.49.

Oracle Database 12c performs many implicit casting operations. They fail to follow the
common rule of programming: implicitly cast only when there is no loss of precision. This means
you can assign a complex number like 4.67 to an integer and lose the .67 portion of the number.

Chapter 3: PL/SQL Basics 55

Likewise, Oracle Database 12c offers a series of functions to let you explicitly cast when there is
greater risk of losing precision. You should choose carefully when you explicitly downcast
variables. Appendix C covers explicit casting functions.
There are also several product-specific data types. They support various Oracle Database 12¢
products. You can find these data types in the Oracle Database PL/SQL Packages and Types Reference.
The assignment operator is not the lone operator in the PL/SQL programming language. Chapter 4
covers all the comparison, concatenation, logical, and mathematical operators. In short, you use

The equal sign (=) to check for matching values

The standard greater than symbol or less than symbol with or without an equal sign (>,
>=, <, Or <=) as a comparison operator to check for inequalities

The negation (<>, !=, ~=, or “=) comparison operators to check for nonmatching values

You define CURSOR statements in the declaration section. CURSOR statements let you bring
data from tables and views into your PL/SQL programs. A CURSOR statement can have zero or
many formal parameters. CURSOR parameters are pass-by-value, or IN-only mode only variables.
Chapter 5 covers CURSOR statements.

In addition to anonymous block programs, you can also have the following:

Nested anonymous block programs in the execution section of anonymous blocks

Local named block programs in the declaration section, which in turn can contain
anonymous and nested blocks of its own

Calls to stored named block programs

The following subsections examine each one of these in turn.

Nested Anonymous Blocks
Nested anonymous blocks act like the blocks in the example in the preceding section. That's
because any program that contains an anonymous block program assumes the SQL*Plus
environment’s role for a stand-alone anonymous block PL/SQL program.

Here’s an example of an anonymous block with a nested anonymous block:

=1 SQL> DECLARE

2

W J o0 Ul bW

11
12
13
14
15
16

-- Declare local variable.
lv_input VARCHAR2 (30) DEFAULT 'OUTER';

BEGIN

-- Print the value before the inner block.
dbms_output.put_line('Outer block ['||lv_input|]|']");

-- Nested block.

BEGIN
-- Print the value before the assignment.
dbms_output.put line('Inner block ['||lv_input]||']l");

-- Assign new value to variable.
lv_input := 'INNER';

-- Print the value after the assignment.

56 Oracle Database 12c PL/SQL Programming

17 dbms_output.put line('Inner block ['||lv_input]||']"');
18 END;

19

20 -- Print the value after the nested block.

21 dbms_output.put_line('Outer block ['||lv_input]||']");
22 EXCEPTION

23 WHEN OTHERS THEN

24 dbms_output.put line ('Exception ['||SQLERRM||']");
25 END;

26/

Line 3 declares the 1v_input variable with an initial value of “Set in the outer block.” The
scope of the variable is the outer block of the anonymous block, which means you can assign it
new values in the outer or inner blocks. Line 14 in the inner block assigns to the 1v_input
variable a new value, “Set in the inner block.” The program prints the 1v_input variable’s
original value before the inner block assignment:

g Outer block [OUTER]
Inner block [OUTER]

And it prints the altered value after the inner block assignment:

Inner block [INNER]
Outer block [INNER]

This illustrates that nested anonymous blocks have read and write privileges to variables
defined in the outer scope. The 1v_outer variable keeps the value assigned inside the nested
block because there’s really only one variable, and its scope is set in the outer block. There is an
exception to this variable scope rule for anonymous blocks, and it only occurs when you define
two variables that share the same name in both the outer and inner blocks.

The next example renames the 1v_input variable to 1v_outer and creates a new 1v_
active variable in the outer and nested inner scopes. | chose 1v_active for the variable name
because there are actually two 1v_active variables when this program runs. One 1v_active
variable is accessible only from the outer block or any nested blocks, while the other 1v_active
variable is accessible only from the inner block.

g SQL> DECLARE

2 -- Declare local variable.

3 lV_outer VARCHAR2 (30) DEFAULT 'OUTER';

4 lv_active VARCHAR2(30) DEFAULT 'OUTER';

5 BEGIN

6 -- Print the value before the inner block.
7 dbms_output.put line('Outer ['||lv_outer||']['||1lv_activel|]|']");
8

9 -- Nested block.

10 DECLARE

11 -- Declare local variable.

12 lv_active VARCHAR2(30) DEFAULT 'INNER';
13

14 BEGIN

15 -- Print the value before the assignment.

Chapter 3: PL/SQL Basics 57

16 dbms_output.put line('Inner ['||lv_outer||']['||lv_activel|]|']");
17

18 -- Assign new value to variable.

19 1lv_outer := 'INNER';

20

21 -- Print the value after the assignment.

22 dbms_output.put_line('Inner ['||lv_outer||']1['||lv_active]||']");
23 END;

24

25 -- Print the value after the nested block.

26 dbms_output.put line('Outer ['||lv _outer||']1['||lv_activel|]|']");
27 EXCEPTION

28 WHEN OTHERS THEN

29 dbms_output.put line ('Exception '||SQLERRM||']");

30 END;

31/

Lines 3 and 4 declare 1v_outer and 1v_active variables in the outer block with an OUTER
string value as their default values. Line 12 declares an 1v_active variable for the inner block
with an INNER string value. Line 19 assigns the INNER string value to the 1v_outer variable.

The program prints the following:

g Outer [OUTER] [OUTER]
Inner [OUTER] [INNER]
Inner [INNER] [INNER]
Outer [INNER] [OUTER]

The program prints the initial values of the 1v_outer and 1v_active variables before
entering the anonymous nested block. Next, the program prints the variable values after the
nested block’s declaration section. Notice that only the 1v_active value has changed because
its scope uses the value from the declaration block of the nested anonymous block. After the
assignment of INNER to the 1v_outer variable, both 1v_outer and 1v_active hold the
INNER string value. The 1v_active variable changes back to OUTER after exiting the nested
anonymous block because it now refers to the outer anonymous block program.

This section has shown you how variable scope works with nested anonymous block
programs. While the example uses an anonymous block program as the outer program unit, the
logic and access are the same when you embed nested anonymous blocks in stored subroutines,
such as functions, procedures, packages, or object types.

Local Named Blocks

You have a choice between two named block programs (subroutines)—functions and procedures.
Functions return a value and are typically used as the right operand in right-to-left variable
assignments. Procedures are functions that don’t return a value, which would be equivalent to a
method in Java that returns a void data type.

Local functions and procedures are only useful in the scope of the program unit where they’re
embedded. You can implement local functions and procedures in the declaration section of an
anonymous block or named block. It's also possible to implement local functions in the member
functions and procedures of object types. This is done when you implement the object type in
what’s known as an object body, as described in Chapter 11.

58 Oracle Database 12c PL/SQL Programming

The following sample program has a local procedure inside an anonymous or unnamed PL/
SQL block. It transforms the logic of the nested block program presented in the preceding section
into a procedure and lets you explore variable scope for local procedures. The sample program
uses the 1v_outer and 1v_active variables in the same role as they were used in the previous
section. It does make an unavoidable forward reference to function and procedure basics, which
are covered later in this chapter.

= SQL> DECLARE

2 -- Declare local variable.

3 1lv_outer VARCHAR2 (30) DEFAULT 'OUTER';

4 lv_active VARCHAR2 (30) DEFAULT 'OUTER';

5 -- A local procedure without any formal parameters.
6 PROCEDURE local named IS

7 -- Declare local variable.

8 lv_active VARCHAR2(30) DEFAULT 'INNER';

9 BEGIN

10 -- Print the value before the assignment.

11 dbms output.put line(

12 'Inner ['||lv _outer||']1['||lv_active||']");
13

14 -- Assign new value to variable.

15 lv_local := 'INNER';

16

17 -- Print the value after the assignment.

18 dbms output.put_line(

19 'Inner ['||lv outer||']1['||lv_active||']");
20 END local named;

21

22 BEGIN

23 -- Print the value before the inner block.

24 dbms_output.put_line(

25 'outer '||lv_outer||']1['||lv_activel||']");

26

27 -- Call to the locally declared named procedure.
28 local named;

29

30 -- Print the value after the nested block.

31 dbms_output.put_ line(

32 'outer ['||lv_outer||']['||lv_active||']");
33 EXCEPTION

34 WHEN OTHERS THEN

35 dbms_output.put line ('Exception ['||SQLERRM||']");
36 END;

37 /

Lines 6 through 20 contain the locally defined 1ocal named procedure. The local named
procedure has no formal parameters and simply implements the same logic found in the earlier
nested block. It prints the 1v_outer and 1v_active variable values before and after an
assignment to the 1v_outer variable. Note that the local procedure doesn’t declare an 1v_
outer variable, which means the assignment is to the 1v_outer variable defined in the calling
scope, or the outer anonymous block program.

Chapter 3: PL/SQL Basics 59

Line 27 calls the local procedure, and you get the following output when you run the program:

= Outer [OUTER] [OUTER]
Inner [OUTER] [INNER]
Inner [INNER] [INNER]
Outer [INNER] [OUTER]

As you can see, you get the same output as when you ran the nested block in the previous
section. That's true because local functions and procedures have access to variables declared in
the calling block where they're defined.

The difference between a local procedure and a nested block may appear to be small, but
defining a local procedure lets you call the logic multiple times in the same program from a single
code base. This approach of putting code logic into a named program is often labeled modularity,
and it typically improves the clarity of your programming code.

The problem with nested named blocks, however, is that they’re not published blocks. This
means that one function or procedure may call another before it's defined. This type of design
problem is known as a scope error, and it raises a compile-time PLS-00313 exception.

Scope errors typically occur because PL/SQL is a single-run parse operation, meaning that the
compiler reads through the source once, from top to bottom. That means any identifiers, such as
function and procedure names, must be defined before they’re called or they’ll raise a runtime error.

The following code generates a compile-time PL.S-00313 error because the jack procedure
refers to the hector function before its defined:

g SQL> DECLARE

2 PROCEDURE jack IS

3 BEGIN

4 dbms output.put line(hector||' World!');
5 END jack;

6 FUNCTION hector RETURN VARCHAR2 IS
7 BEGIN

8 RETURN 'Hello';

9 END hector;

10 BEGIN

11 jack;

12 END;

13/

Lines 2 through 5 define a local procedure, jack. Inside procedure jack is a call on line 4 to the
function hector. The function isn’t defined at this point in the anonymous block, and it raises an
out-of-scope error:

e dbms_output.put_ line (hector||' World!');
*
ERROR at line 4:
ORA-06550: line 4, column 26:
PLS-00313: 'B' not declared in this scope
ORA-06550: line 4, column 5:
PL/SQL: Statement ignored

As mentioned, this is a compile-time error because all anonymous block programs are
parsed before they’re executed, and parsing is a compile-time process. Parsing is a process that

60 Oracle Database 12c PL/SQL Programming

recognizes identifiers. Identifiers are reserved words, predefined identifiers, quoted identifiers,
user-defined variables, subroutines, or UDTs. Named blocks are also identifiers.

Function hector isn’t recognized as an identifier because PL/SQL reads identifiers into
memory from top to bottom only once. Under a single-pass parser, function hector isn’t defined
before it’s called in procedure jack. You can fix this by adding forward references. A forward
reference to a function or procedure requires only the signature of the function or procedure,
rather than its signature and implementation. A forward reference is equivalent to the concept of
an interface in Java. These prototypes are stubs in PL/SQL. Stubs put the name of the future
subroutine into the namespace (list of identifiers) so that the compiler accepts the identifier name
before parsing its implementation.

The following example provides forward references for all local functions and procedures.

I recommend that you always provide these stubs in your programs when you implement local
scope named blocks.

= SQL> DECLARE

2 PROCEDURE jack;

3 FUNCTION hector RETURN VARCHAR2;

4 PROCEDURE jack IS

5 BEGIN

6 dbms_output.put_line(b||' World!');
7 END jack;

8 FUNCTION hector RETURN VARCHAR2 IS
9 BEGIN

10 RETURN 'Hello';

11 END hector;

12 BEGIN

13 jack;

14 END;

5/

Lines 2 and 3 provide the stubs to procedure jack and function hector, respectively, and the
modified program parses correctly because it’s able to resolve all symbols from the top to the
bottom of the anonymous block in one pass.

NOTE

Please remember that, while nested named blocks are very useful,
they also require you to implement stubs when they cross reference
one another.

The biggest risk of locally named PL/SQL blocks is that they replace schema-level named
functions and procedures when they shouldn’t. The rule of thumb on whether or not a subroutine
should be local is simple: there is virtually no chance that other modules will require the behavior
provided by the local subroutine.

Stored Named Blocks

Stored named blocks are subroutines, like functions and procedures, and are often called schema-
level functions or procedures. Stored functions return a value and are typically used as the right
operand in right-to-left variable assignment; stored procedures are functions that don’t return a

Chapter 3: PL/SQL Basics 61

value. You define a function or procedure in the database by compiling it as a schema object,
which makes it a stand-alone component.

Unlike the local procedure in the anonymous block in the previous section, a stored
procedure has access only to parameter values passed to it at call time. Any attempt to embed a
variable not declared in scope, like the 1v_outer variable, causes a compilation failure. You
must declare a local 1v_outer variable inside the function, which has the same impact on
scope as declaring a local variable in a nested block.

The following example shows how to define a stand-alone stored procedure. This schema-
level version of the local named procedure implements the same logic as the embedded
version of the procedure introduced in the previous section. (Stored procedures are covered in
depth in the “Functions, Procedures, and Packages” section later in this chapter.)

g SQL> CREATE OR REPLACE PROCEDURE local named IS

2 -- Declare local variable.
3 lv_active VARCHAR2 (30) DEFAULT 'INNER';
4 lv_outer VARCHAR2 (30) DEFAULT ' ';
5 BEGIN
6 -- Print the value before the assignment.
7 dbms_output.put line(
8 "Inner ['||lv_outer||']['||lv_active|]|']");
9
10 -- Assign new value to variable.
11 lv_outer := 'INNER';
12
13 -- Print the value after the assignment.
14 dbms_output.put line(
15 "Inner ['||lv_outer||'][']|]|1lv_active||']l");
16 END local named;
17/

Line 4 declares a local 1v_outer variable as a five-character string of white spaces. Line 11
assigns a new value to the local 1v_outer variable and replaces the string of white spaces.

You can find more on how to create and replace syntax for stored programs in the “Executing
a Named Block Program” section of Appendix A. You should note the local definition of the
1v_outer variable on line 4. The following anonymous block calls the stored procedure because
there’s no competing local procedure of the same name:

=1 SQL> DECLARE

2 -- Declare local variable.

3 lv_outer VARCHAR2 (30) DEFAULT 'OUTER';
4 lv_active VARCHAR2 (30) DEFAULT 'OUTER';
5
6 BEGIN
7 -- Print the value before the inner block.
8 dbms_output.put_line('Outer ['||lv_outer||[']['||lv_active|]|']l");
9
10 -- Call to the locally declared named procedure.
11 local named;
12

13 -- Print the value after the nested block.

62 Oracle Database 12c PL/SQL Programming

14 dbms_output.put line('Outer ['||lv_outer||']['||lv_activel||']");
15 EXCEPTION

16 WHEN OTHERS THEN

17 dbms_output.put_line ('Exception ['||SQLERRM||']");

18 END;

19 /

Line 11 calls the local named stored procedure and prints the following:

g Outer [OUTER] [OUTER]
Inner [] [INNER]
Inner [INNER] [INNER]
Outer [OUTER] [OUTER]

The first line prints the values from the anonymous block. The second line prints the local
variable values before the assignment of the INNER string. The third line prints the local
procedure’s variable values after the assignment. The last line prints the original values from the
anonymous block.

By adding parameters to the procedure, you can pass the values from the external scope to
the procedure’s inner scope or you can pass a reference from the external scope to the
procedure’s inner scope and return the changed values to the calling outer scope. That's covered
in the “Functions, Procedures, and Packages” section later in this chapter.

You have now reviewed how to assign values to variables and how variable scopes work in
anonymous and named blocks. The next section explains some basics about string, date, and
number scalar data types and composite data types.

Review Section
This section has described the following points about variables, assignments, and scopes:

B Variable names begin with letters and can contain alphabetical characters, ordinal
numbers (0 to 9), and the $, , and # symbols.

B Variables are available in the anonymous or named blocks where they're declared, and
in nested anonymous and named blocks defined inside those containing blocks.

B A variable name is unique in an anonymous or named block, and a variable name in a
nested anonymous or named block overrides access to a duplicate variable name in an
outer block that contains the definition of the anonymous or named block.

B A variable name in a schema-level subroutine (either a function or procedure named
block) must be defined inside the named block’s declaration block.

B Schema-level subroutines can’t access calling scope blocks because they are
independently defined blocks.

B Oracle uses a single-pass parsing process for PL/SQL blocks, which means you should
use forward-referencing stubs for local functions and procedures.

Chapter 3: PL/SQL Basics 63

Basic Scalar and Composite Data Types

This section introduces the basics about the three most common scalar data types, attribute and table
anchoring, and four generic composite data types. The common scalar data types are characters,
dates, and numbers. Composite data types include SQL UDTs, PL/SQL record types, collections of
SQL data types, and collections of PL/SQL data types. Scalar data types hold only one thing, while
composite data types hold more than one thing, such as a structure or collection of data.

= NOTE

You can find complete coverage of PL/SQL fundamentals and scalar
data types in Chapter 4. PL/SQL also uses SQOL data types, which are
covered in Appendix B.

The next subsection introduces string, date, and number data types as the basic scalar data
types, laying a foundation for the subsequent coverage of composite data types. Together they
support the subsequent major sections on control structures, exceptions, bulk operations,
functions, procedures, packages, transaction scope, and database triggers.

Scalar Data Types

As mentioned, Chapter 4 provides complete coverage of PL/SQL data types. The purpose of this
section is to introduce you to basic scalar data types. How you qualify scalar data types is often a
byproduct of what you've done in your career but it should be clarified in this section.

More or less, a scalar data type contains one and only one thing, where a “thing” is a single
element. The most common way of describing an element asks us to look at it like a number or
character, and consider it a primitive data type. Adopting that standard of a primitive type, we
would consider a string to be a composite data type because it is ultimately an array of characters.
However, that's not the way we view things in a database, and several modern programming
languages support that view. For example, Java, C#, and PL/SQL view strings as scalar data types,
and they allow strings to be words, sentences, paragraphs, chapters, and books.

The following subsections introduce the three basic and most commonly managed data types,
which are strings, dates, and numbers. As mentioned, Chapter 4 contains more complete
coverage of these types.

Strings

Strings come in two principal varieties in the Oracle 12c¢ database: fixed-length strings and
dynamically sized strings. You create a fixed-length string by assigning it a size based on the
number of bytes or characters. When you measure size by characters, which is the recommended
approach, the number of bytes is determined by the character set. By the way, the default
character set is established when you create a database instance (see Appendix A for more details
on database instances).

Fixed-length strings use the CHAR and Unicode NCHAR data types, while dynamically sized
strings use the VARCHAR?2 (or alias VARCHAR) and Unicode NVARCHAR2 data types. As a rule,
you use the VARCHAR2 and NVARCHAR2 data types for most strings because you don’t want to
allocate unnecessary space for fixed length strings.

64 Oracle Database 12¢ PL/SQL Programming

This sample program shows you the assignment and subsequent space allocation for both
fixed-length and dynamically sized data types:

g SQL> DECLARE

2 lv_fixed CHAR (40) = 'Something not quite long.';

3 lv_variable VARCHAR2(40) := 'Something not quite long.';

4 BEGIN

5 dbms_output.put line('Fixed Length ['| |LENGTH (1v_fixed) |]|']1");

6 dbms_output.put line('Varying Length ['||LENGTH (1lv_variable) ||']");
7 END;

8 /

It prints the space allocation sizes:

g Fixed Length [40]
Varying Length [25]

Strings are useful as primitive data types. Note, however, that the storage space required for
fixed-length strings generally exceeds the storage space required for variable-length strings. That
typically means variable-length strings are better solutions for most problems, other than strings
beyond 32 kilobytes in length. Very large strings should be stored in a CLOB data type rather than
in a LONG data type.

Dates
Dates are always complex in programming languages. The DATE data type is the base type for
dates, times, and intervals.

Oracle has two default date masks, and both support implicit casting to DATE data types. One
default date mask is a two-digit day, three-character month, two-digit year (DD-MON-RR) format,
and the other is a two-digit day, three-character month, four-digit year (DD-MON-YYYY) format. Any
other string literal requires an overriding format mask with the TO_DATE built-in SQL function.

The next example shows you how to assign variables with implicit and explicit casting from
conforming and nonconforming strings. Nonconforming strings rely on format masks and SQL
built-ins, which you can find more information about in Appendix C.

= SQL> DECLARE

2 lv _date 1 DATE := '28-APR-75';

3 lv_date 2 DATE := '29-APR-1975';

4 lv_date 3 DATE := TO DATE('19750430','YYYYMMDD') ;
5 BEGIN

6 dbms_output.put line('Implicit ['||lv_date 1||']1");
7 dbms_output.put line('Implicit ['||lv_date 2||']");
8 dbms_output.put line('Explicit ['||lv_date 3||']");
9 END;

0 /

It prints the following:

g Implicit [28-APR-75]
Implicit [29-APR-75]
Explicit [30-APR-75]

When you want to see the four-digit year, use the TO_CHAR built-in function with the appropriate
format mask. You can also perform date math, as explained in Appendix B.

Chapter 3: PL/SQL Basics 65

Numbers

Numbers are straightforward in PL/SQL. You assign integer and complex numbers in the same way
to all but the new IEEE 754-format data types. Chapter 4 covers how to use the IEEE-754 format
numbers.

The basic number data type is NUMBER. You can define a variable either as an unconstrained
NUMBER data type or as a constrained NUMBER data type by qualifying the precision or scale.
Precision constraints prevent the assignment of larger precision numbers to target variables.
Scale limitations shave off part of the decimal value but allow assignment while you lose part of
the remaining value.

You can assign an unconstrained NUMBER data type to a constrained NUMBER data type as
follows:

=1 SQL> DECLARE

2 1v_numberl NUMBER;

3 lv_number2 NUMBER(4,2) := 99.99;
4 BEGIN

5 lv_numberl := 1lv_number2;

6 dbms output.put line (1v_numberl) ;
7 END;

8 /

This prints the following when you've enabled the SERVEROUTPUT environment variable:

i 09 .99

The value assigned to 1v_number?2 is unchanged because its data type is unconstrained. You
can find much more information on numbers in Chapter 4.

Attribute and Table Anchoring

Oracle Database 12c and prior versions of the database support attribute and table anchoring.
Attribute anchoring lets you anchor the data type in a program to a column in a table. Table
anchoring lets you anchor a composite variable, like a RECORD type, to a table or cursor structure.

B TYPE Anchors a variable to a column in a table or cursor

B 3ROWTYPE Anchors a composite variable to a table or cursor structure

As an example of attribute anchoring, the following shows how you would declare an
lv_dwarf name variable anchored to the name column of the dwarf table:

= 3 1v_dwarf name dwarf.name%TYPE := 'Bofur';

Anchoring couples the local variable to a schema-level table. It is handy when only the size
of a variable-length string changes or only the precision and scale of a numeric data type change.
It's a potential failure point when the base data type can change over time, such as from number
to date or from date to string.

The $ROWTYPE attribute offers three possibilities for anchoring composite data types. One
option lets you assign the record structure of a table as a data type of a variable. The other options
lets you assign the record structure of a cursor or system cursor variable as a data type of a variable.

66 Oracle Database 12c¢ PL/SQL Programming

As an example of table anchoring, you would declare an 1v_dwarf variable of the dwart
table structure with a statement like this:

3 lv_dwarf record dwarf%ROWTYPE;

The same syntax works to anchor the 1v_dwarf record variable to a dwarf table, a
dwarf cursor cursor, or dwarf_cursor system reference cursor variable. Alternatively, you
can create a dwarf_table associative array collection (covered in the next section) of the
dwarf table’s structure with the following syntax:

e 3 TYPE dwarf table IS TABLE OF DWARF%ROWTYPE
4 INDEX BY PLS_ INTEGER;

Where possible, you should use a $ROWTYPE anchor with a local cursor. | recommend that
because changes to a cursor in the same block typically drives like changes to the program’s other
components. Anchoring to tables can present problems because a table’s structure may evolve
differently from the program relying on anchored structures. Table anchoring also creates context
switches in your code, which you could find by tracing performance. You can check in the “SQL
Tracing” section of Appendix A for instructions on tracing performance.

Oracle Database12c introduces another factor when deciding whether or not to anchor to
tables. The record structure of an anchored type contains only visible columns. That means you
must anchor to explicit cursors when you want to access visible and invisible columns. Clearly,
it's a choice you need to make when designing the program.

Visible and Invisible Column Anchoring
Oracle Database 12¢ supports both visible and invisible columns, but now when you use
an asterisk (*) to select all columns, you get all visible columns only. You must write an
explicit SELECT list to get both visible and invisible columns. Please read the “Invisible
Columns” section in Appendix B if the concept is new to you.

A quick example shows this best. Let’s create a table (adopting J. R. R. Tolkien’s lingo):

SQL> CREATE TABLE dwarves
2 (dwarves id NUMBER GENERATED AS IDENTITY
3 , name VARCHAR2 (20)
4 , allegiance VARCHAR2 (20) INVISIBLE) ;

Line 2 creates an identity column. An identity column automatically auto increments
surrogate key values from an indirect sequence value. (Check the “Identity Columns”
section in Appendix B for information about how you can best use identity columns.) Line 4
marks the allegiance column as invisible. Therefore, you won't see the allegiance
column when you describe the table or select columns with an asterisk (*).

As an example, a program that works with table anchoring when all columns are visible,
like this

SQL> DECLARE
2 /* Anchor to a table with an invisible column. */
3 dwarf dwarves%$ROWTYPE;

Chapter 3: PL/SQL Basics 67

4 BEGIN

5 /* Select all columns into a local variable. */

6 SELECT * INTO dwarf FROM dwarves FETCH FIRST 1 ROWS ONLY;
7

8 /* Print the invisible column. */

9 dbms_output.put line(
10 "['||dwarf.name| | '] ['| |dwarf.allegiance||']");
11 END;
12/

fails with this (shortened) error message:

"[']||dwarf.name| | '] ['||dwarf.allegiance||']");
*

ERROR at line 10:
ORA-06550: line 10, column 34:
PLS-00302: component 'ALLEGIANCE' must be declared

The new top-n query syntax on line 6 guarantees that the SELECT-INTO only returns
a single row. Refactoring the program by adding an explicit cursor and a SELECT list that
enumerates all columns makes the program successful:

SQL> DECLARE
2 /* Create a cursor to unhide an invisible column. */

3 CURSOR dwarf cursor IS

4 SELECT dwarves id

5 , name

6 , allegiance

7 FROM dwarves;

8

9 /* Anchor to a table with an invisible column. */
10 dwarf dwarf cursor%ROWTYPE;

11 BEGIN

12 /* Select all columns into a local variable. */
i3 SELECT dwarves id, name, allegiance INTO dwarf
14 FROM dwarves FETCH FIRST 1 ROWS ONLY;

15

16 /* Print the invisible column. */
17 dbms output.put line(
18 "['||dwarf.name| | '] ['||dwarf.allegiance]||'] ") ;
19 END;
20 /

Basically, anchoring record structures to tables in Oracle Database 12c is great if you
only want to work with the visible columns, but it’s bad if you want to work with all
columns. Also, the asterisk now maps to the list of visible columns only, not to the list of all
columns (visible and invisible).

68 Oracle Database 12c PL/SQL Programming

Although anchoring variables and data types to other structures in the Oracle Database 12¢
database has benefits, it also has costs. Programs that anchor variables and types to other
structures make context switches. These context switches read the referenced data types and
apply them to the anchored variables and data types. Context switches present a hidden resource
cost to any program that uses anchoring.

Composite Data Types

Composite data types differ from scalar data types because they hold copies of more than one thing.
Composite data types can hold a structure of data, which is more or less like a row of data.
Alternatively, composite data types can hold collections of data. Beginning with Oracle Database
9i Release 2, the following types of composite data types are available:

B SQLUDT This can hold a data structure. Two implementations are possible: an object
type only implementation, which supports a SQL-level record structure, and both an
object type and body implementation, which supports a class instance.

B PL/SQL record type This can hold a structure of data, like its SQL UDT cousin. You can
implement it by anchoring the data type of elements to columns in tables and views, or
you can explicitly define it. You should consider explicit declarations, because nesting
these types doesn’t work well. An explicitly declared record type is much easier for
developers to understand than types that anchor to tables with nested data types.

B SQL collection This can hold a list of any scalar SQL data type. SQL collections of
scalar variables are Attribute Data Types (ADTs) and have different behaviors than
collections of UDTs. You have two possibilities with SQL collections: A varray behaves
virtually like a standard array in any procedure or object-oriented programming
language. It has a fixed number of elements in the list when you define it as a UDT. The
other possibility, a nested table, behaves like a list in standard programming languages. It
doesn’t have a fixed number of elements at definition and can scale to meet your runtime
needs within your PGA memory constraints.

B PL/SQL collection This can hold a list of any scalar SQL data type or record type, and it
can also hold a list of any PL/SQL record type. Unlike with the other collections, you're
not limited to a numeric index value. You can also use a string as the index value. This
is aptly named for that duality of character as an associative array. Many experienced
programmers still call this a PL/SQL table, as established in the Oracle 8 Database
documentation.

The next four subsections describe the various composite data types of Oracle databases from
Oracle 9/ Database forward. As a historical note, associative arrays became available in Oracle 7,
and included collections of record structures in the terminal Oracle 7.3 release. Generic tables
and varray data types were introduced in Oracle 8 Database.

SQL UDT

A SQL UDT is an object type. Like packages, object types have a specification and a body. The
specification is the type and includes a list of attributes (or fields) and methods. Methods can be
static or instance functions or procedures, or they can be specialized constructor functions.
Constructor functions let you instantiate an object following the instructions in the constructor
function logic. Chapter 11 and Appendix B contain much more detail about object types.

Chapter 3: PL/SQL Basics 69

Obiject types publish the blueprint of the object to the schema and guarantee what the object
body will implement. You can define an object type to be final, but more often than not you will
define them as not final so that others can extend their behaviors by subclassing them. Most
objects are instantiable, because there isn’t much call for objects with only static methods—you
can accomplish that with a package.

The following is a sample hobbit object type; it includes a default (no parameter)
constructor, an override constructor, and instance methods.

@1 SQL> CREATE OR REPLACE TYPE hobbit IS OBJECT
2 (name VARCHAR2 (20)
, CONSTRUCTOR FUNCTION hobbit RETURN SELF AS RESULT
, CONSTRUCTOR FUNCTION hobbit
(name VARCHAR2) RETURN SELF AS RESULT
, MEMBER FUNCTION get name RETURN VARCHAR2
MEMBER FUNCTION set name (name VARCHAR2)
RETURN hobbit
, MEMBER FUNCTION to_string RETURN VARCHAR2)
INSTANTIABLE NOT FINAL;

H O OV © J 0 Ul b W

B

/

Line 2 publishes the one name attribute of the hobbit object type. Line 3 publishes the
default (no parameter) constructor. Lines 4 and 5 publish the override constructor that takes a
single parameter, and lines 6 and 7 publish instance methods.

It's possible to use object types as parameters and return types in PL/SQL programs, and as
column data types or as object tables in the database. Appendix B contains details on the nature
of object columns and tables, and how Oracle supports type evolution to allow you to change
objects with dependencies.

Object types become more useful after you implement them. The implementation of the
object occurs when you define the object body. It's important to ensure that any formal parameters
in constructor functions match the name and data type of attributes in the object type (failure to
adhere to this rule raises a PLS-00307 error at compile time).

The following implements the object type:

=1 SQL> CREATE OR REPLACE TYPE BODY hobbit IS

2 /* Default (no parameter) constructor. */

3 CONSTRUCTOR FUNCTION hobbit RETURN SELF AS RESULT IS
4 lv_hobbit HOBBIT := hobbit ('Sam Gamgee') ;

5 BEGIN

6 self := 1lv hobbit;

7 RETURN;

8 END hobbit;

9 /* Override signature. */
10 CONSTRUCTOR FUNCTION hobbit
11 (name VARCHAR2) RETURN self AS RESULT IS
12 BEGIN
13 self.name := name;
14 RETURN;
15 END hobbit;
16 /* Getter for the single attribute of the object type. */
17 MEMBER FUNCTION get name RETURN VARCHAR2 IS

18 BEGIN

70 Oracle Database 12¢ PL/SQL Programming

19 RETURN self .name;

20 END get name;

21 /* Setter for a new copy of the object type. */
22 MEMBER FUNCTION set name (name VARCHAR2)

23 RETURN hobbit IS

24 lv_hobbit HOBBIT;

25 BEGIN

26 lv_hobbit := hobbit (name) ;

27 RETURN lv_hobbit;

28 END set name;

29 /* Prints a salutation of the object type's attribute. */
30 MEMBER FUNCTION to string RETURN VARCHAR2 IS

31 BEGIN

32 RETURN 'Hello '||self.name||'!"';

33 END to_string;

34

35 END;

36/

Lines 3 through 8 define the default (or no parameter) constructor for the hobbit object.
Note on line 4 how a local instance of the hobbit object is created and assigned to a local
variable. Line 6 then assigns the local instance of the hobbit object (the 1v_hobbit variable)
to self, which is the Oracle equivalent of this in Java and means the object instance. That's
why the return statement of constructor functions differs from the return statement of other
functions. Constructor functions return instances of the object, not a local variable or literal value.

You may have noticed that the default constructor calls the override constructor with a default
“Sam Gamgee” string when creating the local hobbit object instance. The override constructor
allows the user to provide the name for the object instance, like the set_name function (a setter
method, which sets attributes of the object instance) that returns a new instance of the hobbit
object. The hobbit object type also has a get name function (or a getter method, which gets
the value of attributes of the object instance). Lastly, the hobbit class provides a to_string
method that prints the value of the object instance with a salutation.

You can now call the object like so with the default constructor and print a salutation to the
object instance’s hobbit:

g SQL> COLUMN salutation FORMAT A20
SQL> SELECT hobbit () .to_string() AS "Salutation"
2 FROM dual;

The SELECT list contains a call to the overriding constructor function of the hobbit object
type, and it passes the object instance to the to_string instance method, which prints the
default salutation. This is called chaining component calls and is made possible by the component
selector (or period) that lets you call any method of the object instance.

It prints

g Salutation

Hello Sam Gamgee!

Chapter 3: PL/SQL Basics 71

Changing the constructor is done by providing a name, like this:

g1 SQL> SELECT hobbit ('Bilbo Baggins').to_string() AS "Salutation"
2 FROM dual;

The preceding code produces the same outcome as calling the set_name function:

g1 SQL> SELECT hobbit ().set_name ('Bilbo Baggins').to_string() AS "Salutation"
2 FROM dual;

Both print the following:
g Salutation

Hello Bilbo Baggins!

After implementing object bodies, you can store objects in tables or pass objects from one
named PL/SQL program unit to another (that includes from one object to another object).
Chapter 11 goes into more depth on using objects in the Oracle database.

PL/SQL Record Type

A PL/SQL record type is a record data structure, which means it is a row of data across two or
more fields of data. The following program creates a PL/SQL record type, assigns values to it, and
prints the output:

7 SQL> DECLARE

2 -- Declare a local user-defined record structure.

3 TYPE title record IS RECORD

4 (title VARCHAR2 (60)

5 , subtitle VARCHAR2(60));

6

7 -- Declare a variable that uses the record structure.
8 lv_title record TITLE RECORD;

9 BEGIN

10 -- Assign values to the record structure.
11 lv_title record.title := 'Star Trek';
12 lv_title record.subtitle := 'Into Darkness';

13 -- Print the elements of the structure.
14 dbms output.put line('['||lv_title record.title||']l'|]
15 "['||1v_title record.subtitle||']1');
16 END;
17/

Lines 3 through 5 define the PL/SQL record structure, and line 8 declares a variable using the
PL/SQL locally scoped title record record type. Lines 11 and 12 support field-level
assignments, and lines 14 and 15 print the now populated fields of the string.

Record structures are useful when you write PL/SQL-only solutions, but object types are more
useful and portable. You must assign values to any PL/SQL structure at the field level because,
unlike Oracle object types, PL/SQL structures don’t support constructors.

72 Oracle Database 12c PL/SQL Programming

SQL Collection

SQL collections can exist for scalar data types or SQL UDT elements. Oracle calls SQL
collections of scalar columns Attribute Data Types (ADTs). While there are some differences
between how ADTs and UDTs are used in the Oracle Call Interface (OCI), the distinct names
appears to disambiguate collections of native data types from collections of UDTs.

Creating these collections differs slightly because you don’t need to create a UDT for ADT
collections. The two subsections that follow examine how you create and work with ADT
collections and UDT collections in SQL, respectively, but you should keep in mind that both of
these data types also can be PL/SQL collections. The sole difference between SQL and PL/SQL
collections is where you can use and construct them.

SQL collections may be tables (or lists) of values or varrays (or arrays in traditional programming
languages). Tables have no upward limit on the number of elements in the collection, which is why
they act like lists. Varrays have a maximum number of elements set when you define their types.

NOTE
Table collections are also called nested tables when they’re embedded
inside database tables.

You must construct tables and varrays by calling the type name, or default constructor, with a
list of members. New members are added at the end of either type of collection in the same way.
You add new members to a collection by using a two-step process that extends space and assigns
a value to an indexed location. Varrays only allow you to extend space within their limit (that’s
their maximum number of members), and you receive an out-of-bounds error when you attempt
to add more than the maximum number of members.

Chapter 6 contains a full treatment of collections, including a review of the application
programming interface (API) that supports them. At this point, you need to understand that
collections are final types, which means you can’t subclass them (you can find more information
on subclassing UDTs in Chapter 11). This introduces you to the basics to support subsequent
discussions of collections.

ADT Collections An ADT collection in SQL requires that you define a collection of a SQL base
data type, such as a string data type. Not to confuse matters, but the syntax is the same as when
you create any object type collection in the database.

Presenting the basic similarities and differences between table collections and varray collections
seems to be the best approach when introducing ADT collections, so the following examples show
how to create each type of ADT collection. If you need more details on the syntax in these examples,
Appendix B covers nested tables and varrays in tables and the SQL syntax for creating them.

The syntax for our sample ADT table is

g SQL> CREATE OR REPLACE
2 TYPE string table IS TABLE OF VARCHAR2 (30);
3/

CREATE OR REPLACE on line 1 is standard Oracle SQL syntax to create or replace an object
of the same name and type. Line 2 defines the ADT of variable-length strings up to 30 characters
in length, and is the same as what you would embed in a PL/SQL block. Line 3 uses the SQL
forward slash (/) to run or execute the SQL statement.

Chapter 3: PL/SQL Basics 73

The syntax for our sample ADT varray is

= SQL> CREATE OR REPLACE
2 TYPE string varray IS VARRAY (3) OF VARCHAR2 (30) ;
3/

The parenthetical number sets the limit or maximum number of members in the varray. After
creating a schema-level type, you can describe its definition like this:

g SQL> DESCRIBE collection varray
collection varray VARRAY (3) OF VARCHAR2 (30)

The next program shows how to declare a SQL collection in an anonymous block program:

g SSQL> DECLARE

2 -- Declare and initialize a collection of grains.
3 lv_string list STRING TABLE := string table('Corn', 'Wheat');
4 BEGIN
5 -- Print the first item in the array.
6 FOR 1 IN 1..2 LOOP
7 dbms_output.put line('['|[|i|[']1["||1lv_string list(i)|]|'1");
8 END LOOP;
9 END;
10 /

Line 3 declares 1v_string list as an instance of the SQL string table collection. It
does so by defining the variable with a name and data type and initializing the collection with
two values. You initialize a collection by using the type name and by providing a list of the base
element of the collection, which is a string. An initialization with a fixed list of values creates a
static collection, but you can add members to it because a list has no upward bound.

NOTE

As line 3 shows, a common and recommended convention is to
display the data type in uppercase and the constructor call to the type
in lowercase.

The range for loop (described in detail in the “Iterative Structures” section later in this chapter)
reads through the first two, and only, members of the collection. The for loop uses a range of 1 to 2,
inclusive, and uses the index value (1) to keep its place as it iterates across the collection.

The string varray SQL collection type is interchangeable in this sample program, and
only one change to the program is required for you to use it. Change line 3 to the following:

3 lv_string list STRING_VARRAY := string varray('Corn', 'Wheat');
In both cases, the program would print

g (1] [Corn]
[2] [Wheat]

You have the option of allocating space with the EXTEND keyword (part of the Oracle
Collections API covered in Chapter 6). After allocating space to the collection, you may add

74 Oracle Database 12¢ PL/SQL Programming

elements to either of these ADT collections. While the string table data type has no limit to
the space or number of elements you can add, the string varray variable has a limit of three
elements.

The next example creates two collections. One is an ADT table of strings with four members,
and the other is an ADT varray of strings without initial members. The program reads through the
list of members in the ADT table collection and attempts to dynamically, row by row, initialize the
ADT varray collection. The program fails while trying to authorize space for the fourth member of
the table ADT collection because the ADT varray is limited to three members.

The program code is

=1 SQL> DECLARE

2 -- Declare and initialize a collection of grains.

3 lv_string table STRING_TABLE :=

4 string table('Corn', 'Wheat', 'Rye', 'Barley');
5 lv_string varray STRING VARRAY := string varray();
6 BEGIN

7 -- Print the first item in the array.

8 FOR i1 IN 1..lv string table.COUNT LOOP

9 lv_string varray.EXTEND;
10 lv_string varray (i) := 1lv_string table(i);
11 END LOOP;
12 END;
13 /

Lines 3 and 4 declare the ADT table collection. Line 5 declares the ADT varray collection as
an empty collection. Failure to initialize the collection with a call to the collection type causes an
uninitialized error like this:

DECLARE
*

ERROR at line 1:
ORA-06531: Reference to uninitialized collection
ORA-06512: at line 9

The error isnt raised by the definition but rather by the first call to the uninitialized collection,
which occurs on line 9. It is a clear best practice to initialize all collections at their definition
because, unlike all other variables in the Oracle Database 12¢ product, collections don’t have a
natural null state.

Line 8 sets the upper limit of the range for loop at the number of members in the 1v_
string_ table variable by calling the COUNT function. The COUNT function is part of the Oracle
Collections API, and in this case it returns a value of four.

The first three members of the 1v_string table collection are assigned successfully to the
lv_string varray collection, but the attempt to extend space for a fourth member raises the
following exception:

=1 DECLARE
*

ERROR at line 1:
ORA-06532: Subscript outside of limit
ORA-06512: at line 9

Chapter 3: PL/SQL Basics 75

These examples have covered the basics of using ADT table and varray collections. As a rule,
the table collections are easier to work with and generally the preferred solution in most situations.

UDT Collections A UDT collection in SQL requires that you define a collection of a SQL UDT,
like the hobbit type from earlier in this chapter. After defining the base UDT, you can create a
SQL table collection of the hobbit type like this:

g1 SQL> CREATE OR REPLACE
2 TYPE hobbit_ table IS TABLE OF HOBBIT;
3/

Having created the hobbit table UDT collection, let’s define a program that uses it. The
following program creates an instance of the collection in the declaration block with two hobbit
member values, and then it adds two more member values in the execution block:

=1 SQL> DECLARE

2 -- Declare and initialize a collection of grains.

3 lv_string table STRING TABLE :=
4 string table('Drogo Baggins', 'Frodo Baggins') ;
5 1lv_hobbit table HOBBIT TABLE := hobbit table(
6 hobbit ('Bungo Baggins')
7 , hobbit('Bilbo Baggins')) ;
8 BEGIN
9 -- Assign the members from one collection to the other.
10 FOR i IN 1..lv _string table.COUNT LOOP
11 1v_hobbit table.EXTEND;
12 lv_hobbit table(lv _hobbit table.COUNT) :=
13 hobbit (lv_string table(i));
14 END LOOP;
15
16 -- Print the members of the hobbit table.
17 FOR i IN 1..1lv hobbit table.COUNT LOOP
18 dbms_output.put line(
19 lv_hobbit table(i).to string()):;
20 END LOOP;
21 END;
22/

There are three key things to point out in the preceding example:

B The declaration of 1v_hobbit table on lines 5 through 7 includes an initialization of
a hobbit_table with comma-delimited instances of hobbit types. This differs from
simply listing scalar values like strings, dates, and numbers, and it is a major difference
between ADT and UDT collections.

B The assignment of new values on lines 12 and 13 sets the assignment target’s index value
to the last space allocation, and the assignment is an instance of the hobbit type. Note
that the index value (1) for the value from the 1v_string table is inside ordinary
parentheses.

B Line 19 prints the ith element of the 1v_hobbit table and uses the native to_
string function to print the object type’s contents.

76 Oracle Database 12¢ PL/SQL Programming

The prior example shows how to work with collections of instantiable UDTs, but not how to
work with the attributes of object types. A function that returns a collection is also called an
object table function. You use the TABLE function to access members of any collection returned
by an object table function.

The following function creates and returns a collection of the hobbit type structures:

T SO1>

CREATE OR REPLACE FUNCTION get hobbits
RETURN HOBBIT TABLE IS
-- Declare a collection of hobbits.
1v_hobbit table HOBBIT TABLE := hobbit table(
hobbit ('Bungo Baggins')
, hobbit ('Bilbo Baggins')
, hobbit ('Drogo Baggins')
, hobbit ('Frodo Baggins')) ;
BEGIN
RETURN lv hobbit table;
END;

/

Lines 4 through 8 create a collection of hobbit object instances. Line 10 returns a hobbit
table collection of hobbit instances. You can query the collection by putting the function
return value inside a TABLE function, like this:

T SO1>
SQL>

2

3

COLUMN hobbit_name FORMAT Al4
SELECT name AS hobbit name
FROM TABLE (get_hobbits())
ORDER BY 1;

The TABLE function on line 2 takes the result of the get _hobbits function and converts the
attribute list of nested hobbit object instances to an ordinary column result set. The preceding
query prints

HOBBIT NAME

Bilbo Baggins
Bungo Baggins
Drogo Baggins
Frodo Baggins

This section has shown you that composite variables are tremendously valuable assets in the
PL/SQL and SQL programming environment. They let you define complex logic in named blocks
that you can then simply query in C#, Java, PHP, or other external programs. You should take
advantage of composite variables where possible.

PL/SQL Collection

This section shows you how to implement the fourth and final composite data type, a PL/SQL-
only solution. This is not the most flexible or extensible solution because you have to wrap it in a
pipelined function (covered later in this chapter and in Chapter 8) to use it in SQL. The best
solution, covered in the previous section, returns a SQL ADT or UDT collection with an object
structure and doesn’t require wrapping.

Chapter 3: PL/SQL Basics 77

ADT Collections The following example follows general practice and shows you how to
handle a collection of numbers. You have the option to define a collection of any standard or
user-defined scalar PL/SQL data type, such as DATE, INTEGER, VARCHAR?2, and so forth. Like a
couple of the examples in the previous section, “SQL Collection,” this program uses a for loop
(described in depth in the “Iterative Structures” section later in this chapter), and it prints the
members of an initialized PL/SQL collection.

g SQL> DECLARE

2 -- Declare a collection data type of numbers.

3 TYPE number table IS TABLE OF NUMBER;

4

5 -- Declare a variable of the collection data types.
6 lv collection NUMBER TABLE := number type(1,2,3);
7 BEGIN

8 -- Loop through the collection and print values.

9 FOR i IN 1..1lv _collection.COUNT LOOP

10 dbms_output.put line(lv_collection(i));

11 END LOOP;

12 END;

13/

Line 3 defines a collection data type, and line 6 declares a variable of the local collection
data type and initializes it with three elements. The name of the data type is also the name of the
constructor, and the comma-delimited elements comprise the list of values in the collection. Line
9 defines a range for loop that navigates from 1 to the count of the three items in the 1v_
collection variable. Like previous examples, you should note that the for loop on lines 9
through 11 uses i as an iterator and as an index value for navigating the elements of the
collection. Index elements are enclosed in ordinary parentheses rather than in square brackets,
which is standard in other programming languages.

You can also implement a PL/SQL varray by changing the declaration on line 3, as follows:

= 3 TYPE number varray IS VARRAY(3) OF NUMBER;

The same rules that apply for interchangeability of tables and varrays also apply to
interchangeability of SQL and PL/SQL environments. The only difference between the SQL and
PL/SQL environments is how you declare them. They are schema objects in SQL and local data
types in PL/SQL.

Associative Arrays of Scalar Variables When implementing a PL/SQL-only solution, you also
have the option to use associative arrays of scalar variables, which are the older style of PL/SQL
collections. Associative arrays only work inside a PL/SQL scope, and you must use pipelined table
functions to convert them for use in a SQL scope. You also can't initialize associative arrays,
because you must assign values one at a time to them.

Associative arrays present advantages and disadvantages, but for our introductory discussion,
we'll focus on one of the advantages, which is that associative arrays work well as name-value
pairs when the index values are strings. Since associative arrays don't require a constructor call or
allocation of physical space before assigning values, some developers find that solving collection-
related problems is simpler in associative arrays.

78 Oracle Database 12¢ PL/SQL Programming

Let’s convert the SQL ADT example (from the previous section) that raised an uninitialized
collection error to a PL/SQL scope associative array indexed by numbers. You declare an
associative array by appending either the INDEX BY BINARY INTEGER data type clause or
INDEX BY VARCHAR2 data type clause to the type definition of a table or varray.

The following demonstrates a simple associative array:

g SQL> DECLARE

2 -- Declare a collection data type of numbers.

3 TYPE numbers IS TABLE OF NUMBER INDEX BY BINARY INTEGER;
4

5 -- Declare a variable of the collection data types.

6 lv_collection NUMBERS;

7 BEGIN

8 -- Assign a value to the collection.

9 lv_collection(0) := 1;

10 END;

11/

Line 3 appends the INDEX BY BINARY INTEGER clause to the definition of the collection
type and makes it an associative array collection indexed by integers. Line 9 assigns 1 to the O
index value, but you can actually use any integer value as the index value of an associative array.

You can redefine this sample program as a name-value pair associative array by changing the
definition on line 3 to

3 TYPE numbers IS TABLE OF NUMBER INDEX BY VARCHAR2 (10);

The index value now requires a string rather than a number, and the assignment of a value on
line 9 would change to

==] 1lv_collection('One') := 1;

These examples show you how to declare an associative array indexed by an integer or string.
Chapter 6 provides examples that demonstrate when business logic may fit this type of solution.

UDT Collections In addition to creating collections of scalar variables, you can create
collections of two types of data structures: the PL/SQL record type and the SQL object type. PL/
SQL collections of record types are exclusive to a PL/SQL processing context, which means you
can’t use them in a query as shown previously with the SQL UDT collection. There are also limits
on how you can use SQL object type collections when they’re defined inside PL/SQL package
specifications, local anonymous blocks, or named blocks—functions or procedures.

The next example implements the hobbit table SQL collection inside the declaration
block, which makes it a PL/SQL scoped UDT collection. Defining the hobbit table SQL
collection inside an anonymous or named block effectively overrides access to a like-named
schema-level SQL UDT collection.

Here’s the code to implement a SQL UDT inside an anonymous PL/SQL block:

=1 SQL> DECLARE
2 -- Declare a local collection of hobbits.
3 TYPE hobbit_table IS TABLE OF HOBBIT;
4

Chapter 3: PL/SQL Basics 79

5 -- Declare and initialize a collection of grains.

6 lv_string table STRING TABLE :=

7 string table('Drogo Baggins', 'Frodo Baggins') ;

8 1v_hobbit_ table HOBBIT TABLE := hobbit table(

9 hobbit ('Bungo Baggins')
10 , hobbit ('Bilbo Baggins')) ;
11 BEGIN
12 -- Print the first item in the array.

13 FOR i IN 1..1lv_string table.COUNT LOOP

14 1v_hobbit table.EXTEND;

15 1v_hobbit table(lv_hobbit table.COUNT) :=
16 hobbit (lv_string table(i)):

17 END LOOP;

18 -- Print the members of the hobbit table.
19 FOR i IN 1..1lv _hobbit table.COUNT LOOP

20 dbms_output.put line(

21 1v_hobbit table(i).to_string());

22 END LOOP;

23 END;

24/

Line 3 holds the local declaration of the hobbit table SQL UDT. All subsequent
references use the locally defined type. Line 16 takes the value from 1v_string table ADT
collection, and uses it as a call parameter to the hobbit constructor function. Then, the instance
of a new hobbit is assigned as a new element in the 1v_hobbit table collection.

Realistically, the only time you would define a SQL UDT inside a PL/SQL block is when
you’re converting an associative array to a SQL ADT or UDT, and that only happens inside a
pipelined table function. You take this path when you're converting legacy associative arrays
returned by PL/SQL functions, an example of which is provided in the “Wrapping Legacy
Associative Arrays” section of Chapter 6.

Associative Arrays of Composite Variables Like the associative arrays of scalar variables, you
can create associative arrays of PL/SQL record types, as shown in the following example. Such
collections are limited to use inside PL/SQL programs.

g SQL> DECLARE

2 -- Declare a local user-defined record structure.

3 TYPE dwarf record IS RECORD

4 (dwarf name VARCHAR2(20)

5 , dwarf home VARCHAR2 (20));

6

7 -- Declare a local collection of hobbits.
8 TYPE dwarf table IS TABLE OF DWARF RECORD
9 INDEX BY PLS INTEGER;

10

11 -- Declare and initialize a collection of grains.
12 list DWARF_TABLE;

13 BEGIN

14 -- Add two elements to the associative array.

80 Oracle Database 12c¢ PL/SQL Programming

15
16
17
18
19
20
21
22
23
24
25
26
27

[

4

list (1) .dwarf name := 'Gloin’';
list(1l) .dwarf home := 'Durin''s Folk';
list(2) .dwarf name := 'Gimli‘;
list(2) .dwarf home := 'Durin''s Folk';
-- Print the first item in the array.
FOR i IN 1..list.COUNT LOOP
dbms output.put line(
"['||list (i) .dwarf name||']']||
"[']||1list (i) .dwarf home||']1");
END LOOP;
END;
/

Line 8 declares a dwarf table associative array of the previous declaration of the dwarf
record on lines 3 through 5. You can tell it's a PL/SQL-only associative array because the
declaration includes the INDEX BY PLS INTEGER clause on line 9. As mentioned, an
associative array doesn’t require a constructor call, but it does require you to make direct
assignments to rows of the base composite type or member of the base composite type.

If you have a dwarf table that mirrors the dwarf record declaration, it’s possible to anchor
the local variable to a schema-level table. The syntax for that is

TYPE dwarf table IS TABLE OF DWARF%ROWTYPE
INDEX BY PLS INTEGER;

Coupling an associative array’s base data type to a table poses a risk. The risk is that you must
remember to synchronize any changes in both the subroutine and table.

Review Section
This section has described the following points about variables, assignments, and scopes:

A scalar variable holds only one thing, such as a number, string, or date.
A composite variable holds two or more things, such as a record structure or a collection.

You can anchor a column with the $TYPE attribute and anchor a record structure with
the $ROWTYPE attribute.

SQL and PL/SQL support tables and varrays as collections of scalar variables data types,
and these collections are Attribute Data Types (ADTs).

SQL and PL/SQL support tables and varrays as collections of composite variables data
types, and these collections are lists or arrays of schema-level user-defined types (UDTs).

PL/SQL supports associative arrays as collections of scalar variables data types, and
these collections are associative arrays of scalar data types.

PL/SQL supports associative arrays as collections of composite variables data types,
and these collections are associative arrays of record structure data types.

Chapter 3: PL/SQL Basics 81

Control Structures

Control structures do either of two things: they check a logical condition and branch program
execution (in which case they are called conditional structures), or they iterate over a condition
until it is met or they are instructed to exit (in which case they are called iterative structures). The
“Conditional Structures” subsection covers if, elsif, else, and case statements. The “Iterative
Structures” subsection covers looping with for, while, and simple loop structures.

Conditional Structures

As just mentioned, conditional structures check logical conditions and branch program execution.
The if, elsif, else, and case statements are conditional structures.

If, Elsif, and Else Statements

The if and elsif statements work on a concept of Boolean logic. A Boolean variable or an
expression, such as a comparison of values, is the only criterion for an if or elsif statement. While
this seems simple, it really isn’t, because truth or untruth has a third case in an Oracle database: a
Boolean variable or expression can be true, false, or null. This is called three-valued logic.

You can manage three-valued logic by using the NVL built-in function. It allows you to impose
an embedded check for a null and return the opposite of the logical condition you attempted to
validate.

The following example illustrates checking for truth of a Boolean and truth of an expression,
ultimately printing the message that neither condition is true:

=1 SQL> DECLARE

2 1lv_boolean BOOLEAN;

3 1v_number NUMBER;

4 BEGIN

5 IF NVL(lv boolean, FALSE) THEN

6 dbms_output.put line('Prints when the variable is true.');

7 ELSIF NVL((lv_number < 10),FALSE) THEN

8 dbms_output.put_line('Prints when the expression is true.');
9 ELSE
10 dbms_output.put line('Prints when variables are null values.');
11 END IF;
12 END;
13/

Three-Valued Logic
Three-valued logic means basically that if you find something is true when you look for
truth, it is true. By the same token, when you check whether something is false and it is,
then it is false. The opposite case isn’t proved. That means when something isn't true, you
can’t assume it is false, and vice versa.

The third case is that if something isn’t true, it can be false or null. Likewise, if something
isn’t false, it can be true or null. Something is null when a Boolean variable is defined but
not declared or when an expression compares something against another variable that is null.

82 Oracle Database 12¢ PL/SQL Programming

This prints
g Prints because both variables are null values.

This always prints the else statement because the variables are only defined, not declared. PL/SQL
undeclared variables are always null values.

The NVL built-in function lets you create programs that guarantee behavior, which is most
likely one of the critical things you should do as a developer. The guarantee becomes possible
because you're changing the rules and making natural three-valued logic behave as two-valued
logic. Sometimes, that’s not possible, but oddly enough, when it isn't possible, there’s a use case
that will compel you to provide code for the null condition.

CASE Statement

The CASE statement appears very similar to a switch structure in many programming languages,
but it doesn’t perform in the same way because it doesn’t support fall-through. Fall-through is the
behavior of finding the first true case and then performing all remaining cases. The case statement
in PL/SQL performs like an if-elsif-else statement.

There are two types of CASE statements: the simple case and the searched case. You can use a
CHAR, NCHAR, or VARCHAR2 data type in simple case statements, and you can use any Boolean
expression in searched case statements.

The following program shows how to write a simple case statement. The selector variable
(1v_selector) is a VARCHAR2 variable assigned a value through a substitution variable.

= SQL> DECLARE

2 lv_selector VARCHAR2 (20) ;
BEGIN
4 lv_selector := '&input';
5 CASE 1lv_selector
6 WHEN 'Apple' THEN
7 dbms_output.put line('Is it a red delicious apple?');
8 WHEN 'Orange' THEN
9 dbms_output.put line('Is it a navel orange?');
10 ELSE
11 dbms_output.put line('It''s a ['||lv_selector||']?');
12 END CASE;
13 END;
14 /

The WHEN clauses validate their values against the CASE selector on line 5. When one WHEN
clause matches the selector, the program runs the instructions in that WHEN clause and exits the
CASE block. The break statement found in languages such as C, C++, C#, and Java is implicitly
present.

TIP

The CASE statement in PL/SQL differs from the CASE statement in
SQL, because the former ends with END CASE, not simply END. Don’t
try the SQL syntax in PL/SQL, because it will raise an exception.

Chapter 3: PL/SQL Basics 83

A searched case statement works differently from a simple case statement because it doesn’t
limit itself to an equality match of values. You can use a searched case statement to validate
whether a number is in a range or in a set. The selector for a searched case statement is implicitly
true and can be excluded unless you want to check for untruth. You provide a false selector value
on line 2 if the WHEN clauses validate against a false condition, like this:

] 2 CASE FALSE
The following program validates against truth:

g SQL> BEGIN

2 CASE

3 WHEN (1 <> 1) THEN

4 dbms output.put line ('Impossible!');

5 WHEN (3 > 2) THEN

6 dbms_output.put line('A valid range comparison.');
7 ELSE

8 dbms_output.put line ('Never reached.');

9 END CASE;

10 END;

11/

The range validation on line 5 is met, and it prints this:
g A valid range comparison.

Unlike the if and elsif statements, you don’t need to reduce the natural three-valued logic to
two-valued logic. If a searched case statement’s WHEN clause isn’t met, the program continues
until one is met or the else statement is reached.

Iterative Structures

Iterative structures are blocks that let you repeat a statement or a set of statements. These structures
come in two varieties: a guard-on-entry loop and a guard-on-exit loop. Figure 3-2 shows the
execution logic for these two types of loops.

Iterative Step

Iterative Step

Guard Entry Loop Guard Exit Loop

FIGURE 3-2. [terative statement logic flows

84 Oracle Database 12¢ PL/SQL Programming

Three loop structures in PL/SQL let you implement iteration: the for, while, and simple loop
structures. You can use them either with or without a cursor. A cursor is a PL/SQL structure that
lets you access the result of a query row by row or as a bulk operation.

For Loop Statements

You can implement the for loop as a range loop or as a cursor loop. A range loop moves through
a set of sequential numbers, but you need to know the beginning and ending values. It is a guard-
on-exit looping structure. You can navigate through a for loop forward or backward by using an
ascending integer range. Here’s an example:

=1 SQL> BEGIN

2 FOR i IN 0..9 LOOP

3 dbms_output.put_line('['||1i]|]|']["'||TO_CHAR(i+1)|[|']");
4 END LOOP;

5 END;

6 /

The value of the iterator, i, is equal to the numbers in the inclusive range values. The iterator
has a PLS_INTEGER data type. The preceding program prints this:

[0l [1]
[1]1[2]
[2] [3]
[81[9]
[9] [10]

Range for loops typically start with T and move to a higher number, but you can use 0 (zero)
as the low value in the range. Using 0 as a starting point is rare, because arrays and cursors use
1-based numbering. The example shows you how to do it, but you shouldn’t do it.

The next range for loop moves through the sequence from the highest number to the lowest
number, and it uses a T1-based number model. Notice that the only evidence of decrementing
behavior is the REVERSE reserved word.

SQL> BEGIN

2 FOR i IN REVERSE 1..9 LOOP

3 dbms_output.put line('['||i]|]|'] ["'||TO_CHAR(i+1)|[|']");
4 END LOOP;

5 END;

6 /

Cursor for loops work with data sets returned by queries. Two static patterns are possible in
addition to an implicit dynamic cursor and a parameterized dynamic cursor. The first example
shows you how to write a static cursor without a declaration block. You should write this type of
code only when you're doing a quick test program or stand-alone script.

= SQL> BEGIN

2 FOR i IN (SELECT item title FROM item) LOOP
3 dbms_output.put line(i.item_title);

Chapter 3: PL/SQL Basics 85

4 END LOOP;
5 END;
6 /

Line 2 contains the static cursor inside parentheses. At runtime, the query becomes an implicit
cursor. Implicit cursors like these should always be static queries. You should put queries into
formal cursors and then call them in the execution block, like this:

=1 SQL> DECLARE
2 CURSOR c¢ IS
SELECT item title FROM item;
BEGIN
FOR i IN c LOOP
dbms_output.put line(i.item title);
END LOOP;
END;
/

O W J o0 U b W

The program declares a formal static cursor on lines 2 and 3. The for loop implicitly opens
and fetches records from the cursor on line 5. This type or program is more readable than the
preceding example. It is also adaptable if your requirements evolve from a static cursor to a
dynamic cursor. Whether or not you define cursors with formal parameters, you can include
variables in a formal cursor declaration.

The following example shows you how to implement a cursor with a formal parameter. The
alternative would be to switch the cursor parameter with a substitution variable on line 6.

=] SQL> DECLARE
2 lv_search string VARCHAR2 (60) ;

3 CURSOR ¢ (cv_search VARCHAR2) IS

4 SELECT item title

5 FROM item

6 WHERE REGEXP LIKE (item title,'”'||cv_search||'*+');
7 BEGIN

8 FOR i IN ¢ ('&input') LOOP

9 dbms_output.put line(i.item title);
10 END LOOP;
11 END;
12 /

The lines of interest are 3, 6, and 8. Line 3 declares the formal parameter for a dynamic cursor.
Line 6 shows the use of the formal parameter in the cursor. Line 8 shows the actual parameter
calling the cursor. The actual parameter is a substitution variable because the anonymous block
becomes dynamic when you call it. Substitution variable and formal parameters are very similar
because they’re placeholders for values that arrive when you call your program. You can replace
the formal parameter on line 6 with a substitution variable, but that’s a very poor coding practice.
As a rule, you should always define formal parameters for dynamic cursors.

This concludes the basics of a for loop. A twist on the for loop involves the WHERE CURRENT
OF clause, which is discussed next.

86 Oracle Database 12c PL/SQL Programming

WHERE CURRENT OF Clause In my opinion, “a big to-do about nothing” is an appropriate
description of the WHERE CURRENT OF clause because bulk operations are generally the better
solution. However, for completeness, it's important to show a few examples, so I've included two.

The first example shows you how to lock a row with the cursor and then update the same
table in a for loop:

SQL> DECLARE
2 CURSOR c IS

3 SELECT * FROM item

4 WHERE item id BETWEEN 1031 AND 1040
5 FOR UPDATE;

6 BEGIN

7 FOR I IN c LOOP

8 UPDATE item SET last updated by = 3
9 WHERE CURRENT OF c;
10 END LOOP;
11 END;
12 /

Line 5 locks the rows with the FOR UPDATE clause. Line 9 correlates the update to a row returned
by the cursor.

The next example demonstrates how to use the WHERE CURRENT OF clause in a bulk operation.
(Bulk operations are covered in depth later in this chapter.)

¥ SQL> DECLARE
2 TYPE update record IS RECORD
(last_updated by NUMBER
4 , last update date DATE) ;
5 TYPE update table IS TABLE OF UPDATE RECORD;
6 updates UPDATE TABLE;
7 CURSOR c IS
8 SELECT last updated by, last update date

9 FROM item
10 WHERE item id BETWEEN 1031 AND 1040
11 FOR UPDATE;
12 BEGIN
13 OPEN c;
14 LOOP
15 FETCH c¢ BULK COLLECT INTO updates LIMIT 5;
16 EXIT WHEN updates.COUNT = 0;
17 FORALL i IN updates.FIRST..updates.LAST
18 UPDATE item
19 SET last _updated by = updates (i) .last updated by
20 , last update date = updates(i).last update date
21 WHERE CURRENT OF c;
22 END;

Chapter 3: PL/SQL Basics 87

The EXIT statement on line 16 works when the BULK COLLECT clause fails to fetch any rows.
Like the row-by-row example shown previously, the FOR UPDATE clause (on line 11) locks the
rows. The WHERE CURRENT OF clause on line 21 correlates the update to the rows returned by
the bulk-collected cursor.

Now that I've shown you how to use the WHERE CURRENT OF clause in a bulk operation,
you might wonder why you would want to. After all, the same thing can be accomplished by a
correlated UPDATE statement, like this:

g SQL> UPDATE item il
2 SET last_updated by = 3
, last update date = TRUNC (SYSDATE)
WHERE EXISTS (SELECT NULL FROM item i2
WHERE item id BETWEEN 1031 AND 1040
AND i1.ROWID = 1i2.ROWID) ;

o Ul o W

In fact, Oracle’s documentation indicates that it recommends correlated UDPATE and DELETE
statements over the use of the WHERE CURRENT OF clause. I also recommend native SQL
solutions when theyre available.

The range and cursor for loops are powerful iterative structures. Their beauty lies in their
simplicity, and their curse lies in their implicit opening and closing of cursor resources. You
should use these structures when access to the data is straightforward and row-by-row auditing
isn’t required. When you need to perform row-by-row auditing, you should use a while or simple
loop because they give you more control.

While Loop Statements

A while loop is a guard-on-entry loop: you need to manage both the entry and exit criteria of a
while loop. Unlike the for loop, with the while loop you don’t need an index value because you
can use other criteria to control the entry and exit criteria. If you use an index, the Oracle
Database 11g CONTINUE statement can make control more complex, because it allows you to
abort an iteration and return to the top of the loop:

7 SQL> DECLARE

2 lv_counter NUMBER := 1;
3 BEGIN
4 WHILE (lv_counter < 5) LOOP
5 dbms_output.put ('Index at top [']||lv_counter||']"');
6 IF 1lv_counter >= 1 THEN
7 IF MOD(lv_counter,2) = 0 THEN
8 dbms_output.new line() ;
9 lv_counter := 1lv_counter + 1;
10 CONTINUE;
11 END IF;
12 dbms_output.put_line('[']|]|1lv_counter||']"');
13 END IF;
14 1lv_counter := lv_counter + 1;
15 END LOOP;

16 END;
17/

88 Oracle Database 12c¢ PL/SQL Programming

This prints the following:

g Index at top [1][1]
Index at top [2]

Index at top [3][3]
Index at top [4]

Only odd-numbered counter values make it to the bottom of the loop, as illustrated by the
second printing of the counter value. That’s because the CONTINUE statement prints a line return
and returns control to the top of the loop. If you replace the CONTINUE statement on line 10 with
an EXIT statement, you will leave the loop rather than skip one iteration through the loop.

You could also do the same thing with the GOTO statement and label. You enclose labels inside
guillemets (a French word pronounced gee“" meys), also known as double angle brackets. They’re
available in releases prior to Oracle Database 11g, and it pains me to tell you about them because
they’re only needed when you implement a GOTO statement. As a rule, GOTO statements aren’t
good programming solutions. If you must use a GOTO statement, here’s an example:

=1 SQL> DECLARE

2 1lv_counter NUMBER := 1;
BEGIN
4 WHILE (lv_counter < 5) LOOP
5 dbms_output.put ('Index at top ['||lv_counter||']");
6 IF 1lv_counter >= 1 THEN
7 IF MOD(lv_counter,2) = 0 THEN
8 dbms_output.new line() ;
9 GOTO skippy:;
10 END IF;
11 dbms_output.put line('['||lv_counter|]|']");
12 END IF;
13 << skippy >>
14 lv_counter := 1lv_counter + 1;
15 END LOOP;
16 END;
17/

The GOTO statement on line 9 skips to the incrementing instruction for the control variable on
line 13. It is actually a bit cleaner than the CONTINUE statement shown earlier.

The GOTO statement should be avoided whenever possible, however. The CONTINUE
statement should be used minimally and carefully. The while loop is powerful but can be tricky if
you're not careful when using a CONTINUE statement. A poorly coded while loop that contains a
CONTINUE statement can cause an infinite loop.

Simple Loop Statements

The simple loop statement is anything but simple. You use it when you want to control everything
that surrounds access to an explicit cursor. Some of these controls are provided through four built-
in cursor attributes:

B %FOUND Returns TRUE only when a Data Manipulation Language (DML) statement has
changed a row

B %ISOPEN Always returns FALSE for any implicit cursor

Chapter 3: PL/SQL Basics 89

B 3%NOTFOUND Returns TRUE when a DML statement fails to change a row

B %ROWCOUNT Returns the number of rows changed by a DML statement or the number
of rows returned by a SELECT INTO statement

These attributes work with cursors or ordinary SQL statements. You access ordinary SQL
statements by referring to SQL instead of a cursor name. A SELECT- INTO, INSERT, UPDATE, or
DELETE statement is found when it processes rows, and is not found when it doesn’t. For
example, the following anonymous block uses cursor attributes to manage printing log statements
to the console:

SQL> BEGIN

2 UPDATE system_user

3 SET last_update date = SYSDATE;

4 IF SQL%FOUND THEN

5 dbms_output.put line('Updated ['||SQL%ROWCOUNT||']");
6 ELSE

7 dbms_output.put line('Nothing updated!');

8 END IF;

9 END;

10 /

SQL%FOUND on line 4 checks whether a SQL statement was processed. As you may have
surmised, SQL isn’t just an acronym in Oracle PL/SQL; it is a reserved word that links to an
anonymous cursor. If SQL%FOUND returns TRUE, then line 5 prints the number of rows updated in
the table.

A typical simple loop opens a cursor, fetches rows from a cursor, processes rows from a
cursor, and closes a cursor. The following program demonstrates those steps and illustrates an
anchored data type:

1 SQL> DECLARE
2 lv_id item.item id%$TYPE; -- This is an anchored type.

3 lv_title VARCHAR2 (60) ;

4 CURSOR ¢ IS

5 SELECT item id, item title
6 FROM item;

7 BEGIN

8 OPEN c;

9 LOOP
10 FETCH ¢ INTO lv_id, 1lv title;
11 EXIT WHEN c%NOTFOUND;
12 dbms_output.put line('Title ['||lv_title]|]|']");
13 END LOOP;
14 CLOSE c;
15 END;
16 /

This program defines the 1v_id variable by anchoring the data type to the definition of the
item_id column in the item table. Anchoring ensures that when the definition of the table
changes, you don’t have to change your program because the anchored data type adjusts
automatically. The second 1v_title variable is explicitly assigned a data type, and any change

90 Oracle Database 12¢ PL/SQL Programming

to the table would require a change to the assigned data type. The first statement after you start a
simple loop fetches a row of data, and the second, line 11, checks to make sure a row was
fetched. Line 11 also exits the loop when no record is found, which is typically after all rows have
been read or no rows were found.

You can extend the preceding model by creating a user-defined record structure and returning

the row into a single record structure. Record structures are composite variables. The following
example uses a $ROWTYPE pseudo column to anchor a catalog table definition to a local
variable:

SQL> DECLARE

2
3
4
5
6
7
8

9
10
11
12
13
14
15

lv_item record item%ROWTYPE; -- This is an anchored type.
CURSOR c IS
SELECT *
FROM item;
BEGIN
OPEN c;
LOOP

FETCH c INTO lv_item record;
EXIT WHEN c%NOTFOUND;
dbms_output.put line('Title ['||lv_item record.item title||']l"');
END LOOP;
CLOSE c¢;
END;
/

Online 11, the 1v_item record.item title statement returns the value of a field in the
row of data. The dot between the local variable and the column name is the component selector.
You actually read this reference from right to left. It means the item title field is selected from
the 1v_item record component, which is a local variable.

You could also create a record type explicitly. You would do this when you want only a subset

of the columns in a table and you don’t want to create a view. A local record set variable would
be like the following:

@ TYPE item record IS RECORD

(id

NUMBER

, title VARCHAR2(60)) ;

The best approach simply lets you anchor a local variable to the SELECT list returned by a

cursor, which is a natural record structure. You could rewrite the program like this:

SQL> DECLARE

2

O W O J o0 U B W

=

CURSOR ¢ IS

SELECT *
FROM item;
lv_item record c%ROWTYPE;
BEGIN
OPEN c;
LOOP

FETCH c¢ INTO lv_item record;
EXIT WHEN c%NOTFOUND;

Chapter 3: PL/SQL Basics 91

11 dbms_output.put line('Title ['||lv_item record.item title||']");
12 END LOOP;

13 CLOSE c¢;

14 END;

15/

Line 5 declares a variable that anchors itself to the definition of a cursor. If you change the cursor,
the variable automatically adjusts. This is the most flexible and least coupled way to anchor a
variable in PL/SQL. It's also worth mentioning that declaring a variable after a cursor is supported
in Oracle Database but not in MySQL.

You’ll encounter some glitches down the road with local types like these because they’re
limited exclusively to a PL/SQL context. The “Composite Data Types” section earlier in this
chapter shows the better alternative.

This section has demonstrated how you can use implicit and explicit looping structures. It has
also introduced you to the management of the CURSOR statement in the execution section of PL/
SQL programs.

Review Section
This section has described the following points about conditional and iterative statements:

B PL/SQL supports three-valued logic, which means you must proactively manage potential
null states.

B PL/SQL supports the if, elsif, and else conditional logic.

B PL/SQL supports simple and searched case statements, and they perform like if, elsif,
and else blocks because they don’t support fall-through like the C, C++, C#, and Java
programming languages.

B PL/SQL supports a for loop, which can navigate forward or backward through the data
set.

B PL/SQL supports a while loop, which can navigate forward through logic based on a
condition.

B PL/SQL supports a simple loop, which gives you the most control over the iteration
steps and provides features to branch execution on whether or not a condition variable
value is set.

B The EXIT statement lets you exit a loop or block.

B The FOR UPDATE and WHERE CURRENT OF clauses synchronize behaviors when
locking rows, but you should almost always use a correlated UPDATE statement.

B PL/SQL supports a CONTINUE statement, which lets you skip over an execution
through a loop, and the GOTO statement and labels for branching with the GoTO
statement.

B PL/SQL supports four cursor attributes: $FOUND, $NOTFOUND, $ISOPEN, and
%$ROWCOUNT.

92 Oracle Database 12¢ PL/SQL Programming

Exceptions

PL/SQL provides an optional block for exception handling, as covered earlier in this chapter. The
exception block manages any exceptions that occur while running the execution block. Errors
raised in the declaration block are thrown to and managed by the calling scope program. Oracle
provides two built-in exception management functions, described next.

B SQLCODE returns a negative number that maps to the Oracle predefined exceptions, but
one special case, the NO_DATA FOUND exception, returns 100.

B SQLERRM is overloaded and provides the following behaviors: returns the actual error as
a negative integer, returns a user-defined exception when the number is positive or not
found in the predefined Oracle exception list, and returns the actual number parameter
as a negative integer with the Oracle-defined message.

The simplest exception handler uses the Oracle keyword OTHERS and catches all raised
exceptions from the execution block:

M SQL> DECLARE

2 1v_letter VARCHAR2 (1) ;

3 1lv_phrase VARCHAR2(2) := 'AB';

4 BEGIN

5 lv_letter := 1lv_phrase;

6 EXCEPTION

7 WHEN OTHERS THEN

8 dbms_output.put_ line('Error: '||CHR(10) ||SQLERRM) ;
9 END;

10 /

The assignment of a two-character string to a single-character string on line 5 raises (throws) an
exception, which is caught by the exception handler and printed to console:

e Error:

ORA-06502: PL/SQL: numeric or value error: character string buffer too small

Oracle also provides a set of predefined exceptions in the STANDARD package. Table 7-2 in
Chapter 7 lists and describes these exceptions. Standard error names can replace the OTHERS
keyword. The VALUE ERROR keyword could do so on line 7, as shown:

7 WHEN VALUE ERROR THEN

This would catch the ORA-06502 error but not any other exception, which means we would now
need two error handlers: one for the specific “numeric or value error” and another for everything
else, more or less a “catch all” handler. The new exception block would look like this:

= 6 EXCEPTION
7 WHEN VALUE ERROR THEN -- Specific error handler.
8 dbms_output.put line ('Error: '||CHR(10) ||SQLERRM) ;
9 WHEN OTHERS THEN -- General error handler.
10 dbms_output.put_line('Error: '||CHR(10) ||SQLERRM) ;
11 END;

12 /

Chapter 3: PL/SQL Basics 93

Many developers use the OTHERS keyword as a catch-all handler, but good coding practices
recommend using specific exception handlers. You should always place the specific exception
handler before the OTHERS handler.

PL/SQL also enables us to define user-defined exceptions and write dynamic exceptions. The
next two subsections discuss how.

User-Defined Exceptions

You can declare user-defined exceptions in either of two ways: declare an EXCEPTION variable only
or declare an EXCEPTION variable and EXCEPTION INIT compiler directive. The EXCEPTION
variable by itself lets you catch a user-defined exception with an OTHERS exception handler and if
statement. The if statement checks for the user-defined exception number (oddly enough, 1 is that
number). The combination of an EXCEPTION variable and EXCEPTION_INIT compiler directive
lets you create a customer exception handler. As you'll see shortly, the EXCEPTION INIT compiler
directive maps an exception handler name to a known Oracle error code.

g SQL> DECLARE

2 lv_error EXCEPTION;

3 BEGIN

4 RAISE lv_error;

5 dbms_output.put line('Can''t get here.');
6 EXCEPTION

7 WHEN OTHERS THEN

8 IF SQLCODE = 1 THEN

9 dbms_output.put_line('This is ['||SQLERRM||']");
10 END IF;
11 END;
12 /

The example declares a user-defined exception of 1v_error on line 2 and raises it as an
exception on line 4. The generic OTHERS exception traps the error on line 7, and the if statement
checks for a user-defined exception on line 8.

The program raises the exception and prints:

= This is [User-Defined Exception]

A two-step declaration process lets you declare an exception and map it to a number. The first
step declares the variable and the second step maps the variable to a PRAGMA, EXCEPTION
INIT precompiler instruction:

=1 SQL> DECLARE

2 lv_sys context VARCHAR2 (20) ;

3 lv_error EXCEPTION;

4 PRAGMA EXCEPTION_ INIT(lv_error,-2003);

5 BEGIN

6 lv_sys context := SYS CONTEXT ('USERENV', 'PROXY PUSHER');
7 RAISE 1lv_error;

8 dbms_output.put_line('Can''t get here.');

9 EXCEPTION

10 WHEN lv_error THEN

94 Oracle Database 12¢ PL/SQL Programming

11 dbms_output.put line('This is ['||SQLERRM||']");
12 END;
13 /

Line 3 declares the local exception variable and line 4 maps the Oracle error code to the
user-defined exception. Line 6 throws an error because it provides an invalid PROXY PUSHER
string as an actual parameter to the SYS CONTEXT function. Line 10 shows the user-defined
exception handler that catches the raised exception. The exception block is only capable of
managing an ORA-02003 exception because there’s no catchall OTHERS exception handler.

The preceding test program raises an exception and prints

g This is [ORA-02003: invalid USERENV parameter]

ORA-02003 is a real error code found in the SYS. STANDARD package. You can read the
specification of that package to find a complete list of standard errors.

Dynamic User-Defined Exceptions

Dynamic user-defined exceptions let you raise a customized exception by assigning a number in
the range of -20,000 to -20,999. The RAISE_APPLICATION ERROR function provides this
ability in PL/SQL. The prototype is

g RAISE APPLICATION ERROR (error number, error message [, keep errors])

The following program shows how to raise a dynamic user-defined exception:

g SQL> DECLARE

2 1lv_error EXCEPTION;

PRAGMA EXCEPTION INIT(lv_error,-20001) ;
BEGIN

RAISE_APPLICATION_ERROR(-20001,'A less original message.');
EXCEPTION

WHEN 1lv_error THEN

dbms_output.put_ line('['||SQLERRM||']");

END;
/

O WOV 0 J 0 U B W

=

Line 2 declares the exception variable and line 3 maps the error to a value in the range of
available values. Line 5 throws the exception and line 7 catches the error.

TIP

There are critical errors and noncritical errors in any database-centric
application. Critical errors should raise a failure message to the
application and customer, while noncritical errors should be recorded
and addressed later by support staff. Database triggers are the best
place to put programming logic for noncritical errors.

Oracle Database 12c also provides a stack trace management function in the DMBS
UTILITY package: the FORMAT ERROR_ BACKTRACE function. Handling errors is important, of
course, and much more can be said about managing them in exception blocks. Consult Chapter 7
for more information on PL/SQL exception handling.

Chapter 3: PL/SQL Basics 95

Review Section
This section has described the following points about exception handling:

B Oracle Database 12c¢ provides two custom built-in functions, SQLCODE and SQLERRM.

B Oracle supports predefined exceptions in the STANDARD package and a generic
exception handler—OTHERS.

B PL/SQL supports user-defined exceptions, which throw a positive 1 as an error value
unless you use the precompiler PRAGMA EXCEPTION INIT to seta numeric
exception value.

B PL/SQL supports dynamic user-defined exceptions by calling the RAISE APPLICATION
ERROR function, which allows you to define an error message.

Bulk Operations

Oracle Database 10g and subsequent releases (that is, all supported releases at the time of
writing) provide bulk processing capabilities. These capabilities differ somewhat from the
structures presented thus far in the chapter, but they follow the general look and feel. Where
possible, bulk processing should be the default in your batch processing and high-volume
processing of data.

The following program shows you how to select groups of rows into array structures. You do
this with the BULK COLLECT clause. I've chosen a limit of 20 rows simply to make it simple with
the sample data. Real-world solutions can be hundreds or thousands of records at a time, but I'd
recommend /imiting this to a range of 250 to 500 rows.

=1 SQL> DECLARE

2 TYPE title record IS RECORD

3 (title VARCHAR?2 (60)

4 , subtitle VARCHAR2 (60)) ;

5 TYPE title collection IS TABLE OF TITLE RECORD;

6 lv_title collection TITLE COLLECTION;

7 CURSOR c¢ IS

8 SELECT item title, item subtitle

9 FROM item;

10 BEGIN

11 OPEN c;

12 LOOP

13 FETCH c¢ BULK COLLECT INTO lv_title collection LIMIT 20;
14 EXIT WHEN lv_title collection.COUNT = 0;

15 FOR i IN 1..1lv _title collection.COUNT LOOP

16 dbms_output.put line('['||lv_title collection(i).titlel||']");
17 END LOOP;

18 END LOOP;

19 CLOSE c;
20 END;

21/

96 Oracle Database 12c¢ PL/SQL Programming

This program is more complex than earlier examples and uses a table collection. After creating

a record structure, you create another local collection data type. You then create a variable of the
collection type. Line 13 bulk collects the collection of a record structure into a single variable. The
range for loop on lines 15 through 17 reads the collection and prints only one column value from
each record.

After you've selected the data, you should be able to insert or update target tables in the same

bulk processing units. You can do so with the FORALL statement. The following lets you perform a
bulk update:

=1 SQL> DECLARE

TYPE title record IS RECORD

(id NUMBER

, title VARCHAR2 (60)

, subtitle VARCHAR2 (60)) ;

TYPE title collection IS TABLE OF TITLE RECORD;
lv_title collection TITLE COLLECTION;

CURSOR c IS

SELECT item id, item title, item subtitle
FROM item;
BEGIN
OPEN c;
LOOP

FETCH c¢ BULK COLLECT INTO lv title collection LIMIT 20;
EXIT WHEN 1lv_title collection.COUNT = 0;
FORALL i IN 1lv_title collection.FIRST..lv_title collection.LAST
UPDATE item_temp

SET item title = 1lv_title collection(i) .title
, item subtitle = 1lv_title collection (i) .subtitle
WHERE item id = 1lv_title collection(i).id;
END LOOP;
END;
/

The FORALL statement on lines 16 through 20 updates 20 rows at a time, but it could easily

update more. Bulk processing reduces the context switches in the database and improves online
transaction processing application throughput.

Review Section
This section has described the following points about bulk operations:

B The BULK COLLECT INTO clause lets you perform a bulk collect, and it provides
you with the LIMIT clause to set the maximum size of rows processed through bulk
operations.

B The FORALL statement lets you process a group of rows by managing a collection
assignment.

Chapter 3: PL/SQL Basics 97

Functions, Procedures, and Packages

PL/SQL stored programming units are typically functions, procedures, packages, and triggers. You
can also store object types, but that discussion is reserved for Chapter 11.

Oracle maintains a unique list of stored object names for tables, views, sequences, stored
programs, and types. This list is known as a namespace. Functions, procedures, packages, and
object types are in this namespace. Another namespace stores triggers.

Stored functions, procedures, and packages provide a way to hide implementation details in a
program unit. They also let you wrap the implementation from prying eyes on the server tier.

You can group functions and procedures into two types of subroutines based on their formal
parameter lists. The first type is a pass-by-value program unit, which is where all the parameters
use an IN-only mode of operation. The second type of subroutine is a pass-by-reference program
unit, which has one or more parameters that use IN OUT or OUT-only mode of operation.

A pass-by-value function or procedure takes inputs, or formal parameters, and returns an
output. The formal parameter values are sent into the function, and something completely
different is returned to the calling scope. It’s like putting ingredients in a bowl and mixing them
up to make a cake batter. Once you mix the ingredients into the batter, extracting them
individually from the batter is impossible. The cake batter is like the return value from a function.

A pass-by-reference function or procedure takes inputs that can be references to existing
variables or values. The contents of IN OUT or OUT-only variables can change inside a
subroutine, which means the contents of pass-by-reference functions or procedures can change.

Pass-by-reference functions and procedures are more coupled with the calling program unit
than are pass-by-value functions and procedures. That's because they hold references to formal
parameters declared in the external calling scope.

Oracle Database 12c adds layering with functions, procedures, and packages by letting you
now white list which subroutine can call them. You do that with the ACCESSIBLE BY clause,
which takes one or more functions, procedures, packages, or object types.

Functions

Stored functions are convenient structures because you can call them directly from SQL
statements or PL/SQL programs. All stored functions must return a value. You can also use them as
right operands because they return a value. Functions are defined in local declaration blocks or
the database. You frequently implement them inside stored packages.

The prototype for a stored function is

g CREATE OR REPLACE [{EDITIONABLE | NONEDITIONABLE}]
[schema.] FUNCTION function name
(parameter [IN] [OUT] [NOCOPY] {sgl data type | plsgl data type}
[,parameter [IN] [OUT] [NOCOPY] {sgl data type | plsgl data type}]
L, ... 1)
RETURN {sql data type | plsgl data type}
[ACCESSIBLE BY
([{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]unit name)
[, [{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]lunit name)]
[,... 111)
[AUTHID [DEFINER | CURRENT USER]]
[DETERMINISTIC | PARALLEL_ ENABLED]
[PIPELINED]

98 Oracle Database 12¢ PL/SQL Programming

[RESULT CACHE [RELIES ON table name]] IS
declaration statements;
BEGIN
execution statements
RETURN variable;
[EXCEPTION]
exception handling statements
END [function name];

/

Functions can be used as right operands in PL/SQL assignments. You can also call them
directly from SQL statements provided they return a SQL data type. Procedures cannot be right
operands. Nor can you call them from SQL statements.

Oracle Database 12c¢ lets you limit which other program units can call a function, using the
new ACCESSIBLE BY clause. You can also define functions with access rights to the same
schema or to the calling schema, using the AUTHID value. Choosing the default DEFINER
authorized identifier runs the program in the same schema where you defined the function.
Choosing the CURRENT authorized identifier runs the program unit in the calling schema.

You can query a function that returns a SQL data type by using the following prototype from
the pseudo table DUAL:

SELECT some function| (actual parameter [, ...])]
FROM dual;

You are no longer limited to passing actual parameters by positional order in SQL statements.
This means that you can use PL/SQL named notation in SQL. The “Calling Subroutines” section of
Chapter 8 covers how named, positional, and mixed notation work.

The following is a prototype for the same query of a PL/SQL function from the pseudo table DUAL:

g SELECT some functionl[(formal parameter => actual parameter)]
FROM dual;

Named positional calls work best when default values exist for other parameters. There isn’t
much purpose in calling only some of the parameters when the call would fail. Formal parameters
are optional parameters. Named positional calls work best with functions or procedures that have
optional parameters.

You can also use the CALL statement to capture a return value from a function into a bind
variable. The prototype for the CALL statement follows:

g SQL> CALL some functionl[(actual parameter [, ...])]
2 INTO some session bind variable;

The following is a small sample case that concatenates two strings into one:

=1 SQL> CREATE OR REPLACE FUNCTION join strings

2 (stringl VARCHAR2

3 , string2 VARCHAR2) RETURN VARCHAR2 IS
4 BEGIN

5 RETURN stringl ||' '|| string2]||'."';
6 END;

7/

Chapter 3: PL/SQL Basics 99

You can now query the function from SQL:
g1 SQL> SELECT join_ strings('Hello', 'World') FROM dual;

Likewise, you can define a session-level bind variable and then use the CALL statement to put
a variable into a session-level bind variable:

@1 SOL> VARIABLE session var VARCHAR2 (30)
SQL> CALL join strings('Hello', 'World') INTO :session var;

The CALL statement uses an INTO clause when working with stored functions. You dispense
with the INTO clause when working with stored procedures.
If you select the bind variable from the pseudo table DUAL, like this:

g SQL> SELECT :session var FROM dual;
you'll see:

= Hello World.

Functions offer a great deal of power to database developers. They are callable in both SQL
statements and PL/SQL blocks.

Procedures
As mentioned in the previous section, procedures cannot be right operands. Nor can you use
them in SQL statements. You move data into and out of PL/SQL stored procedures through their
formal parameter list. Like stored functions, you can also define local named block programs in
the declaration section of procedures.

The prototype for a stored procedure is

@1 CREATE OR REPLACE [{EDITIONABLE | NONEDITIONABLE}]

[schema.] PROCEDURE procedure name
(parameter [IN] [OUT] [NOCOPY] {sgl data type | plsgl data type}
[, parameter [IN] [OUT] [NOCOPY] {sqgl data type | plsgl data type}]
[, ... 1)
[ACCESSIBLE BY
([{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]lunit name)
[, [{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]lunit name)]
[,e.. 111)

[AUTHID DEFINER | CURRENT USER] IS

declaration statements
BEGIN

execution statements;
[EXCEPTION]

exception handling statements
END procedure name;

/

You can define procedures with or without formal parameters. Formal parameters in procedures
can be either pass-by-value or pass-by-reference variables in stored procedures. Pass-by-reference
variables have both an IN mode and an ouT mode. Like functions, when you don’t provide a
parameter mode, the procedure creation assumes you want the mode to be a pass-by-value variable.

100 Oracle Database 12¢ PL/SQL Programming

The new ACCESSIBLE BY clause is also available to procedures, and you can define
procedures with access rights to the same schema or to the calling schema with the AUTHID
value. The AUTHID value works the same way for procedures as it does for functions.

The following implements a stored procedure that encloses a string in square brackets:

SQL> CREATE OR REPLACE PROCEDURE format string
2 (string_in IN OUT VARCHAR2) IS

3 BEGIN

4 string in := '['||string in||']"';
5 END;

6 /

You can also use the CALL statement to call and pass variables into and out of a procedure.
Like the earlier function example, this example uses the CALL statement and bind variable:

@ SQL> VARIABLE session var VARCHAR2 (30)
SQL> CALL join strings('Hello', 'World') INTO :session_var;
SQL> CALL format string(:session var) ;

You should note that the CALL statement does not use an INTO clause when passing a
variable into and out of a stored procedure. This differs from how it works with stored functions.

You also can use the EXECUTE statement with stored procedures. The following works exactly
like the CALL statement:

g SQL> EXECUTE format string(:session var);
When you select the bind variable from the pseudo table DUAL:
g SQL> SELECT :session var FROM dual;

you'll see:

[Hello World.]

Procedures offer you the ability to use pass-by-value or pass-by-reference formal parameters.
As you'll see in Chapter 8, stored procedures let you exchange values with external applications.

Packages

Package development starts with planning which shared data types and cursors should be
bundled with which functions and procedures. Shared data types let you exchange information
using the specifications of scalar, record structure, and collection data types that a package can
require. Shared cursors, on the other hand, present the possibility that a query might be reused
many times and would be more effectively designed and deployed in one location—in the
package specification.

When you deploy packages with shared cursors, you must guarantee their integrity by using
the following compiler directive:

PRAGMA SERIALLY REUSABLE;

If you fail to remember this fact, a shared cursor might be read by one program starting at the
beginning and read by another program somewhere between the first and last rows. That means

Chapter 3: PL/SQL Basics 101

shared cursors run the risk of being read inconsistently, which is the worst type of error you can
introduce to PL/SQL. The simple rule is this: when you deploy shared cursors, the package must
be serially reusable (always fresh to anyone that calls it).

NOTE
Packages that contain shared cursors must be defined as serially
reusable code artifacts in the database.

Variables and cursors are declared exactly as they are in other PL/SQL blocks. Functions and
procedures are like schema-level objects with one exception: you no longer can use Data
Definition Language (DDL) commands to work with them individually. All DDL commands apply
to the package specification or body. Likewise, all function and procedure definitions in the
package specification must be implemented in the package body the same way—that means
names, parameter lists (including default values) for procedures and names, and return types for
functions.

Here’s the prototype for a package specification:

g CREATE [OR REPLACE] [{EDITIONABLE | NONEDITIONABLE}]
[schema.] package name
[ACCESSIBLE BY
([{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]unit name)
[, [{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]lunit name)]
[,... 111) {1s | Aas}
[TYPE type name IS
{RECORD (column_list) | VARRAY(n) | TABLE [INDEX BY data_ type]}]

[variable name data type {DEFAULT | :=} value; [...]]

[CURSOR cursor_name

(parameter data type [, parameter data type [, ...]) IS
SELECT statement; [...11]

[TYPE reference cursor IS REF CURSOR
[RETURN {catalog row | cursor row | record structure}] [...]]
[user exception EXCEPTION; [...]]
[PRAGMA SERIALLY REUSABLE;]
[FUNCTION public prototype;] [...]
[PROCEURE public prototype;] [...]
END [package name] ;
/

The new ACCESSIBLE BY clause lets you designate which functions, procedures, packages,
and object types can call the package. This effectively lets you white list callers of any package
structures, types, functions, and procedures.

You can implement a package specification with only data types, variables, cursors, and
exceptions, or you can also add functions and procedures. You don’t need to define a package
body when a package specification has no functions or procedures because there’s nothing to
implement in the package body. Packages without implementations are called bodiless packages.
You must provide an implementation of any function or procedure definition from a package
specification in the package body.

102 Oracle Database 12c PL/SQL Programming

The data types supported in packages are scalar and PL/SQL composite data types; that means
you can't define an object type. You would raise the following compile-time error if you were to
attempt to put an object type in a package specification or body:

@ PLS-00540: object not supported in this context.

TIP
You cannot implement a user-defined object type in a package.

The sample overloading package shows you how to define a serially reusable package. It's
done by including a SERIALLY REUSABLE compiler directive in both the package specification
and the body. A serially reusable package guarantees all callers of a package function a fresh copy
of any shared cursors. The downside of a serially reusable function is that it isn’t callable from
SELECT statements.

The overloading package also shows you how to define an overloaded function. It creates
a package-level salutation function that takes two or three parameters. Notice that in the package
specification, only the function definitions exist, as shown:

g1 SQL> CREATE OR REPLACE PACKAGE overloading IS

2

3 -- Force fresh copy of shared cursor.

4 PRAGMA SERIALLY REUSABLE;

5

6 -- Define a default salutation.

7 FUNCTION salutation

8 (pv_long phrase VARCHAR2 DEFAULT 'Hello'

9 , PvV_name VARCHAR2) RETURN VARCHAR2;
10

11 -- Define an overloaded salutation.

12 FUNCTION salutation

13 (pv_long phrase VARCHAR2 DEFAULT 'Hello'

14 , Pv_name VARCHAR2

15 , pv_language VARCHAR2) RETURN VARCHAR2;
16 END;

17 /

Line 4 contains the precompiler instruction that makes this package serially reusable. Lines 8
and 13 contain a parameter with a default value; that same default value must occur for the
parameters in the package body. The only difference that can exist between the definition in the
package specification and the definition in the package body is that the DEFAULT keyword may
be interchanged with a colon and equal sign set (: =).

After creating the package specification with functions or procedures, you need to create a
package body. The following example creates a package body that has a shared cursor and two
overloaded functions. The functions both use the shared cursor, and these functions are the only
ones that can use the shared cursor. That's because the cursor is declared in the package body
rather than in the specification.

Chapter 3: PL/SQL Basics 103

The example depends on this table:

g SQL> CREATE TABLE salutation translation

2 (short salutation VARCHAR2 (4)
3 , long salutation VARCHAR2 (12)
4 , phrase language VARCHAR2 (12)) ;

You would seed it with the following values:

g SQL> INSERT INTO salutation translation VALUES ('Hi', 'HELLO', 'ENGLISH') ;
SQL> INSERT INTO salutation translation VALUES ('Bye', 'GOODBYE', 'ENGLISH') ;
SQL> INSERT INTO salutation translation VALUES ('Ciao', 'SALUTE', 'ITALIAN') ;
SQL> INSERT INTO salutation_translation VALUES ('Ciao', 'ADDIO','ITALIAN') ;

A package body prototype differs from the package body because you can implement local
functions and procedures in it. The local functions and procedures can be called only from the
published functions or procedures that were defined in the package specification. Here’s a
package body prototype:

g CREATE [OR REPLACE] package name BODY {IS | AS}
[TYPE type name IS

{RECORD (column list) | VARRAY(n) | TABLE [INDEX BY data_type]}]
[variable name data type {DEFAULT | :=} value; [...]1]

[CURSOR cursor name

(parameter data type [, parameter data type [, ...]) IS

SELECT statement; [...]]
[TYPE reference cursor IS REF CURSOR
[RETURN {catalog row | cursor row | record structure}] [...1]
[PRAGMA SERIALLY REUSABLE;]
[FUNCTION local implementation;] [...]
[PROCEURE local implementation;] [...]
[FUNCTION published body;] [...]
[PROCEDURE published body;]l [...l
END [package name] ;
/

Here’s the implementation of the package body:

= SQL> CREATE OR REPLACE PACKAGE BODY overloading IS

3 -- Force fresh copy of shared cursor.

4 PRAGMA SERIALLY REUSABLE;

5 -- Shared cursor.

6 CURSOR ¢

7 (cv_long phrase VARCHAR2

8 , cv_language VARCHAR2) IS

9 SELECT short salutation

10 , long salutation
11 FROM salutation translation
12 WHERE long salutation = UPPER(cv_long phrase)
13 AND phrase language = UPPER(cv_language) ;

104 Oracle Database 12¢ PL/SQL Programming

15 -- Declare a default salutation.

16 FUNCTION salutation

17 (pv_long phrase VARCHAR2 DEFAULT 'Hello'

18 , PVv_name VARCHAR2) RETURN VARCHAR2 IS

19

20 -- Local variables.

21 lv_short salutation VARCHAR2(4) := '';

22 1v_language VARCHAR2 (10) DEFAULT 'ENGLISH';
23

24 BEGIN

25 -- Read shared cursor and return concatenated result.
26 FOR i IN c(pv_long phrase, 1lv_language) LOOP

27 lv_short_salutation := i.short_salutation;

28 END LOOP;

29 RETURN 1lv_short salutation || ' ' || pv_name || '!';
30 END;

31

32 -- Define an overloaded salutation.

33 FUNCTION salutation

34 (pv_long phrase VARCHAR2 DEFAULT 'Hello'

35 , PvV_name VARCHAR2

36 , pv_language VARCHAR2) RETURN VARCHAR2 IS

37

38 -- Local variable.

39 lv_short salutation VARCHAR2(4) := '';

40

41 BEGIN

42 -- Read shared cursor and return concatenated result.
43 FOR i IN c(pv_long phrase, pv_language) LOOP

44 lv_short_salutation := i.short_salutation;

45 END LOOP;

46 RETURN 1lv_short salutation || ' ' || pv_name || '!';
47 END;

48 END;

49 /

You can test either of these inside a PL/SQL block or by calling it with the CALL statement at
the SQL*Plus prompt. It requires a SQL*Plus scope variable to use the CALL statement, as covered
in the “SQL*Plus Command-line Interface” section of Appendix A. The following declares the
variable and calls the function result into the :message bind variable:

g SQL> VARIABLE message VARCHAR2 (30)
SQL> CALL overloading.salutation('Hello', 'Ringo') INTO :message;

You can query the result now and see “Hello Ringo!” or you can call the overloaded
salutation with three parameters like this:

g SQL> CALL overloading.salutation('Addio', 'Lennon', 'Italian')
2 INTO :message;

Chapter 3: PL/SQL Basics 105

A query like this
= SQL> SELECT :message AS "Goodbye Message" FROM dual;
g Y g

yields this:
] Message

Ciao Lennon!

When you make a package serially reusable, it becomes unavailable in the context of a
SELECT statement. By way of example, this query

g SQL> SELECT overloading.salutation('Addio', 'Lennon', 'Italian') AS "Message"
2 FROM dual;

raises this error:

= SELECT overloading.salutation('Addio', 'Lennon', 'Italian') AS "Message"
’ g <)

*
ERROR at line 1:
ORA-06534: Cannot access Serially Reusable package "STUDENT.OVERLOADING"
ORA-06512: at line 1

It is possible to query functions from packages when they’re not serially reusable, and the
general rule for most commercial packages is that they’re not serially reusable. The only time you
need to define a package as serially reusable is when it has a shared cursor. Moving the shared
cursor into each of the functions would eliminate the need to make this package serially reusable.

Packages are extremely effective for bundling your code into related modules, and this is
something you should generally opt for in application design. Now you know how to implement
packages.

Review Section
This section has described the following points about packages:

B Functions are local and stand-alone named blocks that return a value and can be used
as right operands in assignments.

B Procedures are local and stand-alone named blocks that don’t return a value, which
means procedures must be called by anonymous blocks, functions, or procedures.

B Functions and procedures are pass-by-value program units when all their parameters
use the default IN-only mode of operation.

B Functions and procedures are pass-by-reference program units when one or more of
their formal parameters use an IN OUT or OUT-only mode of operation.

B Packages hold related functions, procedures, and data types; they also support
overloading of functions and procedures.

B Bodiless packages support data type and shared cursor definitions.

106 Oracle Database 12¢ PL/SQL Programming

Transaction Scope

Transaction scope is a thread of execution—session. You establish a session when you connect to
the Oracle Database 12¢ database. The session lets you set environment variables, such as
SERVEROUTPUT, which lets you print from your PL/SQL programs. What you do during your
session is visible only to you until you commit any changes to the database. After committing the
changes, other sessions can see the changes you’ve made.

During a session, you can run one or more PL/SQL programs. They execute serially, or in
sequence. The first program can alter the data or environment before the second runs, the second
program can alter the data or environment before the third runs, and so on. This is true because
your session is the main transaction. All activities depend on potentially all the prior activities.
You can commit work, which makes all changes permanent, or reject work, which repudiates all
or some changes.

PL/SQL program units provide ACID-compliant transactions across more than a single table.
As discussed in the “Multiversion Concurrency Control” section of Appendix A, all INSERT,
UPDATE, MERGE, and DELETE statements are ACID-compliant. ACID-compliant means an
activity is atomic, consistent, isolated, and durable. Oracle’s MVCC design guarantees this
behavior, and you can read more about it in Appendix A.

The power to control the session rests with the following three commands, which are Transaction
Control Language (TCL) commands:

B The COMMIT statement commits all DML changes made from the beginning of the session
or since the last ROLLBACK statement.

B The SAVEPOINT statement divides two epochs. An epoch is defined by the transactions
between two relative points of time. A SAVEPOINT delimits two epochs.

B The ROLLBACK statement undoes all changes from now to an epoch or named SAVEPOINT,
or now to the beginning of a SQL*Plus session.

These commands enable you to control what happens in your session and program routines.
The beginning of a session is both the beginning of an epoch and an implicit SAVEPOINT
statement. Likewise, the ending of a session is the ending of an epoch and an implicit COMMIT
statement.

How you manage transaction scope differs between a single transaction scope and multiple
transaction scopes. You create multiple transaction scopes when a function or procedure is
designated as an autonomous stored program unit.

Single Transaction Scope

A common business problem involves guaranteeing the sequential behavior of two or more DML
statements. The idea is that either they all must succeed or they all must fail, and partial success is
not an option. TCL commands let you guarantee the behavior of sequential activities in a single
transaction scope.

The following program uses TCL commands to guarantee that both INSERT statements
succeed or fail:

g SOL> BEGIN

2 -- Set savepoint.
3 SAVEPOINT all or nothing;
4

Chapter 3: PL/SQL Basics 107

5 -- First insert.
6 INSERT INTO member
7 VALUES
8 (member sl.nextval -- Surrogate primary key
16 , SYSDATE) ;
17
18 -- Second insert.
19 INSERT INTO contact
20 VALUES
21 (contact sl.nextval -- Surrogate primary key
22 , member sl.currval -- Surrogate foreign key
30 , SYSDATE) ;
30
31 -- Commit records.
32 COMMIT;
33
34 EXCEPTION
35 -- Rollback to savepoint and raise exception.
36 WHEN others THEN
37 ROLLBACK TO all_or nothing;
38 dbms_output.put_line (SQLERRM) ;
39 END;
40 /

The entire transaction fails when either the INSERT statement on line 6 or 19 fails because
the transaction is an all or nothing affair. The COMMIT statement on line 32 runs only when both
INSERT statements succeed. Any failure raises an exception, and any work that did succeed is
undone by the ROLLBACK statement on line 37.

Multiple Transaction Scopes

Some business problems require that programs work independently. Independent programs run
in discrete transaction scopes. When you call an autonomous program unit, it runs in another
transaction scope.

You can build autonomous programs with the AUTONOMOUS_TRANSACTION precompiler
instruction or compiler directive. A precompiler instruction is called a PRAGMA and it sets a
specific behavior, such as independent transaction scope. Only the following types of programs
can be designated as autonomous routines:

B Top-level (not nested) anonymous blocks

B Local, stand-alone, and package subroutines—functions and procedures

B Methods of SQL object type

B Database triggers

The beginning transaction scope is known as the main routine. It calls an autonomous routine,

which then spawns its own transaction scope. A failure in the main routine after calling an
autonomous program can only roll back changes made in the main transaction scope. The

108 Oracle Database 12¢ PL/SQL Programming

autonomous transaction scope can succeed or fail independently of the main routine. However,
the main routine can also fail when an exception is raised in an autonomous transaction.

Multiple transaction scope programs are complex. You should be sure the benefits outweigh
the risk when using multiple transaction scope solutions.

Review Section
This section has described the following points about transaction scope:

B Oracle Database is always in transaction mode, which differs from other databases
such as MySQL.

B Transaction scope ensures that either all or nothing happens when inserting, updating,
or deleting data from two or more tables.

B You should always set a SAVEPOINT before attempting to insert, update, or delete data
from two or more tables.

B You should always roll back transactions when one part of a multiple-part transaction
fails to ensure ACID-compliant transaction (see Appendix A for a more complete
description of ACID compliance).

Database Triggers

Database triggers are specialized stored programs that are triggered by events in the database.
They run between when you issue an INSERT, UPDATE, MERGE, or DELETE statement and
commit the change from the SQL DML statement. They use an anonymous block structure, and
they’re stored inside columns that use the LONG data type. The mechanics of passing variables
between the SQL DML statement and anonymous block are complex and left for full discussion in
Chapter 12.

An SQL statement followed by a COMMIT statement is called a transaction process, or a
two-phase commit (2PC) protocol. ACID-compliant transactions use a 2PC to manage one SQL
statement or collections of SQL statements. In a 2PC model, the INSERT, UPDATE, MERGE, or
a DELETE DML statement starts the process and submits changes. These DML statements can also
act as events that fire database triggers assigned to the table being changed.

As a result of triggers working between the first and second phase of a two-phase commit
(2PC) protocol, you cannot use the following TCL statements in triggers: SAVEPOINT, ROLLBACK,
or cOMMIT. You can define four types of triggers in the Oracle Database 11g family of products:

B DDL triggers These triggers fire when you create, alter, rename, or drop objects in a
database schema. They are useful to monitor poor programming practices, such as when
programs create and drop temporary tables rather than use Oracle collections effectively
in memory. Temporary tables can fragment disk space and, over time, degrade the
database performance.

Chapter 3: PL/SQL Basics 109

B DML or row-level triggers These triggers fire when you insert, update, or delete data

from a table. You can use these types of triggers to audit, check, save, and replace values
before they are changed. Automatic numbering of pseudo-numeric primary keys is
frequently done by using a DML trigger.

INSTEAD OF triggers These triggers enable you to stop performance of a DML
statement and redirect the DML statement. INSTEAD OF triggers are often used

to manage how you write to views that disable a direct write because they’re not
updateable views. The INSTEAD OF triggers apply business rules, and directly insert,
update, or delete rows in appropriate tables related to these updateable views.

System or database event triggers These triggers fire when a system activity occurs
in the database, like the logon and logoff event triggers described in Chapter 12. These
triggers enable you to track system events and map them to users.

All four trigger types are covered in depth in Chapter 12. No review section is necessary here
because it would simply repeat the preceding list.

Summary

This chapter has reviewed the PL/SQL basics and explained how to jump-start your PL/SQL skills.
The coverage should serve to whet your appetite for more exploration of PL/SQL.

Mastery Check

The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix | for answers to
these questions.

True or False:

1.
2.
3.

___Abasic block in PL/SQL must have at least a null statement to compile.
___The elsif statement lets you branch execution in an if statement.

The DECLARE block is where you put all variable, cursor, and local function and
procedure implementations.

___An EXCEPTION block is where you put handling for errors raised in the declaration
block of the same anonymous or named program unit.

___The colon and equal sign set (: =) is the only assignment operator in PL/SQL.

You need to provide forward-referencing stubs for local functions or procedures to
avoid a procedure or function “not declared in this scope” error.

__Oracle supports both simple and searched case statements.
___Oracle supports SQL and PL/SQL collections as parameter and return value data types.
___Packages let you define overloaded functions and procedures.

__Database triggers run between the first phase of a DML statement and the COMMIT
statement.

110 Oracle Database 12c¢ PL/SQL Programming

Multiple Choice:

11. Which parameter modes are supported in Oracle PL/SQL? (Multiple answers possible)
IN

INOUT

ouT

IN OUT

All of the above

12. Which of the following are valid loop structures in PL/SQL? (Multiple answers possible)

mO O = >

A simple loop
A FOR loop

A WHILE loop
An UNTIL loop
E. All of the above

13. A simple case statement works with which of the following data types? (Multiple answers
possible)

A TEXT data type

A VARCHAR2 data type
A NCHAR data type

A CHAR data type

. A DATE data type

14. Which of the following isn’t a keyword in PL/SQL?
RECORD

REVERSE

CURSOR

LIMIT

STRUCTURE

S0 = >

mO 0w

mO0O=® >

15. Which of the following isn't a cursor attribute?
A. $FOUND
B. %ISOPEN
C. STYPE
D. %NOTFOUND
E. $ROWCOUNT

CHAPTER

Language Fundamentals

112 Oracle Database 12c PL/SQL Programming

basics in Chapter 3. It explains scalar and composite variables and how you assign values

This chapter builds on the discussion of PL/SQL architecture in Chapter 1 and PL/SQL
to these variable types.

The chapter is divided into two sections:

B Lexical units

B Variable and data types

Lexical units are the bricks and mortar that let you build programs. The next two sections
cover these fundamentals.

Lexical Units

Lexical units are the building blocks in programming languages. They enable you to build PL/SQL
programs. You develop lexical units by combining valid characters and symbols. Lexical units can
be delimiters, identifiers, literals, or comments. Delimiters act like the mortar because they provide
semantic elements like operators and string literal delimiters. Identifiers are bricks because they
include reserved words and keywords as well as both subroutine and variable names. Literals are
a convenient way for you to introduce string and numeric constants into your programs. Comments
aren’t bricks or mortar, but they’re important because they help you (or some other future developer)
see what you're doing.

Delimiters

Lexical delimiters are symbols or symbol sets. They can act as delimiters or provide other functions
in programming languages. Other functions provided by lexical delimiters are assignment,
association, concatenation, comparison, math, and statement controls.

The most common example of a delimiter is the character string delimiter. In PL/SQL, you
delimit string literals by using a set of single quotes (' '). Table 4-1 covers the full set of delimiters
and provides some examples of how to use delimiters in the language. The examples include
coding techniques and concepts explained in more detail later in this book.

Symbol Type Description

= Assignment The assignment operator is a colon immediately followed by an equal
sign. It is the only assignment operator in the language. You assign a
right operand to a left operand, like
a :=Db + c;
This adds the numbers in variables b and ¢ and then assigns the
result to variable a. The addition occurs before the assignment due to
operator precedence, which is covered later in this chapter.

TABLE 4-1. PL/SQL Delimiters

Chapter 4: Language Fundamentals 113

Symbol Type Description

Association The host variable indicator precedes a valid identifier name and
designates that identifier as a session variable. Session variables
are also known as bind variables. You use SQL*Plus to define a
session variable. Only the CHAR, CLOB, NCHAR, NCLOB, NUMBER,
NVARCHAR2, REFCURSOR, and VARCHAR?2 data types are available
for session variables.

You can define a session variable by using a prototype, like
VARIABLE variable name data type name
This implements the prototype by creating a session-level variable-
length string:
SQL> VARIABLE my string VARCHAR2 (30)
Then, you can assign a value using an anonymous block PL/SQL
program, like
BEGIN

:my string := 'A string literal.';
END;
/
You can then query the result from the DUAL pseudo table:
SELECT :my_ string FROM dual;
Alternatively, you can reuse the variable in another PL/SQL block
program because the variable enjoys a session-level scope. A
subsequent anonymous block program in a script could then print the
value in the session variable:
BEGIN

dbms_output.put line(:my_ string) ;
END;
/
This is a flexible way to exchange variables between multiple
statements and PL/SQL blocks in a single script file.

& Association The substitution indicator lets you pass actual parameters into
anonymous block PL/SQL programs. You should never assign
substitution variables inside declaration blocks because assignment
errors don't raise an error that you can catch in your exception block.
You should make substitution variable assignments in the execution
block. The following demonstrates the assignment of a string
substitution variable to a local variable in an execution block:

a := '&string in';
(continued)

TABLE 4-1. PL/SQL Delimiters

114 Oracle Database 12c PL/SQL Programming

Symbol

)
o

Type
Association

Association

Association

Association

Concatenation

Comparison

Comparison

Comparison

Description

The attribute indicator lets you link a database catalog column, row,
or cursor attribute. You are anchoring a variable data type when you
link a variable to a catalog object, like a table or column. While
Chapter 3 introduces type anchoring, the section “Cursor Structures”
in Chapter 5 examines how to anchor variables to database catalog
items with this operator. This chapter’s “System Reference Cursor”
section shows how to create strongly typed system reference cursors
by anchoring them to tables.

The association operator is a combination of an equal sign and a
greater-than symbol. It is used in name notation function and procedure
calls. Chapter 8 covers how you use the association operator.

The component selector is a period, and it glues references together;
for example, a schema and a table, a package and a function, or an

object and a member method. Component selectors are also used to
link cursors and cursor attributes (columns). The following are some
prototype examples:

schema _name.table name

package name.function name

object name.member method name

cursor name.cursor attr

object name.nested object name.object attr

These are referenced in subsequent chapters throughout this book.

The remote access indicator lets you access a remote database
through database links.

The concatenation operator is formed by combining two
perpendicular vertical lines. You use it to glue strings together, as
shown:

a := 'Glued'||"' '||'together. ';

The equal sign is the comparison operator. It tests for equality of value
and implicitly does type conversion where possible (see Figure 4-2 for
an implicit conversion chart). There is no identity comparison operator
because PL/SQL is a strongly typed language. PL/SQL comparison
operations are equivalent to identity comparisons because you can
only compare like typed values.

The negation operator symbol is a minus sign. It changes a number
from its positive value to its negative value.

There are three not-equal comparison operators. They all perform
exactly the same behaviors. You can use whichever suits your
organizational needs.

TABLE 4-1.

PL/SQL Delimiters

Chapter 4: Language Fundamentals 115

Symbol Type Description

> Comparison The greater-than operator is an inequality comparison operator. It
compares whether the left operand is greater than the right operand.

< Comparison The less-than operator is an inequality comparison operator. It
compares whether the left operand is less than the right operand.

>= Comparison The greater-than or equal comparison operator is an inequality
comparison operator. It compares whether the left operand is greater
than or equal to the right operand.

<= Comparison The less-than or equal comparison operator is an inequality
comparison operator. It compares whether the left operand is less than
or equal to the right operand.

Is Comparison The IS NULL comparison operator checks whether the left operand

NULL holds a null.

Is Comparison The IS EMPTY comparison operator checks whether the left operand

EMPTY holds any elements, and only applies when the left operand is a varray
or table collection data type.

Is Comparison The IS SET comparison operator checks whether the left operand

SET holds a set of elements, and only applies when the left operand is a
varray or table collection data type.

' Delimiter The character string delimiter is a single quote mark. It lets you define
a string literal value. You can assign a string literal to a variable as
follows:

a := 'A string literal.';

This creates a string literal from the set of characters between the
character string delimiters and assigns it to the variable a.

(Delimiter The opening and closing expressions or list delimiters are an opening
) parenthesis symbol and closing parenthesis symbol, respectively.
You can place a list of comma-delimited numeric or string literals, or
identifiers, inside a set of parentheses. You use parentheses to enclose
formal and actual parameters to subroutines or to produce lists for
comparative evaluations.

, Delimiter The item separator is a comma and delimits items in lists.
<< Delimiter The opening and closing guillemets are the opening and closing
>> delimiters, respectively, for labels in PL/SQL. Labels are any valid

identifiers in the programming language. Perl and PHP programmers
should know these don’t work as HERE document tags.

-- Delimiter Two adjoining dashes are a single comment operator. Everything
to the right of the single comment operator is treated as text and is
not parsed as part of a PL/SQL program. An example of a single-line
comment is
-- This is a single-line comment.
(continued)

TABLE 4-1. PL/SQL Delimiters

116 Oracle Database 12c PL/SQL Programming

Symbol Type Description

/* Delimiter These are the opening and closing multiple-line comment delimiters,

*/ respectively. A forward slash followed by an asterisk instructs the
parser to ignore as comment text everything until the closing multiple-
line comment delimiter. An asterisk followed by a forward slash
instructs the parser that the text comment is complete, and everything
after it should be parsed as part of the program unit. An example of a
multiple-line comment is
/* This is line one.

This is line two. */
There are many suggestions on how to use multiple-line comments.
You should pick one way of doing it that suits your organization’s
purposes and stick with it.

" Delimiter The quoted identifier delimiter is a double quote. It lets you access
tables created in case-sensitive fashion from the database catalog. This
is required when you have created database catalog objects in case-
sensitive fashion. You can do this from Oracle Database 10g forward.
For example, you create a case-sensitive table or column by using
quoted identifier delimiters:

CREATE TABLE "Demo"

("Demo_ID" NUMBER
, demo_value VARCHAR2 (10)) ;
You insert a row by using the following quote-delimited syntax:
INSERT INTO "Demol" VALUES

(1, 'One Line ONLY.');
Like the SQL syntax, PL/SQL requires you to use the quoted identifier
delimiter to find the database catalog object, like
BEGIN

FOR i1 IN (SELECT "Demo ID", demo value

FROM "Demo") LOOP

dbms_output.put_line(i."Demo ID");

dbms_output.put line(i.demo value) ;

END LOOP;
END;
/
Beyond the quoted identifier in embedded SQL statements, you must
refer to any column names by using quote-delimited syntax. This is
done in the first output line, where the loop index (i) is followed
by the component selector (.) and then a quote-delimited identifier
("Demo_ID"). You should note that no quotes are required to access
the case-insensitive column. If you forget to enclose a case-sensitive
column name (identifier), your program returns a PLS-00302 error
that says the identifier is not declared.
You can also use the quoted identifier delimiter to build identifiers that
include reserved symbols, like an "X+Y" identifier.

TABLE 4-1. PL/SQL Delimiters

Chapter 4: Language Fundamentals 117

Symbol Type Description

+ Math The addition operator lets you add left and right operands and returns
aresult.

/ Math The division operator lets you divide a left operand by a right operand

and returns a result.

o Math The exponential operator raises a left operand to the power designated
by a right operand. The operator enjoys the highest precedence
for math operators in the language. As a result of that, a fractional
exponent must be enclosed in parentheses (also known as expression
or list delimiters) to designate order of operation. Without parentheses,
the left operand is raised to the power of the numerator and the result
is divided by the denominator of a fractional exponent.
You raise 3 to the third power and assign the result of 27 to variable a
by using the following syntax:
a := 3*%*3;
You raise 8 to the fractional power of 1/3 and assign the result of 2 to
variable a by using the following syntax:
a := 8**(1/3);
The parentheses ensures that the division operation occurs first.
Exponential operations take precedence on other mathematical
operations without parenthetical grouping. Please note that
exponential calculations are scientific computing and you should use
I[EEE-754 data types.

* Math The multiplication operator lets you multiply a left operand by a right
operand and returns a result.

- Math The subtraction operator lets you subtract the right operand from the
left operand and returns a result.

; Statement The statement terminator is a semicolon. You must close any statement
or block unit in PL/SQL with a statement terminator. Oracle Database
12c introduces the ability to write functions within the WITH clause of
a query, and this new feature requires you to disable the semicolon (;)
while running a query with an embedded function. Chapter 2 and the
“In-line Views” section of Appendix B provide more on this behavior.

TABLE 4-1. PL/SQL Delimiters

118 Oracle Database 12c PL/SQL Programming

Identifiers

Identifiers are words. They can be reserved words, keywords, predefined identifiers, quoted
identifiers, user-defined variables, subroutines, or user-defined types. Reserved words and
keywords change from Oracle Database point release to point release, and there’s no accurate
source for a complete list. You can find reserved words and keywords in Appendix H, built-in SQL
functions in Appendix C, and built-in PL/SQL functions in Appendix D.

Reserved Words and Keywords

Both reserved words and keywords are lexical units that provide basic tools for building programs.
For example, you use the NOT reserved word as a negation in comparison operations, and use the
NULL keyword to represent a null value or statement. You cannot use these words when defining

your own programs and data types.

Predefined Identifiers

Oracle Database 12c¢ (and some recent releases prior to it) provides a STANDARD package, and it
globally grants access to the package through a public grant. The STANDARD package defines the
built-in functions found in Appendix C. It also contains the definitions for standard data types and
errors.

You should be careful to not override any predefined identifiers by creating user-defined
identifiers with the same names. This happens any time you define a variable that duplicates a
component from the STANDARD package, just as you can define a variable in a nested PL/SQL
block that overrides the containing block variable name.

Quoted Identifiers
Oracle Database 11g forward enables you to use quoted identifier delimiters to build identifiers
that would otherwise be disallowed because of symbol reuse. Quoted identifiers can include any
printable characters, including spaces. However, you cannot embed double quotes inside
identifiers. The maximum size of a quoted identifier is 30 characters.

You can also use quoted identifiers to leverage reserved words and keywords. Although this is
allowed, it is strongly discouraged by Oracle. For example, the following program creates a
quoted identifier “End,” which is a case-insensitive reserved word:

=1 SQL> DECLARE

2 "End" NUMBER := 1;

3 BEGIN

4 dbms_output.put line('A quoted identifier End ['||"End"||']");
5 END;

6 /

Again, while this is possible, you should avoid it!

User-Defined Variables, Subroutines, and User-Defined Data Types
You create identifiers when you define program components. User-defined data types can be
defined in SQL as schema-level data types, or in PL/SQL blocks. User-defined identifiers must be
less than 30 characters and start with a letter; and they can include a $, #, or _. They cannot
contain punctuation, spaces, or hyphens.

Anonymous block identifiers are only accessible inside a block or nested block. When you
define identifiers in functions and procedures, they are accessible based on their implementation

Chapter 4: Language Fundamentals 119

scope. You can access calling scope identifiers from within local functions and procedures but not
through schema-level functions and procedures. Package specifications let you define package-
level data types that are available in your schema. These package-level data types are also
available in other schemas when you grant execute privilege on them to other schemas. Package
bodies let you define local data types that are only available to functions and procedures defined
within the package body or implementation.

You reference package-level data types by using the component selector to connect the
package and data type names. Chapter 9 discusses PL/SQL packages in depth, while Chapter 2
provides a basic introduction.

Literals

A literal is an explicit character, string, number, or Boolean value. Literal values are not represented
by identifiers. String literals can also represent date or time literals.

Character Literals
Character literals are defined by enclosing any character in a set of single quotes. The literal
values are case sensitive, while the programming language is case insensitive. This mirrors the
behavior of SQL and data stored in the database as character or string data (the VARCHAR2 data
type is the most commonly used type).

You assign a character literal to a variable using the following syntax:

String Literals
String literals are defined like character literals, using single quotes. String literals can contain any
number of characters up to the maximum value for the data type. You typically use the VARCHAR2
data type, or one of its subtypes.

You assign a string literal to a variable using the following syntax:

g 2 := 'some string';

You can also assign a string literal with double quotes inside it by using the following syntax:
e 2 := 'some "quoted" string';

The double quotes are treated as normal characters when embedded in single quotes.

Numeric Literals
Numeric literals are defined like numbers in most programming languages. The generic numeric
literal assignment is done by using the following syntax:

:= 2525;
You can assign a large number with the following exponent syntax:
g n := 2525E8; -- This assigns 252,500,000,000 to the variable.

You may attempt to assign a number beyond the range of a data type. The numeric overflow or
underflow exception is raised when the number is outside the data type’s range.

120 Oracle Database 12c PL/SQL Programming

You also can assign a float or a double by using the respective syntax:

e 1d := 2.0d; -- This assigns a double of 2.
f := 2.0f; -- This assigns a float of 2

These assignments only work with their respective type. A d works with a BINARY DOUBLE,
while an £ works with a BINARY FLOAT.

Boolean Literals
Boolean literals can be a Boolean variable or expression and can be true, false, or null. This three-
valued state of Boolean variables makes it possible that your program can incorrectly handle a not
true or not false condition any time the variable is null. Chapter 5 covers how to manage
conditional statements to secure expected results.

You can make any of the following assignments to a previously declared BOOLEAN variable:

g b := TRUE; -- This assigns a true state.
b := FALSE; -- This assigns a false state.
b := NULL; -- This assigns a null or default state.

TIP

It is a good practice to assign an initial value of TRUE or FALSE to all
Boolean variables, which means you should always explicitly define
their initial state. You should also consider declaring Boolean columns
as not null constrained.

Date and Time Literals

Date literals have an implicit conversion from a string literal that maps to the default format mask.
The default format masks for dates are DD-MON-RR and DD-MON-YYYY, where DD represents a
two-digit day, MON represents a three-character month, RR represents a two-digit relative year,
and YYYY represents a four-digit absolute year. Relative years are calculated by counting 50 years
forward or backward from the current system clock. You assign a relative or absolute date as
follows to previously declared DATE data type variables:

g relative date

absolute date

'01-JUN-07"; -- This assigns 01-JUN-2007.
'01-JUN-1907'; -- This assigns 01-JUN-1907.

Implicit assignment fails when you attempt other format masks, like MON-DD-YYYY. You can
explicitly assign date literals by using the TO_DATE or CAST functions. Only the Oracle
proprietary TO_DATE function lets you use apply a format mask other than the default. The syntax
variations for the TO_DATE function are

g date 1 TO_DATE ('01-JUN-07") ; -- Default format mask.
date 2 := TO DATE('JUN-01-07', 'MON-DD-YY'); -- Override format mask.

The CAST function can use either of the default format masks discussed earlier in the section,
as shown:

e date 1 CAST('01-JUN-07' AS DATE) ; -- Relative format mask.
date 2 := CAST('01-JUN-2007' AS DATE); -- Absolute format mask.

Chapter 4: Language Fundamentals 121

You can use the TO CHAR (date variable, 'MON-DD-YYYY') function to view the fully
qualified date. These behaviors in PL/SQL mirror the behaviors in Oracle SQL.

Comments

You can enter single- or multiple-line comments in PL/SQL. You use two dashes to enter a single-
line comment, and the /* and */ delimiters to enter a multiple-line comment. A single-line
comment is entered as follows:

™ -- This is a single-line comment.

A multiple-line comment is entered as follows:

@] /* This is a multiple-line comment.
Style and indentation should follow your company standards. */

Planned comments are straightforward, but you can introduce errors when you comment out
code to test or debug your programs. The biggest problem occurs when you comment out all
executable statements from a code block. This will raise various parsing errors because every
coding block must have at a minimum one statement, as discussed in the “Block Structure”
section of Chapter 3.The other problem frequently introduced with single-line comments arises
from placing them before either a statement terminator (a semicolon) or an ending block
keyword. This also raises a parsing error when you try to run or compile the program unit.

NOTE

Compilation in PL/SQL programs can mean attempting to run an
anonymous block program or creating a stored program unit. In both
cases, you are parsing the program into PL/SQL p-code. PL/SQL runs
the p-code.

This section has presented the valid characters and symbols in the language. It has also
explained that delimiters, identifiers, literals, and comments are lexical units.

Review Section
This section has described the following points about character and lexical units:

B Lexical units are the basic building blocks in programming languages, and they can be
delimiters, identifiers, literals, or comments.
B You can develop lexical units by combining valid characters and symbols.

B Lexical delimiters are symbols or symbol sets that identify string literals and provide
assignment, association, concatenation, comparison, math, and statement controls.

B The STANDARD package provides predefined identifiers.

B You can create user-defined identifies, such as data type and variable names, that don’t
conflict with keywords or reserved words.

B You can create quoted identifiers by using double quotes to delimit words that may
duplicate keywords and reserved words.

B You can create single- and multiple-line comments.

122 Oracle Database 12¢ PL/SQL Programming

Variables and Data Types

PL/SQL is a blocked programming language. Program units can be named or unnamed blocks.
Unnamed blocks are known as anonymous blocks and are so labeled throughout the book.
Named blocks are functions, procedures, and packages with internal functions and procedures,
and objects types that include functions and procedures. As Chapter 11 explains, you can have
static or instance functions and procedures, and specialized constructor functions that let you
create instances of object types.

The PL/SQL coding style differs from that of the C, C++, and Java programming languages. For
example, curly braces do not delimit blocks in PL/SQL. The DECLARE keyword starts the
declaration section in anonymous block programs, and the function or procedure header,
specification, or signature (name, parameter list, and return type) starts the declaration section in
named block programs. The BEGIN keyword starts the execution block and ends the declaration
block. The EXCEPTION keyword starts the exception block. The exception block ends with the
END keyword, which also ends the program unit. While anonymous block programs are effective
in some situations, the more common practice is to develop reusable subroutines—functions,
procedures, packages, and object types.

You would typically use anonymous blocks when building scripts to seed data or perform
one-time processing activities. Script files are text files that have SQL statements and/or PL/SQL
anonymous blocks that perform a set of sequenced steps.

Anonymous blocks are also effective when you want to nest activity in another PL/SQL block’s
execution section. The basic anonymous block structure must contain an execution section. You
can also put optional declaration and exception sections in anonymous blocks. Figure 4-1
illustrates both anonymous block (left) and named block (right) prototypes.

The declaration block lets you declare data types, structures, variables, and named functions
and procedures. Declaring a variable means that you give it a name and a data type. You can also
define a variable by giving it a name, a data type, and a value. You both declare and assign a
value when defining a variable. While you can implement a named block in another program’s
declaration section, you can’t implement named blocks anywhere else in a PL/SQL program. Likewise,
anonymous blocks can only be implemented in another program’s execution and exception sections.
Chapter 3 provides examples of variable scope inside various anonymous and named blocks.

The following two subsections qualify the available PL/SQL data types and their basic use.

[DECLARE] [HEADER]
| declaration_statements U | declaration_statements U
BEGIN BEGIN
|_execution_statements U | execution_statements U
[EXCEPTION] [EXCEPTION]
| exception_statements ﬂ | exception_statements ﬂ
END; END;
/ /

FIGURE 4-1. PL/SQL block structure

Chapter 4: Language Fundamentals 123

Variable Data Types

PL/SQL supports two principal variable data types: scalar variables and composite variables.
Scalar variables contain only one thing, such as a character, date, or number. Composite variables
are variables built from primitives or base types in a programming language. Composite variables
in Oracle Database are records (structures), arrays, lists, system reference cursors, and object
types. (System reference cursors are specialized or hybrid PL/SQL-only structures that act like

a list of record types and they are discussed in the “System Reference Cursor” section later in
this chapter.)

PL/SQL uses all Oracle SQL data types. PL/SQL also introduces a BOOLEAN data type and
several subtypes derived from the SQL data types. Subtypes inherit the behavior of a data type but
also typically have constrained behaviors. An unconstrained subtype doesn’t change a base type’s
behavior. Unconstrained subtypes are also called aliases. You can also call any base data type a
supertype, because it is the model for subtypes. Unconstrained subtypes are interchangeable with
their base types, while only qualified values can be assigned to constrained subtypes from base
types. You can extend these types by building your own subtypes, as you'll see in the “CHAR and
CHARACTER Data Types” section later in this chapter.

Like other programming languages, PL/SQL lets you both define types and declare variables.
You label a data type and designate how to manage the data type in memory when you define a
type. You define a variable by both declaring the variable and assigning it a value. A variable
name is mapped to a known data type and then added to the program’s namespace as an
identifier when you declare a variable. In some programming languages, no value is assigned to a
declared variable. PL/SQL automatically assigns most declared variables a null value. This means
that variables are generally defined in the language.

You declare variables by assigning them a type or by anchoring their type to a database
catalog column. Anchoring a variable using the $TYPE attribute means that your program’s
variable size automatically adjusts as the size of the column’s data type changes. It also means
that the data type of your variable can change when the column’s data type changes.

While altering a table’s column from one data type to another works when there’s no data in
the table, it doesn’t always work when there’s data in the table. You only can change a populated
column’s data type when Oracle knows how to explicitly cast the values from the one data type
to the other data type. The lack of an implicit data type conversion means you need to export the
column values and manually convert them to the new data type.

Unfortunately, changing a column’s data type and converting the data is only the beginning of
a conversion process. It's only a beginning because your program is structurally coupled to the
column’s data type. While it is possible that small changes in size of a string or number may not
break your program, it’s likely a large change in size might. Likewise, some logic, assignments,
and comparisons may fail when the base type changes. Take for example when you convert a
column with a string data type to a column with a date data type. There isnt any implicit conversion
from a string to date or a string back to a date, and such a column change may alter logical
comparison conditions in your function or procedure. That's why 1'd recommend you only anchor
columns with the $TYPE when you can guarantee the column’s data type won’t change over time.

TIP
Altering the column data type does not raise an error but invalidates
any stored procedures that misuse the new variable type.

Implicit conversions are determined by the PL/SQL engine. Unlike some programming
languages, PL/SQL allows implicit conversions that result in loss of precision (or details). If you

124 Oracle Database 12c PL/SQL Programming

assign a BINARY FLOAT variable to a BINARY INTEGER, any digits to the right of the decimal
place are discarded implicitly. Explicit conversions require you to convert the data, like calling
the TO_CHAR built-in function to display the timestamp of a DATE variable. A list of implicit
conversions is found in Figure 4-2.

There is one pseudo exception to the variable declaration rule. Weakly typed system
reference cursors are not defined until runtime. A weakly typed system reference cursor takes an
assigned cursor number and adopts the record structure of a row assigned to the cursor. A system
reference cursor returns a list of its record structure, and you can only assign it to a composite
variable. You can also anchor a strongly typed system reference cursor to a catalog table or view.
This works much like how you anchor variables to columns, which Chapter 3 covers.

Variable data types can be defined in SQL or PL/SQL. You can use SQL data types in both
SQL statements and PL/SQL statements. You can only use PL/SQL data types inside your PL/SQL
program units.

TO

DL |

SEE 28 o

> A= e £

FROM HHEEEEREEEHEEEEE

z|1z(Z2|9|z(Q|5|é|T|T|5|S |22 |2|%

m|lo|mlo|O|lO|OQ|Z|Z|Z|Z|Z|2|Z|D|[>
BINARY_DOUBLE X | X X X | X X[XX X
BINARY_FLOAT X X X X X | X|X X
BINARY_INTEGER X[X X X X | X|X X
BLOB X
CHAR X | X|X X|X|X|X XXX | X[XX
CLOB X X X X
DATE X X | X X X
LONG X X X X X X
NCHAR X[XX X[X|[X|X XX | X[X[X]|X]|X
NCLOB X | X X | X X X
NUMBER X | X|X X X[X XX X
NVARCHAR?2 X | X | X X | X X X X
PLS_INTEGER X | X | X X X[X|X|X|X X
RAW X | X X | X X
UROWID X X | X X X
VARCHAR?2 X | X|X XXX X[X|X|X[X|X]|X[X

FIGURE 4-2. Implicit conversions

Chapter 4: Language Fundamentals 125

The PL/SQL Buffer and Outputting to the Console

As shown in earlier Figure 1-2 of Chapter 1, there is an output buffer between the SQL*Plus
and PL/SQL engines. You can open the buffer in SQL*Plus by enabling the SERVEROUTPUT
environment variable, like

SQL> SET SERVEROUTPUT ON SIZE 1000000

Once you enable this SQL*Plus environment variable, the output generated by the
PUT LINE and NEW_LINE procedures of the DBMS OUTPUT package will be displayed in
your SQL*Plus environment. It is possible that you may get more output than you expect the
first time you run a program after enabling the environment variable. This can happen when
you run a program in PL/SQL that enables the buffer from PL/SQL without enabling the
environment variable first.

TIP

SQL*Plus environment variable settings are lost when you
change schemas. Don't forget to reset the SERVEROUTPUT
variable if you change schemas, because the output buftfer is
effectively closed the minute you change schemas.

You enable the buffer in PL/SQL by using the following command:
dbms_output.enable (1000000) ;

The first write to the buffer after enabling the environment variable will flush all
contents to the SQL*Plus environment. You clear the prior contents by disabling any open
buffer before enabling it using the following two procedures sequentially:

dbms_ output.disable;
dbms_output.enable (1000000) ;

The DISABLE procedure is recommended to ensure that you don’t capture some
undesired prior output when running your program. You output to the console using the
PUT LINE procedure. The PUT LINE procedure outputs a string and newline character to
the buffer. You use the NEW LINE procedure to write a line return.

The following demonstrates how to output information from your PL/SQL program to
the SQL*Plus environment:

BEGIN
dbms_output.put line('Line one.');
dbms output.new line;
dbms_ output.put line('Line two.');
END;
/

This anonymous block program outputs

Line one.
Line two.

(continued)

126 Oracle Database 12c PL/SQL Programming

This is the technique that you’ll use to get output to the console for debugging or to file
for reporting. You can also combine the SQL*Plus SPOOL: command to split standard output
to both the console and a file (like the Unix tee command). This technique lets you generate
text files for reporting.

The first subsection covers scalar data types, the second large objects, the third composite data
types, and the fourth reference types. ltems are organized for reference and flow. The scalar
data types are the primitives of the language and therefore the building blocks for the composite
data types. The next section covers these primitive building blocks.

Scalar Data Types

The primitives are grouped into alphabetical sections. Each section describes the data type,
demonstrates how to define and/or declare the type or variables of the type, and shows how
to assign values to it. Figure 4-3 qualifies the four major types of scalar variables and their
implementation base types and subtypes.

You use the following prototype for scalar data types inside the declaration block of your
programs:

g variable name data type [NOT NULL] [:= literal value];

Some data types require that you provide a precision when defining a variable. The precision
defines the maximum size in bytes or characters for a data type. Similarly, NUMBER data types
require that you provide the scale. The scale defines the number of decimal places to the right of
the decimal point. These conventions mirror the conventions found in SQL for these data types.

Boolean
The BOOLEAN data type has three possible values: TRUE, FALSE, and NULL. This three-valued
state of Boolean variables makes it possible that your program can incorrectly handle a not true or
not false condition any time the variable is NULL. The “Three-valued logic” section of Chapter 3
and the “If-then-else statements” section of Chapter 5 cover how to manage conditional
statements to secure expected results.

The following is the prototype for declaring a BOOLEAN data type:

= BOOLEAN [NOT NULL]

You can define Boolean variables by implicit null assignment or by explicit assignment of a
TRUE or FALSE value. The following syntax belongs in the declaration block:

g varl BOOLEAN; -- Implicitly assigned a null value.
var2 BOOLEAN NOT NULL := TRUE; -- Explicitly assigned a TRUE value.
var3 BOOLEAN NOT NULL := FALSE; -- Explicitly assigned a FALSE value.

You should always initialize Boolean variables explicitly in your program units. This practice
avoids unexpected behaviors in programs. Using the NOT NULL clause during declaration
guarantees Boolean variables are never null.

Chapter 4: Language Fundamentals 127

Number Data Types Character Data Types
NUMBER
BINARY_INTEGER ‘ DOUBLE PRECISICKH CHAR
I CHARACTER
‘ NATURAL ‘ FLOAT ﬂ
NATURALN D
‘ ‘ DEC U ’ LONG U
‘ POSITIVE U ‘ DECIMAL D
‘ LONG RAW
‘ POSITIVEN D ‘ ORI ﬂ
‘ NCHAR D
SIMPLE_INTEGER ‘ T D
| NVARCHAR2 D
‘ INTEGER
IEEE-754
I ROWID D
| BINARY_DOUBLE ! SNy ‘
N BINARY_FLOAT ‘ UROWID D
PLS_INTEGER
VARCHAR?2
Date, Time & Interval Data Types STRING
VARCHAR

DATE e
| INTERVAL DAY TO SECOND

Large Object Data Types

| INTERVAL YEAR TO MONTH D

| TIMESTAMP

‘ TIMESTAMP WITH TIME ZONE D

BFILE

’ BLOB D
(oo J

—_\ TIMESTAMP WITH LOCAL TIME ZONE

L

FIGURE 4-3. Scalar types

There is little need to subtype a BOOLEAN data type, but you can do it. The subtyping syntax is

| SUBTYPE booked IS BOOLEAN;

128 Oracle Database 12c PL/SQL Programming

This creates a subtype BOOKED that is an unconstrained BOOLEAN data type. You may find this
useful when you need a second name for a BOOLEAN data type, but generally subtyping a
Boolean is not very useful.

As shown in the earlier subsection “Boolean Literals,” you assign a literal value to a Boolean
variable inside the execution block by using the following syntax:

g var := TRUE;

Unlike strings, the TRUE, FALSE, and NULL values are not delimited by single quotes. All
three words are PL/SQL reserved words.

Characters and Strings
Characters and strings work more like the String class in the Java programming language. Strings
are known as single-dimensional character arrays in the C and C++ programming languages.
Character data types store a fixed-length string. You size the string by stating the number of bytes
or characters allowed inside the string. Any attempt to store more than the maximum number of
bytes or characters throws an exception.

The following program illustrates the memory allocation differences between the CHAR and
VARCHAR?2 data types:

=1 DECLARE

c CHAR(32767) 1= ;
v VARCHAR2 (32767) := ' ';

BEGIN
dbms_output.put line('c is ['||LENGTH (c) |
dbms_output.put line('v is ['||LENGTH (v) |
vV 1=V | | vy
dbms_output.put_line('v is ['||LENGTH(v)||']"'); END;

['1);
‘l]l).

The program defines two variables, prints their length (see the PL/SQL built-in functions in
Appendix D), and then concatenates another whitespace value to VARCHAR2 to demonstrate
memory allocation. Provided you have enabled the SQL*Plus buffer (setting SERVEROUTPUT on),
this will output the following to the console:

el c is [32767]
v is [1]
v is [2]

The output shows that a CHAR variable sets the allocated memory size when defined. The
allocated memory can exceed what is required to manage the value in the variable. The output also
shows that the VARCHAR?2 variable dynamically allocates only the required memory to host its value.

CHAR and CHARACTER Data Types The CHAR data type is a base data type for fixed-length
strings. You can size a CHAR data type up to 32,767 bytes in length, but its default length is 1 byte.
Unfortunately, a PL/SQL CHAR is larger than the 4,000-byte maximum allowed in a SQL CHAR
column when the MAX STRING SIZE parameter is set to STANDARD. Setting the MAX STRING
SIZE parameter to EXTENDED lets you store up to 32,767 bytes in SQL VARCHAR2 columns. You
can store character strings larger than 4,000 bytes inline in CLOB or LONG columns. Oracle
recommends that you use the CLOB data type because the LONG and LONG RAW data types are
only supported for backward-compatibility purposes.

Chapter 4: Language Fundamentals 129

The following is the prototype for defining a CHAR data type:
g CHAR[(maximum size [BYTE | CHAR])] [NOT NULL]

The four ways to declare a variable using the CHAR data type and a default null value are

g varl CHAR; -- Implicitly sized at 1 byte.
var2 CHAR(1) ; -- Explicitly sized at 1 byte.
var3 CHAR(1 BYTE); -- Explicitly sized at 1 byte.
var4 CHAR(1 CHAR); -- Explicitly sized at 1 character.

When you use character space allocation, the maximum size changes depending on the
character set of your database. Some character sets use 2 or 3 bytes to store characters. You divide
32,767 by the number of bytes required per character, which means the maximum for a CHAR is
16,383 for a 2-byte character set and 10,922 for a 3-byte character set.

You can use the NOT NULL clause to ensure a value is assigned to a CHAR variable. The
general practice is to not restrict CHAR variables without some other compelling business rationale.

The CHARACTER data type is a subtype of the CHAR data type. The CHARACTER data type has
the same value range as its base type. It is effectively an alias data type and is formally known as
an unconstrained subtype. Assignment between variables of CHAR and CHARACTER data types
are implicitly converted when the assignment target has the same size.

The size for characters has two factors: the number of units allotted and the type of units
allotted. A string of three characters (derived from the character set) cannot fit in a string of three
bytes, and, more naturally, a string of three characters cannot fit in a string of two characters. Any
attempt to make that type of assignment raises an ORA- 06502 error, which means a character
string buffer is too small to hold a value.

You can declare a CHAR subtype by using the following prototype:

g SUBTYPE subtype name IS base typel (maximum size [BYTE | CHAR])] [NOT NULL] ;
The following example creates and uses a constrained subtype CODE:

7 DECLARE
SUBTYPE code IS CHAR (1 CHAR) ;
c CHAR(1 CHAR) := 'A';
d CODE;

BEGIN

Characters and strings cannot specify character ranges. They can only set the maximum size.
This differs from the subtyping behaviors of numbers because they can restrict ranges.

Globalization raises a host of issues with how you use variable-length strings. You should
consider using NCHAR data types when managing multiple character sets or Unicode.

LONG and LONG RAW Data Types The LONG and LONG RAW data types are provided only
for backward compatibility. You should use the CLOB or NCLOB data type where you would use
the LONG data type, and use the BLOB or BFILE data type instead of the LONG RAW data type.
The LONG data type stores character streams, and the LONG RAW data type stores binary streams.

130 Oracle Database 12c PL/SQL Programming

The LONG and LONG RAW data types store variable-length character strings or binary streams
up to 32,760 bytes in your PL/SQL programs. This limitation is much smaller than the 2 gigabytes
that you can store in LONG or LONG RAW database columns. The LONG and LONG RAW data type
maximum size is actually smaller than the maximum for the CHAR, NCHAR, VARCHAR2, and
NVARCHAR?2 data types, and it is dwarfed by the 8 to 128 terabytes of the LOB data types.

The following are the prototypes for declaring the LONG and LONG RAW data types:

=1 LONG [NOT NULL]
LONG RAW [NOT NULL]

You can use the NOT NULL clause to ensure a value is assigned to LONG and LONG RAW
variables. The general practice is to not restrict these data types without some other compelling
business rationale.

The LONG and LONG RAW data types can be declared with a default null value as follows:

g varl LONG; -- Implicitly sized at 0 byte.
var2 LONG RAW; -- Implicitly sized at 0 byte.

You can define variables of these types and assign values by using the following syntax:

g varl LONG := 'CAR';

var2 LONG RAW := HEXTORAW('43'||'41'||'52'); -- CAR assigned in Hexadecimal.

While the LONG data type is easy to use, it is tiny by comparison to the CLOB and NCLOB data
types. The CHAR and VARCHAR2 data types also store 7 bytes more of character data than the
LONG data type.

TIP

You should consider using variable data types that map to your
column data types because over time it is simpler (cheaper) for
maintenance programmers to support. It is advisable that you migrate
CHAR and LONG column data types to VARCHAR2 and LOB data
types, respectively.

You should note that the HEXTORAW function is required to convert hexadecimal streams into
raw streams before assignment to LONG RAW data types. An attempt to assign an unconverted
character stream raises ORA-06502 as a hexadecimal-to-raw conversion error. Also, you should
note that the LONG RAW data stream is not interpreted by PL/SQL.

ROWID and UROWID Data Types The ROWID data type maps to the pseudo column ROWID
in any Oracle database table. You can convert it from a ROWID to an 18-character string by using
the ROWIDTOCHAR function, or back from a character string using the CHARTOROWID function.
Appendix C covers these two SQL built-in functions. An invalid conversion between a string and
a ROWID raises a SYS INVALID ROWID error.

NOTE

The ROWID data type is now only provided for backward
compatibility, and it is recommended that you use the universal rowid
(UROWID) data type.

Chapter 4: Language Fundamentals 131

The UROWID data type is the universal rowid. It works with logical ROWID identifiers stored by
an indexed-organized table, whereas the ROWID data type doesn’t. You should use the UROWID
value for all Oracle ROWID management in PL/SQL programs, and when you are working with
non-Oracle ROWID values.

The following are the prototypes for declaring the ROWID and UROWID data types:

g ROWID

UROWID

Implicit conversion works well for both ROWID and UROWID types. There is seldom any need
to use either the ROWIDTOCHAR or CHARTOROWID function.

VARCHAR?2, STRING, and VARCHAR Data Types The VARCHAR2 data type is a base data
type for variable-length strings. Beyond that, with a few differences, it behaves more or less like
the CHAR data type, as described a bit earlier in the “CHAR and CHARACTER Data Types” section.
The content that overlaps is reiterated here for VARCHAR?2 in case you are using this book as a
reference and haven't already read the description of CHAR. You may notice that the physical size is
required for VARCHAR2 data types, whereas it is optional for the CHAR data type and its subtypes.

You can size a VARCHAR2 data type up to 32,767 bytes in length. Unfortunately, a PL/SQL
VARCHAR?2 data type can be larger than the 4,000-byte maximum stored in a SQL VARCHAR?2
column when the MAX STRING SIZE parameter is set to STANDARD. Setting the MAX STRING
SIZE parameter to EXTENDED lets you store up to 32,767 bytes in SQL VARCHAR2 columns. You
can also store character strings larger than 4,000 bytes in CLOB or LONG columns. Oracle
recommends that you use the CLOB data type because the LONG data type is only supported for
backward-compatibility purposes.

The following is the prototype for declaring a VARCHAR2 data type:

=1 VARCHAR2 (maximum size [BYTE | CHAR]) [NOT NULL]

You can use the NOT NULL clause to ensure a value is assigned to a VARCHAR?2 variable. The
general practice is to not restrict variable-length strings without some other compelling business
rationale. You should consider creating a subtype that enforces the constraint.

You may notice that the physical size is required for VARCHAR2 data types, whereas it is
optional for the CHAR data type and its subtypes. Physical size is required because the database
needs to know how much space to allocate for a variable using this data type. When you size a
VARCHAR?2 variable, the PL/SQL engine only allocates enough space to manage the physical data
value. This typically optimizes your program runtime.

There are three ways to define a VARCHAR?2 variable with a default null value:

g varl VARCHAR2 (100) ; -- Explicitly sized at 100 bytes.
var2 VARCHAR2 (100 BYTE); -- Explicitly sized at 100 bytes.
var3 VARCHAR2 (100 CHAR); -- Explicitly sized at 100 characters.

When you use character space allocation, the maximum size changes, depending on the
character set of your database. Some character sets use 2 or 3 bytes to store characters. You divide
32,767 by the number of bytes required per character, which means the maximum for a
VARCHAR?2 is 16,383 for a 2-byte character set and 10,922 for a 3-byte character set.

132 Oracle Database 12c PL/SQL Programming

The STRING and VARCHAR data types are subtypes of the VARCHAR2 data type. They both
have the same value range as the VARCHAR2 base type. They are effectively aliases and are
formally known as unconstrained subtypes. Assignments between variables of these subtypes are
implicitly converted, provided the variables have the same size.

The size for strings has two factors: the number of units allotted and the type of units allotted.
A string of three characters (derived from the character set) cannot fit in a string of 3 bytes, and,
more naturally, a string of three characters cannot fit in a string of two characters. Any attempt to
make that type of assignment raises an ORA-06502 error, which means a character string buffer is
too small to hold a value.

You can declare a VARCHAR2 subtype by using the following prototype:

g SUBTYPE subtype name IS base type(maximum size [BYTE | CHAR]) [NOT NULL] ;

The following example creates a constrained subtype DB STRING:

=1 DECLARE

SUBTYPE db_string IS VARCHAR2 (4000 BYTE) ;
c VARCHAR2 (1 CHAR) := 'A';
d DB_STRING;
BEGIN
d := c;
END;
/

The example creates a subtype that cannot exceed the physical limit for a VARCHAR2 column. It
works uniformly regardless of the database character set. This can be useful when you want to
ensure compliance with physical database limits in PL/SQL code blocks.

Strings cannot specify character ranges the way that number subtypes can specify number
ranges. They can only set the maximum size, which can be overridden by declaring the subtype
with a new maximum size less than or equal to 32,767 bytes.

Globalization raises a host of issues with how you use variable-length strings. You should
consider using NVARCHAR?2 data types when managing multiple character sets or Unicode.

Dates, Times, and Intervals
The DATE data type is the base type for dates, times, and intervals. There are two subtypes to
manage intervals and three subtypes to manage timestamps. The next three subsections cover
dates, intervals, and timestamps.

DATE DataType The DATE data type in Oracle contains an actual timestamp of activity. The valid
range is any date from January 1, 4712 BCE (Before Common Era) to December 31, 9999 CE
(Common Era). The most common way to capture a timestamp is to assign the SYSDATE or
SYSTIMESTAMP built-in function. They both return fully qualified dates and contain all field elements
of a DATE variable or column. The field index for a DATE data type is presented in Table 4-2

The following is the prototype for declaring a DATE data type:

= DATE [NOT NULL]

You can use the NOT NULL clause to ensure a value is assigned to a DATE variable. There are
many cases where you will want to restrict DATE variables. If you don't restrict them, then you'll
need to wrap them in NVL built-in functions to support logical comparisons.

Chapter 4: Language Fundamentals 133

Field Name Valid Range Valid Internal Values
YEAR —-4712 10 9999 (excluding year 0) Any nonzero integer
MONTH 01to 12 Oto 11
DAY 01 to 31 (limited by calendar rules) Any nonzero integer
HOUR 00 to 23 0to 23
MINUTE 00 to 59 0to 59
SECOND 00 to 59 0 to 59.9 (where tenths are
the fractional interval second)

TIMEZONE_HOUR —12 to 14 (range adjusts for daylight ~ Not applicable

saving time changes)
TIMEZONE_MINUTE 00 to 59 Not applicable
TIMEZONE_REGION Value in VSTIMEZONE NAMES Not applicable
TIMEZONE_ ABBR Value in VSTIMEZONE NAMES Not applicable

TABLE 4-2. DATE Data Type Field Index

You can define a DATE variable with a default null or initialized value, as shown:

g varl DATE; -- Implicitly assigns a null value.
var2 DATE := SYSDATE; -- Explicitly assigns current server timestamp.
var3 DATE := SYSDATE + 1; -- Explicitly assigns tomorrow server timestamp.
var4 DATE := '29-FEB-08'; -- Explicitly assigns leap year day for 2008.

The TO_DATE function can also convert nonconforming date formats into valid DATE values.
Alternatively, the CAST function also works with the default format mask. The default format
masks for dates are DD-MON-RR and DD-MON-YYYY.

Use the TRUNC (date variable) function call when you want to extract a date from a
timestamp. This is useful when you want to find all transactions that occurred on a particular day.
By default the TRUNC built-in function shaves off the time, making a date with 00 hours, 00
minutes, and 00 seconds. The following program demonstrates the concept:

g DECLARE
d DATE := SYSDATE;
BEGIN
dbms_output.put_ line (TO_CHAR (TRUNC(d), 'DD-MON-YY HH24:MI:SS')) ;
END;
/

Running this script produces

=1 12-JUL-13 00:00:00

134 Oracle Database 12c PL/SQL Programming

You can’t achieve the same thing by using the ROUND (date variable, 'key') function
call. The ROUND function takes an uppercase day, month, or year string instead of an integer as its
second parameter. It follows a general pattern of rounding down or rounding up. While it would
be great to say everything before noon rounds down to midnight of the current day, that’s not the
case. When you round with a day value, it can round down to today’s or yesterday’s morning or
round up to the morning of tomorrow or the day after tomorrow. The ROUND function works better
with a month value. The month value rounds down the first half of the month to the first day of
the current month, and rounds up the second half of the month to the first day of the next month.
Likewise, a year value rounds down the first half of the year to the first day of the current year,
rounds up the second half of the year to the first day of the next year.

Here’s a query to show the inconsistencies:

= SOL> SELECT TO CHAR (ROUND (SYSDATE, 'DAY'), 'DD-MON-YYYY HH24:MI') AS Day
2 , TO_CHAR (ROUND (SYSDATE, '"MONTH') , 'DD-MON-YYYY HH24:MI') AS Month
3, TO_CHAR (ROUND (SYSDATE, 'YEAR') , 'DD-MON-YYYY HH24:MI') AS Year
4 FROM dual;

It prints the following based on a SYSDATE value the evening of July 15, 2013:

14-JUL-2013 00:00 01-JUL-2013 00:00 01-JAN-2014 00:00

My caution is to avoid using the ROUND function to shave off elements of a date-time data type.
Use the TRUNC function instead, because its performance is simple and consistent.

The EXTRACT built-in function also lets you capture the numeric month, year, or day from
a DATE value. Appendix C lists other functions that let you manipulate DATE data types.

You can declare a DATE subtype by using the following prototype:

g SUBTYPE subtype name IS base type [NOT NULL] ;

You should note that, as when using the character subtypes, you cannot set a date range.
Creating a DATE subtype that requires a value is possible. Using DATEN for a null required DATE
follows the convention used by the NATURALN and POSITVEN subtypes.

Interval Subtypes You have two DATE subtypes available that let you manage intervals:
INTERVAL DAY TO SECOND and INTERVAL YEAR TO MONTH. Their prototypes are

e INTERVAL DAY [(leading precision)] TO SECOND[(fractional second precision)]
INTERVAL YEAR[(precision)] TO MONTH

The default value for the day’s leading precision is 2, and the second’s fractional second precision
is 6. The default value for the year’s precision is 2.

You can define an INTERVAL DATE TO SECOND variable with a default null or initialized
value, as shown:

g varl INTERVAL DAY TO SECOND; -- Implicitly accept default precisions.
var2 INTERVAL DAY (3) TO SECOND; -- Explicitly set day precision.
var3 INTERVAL DAY (3) TO SECOND(9); -- Explicitly set day and second precision.

Chapter 4: Language Fundamentals 135

You assign a variable value by using the following prototype for an INTERVAL DAY TO
SECOND data type, where D stands for day and HH: MI : SS stands for hours, minutes, and seconds,
respectively:

g variable name := 'D HH:MI:SS';
An actual assignment to the same type would look like
e varl := '5 08:21:20'; -- Implicit conversion from the string.

You can declare an INTERVAL YEAR TO MONTH variable with a default null or initialized
value, as shown:

g varl INTERVAL YEAR TO MONTH; -- Implicitly accept default precisions.
var2 INTERVAL YEAR(3) TO MONTH; -- Explicitly set year precision.

There are four assignments methods. The following program demonstrates an assignment to var2:

DECLARE
var2 INTERVAL YEAR(3) TO MONTH;
BEGIN
-- Shorthand for a 101 year and 3 month interval.
var2 := '101-3"';
var2 := INTERVAL '101-3' YEAR TO MONTH;
var2 := INTERVAL '101' YEAR;
var2 := INTERVAL '3' MONTH;
END;
/

This would output the following values, respectively:

e +101-03
+101-03
+101-00
+000-03

Arithmetic operations between the DATE data type and interval subtypes follow the rules in
Table 4-3. The classic operation is an interval calculation, like subtracting one timestamp from
another to get the number of days between dates.

The intervals simplify advanced comparisons but do require a bit of work to master. More
information on this SQL and PL/SQL data type is in the Oracle Database SQL Language Reference
and the Oracle Database Advanced Application Developer’s Guide.

TIMESTAMP Subtypes The TIMESTAMP subtypes extend the DATE base type by providing a
more precise time. You'll get the same results if the TIMESTAMP variable is populated by calling
the SYSDATE built-in function. The SYSTIMESTAMP SQL built-in function provides a more
precise time for most platforms.

The following is the prototype for declaring a TIMESTAMP data type:

g TIMESTAMP [(precision)] [NOT NULL]

136 Oracle Database 12c PL/SQL Programming

Operand 1 Type Operator Operand 2 Type Result Type
Timestamp + Interval Timestamp
Timestamp - Interval Timestamp
Interval + Timestamp Timestamp
Timestamp - Interval Interval
Interval + Interval Interval
Interval - Interval Interval
Interval * Numeric Interval
Numeric * Interval Interval
Interval / Numeric Interval
TABLE 4-3. Timestamp and Interval Arithmetic

You can use the NOT NULL clause to ensure a value is assigned to a TIMESTAMP variable.
There are many cases where you will want to restrict TIMESTAMP variables. If you don't restrict
them, then you’ll need to wrap them in NVL built-in functions to support logical comparisons.

You can define a TIMESTAMP variable with a default null or initialized value, as shown:

g varl TIMESTAMP; -- Implicitly assigns a null value.
var2 TIMESTAMP := SYSTIMESTAMP; -- Explicitly assigns a value.
var3 TIMESTAMP (3) ; -- Explicitly sets precision for null value.

var4 TIMESTAMP (3) := SYSTIMESTAMP; -- Explicitly sets precision and value.

The following program demonstrates the difference between the DATE and TIMESTAMP data

types:
=1 DECLARE
d DATE := SYSTIMESTAMP;
t TIMESTAMP (3) := SYSTIMESTAMP;
BEGIN
dbms_output.put_line ('DATE [r]jal]1m;
dbms_output.put_line ('TO_CHAR ['||TO_CHAR (4, 'DD-MON-YY HH24:MI:SS')||']"');

dbms_output.put line ('TIMESTAMP ['||t]||']");
END;
/

The anonymous block returns

g DATE [31-JUL-07]
TO_CHAR [31-JUL-07 21:27:36]
TIMESTAMP [31-JUL-07 09.27.36.004 PM]

Chapter 4: Language Fundamentals 137

The other two TIMESTAMP subtypes demonstrate similar behaviors. Their prototypes are

WITH TIME ZONE
WITH LOCAL TIME ZONE

g TIMESTAMP [(precision)

]
TIMESTAMP [(precision)]

You can declare a TIMESTAMP WITH TIME ZONE variable with a default null or initialized
value, as shown:

=1 varl TIMESTAMP WITH LOCAL TIME ZONE;

var2 TIMESTAMP WITH LOCAL TIME ZONE := SYSTIMESTAMP;
var3 TIMESTAMP (3) WITH LOCAL TIME ZONE;
var4 TIMESTAMP (3) WITH LOCAL TIME ZONE := SYSTIMESTAMP;

The difference between these timestamps is that those with time zones append the time zone
to the timestamp. The TIME ZONE qualifier returns the standard time and an indicator of whether
the time zone is using daylight saving time. The LOCAL TIME ZONE qualifier returns the
difference between the local time and Greenwich Mean Time (GMT).

Unicode Characters and Strings
Unicode characters and strings exist to support globalization. Globalization is accomplished by
using character encoding that supports multiple character sets. AL16UTF16 and UTF8 encoding
are provided by the Oracle Database. AL16UTF16 encoding stores all characters in 2 physical
bytes, while UTF8 encoding stores all characters in 3 physical bytes.

The NCHAR data type is a Unicode equivalent to the CHAR data type, and the NVARCHAR2
data type is a Unicode equivalent to the VARCHAR?2 data type. You should use these data types
when building applications that will support multiple character sets in the same database.

NCHAR Data Type The NCHAR data type is a base data type for fixed-length Unicode strings and
requires you to divide the maximum length of 32,767 by 2 or 3 depending on character set. The
NCHAR data type shares the generic behaviors of the CHAR data type covered earlier in this chapter.
Globalization of fixed-length Unicode strings is best suited to the NCHAR data type. You
should use these types when the database supports Unicode or may support it in the future.

NVARCHAR2 Data Type The NCHAR data type is a base data type for variable Unicode strings
and requires you to divide the maximum length of 32,767 by 2 or 3 depending on character set.
The NVARCHAR?2 data type shares the generic behaviors of the VARCHAR2 data type covered
earlier in this chapter.

Globalization of variable-length strings is best suited to the NVARCHAR2 data type. You should
use these types when your database instance supports Unicode or may support it in the future.

Numbers
There are four principal number data types: BINARY INTEGER, IEEE 754—format numbers
(BINARY DOUBLE and BINARY FLOAT), NUMBER, and PLS INTEGER. The BINARY INTEGER
and PLS_INTEGER data types are identical, and they both use the native operating system math
libraries. Oracle uses PLS_INTEGER to describe both BINARY INTEGER and PLS_ INTEGER as
interchangeable, and so does this book in subsequent chapters.

Both IEEE 754—format numbers provide single- and double-precision numbers to support
scientific computing. The NUMBER data type uses a custom library provided as part of Oracle
Database 11g forward. It can store very large fixed-point or floating-point numbers.

138 Oracle Database 12c PL/SQL Programming

BINARY_INTEGER DataType The BINARY INTEGER data type is identical to PLS_INTEGER
and stores integer numbers from —2,147,483,648 to 2,147,483,647 as 32 bits or 4 bytes. Like the
PLS_ INTEGER data type, it computes more efficiently within its number range and takes much
less space than a NUMBER data type in memory. Math operations using two BINARY INTEGER
variables that yield a result outside of the data type range will raise an ORA-01426 numeric
overflow error.

The following is the prototype for declaring a BINARY INTEGER data type:

BINARY INTEGER

You can define a BINARY INTEGER variable with a null value or initialize the value during
declaration. The syntax for both follows:

g varl BINARY INTEGER;
var2 BINARY INTEGER := 21;

The BINARY INTEGER data type uses native math libraries, and as such, the declaration
statement does not allocate memory to store the variable until a value is assigned.
You can define a BINARY INTEGER subtype by using the following prototype:

g SUBTYPE subtype name IS base type [RANGE low number..high number] [NOT NULL] ;

There are several predefined subtypes of the BINARY INTEGER data type. The NATURAL and
POSITIVE subtypes restrict their use to only positive integer values. The NATURALN and
POSITIVEN subtypes restrict null assignments. A PLS-00218 error is raised when you attempt to
declare a NATURALN or POSITIVEN subtype without initializing the value. They both enforce a
not-null constraint on the data type.

The newest subtype is the SIMPLE_INTEGER data type introduced in Oracle Database 11g.
It truncates overflow and suppresses the raising of any error related to overflow. The performance
of the SIMPLE_INTEGER data type is dependent on the value of the PLSQL_CODE_TYPE
database parameter. The performance is superior when PLSQL CODE_TYPE is set to NATIVE
because arithmetic operations are performed with the operating system libraries and both
overflow and null value checking are disabled. Performance is slower when plsgl code type
is set to INTERPRETED because it prevents overload and performs null value checking.

NOTE

Overloading behavior of base types and subtypes in PL/SQL packages
is typically disallowed, but the same name or positional formal
parameter can be overloaded by using PLS_INTEGER or BINARY
INTEGER in one signature and SIMPLE INTEGER in another.

You should also know that a casting operation from a PL.S_INTEGER or BINARY INTEGER
data type to a SIMPLE INTEGER data type does no conversion unless the value is null. A
runtime error is thrown when casting a null value to a SIMPLE_INTEGER variable.

IEEE 754-Format Data Type |EEE 754—format single-precision and double-precision numbers
are provided to support scientific computing. They bring with them traditional overflow and
infinities problems as part of their definition and implementation. You should use these types of
variables for scientific problems, like cube roots and such.

Chapter 4: Language Fundamentals 139

Both the SQL and PL/SQL environments define the BINARY FLOAT NAN and BINARY
FLOAT INFINITY constants. The PL/SQL environment also defines four other constants. All six
constants are listed along with their values in Table 4-4.

NOTE
Oracle Database 12c documentation does not list these constants in
the reserved word or keyword lists. They can be found by printing

them from a PL/SQL program or querying the véreserved words
table.

The following is the prototype for declaring IEEE 754—format data types:

=1 BINARY DOUBLE
BINARY FLOAT

You can define variables of these types with null values or initialize them during declaration.
The syntax for both follows:

= varl
var2
var3
var4

BINARY DOUBLE;

BINARY DOUBLE := 21d;
BINARY FLOAT;
BINARY FLOAT := 21f;

You must always use a d for numeric literals assigned to a BINARY DOUBLE and an £ for
numeric literals assigned to a BINARY FLOAT. Oracle Database 12c overloads subroutines that
leverage the processing speed of these IEEE 754—format data types.

You can also define a BINARY DOUBLE or BINARY FLOAT subtype by using the following
prototype:

g SUBTYPE subtype name IS base type [NOT NULL] ;

Constant Name Environment Value
BINARY FLOAT NAN SQL & It contains Nan, but comparison
PL/SQL operations treat it as a case-

insensitive string. NaN in scientific
notation means not a number.

BINARY_ FLOAT_ INFINITY SQL & It contains Inf, but comparison
PL/SQL operations treat it as a case-
insensitive string.
BINARY FLOAT MIN_NORMAL PL/SQL It contains 1.17549435E-038.
BINARY FLOAT MAX NORMAL PL/SQL It contains 3.40282347E+038.
BINARY FLOAT MIN SUBNORMAL PL/SQL It contains 1.40129846E-045.
BINARY FLOAT MAX SUBNORMAL PL/SQL It contains 1.17549421E-038.

TABLE 4-4. |EEE 754-Format Data Type Constants

140 Oracle Database 12c PL/SQL Programming

You should note that, unlike other number data types, these cannot be range constrained. The
only constraint that you can impose is that the subtypes disallow null value assignments.

NUMBER Data Type The NUMBER data type uses a custom library provided as part of Oracle
Database 12c. It can store numbers in the range of 1.0E-130 (1 times 10 raised to the negative
130th power) to 1.0E126 (1 times 10 raised to the 126th power). Oracle recommends using the
NUMBER data type only when the use or computation result falls in the range of possible values.
The NUMBER data type does not raise a NaN (not a number) or infinity error when a literal or
computational value is outside the data type range. These exceptions have the following outcomes:

B A literal value below the minimum range value stores a zero in a NUMBER variable.
B A literal value above the maximum range value raises a compilation error.
B A computational outcome above the maximum range value raises a compilation error.

The NUMBER data type supports fixed-point and floating-point numbers. Fixed-point numbers
are defined by specifying the number of digits (known as the precision) and the number of digits
to the right of the decimal point (known as the scale). The decimal point is not physically stored in
the variable because it is calculated by the relationship between the precision and the scale.

The following is the prototype for declaring a fixed-point NUMBER data type:

g NUMBER [(precision, [scale])] [NOT NULL]

Both precision and scale are optional values when you declare a NUMBER variable. The
NUMBER data type default size, number of digits, or precision is 38. You can declare a NUMBER
variable with only the precision, but you must specify the precision to define the scale.

You can declare fixed-point NUMBER variables with null values or initialize them during
declaration. The syntax for NUMBER data type declarations with null values is

g varl NUMBER; -- A null number with 38 digits.
var2 NUMBER(15) ; -- A null number with 15 digits.
var3 NUMBER (15,2) ; -- A null number with 15 digits and 2 decimals.

The syntax for NUMBER data type declarations with initialized values is

g varl NUMBER := 15; -- A number with 38 digits.
var2 NUMBER (15) := 15; -- A number with 15 digits.
var3 NUMBER(15,2) := 15.22; -- A number with 15 digits and 2 decimals.

You can also declare fixed-point numbers by using the DEC, DECIMAL, and NUMER subtypes.
Alternatively, you can declare integers using the INTEGER, INT, and SMALLINT subtypes. They
all have the same maximum precision of 38.

The following are prototypes for declaring the DOUBLE PRECISION and FLOAT subtypes of
the floating-point NUMBER data type:

=1 DOUBLE PRECISION[(precision)]
FLOAT [(precision)]

Defining the precision of DOUBLE PRECISION or FLOAT variables is optional. You risk
losing the natural precision of a floating-point number when you constrain the precision. Both of
these variables have a default size, number of digits, or precision of 126. You can define the

Chapter 4: Language Fundamentals 141

precision of a FLOAT variable, but not the scale. Any attempt to define the scale of either of these
subtypes raises a PLS-00510 error because they cannot have a fixed number of digits to the right
of the decimal point.

The syntax for DOUBLE PRECISION and FLOAT declarations with null values is

g varl DOUBLE PRECISION; -- A null number with 126 digits.
var2 FLOAT; -- A null number with 15 digits.
var3 DOUBLE PRECISION; -- A null number with 126 digits.
var4 FLOAT (15) ; -- A null number with 15 digits.

The syntax for DOUBLE PRECISION and FLOAT declarations with initialized values is

g varl DOUBLE PRECISION := 15; -- A number with 126 digits.
var2 FLOAT := 15; -- A number with 126 digits.
var3 DOUBLE PRECISION (15) := 15; -- A number with 15 digits.
var4 FLOAT (15) := 15; -- A number with 15 digits.

You also have the REAL subtype of NUMBER that stores floating-point numbers but only uses a
precision of 63 digits. The REAL subtype provides 18-digit precision to the right of the decimal
point.

PLS_INTEGER Data Type The PLS INTEGER and BINARY INTEGER data types are identical
and use operating system—specific arithmetic for calculations. They can store integer numbers
from -2,147,483,648 to 2,147,483,647 as 32 bits or 4 bytes. The PLS_INTEGER data type takes
much less space than a NUMBER data type to store in memory. It also computes more efficiently,
provided the numbers and result of the math operation are within its number range. You should
note that any math operation that yields a result outside of the range will raise an ORA-01426
numeric overflow error. The error is raised even when you assign the result of the mathematical
operation to a NUMBER data type.

The following is the prototype for defining a NVARCHAR2 data type:

g PLS INTEGER

You can declare a PLS_INTEGER variable with a null value or initialize the value during
declaration. The syntax for both follows:

g varl PLS INTEGER; -- A null value requires no space.
var2 PLS INTEGER := 11; -- An integer requires space for each character.

The PLS_INTEGER data type uses native math libraries, and as such, the declaration
statement doesn’t allocate memory to store the variable until a value is assigned. You can test this
by using the LENGTH built-in function.

You can declare a PLS_INTEGER subtype by using the following prototype:

g SUBTYPE subtype name IS base type [RANGE low number..high number] [NOT NULL] ;

NOTE

Don’t confuse a PLS_INTEGER data type with an INTEGER data
type. The former uses operating system mathematics libraries, while
the latter is a subtype of the NUMBER base type.

142 Oracle Database 12¢ PL/SQL Programming

The LENGTH Built-in Function

The behavior of the LENGTH built-in function is consistent with what you’ll see writing C or
C++ programs. When a value is assigned, the LENGTH built-in function returns the number
of characters, not the number of bytes required for storage. You also have the LENGTHB,
LENGTHC, LENGTH2, and LENGTH4 built-in functions. This means that a PLS_INTEGER
data type with five or six numbers would appear to have a character length of 5 or 6,
respectively, but actually only takes 4 bytes of space in both cases. This result appears
linked to how the NUMBER data type works, where NUMBER column values are stored as C
single-dimensional character arrays. The LENGTH function appears to count the positions in
all number data types.

Large Objects (LOBs)

Large objects (LOBs) provide you with four data types: BFILE, BLOB, CLOB, and NCLOB. BFILE
is a data type that points to an external file, which limits its maximum size to 4GB. BLOB, CLOB,
and NCLOB are internally managed types, and their maximum size is 8 to 128 terabytes,
depending on the db_block_size parameter value.

LOB columns contain a locator that points to where the actual data is stored. You must access
a LOB value in the scope of a transaction. You essentially use the locator as a route to read data
from or write data to the LOB column. Chapter 10 provides details of how you access LOB columns
and work with LOB data types, including the DBMS_LOB built-in package.

BFILE Data Type

The BFILE data type is a read-only data type except for setting the virtual directory and file name
for the external file. You use the built-in BFILENAME function to set locator information for a
BFILE column. Before you use the BFILENAME function, there are several setup steps. You must
create a physical directory on the server, store the file in the directory, create a virtual directory
that points to the physical directory, and grant read permissions on the directory to the schema
that owns the table or the stored program that accesses the BFILE column.

You retrieve the descriptor (the column name), alias (a virtual directory to the physical
directory location), and filename by using the FILEGETNAME procedure from the DBMS_LOB
package. The database session max open files parameter sets the maximum number of
open BFILE columns. Chapter 10 shows these pieces fit together and provides you with some
stored program units to simplify the process.

The following is the prototype for declaring a BFILE data type:

] BFILE
There is one way to define a BFILE variable, and it always contains a null reference by
default:
g varl BFILE; -- Declare a null reference to a BFILE.

A BFILE data type cannot be defined with a reference unless you write a wrapper to the
DBMS LOB.FILEGETNAME procedure. Chapter 10 provides a wrapper function and explains the
limitations that require the wrapper function.

Chapter 4: Language Fundamentals 143

BLOB Data Type

The BLOB data type is a read-write binary large data type. BLOB data types participate in
transactions and are recoverable. You can only read and write between BLOB variables and
database columns in a transaction scope. BLOB data types are objects and are treated differently
than scalar variables. They have three possible states: null, empty, and populated (not empty).
They require initialization by the empty_blob function to move from a null reference to an
empty state, or a direct hexadecimal assignment to become populated.

BLOBs can store binary files between 8 and 32 terabytes. Unfortunately, you can only access
BLOB columns by using the DBMS_LOB package to read and write values after the initial
assignment of a value.

PL/SQL lets you declare local BLOB variables in your anonymous and named blocks.
However, you must establish an active link between your program and the stored BLOB column
to insert, append, or read the column value. Generally, to avoid exhausting your system resources,
you’ll want to only read or store chunks of large BLOB values.

The following is the prototype for declaring a BLOB data type:

% BLOB

There is one way to declare a BLOB variable with a default null reference:
g varl BLOB; -- Declare a null reference to a BLOB.
There are two ways to define an empty and populated BLOB variable:

g varl BLOB := empty blob(); -- Declare an empty BLOB.
var2 BLOB := '43'||'41'||'52"; -- Declare a hexadecimal BLOB for CAR.

BLOB data types are especially useful when you want to store large image files, movies, or
other binary files. Their utility depends a great deal on how well you write the interface. Chapter 10
discusses ways to handle interactions between BLOB columns and PL/SQL variables.

CLOB Data Type
The CLOB data type is a read-write character large data type and it performs like a BLOB data type
for text strings. CLOBs have the same three possible states: null, empty, or populated (not empty).
CLOBs require initialization by the empty clob () function rather than the empty blob ()
function to change from a null reference to an empty state.

Like the BLOB data type, there is one way to define a CLOB variable with a default null
reference:

g varl CLOB; -- Declare a null reference to a CLOB.

Other than the initializing function call, you define an empty CLOB variable and a populated
one like a BLOB data type:

g varl CLOB := empty clob(); -- Declare an empty CLOB.
var2 CLOB := 'CAR'; -- Declare a CLOB for CAR.

CLOB data types are especially useful when you want to store large text files. Examples of
large text files are customer notes that support transactions, refunds, or other activities. Large text
elements are suited to reading and writing only small chunks at a time. Otherwise, you’ll exhaust

144 Oracle Database 12c PL/SQL Programming

your system resources. Chapter 10 discusses ways to handle interactions between CLOB columns
and PL/SQL variables.

NCLOB Data Type

The NCLOB data type is a read-write Unicode character large data type. NCLOB data types perform
like CLOB data types with one exception— more space is allocated to them because they use the
Unicode character sets. All other rules are the same, including the empty clob () function call
to initialize them.

Composite Data Types

There are three composite generalized data types: records, objects, and collections. Collections can

contain a scalar, record, or object data type, and can be implemented as SQL or PL/SQL data types.

The latter, once PL/SQL tables, are known as associative arrays from Oracle Database 10g forward.
The composite data types are as follows:

B A record data type, also known as a structure, typically contains a collection of related
field elements like any row in a table. The code that declares the record data type is like
the code that defines a table’s structure. Moreover, a record has a structure like a table
but is limited to a single row.

B An object data type, also known as a structure, typically contains a collection of related
field elements like any row in a table. The code that declares the object data type is
typically accompanied by an implementation in an object body, but an object data
type without a body acts like a SQL equivalent of a record data type. That means it also
defines a structure, like a single row table.

B A collection may be a varray or nested table (Oracle uses the term nested table to
disambiguate the difference between a programming data type and a physical table) of
a scalar or composite data type. A collection of a scalar data type is an Attribute Data
Type (ADT), as qualified in Chapter 3, while a collection of a composite data type is a
user-defined type (UDT). Collections may use an object data type in a SQL context and
a record data type in a PL/SQL context.

B A system reference cursor may return a collection of one to many columns. It is a PL/SQL-
only context data type. It has two types—weakly typed and strongly typed. A weakly typed
cursor inherits the type at runtime, whereas a strongly typed cursor specifies it at compile
time.

Chapter 3 covers composite data types well, so here we only review assignment methods for
the composite data types. Refer to Chapter 3 for basic code examples on records, objects, and
collections. After the review of assignment methods for records, objects, and collections, we cover
PL/SQL system reference cursors.

Nested Table or Table

The idea of nesting falls apart when the collection isn't a persistent object type that defines
a column in a table. That's why | chose to use table instead of nested table in most places in
this book.

Chapter 4: Language Fundamentals 145

Records
Records are extremely useful when working with cursors and other exclusively PL/SQL solutions.
You can define a stored function that returns a record type, but that limits how you can use the
function. SQL can only access stored functions when they return SQL data types. The alternative
to returning a record type is to return a SQL object type.

The following declares a record with default values, initializes it with overriding values, and
prints the values:

7 SQL> DECLARE
2 -- Declares a default record structure.

3 TYPE muppet record IS RECORD
4 (salutation VARCHAR(20) DEFAULT 'Ms.'
5 , name VARCHAR2 (10) := 'Piggy') ;
6 -- Declares a variable of the local record structure.
7 muppet MUPPET RECORD;
8 BEGIN
9 -- Assignments are by element or field only.
10 muppet.salutation := 'Mr.';
11 muppet.name := 'Kermit the frog';
12 -- Print the record as a pipe concatenated string.
13 dbms_output.put line (muppet.salutation||' '||muppet.name) ;
14 END;
15/
It prints

g Mr. Kermit the frog

Lines 3 through 5 declare the local record type. Line 7 declares a variable of the local data
type, but actually defines it, because the record structure has default values—Ms. Piggy. Lines 10
and 11 demonstrate that you must assign values field by field. The exception to that rule comes
when you assign a cursor return that matches the record structure or the values of a matching
record structure. Line 13 shows that the variable name, component selector, and field name are
required to print the contents of a record.

Objects

Objects are typically more useful than records, which, from a point of view that leverages object
types, are becoming legacy code. That's my view. It appears that Oracle may share my view
because it now maps object types to internal and external Java programs. Admittedly, using objects
takes more planning and skill upfront, but good design yields great rewards. After all, Oracle
Database 12c is an object relational database management system.

You can define a stored function that returns an object type and use it in SQL or PL/SQL contexts.
The following declares an object in SQL, which makes it a schema-level object:

@1 SOL> CREATE OR REPLACE

2 TYPE president record IS OBJECT
3 (salutation VARCHAR(20)

4 , name VARCHAR2 (10)) ;

5 /

146 Oracle Database 12c PL/SQL Programming

The SQL statement creates a schema-level object type that you can use as a data type in
tables or your program units. True objects include an object body that qualifies the implementation
of the object type.

Note that the default values no longer exist. That’s because object types can’t have default
values, and an attempt to add them would raise the following compilation error:

g LINE/COL ERROR

0/0 PL/SQL: Compilation unit analysis terminated
2/5 PLS-00363: expression 'SALUTATION' cannot be used as an
assignment target

It prints
g Mr. Kermit the frog
The following declares an object in SQL, which makes it a schema-level object:

g SQL> DECLARE

2 -- Declares a variable of the local record structure.

3 president PRESIDENT OBJECT := president object('Mr.', 'Lincoln');
4 BEGIN

5 -- Print the record as a pipe concatenated string.

6 dbms_output.put_line (president.salutation||' '||president.name) ;
7 END;

8 /

There’s no local declaration of the object type because it exists at the schema level. Line 3 does
contain something new, a specialized function call—an object constructor. Object constructors are
specialized functions that take a list of comma-delimited values and return instances of object
types. Failure to construct an object instance raises an uninitialized runtime exception. So, don't
forget that instantiation with the constructor.

It prints by using the same approach as the record type:

Mr. Lincoln

Leveraging your introduction to functions from Chapter 3, let’s refactor the logic into a function
that returns an instance of the object president object. It’s fairly straightforward as long as
you remember never to assign dynamic values in the declaration block.

Here’s the code:

SQL> CREATE OR REPLACE FUNCTION get president

2 (pv_salutation VARCHAR2 DEFAULT 'Mr.'
3, pv_name VARCHAR2) RETURN president object IS
4 -- Declare a variable of the schema-level object structure.
5 president PRESIDENT OBJECT := president object (NULL,NULL) ;
6 BEGIN
7 -- Assign a value to pre-allocated space.
8 president := president object(pv_salutation,pv name) ;
9 -- Return the object instance.
10 RETURN president;
11 END;

12 /

Chapter 4: Language Fundamentals 147

Line 5 declares a local variable with a null element, which allocates space for a record. Line 8
assigns the values to the object instance, and line 10 returns the instantiated object with the
following query:

g1 SQL> COLUMN president FORMAT A40
SQL> SELECT get president (pv_name => 'Truman') AS president
2 FROM dual;

The call to the get_president function returns a flattened object, which is the name of the
object type and the parenthetical list of values to construct an instance:

g PRESIDENT (SALUTATION, NAME)

PRESIDENT OBJECT ('Mr.', 'Truman')

You can convert this to columns by referring to the “Migrate from Objects to a Relational
Table” section of Appendix B. Overall, this short section has shown that objects may be consumed
in SQL contexts.

Collections

Collections are arrays and lists. Arrays differ from lists in that they use a sequentially numbered
index, while lists use a nonsequential numeric or unique string index. Arrays are densely
populated lists because they have sequentially numbered indexes. While lists can have densely
populated numeric indexes, they can also be sparsely populated, meaning there are gaps in a
sequence or the indexes are not sequential.

Oracle supports three types of collections. Two are both SQL and PL/SQL data types, depending
on how you define them: varray and nested table (or table). The third collection type is a PL/SQL-only
data type, called an associative array. The associative array is also known as a PL/SQL table or an
index-by table. Refer to Chapter 3 for a full introduction to these three collection types. Flip to
Chapter 6 if you're immediately curious about implementing collections.

System Reference Cursors

System reference cursors are pointers to result sets in query work areas. A query work area is a
memory region (known as a context area) in the Oracle Database 12¢ Program Global Area
(PCA). The query work area holds information on the query. You'll find the rows returned by a
query, the number of rows processed by the query, and a pointer to the parsed query in the query
work area. The query work is discrete from the Oracle Shared Pool (see Appendix A).

NOTE

All cursors share the same behaviors whether they are defined as PL/
SQL reference cursor data types or ordinary cursors. In fact, every SQL
statement is a cursor processed and tracked in a PGA context area.

You use system reference cursors when you want to query data in one program and process it
in another, especially when the two programs are in different programming languages. You have
the option of implementing a system reference cursor in two ways: one is strongly typed and the
other is weakly typed. System reference cursors are a PL/SQL-only data type. You can define them
in anonymous or named blocks. They are most useful when you define them in package
specifications, because your programs can share them.

148 Oracle Database 12c PL/SQL Programming

There is one prototype, but how you choose to implement the cursor defines whether it is
strongly or weakly typed. The prototype is

g TYPE reference cursor name IS REF CURSOR
[RETURN catalog object name%ROWTYPE] ;

You create a weakly typed system reference cursor by defining it without a return type. A
strongly typed system reference cursor has a defined return type. As a rule of thumb, you should
use strongly typed system reference cursors when you need to anchor a reference cursor to a
catalog object. Weakly typed system reference cursors are ideal when the query returns something
other than a catalog object. A generic weakly typed system reference cursor is already defined as
SYS REFCURSOR, and it is available anywhere in your PL/SQL programming environment.

The prototype for a best-practice weakly typed system reference cursor is

g TYPE best weakly typed IS REF CURSOR;
The prototype for a best-practice strongly typed system reference cursor is
g TYPE best strongly typed IS REF CURSOR RETURN some table%$ROWTYPE;

The power of reference cursors becomes more significant when you use them inside stored
program units. You can also use reference cursors in anonymous block programs and assign them
to a SQL*Plus reference environment variable.

You define a SQL*Plus reference cursor environment variable by defining a variable and
pressing eNTER. SQL*Plus statements do not require a semicolon or forward slash to run. The
following creates a weakly typed SQL*Plus reference cursor:

g SQL> VARIABLE sv_refcursor REFCURSOR

The following program defines and declares a reference cursor before explicitly opening it
and assigning its values to an external session-level variable:

g SQL> DECLARE

2 -- Declare a weakly typed reference cursor.
TYPE weakly typed IS REF CURSOR;

4 -- Declare a local variable of the weakly typed reference cursor.

5 1v_refcursor WEAKLY TYPED;

6 BEGIN

7 -- Open the reference cursor.

8 OPEN 1lv_refcursor FOR

9 SELECT item title

10 , COUNT (*)

11 FROM item

12 HAVING (COUNT (*) > 2)

13 GROUP BY item_title;

14

15 -- Assign the reference cursor to a SQL*Plus session variable.
16 :sv_refcursor := lv_refcursor;

17 END;

18 /

Chapter 4: Language Fundamentals 149

You can query the session-level variable to see the contents of the reference cursor with the

following:
g SQL> SELECT :sv_refcursor
2 FROM dual;

The query returns the following, provided you've run the seeding scripts found in the book’s
introduction:

CURSOR STATEMENT : 1
CURSOR STATEMENT : 1
ITEM TITLE COUNT (*)

Harry Potter and the Chamber of Secrets 3
Harry Potter: Goblet of Fire 3
Die Another Day 3
Pirates of the Caribbean 4
The Lord of the Rings - The Return of the King 3

10 rows selected.

The SYS REFCURSOR generic system reference cursor can replace the locally defined
reference to a weakly typed cursor. You would make the change by remarking out lines 2 and 3
(to keep the rest of the line numbers intact) and making the following change on line 5:

5 lv_refcursor SYS_REFCURSOR;

Chapter 8 demonstrates how to use a system reference cursor inside functions and procedures.
System reference cursors are extremely useful data types when you want to pass a query work area
pointer to an external program. You can pass to an external program by using the Oracle Call
Interface 8 (OCI8) libraries.

Review Section
This section has described the following points about variables and data types:

B Anonymous blocks use the DECLARE keyword to start the declaration block, while
named blocks use the function or procedure header.
B The BEGIN keyword starts the execution block and ends any declaration block.

B The EXCEPTION keyword starts the exception block and the END keyword terminates
the program unit.

B You can define data types in local anonymous (unnamed) or named blocks, as well as
in nested anonymous blocks.

(continued)

150 Oracle Database 12c PL/SQL Programming

You can declare scalar and composite variables in the declaration block.
Scalar variables hold only one thing, such as a number, string, or date.

You can create subtypes of standard scalar variables in PL/SQL.

Composite variables hold two or more things, and they can be a record structure of
one row and many columns (fields), a collection, or a hybrid collection known as a
system reference cursor.

B Some scalar variables implicitly cast while others require programmer intervention
with SQL built-in functions.

B SQL composite variables work in both SQL and PL/SQL contexts, while PL/SQL
composite variables work only in the PL/SQL context.

Summary

This chapter has explained delimiters; how you define, access, and assign values to variables; and
how you work with scalar and composite data types.

Mastery Check

The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix | for answers to
these questions.

True or False:
1. ___ A declaration block begins with the function or procedure header, specification, or
signature in a named block.
___An execution block can contain a local named block.
___Adeclaration block can’t contain an anonymous block.
___An identifier is a lexical unit.
___The colon and equal sign set (: =) is the only assignment operator in PL/SQL.
___The equal sign and greater than symbol set (=>) is an association operator.
__PL/SQL lets you create subtypes of standard scalar variables.
___Arrecord data type is a SQL data type.
___A system reference cursor is a PL/SQL-only data type.

S SINSD AW

__ The PL/SQL programming language supports arrays and lists as composite data types.

Chapter 4: Language Fundamentals 1571

Multiple Choice:
11. Lexical units are the basic building blocks in programming languages, and they can perform
which of the following? (Multiple answers possible)
A delimiter
An identifier
A literal

A comment

mO 0= »

An anonymous block

12. Which of the following are valid symbol sets in PL/SQL? (Multiple answers possible)
A. A colon and equal sign set (:=) assignment operator

A guillemets or double angle bracket set (<< >>) as delimiters for labels

A less than symbol and greater than symbol set (<>) as a comparison operator

An exclamation mark and equal sign set (! =) as a comparison operator

mO 0w

A opening curly brace and closing curly brace symbol set ({ }) as delimiters for an
anonymous block

13. Which of the following are valid scalar data types in PL/SQL? (Multiple answers possible)
A TEXT data type

A VARCHAR2 data type

A NCHAR data type

A CHAR data type

A DATE data type

mU 0N = >

14. Which of the following data types are best suited for scientific calculations in PL/SQL?
(Multiple answers possible)

A. A NUMBER data type

A PLS_INTEGER data type

A BINARY DOUBLE data type
A BINARY FLOAT data type

A BINARY INTEGER data type

mO 0w

15. Which of the following are reasons for using a system reference cursor?

A. A system reference cursor mimics a table collection
An alternative when you want to query data in one program and use it in another
A PL/SQL-only solution with the results of composite data type

A SQL or PL/SQL solution with the results of a system reference cursor

mO 0w

None of the above

CHAPTER

Control Structures

154 Oracle Database 12c PL/SQL Programming

his chapter examines the control structures in PL/SQL. Control structures let you make

conditional choices, repeat operations, and access data. The IF and CASE statements let

you branch program execution according to one or more conditions. Loop statements let
you repeat behavior until conditions are met. Cursors let you access data one row or one set of
rows at a time.

This chapter examines the various control structures in the following order:
B Conditional statements

B IF statements

B CASE statements

B Conditional compilation statements
M lterative statements

B Simple loop statements

B FOR loop statements

B WHILE loop statements
B Cursor structures

B Implicit cursors

W Explicit cursors
B Bulk statements

B BULK COLLECT INTO statements

B FORALL statements

Conditional Statements

There are three types of conditional statements in programming languages: single-branching
statements, multiple-branching statements without fall-through, and multiple-branching statements
with fall-through. To fall through means to process all subsequent conditions after finding a matching
CASE statement. Single-branching statements are if-then-else statements. Multiple-branching
statements without fall-through are if-then-elsif-then-else statements, and with fall-through they are
CASE statements. Figure 5-1 demonstrates the logical flow of the first two conditional statements. The
third is not displayed because PL/SQL does not support fall-through, and PL/SQL implements
CASE statements like if-then-elsif-then-else statements.

Chapter 5: Control Structures 155

Single Branching Statement Multiple Branching Statement

True Block

Else Block

FIGURE 5-1. Branching statement logical flows

NOTE

PL/SQL uses the ELSIF reserved word in lieu of two separate
words—else if. This is a legacy from the Pascal and Ada programming
languages.

The “Condition” diamonds in Figure 5-1 are decision trees. Decision trees represent code
branching that happens because of comparison operations. Comparison operations are frequently
called comparison expressions or expressions because they return a true or false value. At least,
that's true in a two-valued logic model, where true or false comparisons are straightforward.

Not true or not false comparisons are tricky when we change from a two-valued logic model to

a three-valued logic model. Three-valued logic occurs where an expression may return true, false,
or null. Null values are possible anytime a comparison value comes from a database, because
scalar data types hold a value or null.

A not true expression is true when the value is false or null in a three-valued logic model, and
a not false expression is met when the value is true or null. That's because both a not true expression
and a not false expression are true when the condition isn’t met or a null makes it unsolvable.

PL/SQL supports lexical symbols, symbol sets, and identifiers as valid comparison operators.
Table 5-1 lists and defines symbol comparison operators. Table 5-1 expands the comparison
operator list by providing the comparison operators that are identifiers. Identifiers like these are
reserved words or keywords, as qualified in Chapter 4.

156 Oracle Database 12c PL/SQL Programming

Operator
AND

BETWEEN

Description

The AND operator allows you to combine two comparisons into one. This
operator makes the combination statement true only when both individual
statements are true. You also use the AND operator with the BETWEEN operator to
glue the lower- and upper-range values.
BEGIN

IF 1 = 1 AND 2 = 2 THEN

dbms output.put line('True.');

END IF;
END;
/
This returns the following output:
True.

The BETWEEN operator allows you to check whether a variable value is between
two values of the same data type. The BETWEEN operator is also an inclusive
operator. Inclusive means that a match may include either of the boundary
values, which can’t be null values. The BETWEEN operator also requires that the
lower value precede the upper value.
BEGIN

IF 1 BETWEEN 1 AND 3 THEN

dbms_output.put_ line('In the range.');

END IF;
END;
/
This returns the following output:
In the range.

The IN operator allows you to check whether a variable value is in a set of
comma-delimited values and is often called a lookup value because it compares
a single scalar value against a list of values.
The =ANY and =SOME operators perform the same behavior as the IN operator.
The logic asks if the left operand is found in the set of the right operand, and the
logic is an either-or evaluation among a list of values that leverages short-circuit
evaluation, which stops checking when it finds one match.
BEGIN

IF 1 IN (1,2,3) THEN

dbms_output.put line('In the set.');

END IF;
END;
/
This returns the following output:
In the set.

TABLE 5-1.

Comparison Operators

Chapter 5: Control Structures 157

Operator Description

IS EMPTY The IS EMPTY operator allows you to check whether a varray or table
collection variable is empty. Empty means that the collection was constructed
without any default elements. This means no space was allocated to the System
Global Area (SGA) for elements in the collection. When no element space is
allocated, the IS EMPTY comparison returns true, and it returns false when at
least one element is allocated space. You raise a PLS-00306 exception when
the collection has not been initialized through explicit construction. Chapters 3
and 6 explain how you construct collections.

Note that this only works with collections of scalar SQL data types. An IS
EMPTY comparison operator implicitly makes an IS A SET comparison at
the same time, and it’s probably more useful than the IS A SET comparison
operator for that reason.

DECLARE
TYPE list IS TABLE OF INTEGER;
a LIST := list();

BEGIN

IF a IS EMPTY THEN
dbms_output.put line('"a" is empty.');
END IF;
END;
/
This returns the following output:
"a" is empty.

IS NULL The IS NULL operator allows you to check whether a variable value is null. The
NVL built-in function can enable you to assign any Boolean or expression an
explicit true or false value.

DECLARE

var BOOLEAN;
BEGIN

IF var IS NULL THEN

dbms output.put line('It is null.');

END IF;
END;
/
This returns the following output:
It is null.

(continued)

TABLE 5-1. Comparison Operators

158 Oracle Database 12c PL/SQL Programming

Operator Description
IS A SET The IS A SET operator allows you to check whether a variable is a varray
or table collection variable, provided an instance of the variable has been
constructed. It returns true when the variable data type is a varray or table
collection and the variable has been constructed. Constructed means that an
instance of the collection has been created with or without members. Chapter 11
contains more details on the concept of constructing object types.
The IS A SET comparison operator returns false when the variable data type is
an uninitialized (or unconstructed) varray or table collection. You raise a PLS -
00306 exception when you use the comparison operator against an associative
array. It's important to note that this comparison operator only works with
collections of scalar base data types.
If you forget the “A” in the IS A SET operator and use IS SET, the program
would raise a malformed identifier PLS-00103 exception because that’s not a
valid comparison operator.
DECLARE
TYPE list IS TABLE OF INTEGER;
a LIST := list();
BEGIN
IF a IS A SET THEN
dbms_output.put_ line('"a" is a set.');
END IF;
END;
/
This returns the following output:
"a" is empty.
LIKE The LIKE operator allows you to check whether a variable value is part of
another value. The comparison can be made with the SQL lexical underscore
(_) for a single-character wildcard, or % for a multiple-character wildcard. The %
lexical value inside a string is not equivalent to its use as an anchoring attribute
indicator in PL/SQL.
BEGIN
IF 'Str%' LIKE 'String' THEN
dbms_output.put_line('Match');
END IF;
END;
/
This returns the following output:
Match.
TABLE 5-1. Comparison Operators

Chapter 5: Control Structures 159

Operator Description

MEMBER OF The MEMBER OF is a logical comparison operator. It lets you find out whether an
element is a member of a collection. It only works with collections of scalar SQL
data types. It returns true when the element exits in a collection and returns false
when it doesn’t.

DECLARE

TYPE list IS TABLE OF VARCHAR2 (10) ;

n VARCHAR2 (10) := 'One';

a LIST := list('One', 'Two', 'Three') ;
BEGIN

IF n MEMBER OF a THEN

dbms_output.put_ line('"n" is a set.');

END IF;

END;

When the left operand element is null, the operator returns false. This means that
you should always check for a value before using this comparison operator.

It prints the following when successful:

"n" is empty.

NOT NOT is a logical negation operator, and it allows you to check for the opposite of

a Boolean state of an expression, provided it isn’t null.
BEGIN

IF NOT FALSE THEN

dbms_output.put line('True.');

END IF;
END;
/
When the expression or value is null, the NOT operator changes nothing. There
is no opposite of null, and a logical negation of null is also a null. This returns the
following output because FALSE is a Boolean literal and TRUE is the only thing
not false when you exclude null values:
True.

OR The OR operator allows you to combine two comparisons into one. This operator
makes the combination statement true when one or the other statement is
true. PL/SQL uses short-circuit evaluation, which means it stops evaluating a
combination comparison when any one value is false.

BEGIN

IF 1 =1 OR 1 = 2 THEN

dbms_output.put line('True.');

END IF;
END;
/
This returns the following output because of one of the two statements is true:
True.

(continued)

TABLE 5-1. Comparison Operators

160 Oracle Database 12c PL/SQL Programming

Operator Description
SUBMULTISET The SUBMULTISET operator lets you check whether a varray or table collection
is a subset of a mirrored data type. It returns true if some to all elements in the
left set are found in the right set. Note that this operator does not check for a
proper subset, which is one item less than the full set or identity set.
DECLARE
TYPE list IS TABLE OF INTEGER;
a LIST := list(1,2,3);
b LIST := list(1,2,3,4);
BEGIN
IF a SUBMULTISET b THEN
dbms_output.put_line('Valid subset.');
END IF;
END;
/
This prints the following when successful:
Valid subset.
TABLE 5-1. Comparison Operators

You also need to know the order of operation for comparison operators. Table 5-2 lists their
order of operation. You can override the order of operation by enclosing subordinate expressions
in parentheses. PL/SQL compares any expression inside parentheses as a whole result. PL/SQL
applies any remaining comparison operators in an expression by their order of operation.

Order

(62 BN N CC I)

Operator Definition

* Exponentiation

+, - Identity and negation

*x / Multiplication and division

+ - || Addition, subtraction, and concatenation
=, <, > <=, >=,<>, 1=, ~=, "=, Comparison

BETWEEN, IN, IS EMPTY, IS NULL,
IS A SET, LIKE, MEMBER OF, SUBMULTISET

AND
NOT
OR

Conjunction
Logical negation

Inclusion

TABLE 5-2. Order of Operations

Chapter 5: Control Structures 161

X Value Expression Result Negation Expression Result
True X is True True X is not True False
False X'is True False X is not True True
Null X is True Null X is not True True

TABLE 5-3. Single-Variable Truth Table

Single-branching expressions return a true, false, or null. Both false and null are not true when
you evaluate whether an expression is true. Likewise, both true and null are not false when you
evaluate an expression as false. A null expression is never true or false. Table 5-3 maps the possible
outcomes in a truth table.

Multiple-branching expressions require two-sided truth tables: one table for the conjunction
operator, AND, and another for the inclusion operator, OR. The conjunction operator creates
expressions where you resolve the combination of two expressions, where both are true. The
whole statement is not true when one is false or null. Table 5-4 maps the possible outcomes of
conjunctive truth—when X and Y expressions are true, false, or null.

Multiple-branching expressions also require a two-sided truth table to examine how the
inclusion operator works. Inclusion is where two things are true when one or the other is true,
but because of null expressions the whole statement can be true, false, or null. Table 5-5 maps
the possible outcomes of inclusive truth—when X orY expressions are true, false, or null.

Inclusive logic performs what's known as short-circuit evaluation, which is known as minimal
or McCarthy evaluation (after John McCarthy, a famous computer scientist). The beauty of short-
circuit evaluation is that it pares (or eliminates) the need to check other values. That's because you
only need one true value for the entire statement to be true.

Tables 5-4 and 5-5 display results from asking whether the values are true. The results change
when you ask whether one or both of the values are false. True values become false values. False
values become true values. Unfortunately, null values remain false values. The truth tables should help
you plan how you will develop your branching logic in IF and CASE statements. The same logical
outcomes extend to three or more expressions, but they don’t render in two-dimensional tables.

This section has provided detail to support the following branching subsections, which examine
single-branching and multiple-branching statements that use IF statements, and multiple-branching
statements that use simple and searched CASE statements. The subsections are grouped by the IF
and CASE statements.

XandY Y is True Y is False Y is Null
X is True True False False
X is False False False False
X is Null False False False

TABLE 5-4. Conjunctive Truth Table—X and Y Expressions are TRUE or FALSE, or NULL

162 Oracle Database 12c PL/SQL Programming

XorY Y is True Y is False Y is Null
X is True True True True
X is False True False False
X is Null True False False

TABLE 5-5. Inclusive Truth Table—X or Y Expressions Are TRUE or FALSE, or NULL

IF Statements

The IF statement supports single-branching and multiple-branching statements. IF statements are
blocks. They start with a beginning identifier, or reserved word, and end with an ending identifier
and a semicolon. All statement blocks require at least one statement, just as anonymous or named
blocks do.

IF statements evaluate a condition. The condition can be any comparison expression or set of
comparison expressions that evaluates to a logical true or false. You can compare two literals or
variables of the same type. The variables can actually have different data types, as long as they
implicitly or you explicitly convert one of the two types to match the other (see Figure 4-2 in
Chapter 4 for the implicit conversion chart). A Boolean variable can replace a comparison operation.
You also can compare the results of two function calls as you would two variables or a variable
and a single function call, provided the comparison returns a Boolean variable. The valid comparison
operators are presented in Table 4-1 and Table 5-1.

If-then-else Statements

The if-then-else statement is a single-branching statement. It evaluates a condition and then
runs the code immediately after the condition when the condition is met. The prototype for an
if-then-else statement is

g IF [NOT] [comparison expression | boolean value] [AND | OR]
[comparison expression | boolean value] THEN
true execution statements
[ELSE
unmet_condition statements]
END IF;

You use the optional NOT (the logical negation operator) to check for a false comparison result.
While there is only one [AND | OR] clause in the IF statement, there is no limit to how many
conditions you can evaluate. The ELSE block is optional. IF statements without an ELSE block
only execute code when a condition is met.

In its simplest form, the following is an if-then statement. It demonstrates an if-then statement
comparing two numeric literals:

e SQL> BEGIN

2 IF 1 = 1 THEN

3 dbms_output.put line('Condition met!"');
4 END IF;

5 END;

6 /

Chapter 5:

Control Structures 163

Note that parentheses around the comparison statement on line 2 aren’t required. This is a
convenience compared to some other programming languages that require them, such as JavaScript
and PHP. The equivalent logic using a Boolean variable instead of the comparison operation is

=1 SQL> DECLARE

2 1v_equal BOOLEAN NOT NULL := TRUE;

3 BEGIN

4 IF lv_equal THEN

5 dbms_output.put line('Condition met!"');
6 END IF;

7 END;

9 /

Line 4 uses a “lazy” comparison because it evaluates the variable as true. Some developers
think it's unwise to use lazy comparisons in PL/SQL, but | disagree. A verbose (or wordy) comparison
would change line 4 to the following but not alter the outcome:

IF 1lv_equal = TRUE THEN

When you evaluate a Boolean variable or expression that returns a null value, the IF statement
can’t be true and returns a false value. Fortunately, we declare the 1v_equal variable on line 2
to disallow a null value and we assign a true value to the variable.

Function Calls as Expressions
When you call a function, you provide values or variables, and the function returns a result.
If the function returns a variable-length string, it is called a string expression because it
yields a string as a result. The result is like a string literal, which is covered in Chapter 4.
Alternatively, function definitions can return any other scalar variable data types, and they
become expressions that yield values of those data types.

(or function call return value) on line 16:

SQL> DECLARE

2
3
4
5
6
7
8

9
10
11
12
13
14

-- Declare a local variable.
lv_thing one VARCHAR2(5) := 'Three';

-- Declare a local function.

FUNCTION ordinal (n NUMBER) RETURN VARCHAR2 IS
/* Declare a local table collection type. */
TYPE ordinal_type IS TABLE OF VARCHAR2 (5) ;

/* Declare and initialize collection variable.

1lv_ordinal ORDINAL TYPE :=

ordinal type('One', 'Two', 'Three', 'Four') ;
BEGIN
RETURN lv_ordinal (3) ;

END;

The following example compares a single variable value and an expression return value

=Y

(continued)

164 Oracle Database 12¢ PL/SQL Programming

15 BEGIN

16 IF 1lv_thing one = ordinal (3) THEN

17 dbms_output.put line('['||ordinal(3)||']");
18 END IF;

19 END;

20 /

Comparisons work with literal values, variable values, and expression return values (or
function call return values). The 1v_thing one variable value and the expression value
returned from the ordinal function are found to be equal. The program prints the
following (provided the SQL*Plus SERVEROUTPUT environment variable is enabled):

Three

The return value of any function call is an expression or a runtime value that can be
compared against the content of a variable value, literal value, or another function call return
value. You can also pass a function call return value as a call parameter value to another
function or procedure.

You should anticipate runtime behaviors such as receiving a variable or expression result that
may be a null value, and use the NVL built-in function where possible to resolve them. Doing so
avoids unexpected outcomes. The default behavior is fine, provided you want your program to
treat a null value as false.

Let’s assume treating the 1v_equal variable as a pseudo constant isn’t acceptable because
the variable is dynamically assigned a value. That means you need to safeguard the behavior of
the if true comparison operation, and you would do that by using an NVL function call on line 4
like

= IF NVL(lv_equal,TRUE) THEN

The NVL function guarantees that the question answered is true when the 1v_equal
variable’s value is null or false. Reversing the question, we would ask a negation question such as
if not false with the following syntax on line 4:

il 4 IF NOT NVL(lv_equal, FALSE) THEN

In single-branching logic, this works well, but in multiple-branching logic, you may need to
enclose the 1v_equal variable in multiple places. Coding solutions in multiple places is a bad
idea in any programming language.

You have a better solution when working with dynamic variables. Before you apply the
business logic, assign the 1v_equal variable a default value when it arrives as a null value.
The following does that by setting the default value to true:

— 4 IF NOT 1v_logic = TRUE AND NOT 1lv_logic = FALSE THEN
5 1lv_logic := TRUE;
6 END IF;

Chapter 5: Control Structures 165

Line 4 checks two negation questions, if not true and if not false. The only time both of those
are true is when the variable’s value is null. Line 5 assigns true when the variable’s value is null,
and that guarantees that the comparative logic supporting the business logic resolves correctly.

Having enabled SERVEROUTPUT in SQL*Plus (check Appendix A for instructions), either of
these anonymous blocks resolves the comparison as true and prints the following:

Condition met!
Branching out, you can build an if-then-else statement like

SQL> BEGIN

2 IF 1 = 2 THEN

3 dbms_output.put line('Condition met!"');

4 ELSE

5 dbms_output.put line('Condition not met!');
6 END IF;

7 END;

8 /

The anonymous block resolves the comparison on line 2 as false and prints the ELSE block
statement:

Condition not met!

You can support variables for the literals in these examples or function calls that return matching
or convertible data types for comparison. A single function that returns a BOOLEAN data type also
works in lieu of the Boolean example.

If-then-elsif-then-else Statements

The if-then-elsif-then-else statement is a multiple-branching statement. It evaluates a series of

conditions and then runs the code immediately after the first successfully met condition. It exits

the block after processing the block and it ignores any subsequently successful evaluations.
The prototype for an if-then-elsif-then-else statement is

IF [NOT] {comparison expression | boolean value} [[AND | OR]
{comparison expression | boolean value}] [[AND | OR]
] THEN

true_if execution statements
[ELSIF [NOT] {comparison expression | boolean value} [[AND | OR]
{comparison expression | boolean value}] [[AND | OR]

1 THEN
true elsif execution statements]
[ELSE
all unmet condition statements]
END IF;

You use the optional NOT operator to check for false comparisons. While there are only two
[AND | OR] clauses in the foregoing prototype, the ellipses indicate there isn’t a limit on how
many conjunction or inclusive conditions you evaluate. While the ELSE block is optional, without
it a condition must be met or nothing is done in the conditional block. You should always include
an ELSE block even if it only performs a do-nothing statement, like a NULL;, because it tells
anybody who subsequently supports your code you considered the possibility.

166 Oracle Database 12c PL/SQL Programming

The following demonstrates an if-then-elsif-then-else statement where the first two comparisons
are true and the third false:

SQL> DECLARE
2 1lv_equal BOOLEAN NOT NULL := TRUE;
BEGIN
4 IF 1 = 1 THEN
5 dbms output.put line('Condition one met!');
6 ELSIF 1lv_equal THEN
7 dbms_output.put line('Condition two met!');
8 ELSIF 1 = 2 THEN

9 dbms output.put line('Condition three met!');
10 END IF;

11 END;

12 /

The anonymous block resolves the first comparison on line 4 as true and prints the following:
g Condition one met!

As mentioned, the if-then-elsif-then-else statement exits after the first comparison is found to
be true. That's why the second true comparison on line 6 isn’t processed. The default ELSE condition
runs only when none of the conditions are met.

CASE Statements

There are two types of CASE statements in PL/SQL. Both define a selector. A selector is a variable,
function, or expression that the CASE statement attempts to match in WHEN blocks. The selector
immediately follows the reserved word CASE. If you don't provide a selector, PL/SQL adds a
Boolean true as the selector. You can use any PL/SQL data type as a selector except a BLOB,
BFILE, or composite type. Chapter 4 qualifies composite types as records, objects, collections,
and system reference cursors.

The generic CASE statement prototype is

g CASE [{ TRUE | FALSE | selector variable }]
WHEN [criterion \ expression] THEN
criterion statements
[WHEN [criterion | expression] THEN
criterion statements]

[WHEN [...] THEN
o]
ELSE
else block statements
END CASE;

Simple CASE statement selectors are variables that use or functions that return valid data types
other than Boolean types. Searched CASE statement selectors are Boolean variables or functions
that return a Boolean variable. The default selector is a Boolean true. A searched CASE statement
can omit the selector when seeking a true expression.

Like the IF statement, CASE statements have an ELSE clause. The ELSE clause works like it
does in the IF statement, but with one twist: you can’t omit the ELSE block or you will raise a

Chapter 5: Control Structures 167

CASE_NOT_FOUND or PLS-06592 error when the selector is not found. PL/SQL includes this
default ELSE condition when you fail to provide one and a runtime execution fails to match a
WHEN block.

CASE statements are blocks. They start with a beginning identifier, or reserved word, and end
with an ending identifier and a semicolon. All statement blocks require at least one statement, just
as anonymous or named blocks do. CASE statements require at least one statement in each WHEN
block and in the ELSE block.

Like the if-then-elsif-then-else statement, CASE statements evaluate WHEN blocks by sequentially
checking for a match against the selector. The first WHEN block that matches the selector runs and
exits the CASE block. There is no fall-through behavior available in PL/SQL. The ELSE block runs
only when no WHEN block matches the selector.

Simple CASE Statements

The simple CASE statement sets a selector that is any PL/SQL data type except a BLOB, BFILE, or
composite type. The prototype for a simple CASE statement ignores Boolean selector values and is

=] CASE selector variable

WHEN criterion THEN
criterion statements

[WHEN criterion THEN
criterion statements

[WHEN ... THEN
... 1]
ELSE
all unmet condition statements
END CASE;

Simple CASE statements require that you provide a selector. You can add many more WHEN
blocks than shown, but the more numerous the possibilities, the less effective the CASE statement
is as a solution. This is a manageable solution when you typically have ten or fewer choices.
Maintainability declines as the list of WHEN blocks grows.

The following example uses a NUMBER data type as the selector:

=1 SQL> DECLARE

2 lv_selector NUMBER := 0;

3 BEGIN

4 CASE 1lv_selector

5 WHEN O THEN

6 dbms_output.put line('Case 0!');
7 WHEN 1 THEN

8 dbms_output.put line('Case 1!');
9 ELSE
10 dbms_output.put line('No match!');
11 END CASE;
12 END;
13/

The anonymous block resolves the first comparison as true because the 1v_selector variable
contains a value of 0. It then prints

g Case 0!

168 Oracle Database 12c PL/SQL Programming

Therefore, the first WHEN block matches the selector value. The CASE statement ceases evaluation
and runs the matching WHEN block before exiting the statement. You can substitute other PL/SQL
data types for the selector value. The CHAR, NCHAR, and VARCHAR?2 data types are some possible
choices.

Searched CASE Statements

The selector is implicitly set for a searched CASE statement unless you want to search for a false
condition. You must explicitly provide a false selector. Sometimes a searched CASE selector value
is dynamic based on some runtime logic. When that’s the case, you can substitute a function
returning a Boolean variable, provided you dynamically set the selector.

Naturally, this is a case where you must always take precautions to avoid a null value as the
selector. Since the searched CASE statement only uses a Boolean selector or comparison expression,
you should enclose it in an NVL call returning a true or false Boolean value.

The prototype for a simple CASE statement is

g1 CASE [{ TRUE | FALSE | selector variable}]
WHEN {criterion | expression}
[{AND | OR } {criterion | expression}
[{AND | OR } ... 1] THEN
criterionl statements
[WHEN {criterion | expression}
[{AND | OR } {criterion | expression}]

[{AND | OR } ...] THEN]
criterion statements
[WHEN { ... } THEN
o]
ELSE
block statements;
END CASE;

Like the simple CASE statement, you can add many more WHEN blocks than shown, but the
more numerous the possibilities, the less effective this type of solution is. The following searched
CASE statement examines searched comparison expressions for truth:

g SQL> BEGIN

2 CASE

3 WHEN 1 = 2 THEN

4 dbms_output.put line('Case [1 = 2]');

5 WHEN 2 = 2 AND 'Something' = 'Something' THEN
6 dbms output.put line('Case [2 = 2]");

7 ELSE

8 dbms_output.put line('No match');

9 END CASE;

10 END;

11/

The single comparison on line 3 fails, while the second conjunctive (a formal and fancy word
for two or more comparisons) comparison on line 5 succeeds. It succeeds because it returns true

Chapter 5: Control Structures 169

for both comparison operations and returns true. A true result matches the selector’s default value
of true, which means the program enters that block and prints the result from line 6:

g Case [2 = 2]

If the CASE statement searched for a false condition, the selector would match the first WHEN
block and print that 1 equals 2. You can also use a comparison expression as the selector.

Conditional Compilation Statements

Beginning with Oracle Database 10g Release 2, you can use conditional compilation. Conditional
compilation lets you include debugging logic or special-purpose logic that runs only when
session-level variables are set. The following command sets a PL/SQL compile-time variable
DEBUG equal to 1:

=1 ALTER SESSION SET PLSQL CCFLAGS = 'debug:1';

Note that the compile-time flag is case insensitive. You can also set compile-time variables to
true or false so they act like Boolean variables. When you want to set more than one conditional
compilation flag, you need to use the following syntax:

g ALTER SESSION SET PLSQL CCFLAGS = 'namel:valuel [, name(n+l):value(n+l) 1';

The conditional compilation parameters are stored as name and value pairs in the PLSQL
CCFLAG database parameter. The following program uses the $IF, $THEN, SELSIF, SELSE, and
$END reserved preprocessor control tokens to create a conditional compilation code block:

=] SQL> BEGIN
2 NULL; -- This is required when the PLSQL CCFLAGS value is unset.
3 SIF $SDEBUG = 1 STHEN
4 dbms_output.put line('Debug Level 1 Enabled.');
5 SELSIF $$DEBUG = 2 S$THEN
6 dbms_output.put line('Debug Level 2 Enabled.');
7 SELSE
8 dbms_output.put line ('Debug Level other than 1 or 2 Enabled.');
9 SEND
0 END;
1/

While lines 3 and 5 compare the $$DEBUG value against a numeric literal, this would also
work with dynamic variables, like an &input substitution variable (check the “Passing Parameters
to SQL*Plus Script Files” section in Appendix A for more coverage of substitution variables).
When you set PLSQL_CCFLAGS equal to 1, this prints

g Debug Level 1 Enabled.

Conditional code blocks differ from normal if-then-else code blocks. Most notably, the $END
directive closes the block, instead of an END IF and semicolon. The $END directive ends a
conditional statement. An END IF closes an IF code block. The syntax rules require that closing
blocks end with a semicolon or statement terminator. Statement terminators are not conditional
lexical units, and their occurrence without a preceding code statement triggers a compile-time error.

170 Oracle Database 12¢ PL/SQL Programming

The $$ symbol denotes a PL/SQL conditional compile-time variable. The ALTER SESSION
statement lets you set conditional compile-time variables. You set them in the PLSQL_CCFLAGS
session variable. You can set one or many variables in the PLSQL CCFLAGS session variable. All
variables are constants until the session ends or they are replaced. You replace these variables by
reusing the ALTER SESSION statement. All previous conditional compile-time variables cease to
exist when you reset the PLSQL CCFLAGS session variable.

The rules governing conditional compilation are set by the SQL parser. You cannot use conditional
compilation in SQL object types. This limitation also applies to varray and table collections.
Conditional compilation differs in functions and procedures. The behavior changes depending on
whether the function or procedure has a formal parameter list. You can use conditional compilation
after the opening parenthesis of a formal parameter list, like

g SQL> CREATE OR REPLACE FUNCTION conditional_ type

2 (magic_number $IF $$DEBUG = 1 S$THEN SIMPLE NUMBER S$ELSE NUMBER S$SEND)
3 RETURN NUMBER IS

4 BEGIN

5 RETURN magic_ number;

6 END;

7/

Alternatively, you can use conditional compilation after the AS or IS keyword in no-parameter
functions or procedures. Conditional compilation can also be used both inside the formal parameter
list and after the AS or IS in parameter functions or procedures.

Conditional compilation can only occur after the BEGIN keyword in triggers and anonymous
block program units. Please note that you cannot encapsulate a placeholder, or bind variable,
inside a conditional compilation block.

You also have predefined inquiry directives with conditional compilation:

B 3PLSQL UNIT Returns an empty string for an anonymous block and returns the
uppercase name of the function or procedure in a named block.

B 3PLSQL OWNER Returns the database user who owns the current program unit, and it
is a new predefined inquiry directive with Oracle Database 12c.

B 3PLSQL TYPE Returns the current program unit’s type, and it is also a new predefined
inquiry directive with Oracle Database 12c.

B 3PLSQL LINE Returns an integer for the current line number in the PL/SQL block.

You can test the $$PLSQL_UNIT directive in an anonymous block by comparing it against
an empty string or null value. The following shows how to use the $$PLSQL UNIT directive in a
named block:

g1 SQL> CREATE OR REPLACE PROCEDURE running procedure IS

2 BEGIN

3 -- Show a predefined inquiry directive.

4 IF $$PLSQL UNIT IS NOT NULL THEN

5 dbms_output.put line(

6 'This is line ['||$$PLSQL LINE||'] of ['||$$PLSQL UNIT||'].");
7 END IF;

8 END;

9 /

Chapter 5: Control Structures 171

Line 4 checks for a not-null $$PLSQL_UNIT value and lines 5 and 6 print the $$PLSQL LINE
and $PLSQL_UNIT directive values. You can run the procedure with the following command:

=1 SQL> EXECUTE running_procedure;
It prints
= This is line [6] of [RUNNING_ PROCEDURE] .

Take note that the call to the PUT_LINE function of the DBMS_ OUTPUT package starts on line
5 but the $$PLSQL_LINE directive returns its line number even though it’s a call parameter to
the function call started on line 5.

The last element of conditional compilation is the predefined error directive, which is $ERROR.
It takes a single variable-length string, which must be a static string literal, and it’s terminated by
an $END reserved preprocessor control token, not by a semicolon. You raise an exception when
you terminate the string with a semicolon. Here’s an anonymous block to show you how to use it:

=1 SQL> BEGIN

2 NULL; -- This is required when the PLSQL CCFLAGS value is unset.
3 SERROR 'Conditional User-defined Error' S$SEND

4 END;

5 /

Line 3 throws an exception whether or not the PLSQL_CCFLAGS session variable is set, so use
it sparingly. Conditional compilation is best suited to named blocks and lets you turn on debugging
in your code without refactoring when a bug occurs in production.

Review Section
This section has described the following points about conditional compilation statements:

B The PL/SQL language supports single-branching and multiple-branching statements
without fall-through, and multiple-branching statements use either the ELSIF or CASE
statement.

B You can use conjunction (AND logic) or inclusion (OR logic) in conditional statements.

B The PL/SQL language implements three-valued logic with the possibility of true, false,
and null.

B The NVL statement lets you reduce three-valued logic problems to two-valued logic in
conditional statements.

B You need to assign default values to dynamic variables when comparison values may
fail because they hold null values.

B The PL/SQL language supports both simple and searched CASE statements.

B Searched CASE statements use a default selector of true but can be configured to use
false as the selector value.

B Conditional compilation supports any number of conditional compilation flags, like
the $$DEBUG example used in this chapter.

Conditional compilation also supports predefined inquiry directives, like $$PLSQL LINE
and $$PLSQL_UNIT.

172 Oracle Database 12c PL/SQL Programming

Iterative Statements

Iterative statements are blocks that let you repeat a statement or set of statements. There are two
types of iterative statements. A guard-on-entry loop guards entry into the loop before running
repeatable statements, and a guard-on-exit loop guards exit from the loop. Whether guarding
entry or exit, the value controlling the exit from the loop is generally called a sentinel value.

The sentinel value can be one or more comparison operations, or the value or values of Boolean
variables or expressions that are true or not. Please note that not means untrue—and does not mean
false—because databases use three-valued logic. If this raises a question in your mind, revisit the
three-valued logic discussion in the “If-then-else Statements” section earlier in the chapter.

A loop that only guards exit guarantees that its code block is always run once, and it is
commonly called a repeat-until or do-while loop. Figure 5-2 shows the execution logic for these
two iteration statement types.

The PL/SQL language supports simple loops, FOR loops, FORALL loops, and WHILE loops.

It does not formally support a repeat-until loop block. You can use the simple loop statement to
mimic the behavior of a repeat-until or do-while loop. WHILE loops work with arrays and lists,
but they are more commonly used with cursors in database programming. Cursors are SELECT
statements that are processed row by row or by batches of rows from the database. Cursor loops
are covered immediately after this introduction to iterative statements, in the “Cursor Structures”
section.

Simple Loop Statements

Simple loops are explicit block structures. A simple loop starts with the LOOP reserved word and
ends with the END LOOP reserved words. Simple loops require that you manage any loop index
value and their exit criteria. Typically, simple loops are used where easier solutions don’t quite fit.
Easier solutions are typically reserved for the popular FOR loop statement because it manages the
loop index and exit criteria for you.

Iterative Step

Iterative Step

Guard Entry Loop Guard Exit Loop

FIGURE 5-2. [terative statement logic flows

Chapter 5: Control Structures 173

There are two prototypes for a simple loop, the difference being that one exits at the top of the
loop and the other exits at the end of the loop. Exits are critical in loops unless you want to write
an infinite loop, which isn't too often. You exit loops through a credentials process, which is much
like presenting your ticket at a theater or concert, as explained shortly. Programs perform this task
by checking the results of comparative operations, or Boolean expressions or variables, like true
or false.

A guard-on-entry loop blocks entry to the loop unless one or more conditions are met (your
credentials are validated). To block entry to any loop, you must place conditional statements at
the top of the loop. The conditional statements are effectively the guard at your entrance gate.
The program’s entry guard checks whether the sentinel value allows entry.

Entry guards in programming do one of two things:

B Let you run the operations inside the loop over and over, known as iteration, until you
fail to meet the entry criteria

B Prevent you from running the operations inside the loop when you fail to have the proper
credentials for entry

Sometimes, programmers need to run the code inside the loop at least once before moving on
to the next part of their program. In that event, a guard-on-entry loop is a bad choice. You should
choose a guard-on-exit loop, which acts like a traditional repeat-until or do-while loop.

A guard-on-exit loop allows you to run the internal logic of the loop at least once. That’s like
admitting everybody into the theater with or without a ticket until all seats are taken and then
asking those without tickets to leave in order to make room for those with tickets. While the
theater analogy would most likely be a disaster, a program can apply this logic easily.

A guard-on-exit loop checks the results of comparative operations, or Boolean expressions or
variables, at the end of the repeating block of statements. The loop lets you run the logic again
while the condition or conditions are met, and you iterate through the loop until the condition
or conditions are no longer true. The logic that tests whether you can enter or leave is known as a
conditional EXIT statement. EXIT statements immediately stop code execution and branch you
out of the loop statement.

The following examples show techniques for guard-on-entry and guard-on-exit loops:

Guard-on-Entry Loop Guard-on-Exit Loop
LOOP LOOP
[counter management statements] repeating statements
IF NOT entry condition THEN [counter management
EXIT; statements]
END IF; IF exit condition THEN
repeating statements EXIT;
END LOOP; END IF;
END LOOP;

PL/SQL simplifies writing an EXIT statement by providing the EXIT WHEN statement, which
eliminates the need to write an IF statement around the EXIT statement.

174 Oracle Database 12c PL/SQL Programming

One of the neat features of PL/SQL is the conditional EXIT statement. A conditional EXIT
statement collapses the IF block into a single line of code. The following examples show
techniques for guard-on-entry and guard-on-exit loops with conditional EXIT statements:

Guard-on-Entry Loop Guard-on-Exit Loop
LOOP LOOP
[counter management statements;] repeating statements;
EXIT WHEN NOT entry condition; [counter management
repeating statements; statements;]
END LOOP; EXIT WHEN exit condition;
END LOOP;

You should take careful note that the counter management logic for guard-on-entry loops
must precede the exit management logic. Some developers mistakenly think it belongs below the
repeating logic because that's where it goes in a guard-on-exit loop. Any language, like PL/SQL,
that supports a GOTO or CONTINUE statement requires that the counter logic precede the exit
management logic in a loop. That's because a CONTINUE statement stops an iteration through the
loop and restarts at top of the loop. A badly crafted GOTO and label combination also could do
the same thing. If the counter logic follows the repeating statements, it would be skipped anytime
the CONTINUE statement runs. Skipping the counter management logic can create an undesired
infinite loop.

While the preceding logic seems simple and direct, it often appears to get lost in the process
of writing code. That's because databases aren’t two-valued logic models. They are three-valued
logic models, and that means you must manage the possibility of null values. Null values typically
occur when you're writing dynamic loops rather than static ones. Dynamic loops require safeguarding
logic prior to loop entry, regardless of whether it's a guard-on-entry loop or a guard-on-exit loop.

Static Simple Loops

Let’s examine anonymous block programs to demonstrate a guard-on-entry loop and a guard-on-
exit loop. Although, you should note that anonymous and named block programs use PL/SQL
simple loops. We can identify simple loops based on the starting and ending reserved words—
LOOP and END LOOP.

Guard-on-Entry Loops The loop’s entry guard compares the value of the 1v_counter variable
and a numeric constant to see if one is greater than the other. While that condition is true, the
program continues to run the statements inside the loop.

The following program is the simplest approach to a guard-on-entry loop because it guarantees
both of the operands aren’t null values:

g SQL> DECLARE

2 lv_counter NUMBER := 1;

3 BEGIN

4 LOOP

5 -- Increment-by-one logic.

6 lv_counter := 1lv_counter + 1;

7 -- Entry guard, with a sentinel value of 3.
8 IF NOT lv_counter < 3 THEN

9 EXIT;

0

1 END IF;

Chapter 5: Control Structures 175

11 -- Repeatable statements.

12 dbms_output.put line('Iteration ['||lv_counter||']");
13 END LOOP;

14 END;

15/

It prints the following because it guards re-entry (iteration) after running twice:

g Iteration [1]

Iteration [2]

Line 2 declares an 1v_counter variable with an initial value of 1. Most database collections
use 1-based numbering rather than 0-based numbering, which means we generally start with 1
when we iterate through data.

Line 6 is our index counter, and it’s the first thing that must happen in the loop. Line 8 is our
entry guard, and it’s the second thing that must happen in the loop. The entry guard bars entry to
all unqualified entrants. The index counter doesn’t need to precede the exit guard in this example
because the loops aren’t interrupted by a GOTO or CONTINUE statement. However, the index
counter must precede the exit guard when a CONTINUE statement interrupts the loop inside the
repeatable statements section. The best practice is to always position the index counter as the first
set of instructions at the top of a guard-on-entry loop.

The entry guard asks a negation question, if not less than 32, because we want to exit when
that condition isn’t met. If we wrote the logic in an affirming statement, it would look like this:

= 3 IF 1lv_counter < 3 THEN
9 NULL; -- A do-nothing statement.
10 ELSE
11 EXIT;
12 END IF;

Three lines of code became five lines of code because we move the EXIT to the ELSE block
and include a do-nothing NULL; statement in the IF block. The change also makes the code less
readable, and is typically more work than most developers would like to do. However, we can
make the entry guard simpler by adopting Oracle’s EXIT WHEN approach on line 8, as shown:

= 7 -- Entry guard, with a sentinel value of 3.
8 EXIT WHEN NOT lv_counter < 3;

The EXIT WHEN statement takes one line instead of three lines for an if-then statement or five
lines for an if-then-else block. With little effort our program becomes shorter and clearer without
changing the logic.

NOTE
Unlike C, C++, C#, and Java, the PL/SQL language doesn’t support
unary operators for index counter logic.

We've covered the basics of static sentinel values for guard-on-entry loops. Please remember
that guard-on-entry loops prevent you from running their internal logic once before checking the
sentinel value. Next, we look at static guard-on-exit loops.

176 Oracle Database 12c PL/SQL Programming

Guard-on-Exit Loops Guard-on-exit loops let you run the code once before checking whether
you should run it again. They’re actually more common than guard-on-entry loops and appear as
repeat-until and do-while loops in other programming languages. Guard-on-exit loops are
popular because their repeatable statement logic is always run at least once (but never more than
the sentinel value allows), whereas a guard-on-entry loop prevents running the repeatable
statement logic until the sentinel value is met.

Hopefully, you're sold on using the EXIT WHEN statement from the previous section. We use
only the EXIT WHEN statement as the exit condition in this section. That means we won't repeat
the earlier demonstration of an if-then or if-then-else exit guard.

The following guard-on-exit loop uses the same basic components as the guard-on-entry loop
shown previously:

=1 SQL> DECLARE

2 1lv_counter NUMBER := 1;

3 BEGIN

4 LOOP

5 -- Run once for all and then for qualified iterations.
6 dbms_output.put line('Iteration ['||lv_counter||']l"');
7 -- Increment-by-one logic at least once.

8 lv_counter := 1lv_counter + 1;

9 -- Exit guard, with a static sentinel value of 3.
10 EXIT WHEN NOT lv_counter < 3;
11 END LOOP;
12 END;
13 /

Like the entry guard example in the previous section, the 1v_counter variable is initialized
before entering the loop to avoid problems with null values. The exit guard is the last statement in
the loop on line 10 and bars all disqualified entrants from rerunning the repeatable statements of
the loop when the value isn’t less than the sentinel value of 3.

Static guard values are simple, and the best place to begin understanding how sentinel values
work. Assuming you understand them, the next step is to master dynamic guard values.

Dynamic Simple Loops

A simple loop is dynamic when you can’t guarantee the loop index or sentinel value at compilation
time. Compilation occurs when we create or replace functions, procedures, package specifications
or bodies, and (evolve) object types or bodies.

Anytime the index value, sentinel value, or data set arrives dynamically at runtime, we must
take additional precautions to guarantee the integrity of our loops. That means adding a safeguard
at the top of the loop that converts any null values to valid not-null values.

A schema-level procedure can demonstrate dynamic behaviors for both ascending and
descending loops. Ascending loops can assume one thing when they traverse a SQL collection in
the Oracle database: that the first element has an index value of 1. Descending loops can assume
that their start position is the return value from applying the COUNT function from Oracle’s
Collection API against the collection (as covered in Chapter 6).

Chapter 5: Control Structures 177

We need to create a SQL collection before creating the procedure that demonstrates safeguards
for a guard-on-entry loop. The following creates an Attribute Data Type (ADT), or list of a scalar
data type, of 30 character strings (introduced in Chapter 3):

g1 SQL> CREATE OR REPLACE
2 TYPE elf table IS TABLE OF VARCHAR2 (30);
3/

The ascending procedure has three formal parameters: the pv_index parameter takes the
starting loop index value, the pv_sentinel parameter takes the limit value for the loop, and the
pv_elves parameter takes an instance of elves. Any of these formal parameters can receive
null values when you call the procedure, and safeguarding against potential null values is
important. Safeguards protect the integrity of the loop within the procedure and avoid runtime
errors.

The following procedure includes safeguard logic before the loop and implements a guard-
on-entry loop:

g SQL> CREATE OR REPLACE PROCEDURE ascending

2 (pv_index NUMBER
3 , pv_sentinel NUMBER
4 , pv_elves ELF_TABLE) IS
5
6 /* Declare local index and sentinel variables. */
7 lv_counter NUMBER ;
8 lv_sentinel NUMBER;
9
10 /* Declare an empty list, which has a size of zero. */
11 lv_elves ELF_TABLE := elf table();
12 BEGIN
13 /* Assign the starting index value. */
14 lv_counter := NVL(pv_index,1);
15
16 /* Check whether incoming list has elements. */
17 IF pv_elves IS NOT EMPTY THEN
18 /* Size the sentinel and assign the list to a local clone. */
19 1lv_sentinel := NVL(pv_sentinel,pv elves.COUNT) ;
20 lv_elves := pv_elves;
21 ELSE
22 /* Size the sentinel value. */
23 lv_sentinel := 1;
24 END IF;
25
26 /* Loop through the list of variables. */
27 LOOP
28 /* Increment the index counter. */
29 1lv_counter := lv_counter + 1;
30
31 /* Exit condition. */
32 EXIT WHEN lv_counter > lv_sentinel;

33

178 Oracle Database 12¢ PL/SQL Programming

34 /* Repeating statements. */

35 IF 1lv_elves.COUNT > 0 THEN

36 dbms_output.put_ line(

37 "['|]|1v_counter||']['||1lv_elves(lv_counter)||']"');
38 END IF;

39

40 END LOOP;

41 END;

42/

Line 14 safeguards the loop index counter by assigning a value of 1 when the call parameter
is a null value. Lines 17 through 24 safeguard the sentinel value and the local collection. Lines 35
through 38 print the members of the collection when the collection holds one or more members.
A call with all null values yields no output, but a call with a null index and sentinel value plus a
valid collection, like

g EXECUTE ascending(null,null,elf table('Celeborn', 'Galadriel', 'Legolas')) ;

yields the following values because the safeguard provides default values for the index counter
and sentinel values:

= (1] [Celeborn]

[2] [Galadriell]
[3] [Legolas]

You’ve now seen a real example of safeguarding the index, sentinel, and collection for a
standard ascending guard-on-entry loop. Space doesn’t allow for complete examples of all scenarios,
but the logic in the foregoing should allow you to implement safeguarding for descending loops
with guard-on-entry or guard-on-exit sentinels.

Skipping Iterations

Skipping iterations in a loop has been possible for many releases of Oracle Database. You would
implement skipping logic by using a combination of the GOTO statement and a label. While that’s
still possible, Oracle Database 11g introduced the CONTINUE and CONTINUE WHEN statements.
A CONTINUE statement differs from the GOTO statement because it doesn’t direct the program
flow to a label. A CONTINUE statement stops execution in the midst of a loop and returns control
to the top of the loop for the next iteration through the loop.

Although the CONTINUE statement provides a neat feature when it meets a requirement, it makes
it easier to inadvertently code an infinite loop (typically an undesired behavior). The infinite loop is
sometimes harder to see because the code cycles between the top of the loop and the CONTINUE
statement, and it skips the incrementing or decrementing logic. When you skip the incrementing
or decrementing logic, you can't arrive at your sentinel value, resulting in an infinite loop.

We need to safeguard against an inadvertent infinite loop. We do so by remembering the order
required for our counter management, repeating statements, and exit condition in a guard-on-exit
loop, or inverting them for a guard-on-entry loop.

The following anonymous block illustrates how to avoid an infinite loop while implementing
a CONTINUE statement in a guard-on-entry simple loop:

SQL> DECLARE

2 1lv_counter NUMBER := 0;

Chapter 5: Control Structures 179

3 BEGIN

4 LOOP

5 -- Index counter logic.

6 1lv_counter := lv_counter + 1;

7

8 -- Guard on entry statement.

9 EXIT WHEN lv_counter > 5;

10

11 -- Repeatable statement for a continue on odd numbers.
12 IF MOD(lv_counter,2) = 0 THEN

13 CONTINUE;

14 ELSE

15 dbms_output.put_line('Index ['||lv_counter||']."');
16 END IF;

17 END LOOP;

18 END;

19 /

This version of the program only prints the even-numbered index value before the sentinel
value of 5. That’s because the CONTINUE statement instructs the program to skip the balance of
repeatable statements when the sentinel value is met.

NOTE
The MOD function is a SQL built-in function covered in Appendix C.

You can simplify your code by replacing the combination of an IF block and CONTINUE
statement with the CONTINUE WHEN statement. The following shows how you would replace the
if-then-else statement that starts on line 12 in the foregoing program:

= 11 -- Repeatable statement with a continue for odd numbers.
12 CONTINUE WHEN MOD (lv_counter,2) = 0;

The print statement was previously in the ELSE block. The CONTINUE WHEN statement
eliminates the need for the IF block.
Either program prints this to the console after five passes through the loop:

™ Iteration [1]
Iteration [3]
Iteration [5]

The simple loop becomes much more robust when combined with cursor attributes. That
discussion is in the “Cursor Structure” section later in the chapter.

FOR Loop Statements

The FOR loop is a favorite of many developers because it is powerful and simple to use. A FOR
loop manages the loop index and exit for you because it is part of the statement definition.

There are two types of FOR loop statements. One is a range FOR loop statement and the other
is a cursor FOR loop statement. The discussion of cursor FOR loop statements will be presented
later in the chapter, in the context of cursor structures.

180 Oracle Database 12¢ PL/SQL Programming

Range FOR Loop Statements
A range FOR loop statement is ideal when you know the starting and ending points, and the range
can be represented in integers. You can also use a FOR loop statement to navigate the contents of
any varray or table collection or associative array (indexed by an integer) by traversing the number
of elements in it. For reference, the WHILE loop is a better solution for an associative array
indexed by strings.

The prototype for a range FOR loop statement is

@ FOR range index IN [REVERSE] range bottom..range top LOOP
repeating statements
END LOOP;

The range index can be any identifier that you prefer. As when writing FOR loops in other
languages, many developers use i as a variable name (after all, i stands for iterator). Then, they
use j, k, 1, and so forth as variable names when nesting loops. The range index for a range FOR
loop is a PLS_INTEGER data type.

You set the starting value when you set the bottom of the range to the left of the two dots (or
periods), and you set the ending value when you set the top of the range to the right of the dots.
When you use the REVERSE keyword, the FOR loop decrements from the top of the range to the
bottom of the range. For reference, you can’t reverse their position relative to the double dots without
causing the program to skip processing the internal logic of the loop.

The FOR loop always increments or decrements by 1, and you cannot change that. The following
anonymous block program demonstrates an incrementing FOR loop statement:

g SQL> BEGIN

2 FOR i1 IN 1..3 LOOP

3 dbms_output.put line('Iteration ['|[i|]|']");
4 END LOOP;

5 END;

6 /

This code prints
g Iteration [1]

Iteration [2]
Iteration [3]

The range index variable value is printed in the square brackets. You should note that the range
limits are inclusive, not exclusive. An exclusive range would have excluded 1 and 3.
Including the REVERSE keyword, we refactor the program by changing line 2 as follows:

2 FOR i IN REVERSE 1..3 LOOP

With the REVERSE keyword, the program decrements through the range and prints

g Iteration [3]

Iteration [2]
Iteration [1]

Chapter 5: Control Structures 181

There is no EXIT statement in the example because one isn’t required. The EXIT statement is
implicitly placed at the top of the loop. The conditional logic checks whether the range index is
less than the top of the range, and it exits when that condition is not met.

If you were to reverse the bottom and top of the range on line 2, like this:

= 2 FOR i IN REVERSE 3..1 LOOP

you would exit before processing any statements because the entry guard would find that 3 is not
less than 1. Please give it a try to see the embedded logic behind the range FOR loop.

WHILE Loop Statements

WHILE loops are explicit block structures like the simple loops. A WHILE loop starts with a guard-
on-entry condition. The WHILE loop requires that you manage the exit criterion (typical) or
criteria for the loop, but only requires you to manage a loop index value when you require one.
The WHILE loop is a guard-on-entry loop and may exclude a loop index. For example, counter
indexes may be excluded when you guard on a data event in a collection or row return. WHILE
loops work on truth, and truth may be determined many ways, as you'll see in the examples.

The prototype for the WHILE loop is

g WHILE { TRUE | NOT FALSE | { condition | condition | ... } } LOOP
repeating statements
[counter management statements]
END LOOP;

The guard-on-entry loop can prevent entry when the guard condition fails to return a Boolean
true value when you code it to ask an affirmative question—while true. Likewise, if you ask a
negation question with the NOT operator—while not false—the guard condition can prevent entry
when the value returned isn’t false. If this sounds familiar, it should, because it is the same issue
we worked through with the conditional statement and three-valued logic. Failure can occur
because the comparison operation, expression, or Boolean value returns a null value. That's why
you need to provide a safeguard before entry to a WHILE loop. Without a safeguard, it’s possible
your program would never enter a guard-on-entry loop because a null value isn't true or false. The
safeguard assigns a default value of true or false to the variable when it contains a runtime null
value.

The following example implements a WHILE loop with a comparison condition. The WHILE
loop uses a loop index value and a numeric literal as a sentinel value. While the loop index is less
than the sentinel value in an ascending index model, the loop continues to manage the repeatable
statement logic. Likewise, a WHILE loop manages the repeatable statement logic when the index
is greater than the sentinel value in a descending index model.

The following demonstrates a traditional ascending index model:

=1 SQL> DECLARE

2 lv_counter NUMBER := 1;

3 BEGIN

4 WHILE (lv_counter < 3) LOOP

5 dbms_output.put line('Index ['||lv_counter||'].');
6 1lv_counter := lv_counter + 1;

7 END LOOP;

8 END;

9 /

182 Oracle Database 12c PL/SQL Programming

Line 2 declares the counter index value, which eliminates the need for writing safeguard logic
before the WHILE loop. Line 4 compares the loop index against the sentinel value, and line 6
increments the index counter. A descending index model across the same range of values would
assign the 1v_counter variable on line 2 a value of 3, and you would write the exit condition
on line 4, like

= 4 WHILE (lv_counter > 1) LOOP

It prints the following:

e Index [1].

Index [2].

The WHILE loop performs like a guard-on-entry simple loop. The difference is that you have
no way to implement a generic index counter at the top of the loop when you start the counter
with a value equal to the first index value. This means using a CONTINUE or CONTINUE WHEN
statement in the WHILE loop becomes trickier unless you enter the counter logic as the first
instruction in the loop.

The ugly version of an indexed-based WHILE loop is

¥ SQL> DECLARE

2 /* Initialize at beginning of the range. */

3 1lv_counter NUMBER := 1;

4 BEGIN

5 WHILE (lv_counter < 6) LOOP

6 /* True for all even numbers - print odd results. */

7 IF MOD(lv_counter,2) = 0 THEN

8 /* Must increment here to avoid an infinite loop when
9 the logic for a CONTINUE statement is met. */

10 lv_counter := lv_counter + 1;

11 CONTINUE;
12 ELSE /* Contains all repeatable statements. */
13 dbms_output.put line('Index ['||lv_counter||'].');
14 /* Increment here for all iterations where the logic
15 for a CONTINUE statement is unmet. */
16 lv_counter := lv_counter + 1;
17 END IF;
18 END LOOP;
19 END;
20 /

The counter logic occurs on lines 10 and 16. It should only occur once, and at the top of the
WHILE loop. The IF statement branches the program logic on line 7. It skips even numbers and
prints odd numbers. The counter logic on line 10 occurs only for even numbers and must come
immediately before the CONTINUE instruction (otherwise it would become an infinite loop).

The ELSE block also increments the counter when the index value is an odd number. The
presence of two incrementing counter instructions in a single loop makes the foregoing program a
bad solution. It’s also an ugly solution because the counter logic occurs twice and should occur
only once. The counter logic should also be the first instruction in the loop. It’s not the first
instruction because the index value starts with the first value of a densely populated index. A
densely populated index typically consists of sequential integers.

Chapter 5: Control Structures 183

You can replace the ugly code with bad (really suboptimal) code by making two changes. Start
the loop index counter at 0, or one below the starting index value, and put the counter management

logic once at the top of the loop.
The following program implements those two changes:

=1 SQL> DECLARE

2 /* Initialize one below the range. */

3 lv_counter NUMBER := 0;

4 BEGIN

5 WHILE (lv_counter < 6) LOOP

6 /* Must increment here to avoid an infinite loop when
7 the logic for a CONTINUE statement is met. */

8 lv_counter := lv_counter + 1;

9

10 /* True for all even numbers - print only odd results.
11 IF MOD(lv_counter,2) = 0 THEN
12 CONTINUE;
13 ELSE /* Contains all printable statements. */
14 dbms_output.put line('Index ['||lv_counter||'].");
15 END IF;
16 END LOOP;
17 END;
18 /

*/

Line 3 sets the 1v_counter value to 0, which is one below the first index value. This change
makes it possible to place the counter management logic at the top of the loop. You use this type
of solution frequently with varray and table collections, and they always have indexes that start

with 1.

Line 8 holds the counter logic for the loop in one place. The CONTINUE statement on line 12 tells
the loop to skip to the top and evaluate the next index value, where it immediately increments the
counter. The problem is we have an unnecessary IF statement. We can replace it by embracing

the CONTINUE WHEN statement, as shown in the following good program:

g SQL> DECLARE

2 /* Initialize one below the range. */
3 lv _counter NUMBER := 0;
4 BEGIN
5 WHILE (lv_counter < 6) LOOP
6 /* Must increment here to avoid an infinite loop when
7 the logic for a CONTINUE statement is met. */
8 1lv_counter := lv_counter + 1;
9
10 /* Continue when an even number. */
11 CONTINUE WHEN MOD(lv counter,2) = 0;
12
13 /* Contains all printable statements. */
14 dbms_output.put_line('Index ['||lv_counter||'].");
15 END LOOP;
16 END;

17/

184 Oracle Database 12c PL/SQL Programming

The index value is initialized one below the start of the range on line 3. The counter logic
occurs once at the top of the loop, on line 8. The CONTINUE WHEN statement manages skipping
iterations through the loop, and line 14 can only be reached when the index value is an odd
number. The good, the bad, and the ugly versions of the WHILE loop sample program all print
only odd numbers in the following range:

g Index [1].

Index [3].
Index [5].

Although the logic to use a CONTINUE statement in a WHILE loop works, there’s another
approach with the GOTO statement and a label. Together, they also let us avoid implementing and
maintaining the index counter logic in two places. However, the GOTO statement requires us to
put the counter at the bottom of the loop to work.

The next program demonstrates the GOTO and label construct by using a decrementing
version of the earlier program:

SQL> DECLARE
2 lv_counter NUMBER := 6;
BEGIN
4 WHILE (lv_counter > 0) LOOP
5 /* True for all even numbers. */
6 IF MOD(lv_counter,2) = 0 THEN
7 /* Must branch to the index counter logic to avoid
8 an infinite loop. */

9 GOTO decrement index;
10 ELSE /* Contains all repeatable statements. */
11 dbms_output.put line('Index ['||lv_counter||'].');
12 END IF;
13
14 << decrement index >>
15 /* Decrement here for all iterations. */
16 lv_counter := 1lv_counter - 1;
17 END LOOP;
18 END;
19 /

Line 6 still checks for even numbers, but when the IF statement is true, it redirects processing
to the decrement index label. The decrement index label on line 14 is where you find the
decrementing logic.

As you've seen, the WHILE loop is useful when you want to guard entry to a loop. On the
downside, the WHILE loop can limit how you skip logic with a CONTINUE or CONTINUE WHEN
statement if you don’t understand the logic or approach.

The COUNTINUE and CONTINUE WHEN statements should eliminate any need to ever use a
GOTO statement. The GOTO statement and label should be avoided.

Chapter 5: Control Structures 185

Review Section
This section has described the following points about iterative statements:

B [terative statements are blocks that let you repeat a statement or set of statements.
B [terative statements implement an exit guard and a block of repeatable statements.

B The exit guard compares a loop index or variable against a sentinel value to determine
when to exit the loop.

B Entry guards and exit guards can work to bar entry to or exit from a loop, and they can
be intrinsically linked to index counter and sentinel values.

B To avoid runtime errors, programs should safeguard any dynamic variable values. You
do that by checking whether they have null values before your program uses them.
This type of checking is necessary because null values don’t work properly as index
counters because you can’t increment them, or as comparison variables because you
can’t compare them.

B The CONTINUE, CONTINUE WHEN, and GOTO statements let you skip the balance of
iteration through a loop, and they require specialized handling with guard-on-entry
loops to avoid infinite loops.

B The range FOR loop lets you increment or decrement across data by comparing a range
of values, and it hides the complexity of its guard-on-entry loop internals.

B The WHILE loop is a guard-on-entry loop and requires careful attention to avoid
infinite loops when skipping iterations inside of its logic.

Cursor Structures

Cursor structures are the return results from SQL SELECT statements. In PL/SQL, you can process
SELECT statements row by row or as bulk statements. This section covers how you work with
row-by-row statement-processing cursors.

There are two types of cursors—implicit and explicit. You create an explicit cursor when
you define a cursor inside a declaration block. You create an implicit cursor when you use a
SELECT statement with an INTO clause or BULK COLLECT INTO clause, or you embed
a SELECT statement inside a cursor FOR loop statement. Data Manipulation Language (DML)
statements inside any execution or exception block are also implicit cursors. These DML statements
include INSERT, UPDATE, DELETE, and MERGE statements.

The balance of this section discusses implicit and explicit cursors separately. Implicit cursors
come first, followed by explicit cursors. The details of bulk processing, which was introduced in
Chapter 3, are covered in the last subsection.

Implicit Cursors

Every SQL statement in a PL/SQL block is actually an implicit cursor. You can see how many rows
are changed by any statement using the $ROWCOUNT attribute after a DML statement. INSERT,
UPDATE, DELETE, and MERGE statements are DML statements. You can also count the number of

186 Oracle Database 12c PL/SQL Programming

rows returned by a SELECT statement or query (regardless of whether you lock rows with the FOR
UPDATE clause).

The following example demonstrates the $¥ROWCOUNT cursor attribute by using a single-row
implicit cursor based on the DUAL pseudo table:

=1 SQL> DECLARE

2 1v_number NUMBER;

3 BEGIN

4 SELECT 1 INTO lv_number

5 FROM dual;

6 dbms_output.put line('Selected ['||SQL%ROWCOUNT||']1");
7 END;

8 /

The reserved word SQL before the $ROWCOUNT cursor attribute on line 6 stands for any implicit
cursor. PL/SQL manages implicit cursors and limits your access to their attributes. Table 5-6 lists
the available implicit cursor attributes.

There are five types of implicit cursors. One is an implicit bulk collection cursor, which is
covered in the “Bulk Statements” section later in the chapter. The other four implicit cursors are
the subject of this section. The first two that are covered are single-row and multiple-row implicit
cursors that use a SELECT or DML statement, and the final two are static and dynamic implicit
cursors in FOR loops.

Single-Row Implicit Cursors
The SELECT-INTO statement is present in all implicit cursors that query data outside of a loop. It
works only when a single row is returned by a SELECT statement. You can select a column or list
of columns in the SELECT clause and assign the column(s) to individual variables or collectively
to a record data type.

The prototype for a single-row implicit cursor minus standard SQL WHERE, HAVING, GROUP
BY, and ORDER BY clauses is

™ SELECT column [, column [, ... 1] INTO variable [, variable [, ...]]FROM
table name;

Attribute Description

$FOUND Returns TRUE only when a DML statement has changed a row.
%$ISOPEN Always returns FALSE for any implicit cursor.

$NOTFOUND Returns TRUE when a DML statement fails to change a row.
$ROWCOUNT Returns the number of rows changed by a DML statement or the number

of rows returned by a SELECT INTO statement.

TABLE 5-6. Implicit Cursor Attributes

Chapter 5: Control Structures 187

Both of the example programs introduced in this section use the ITEM table that is seeded
from the code you can download from the McGraw-Hill Professional website. The first example
program assigns column values to scalar variables on a one-to-one basis:

=1 SQL> DECLARE

2 id item.item_ id%TYPE;

3 title item.item title%TYPE;

4 subtitle item.item subtitle%TYPE;
5 BEGIN
6
7
8

SELECT item id, item title, item subtitle
INTO id, title, subtitle
FROM item
9 WHERE ROWNUM < 2;
10 dbms_output.put_line ('Selected [']||title||']");
11 END;
12 /

This example program anchors all variables to the columns of the target table on lines 2
through 4. It also limits the query to one row by using an inequality operator with the Oracle SQL
ROWNUM pseudocolumn. It prints one row:

g Selected [Around the World in 80 Days]

One-to-one anchoring assignments get very tiresome to type after a while. They also make
your code more expensive to maintain over time. The more common convention is to assign
the columns as a group through a record data type, or by direct anchoring to a table’s definition.
The latter approach is available only if you want all the columns in the table; unfortunately, for
our example, we only want the same three columns used earlier.

An example with a record data type structure is

g SQL> DECLARE

2 TYPE item record IS RECORD

3 (id item.item id%TYPE

4 , title item.item title%TYPE

5 , subtitle item.item subtitle%TYPE) ;

6 1v_record ITEM_RECORD;

7 BEGIN

8 SELECT item id, item title, item subtitle
9 INTO 1v_record
10 FROM item
11 WHERE rownum < 2;
12 dbms_output.put line('Selected ['||dataset.title||']");
13 END;
14 /

While record data types require explicit construction, columns within the structure can be
anchored individually to column data types, as shown on lines 3 through 5. On those lines,
the item table is glued by the component selector (.) to columns from that table and is glued
through the columns to their respective data types. The 1v_record variable on line 6 uses the
local item record data type.

188 Oracle Database 12¢ PL/SQL Programming

Single-row implicit cursors are great quick fixes, but they have a weakness. It is a weakness
that many developers attempt to exploit by using it to raise exceptions when cursors return more
than one row. They do this because single-row implicit cursors raise an “exact fetch returned too
many rows” error (ORA-01422) when returning more than one row. Better solutions are available
to detect errors before fetching the data. You should explore alternatives when developing your
code and, where possible, explicitly handle errors. Explicit cursors are typically better solutions
every time.

Multiple-Row Implicit Cursors
There are two ways you can create multiple-row implicit cursors:

B Write any DML statement in a PL/SQL block. DML statements are considered multiple-row
implicit cursors, although you can limit them to a single row.

B Write an embedded query in a cursor FOR loop rather than define the query in a declaration
block. These are SELECT statements that have a marvelous feature: all the variables are
implicitly provided in the scope of the cursor FOR loop.

The following query demonstrates an implicit cursor created by a DML statement:

= SQL> BEGIN

2 UPDATE system user
3 SET last update date = SYSDATE;
4 IF SQL%FOUND THEN
5 dbms_output.put_line('Updated ['||SQL$ROWCOUNT||']") ;
6 ELSE
7 dbms_output.put line ('Nothing updated!') ;
8 END IF;
9 END;
0 /

As defined in Table 5-6, the $FOUND cursor attribute for implicit cursors returns a Boolean
true value only when rows are updated. The preceding statement should update five rows and
print the following SQL$ROWCOUNT result:

g Updated [5]

Cursor FOR Loop Statements

A cursor FOR loop statement is ideal when you query a database table or view because it's simple
and manages many of the moving parts for you. While you don’t generally know how many rows
will be returned from a cursor (or query), a FOR loop statement manages the opening and closing
of the cursor, fetching of records, and exiting of the loop when all records are read.

The examples in this section use static and dynamic implicit cursors. The next section,
“Explicit Cursors,” demonstrates how to work with explicit cursors. Explicit cursors are defined as
a formal cursor structure in the declaration block. As a rule, using explicit cursors is the best practice
and using implicit cursors is considered a shortcut that you should avoid in production code.

Static and dynamic implicit cursors are SELECT statements defined within parentheses as part
of the cursor FOR loop statement. Unlike explicit cursors, implicit cursors don’t support formal
parameter lists. Dynamic implicit cursors rely on local scope access by embedding local variables
in their SELECT statements.

Chapter 5: Control Structures 189

The prototype for a cursor FOR loop statement is

FOR cursor index IN [cursor namel[(parameter list)] | (select statement)] LOOP
repeating statements
END LOOP;

The cursor index can be any identifier that you prefer. As when writing FOR loops in other
languages, many developers use 1 as the cursor index (after all, 1 stands for iterator). Those same
developers also tend to use j, k, 1, and so forth as nested cursor index values, but you can use
any non-identifier name you want as the cursor index.

Moreover, a cursor index for a cursor FOR loop is a pointer to a result set in a query work
area. As described in Chapter 4, a query work area is a memory region (known as a context area)
in the Oracle Database 12c¢ Program Global Area (PGA). The query work area holds information
on the query, including the rows returned by a query, the number of rows processed by the query,
and a pointer to the parsed query. The query work area resides in the Oracle Shared Pool (see
Appendix A).

Static Implicit Cursor This section shows you how to implement a static implicit cursor in a
FOR loop. A static cursor is composed of SQL keywords, table and column names, and numeric
or string literal values. The alternative to a static implicit cursor in this case is a dynamic implicit
cursor. The difference between a static implicit cursor and a dynamic implicit cursor is that a
dynamic implicit cursor includes locally scoped variable names.

The following example (and many others in the chapter) depends on your having already run
the seeding code, as discussed in the Introduction. This particular cursor loop returns the names
of Harry Potter films found in the video rental store sample database.

SQL> BEGIN
2 FOR i IN (SELECT COUNT (*) AS on_hand

3 , item title AS title

4 , item rating AS rating

5 FROM item

6 WHERE item title LIKE 'Harry Potter%'
7 AND item rating agency = 'MPAA'

8 GROUP BY item title

9 , item rating) LOOP

10 dbms_output.put line(

11 i.on _hand||' '||i.title]||"' rated '||i.rating);
12 END LOOP;

13 END;

14 /

The cursor index points to the row, and the component selector (.) links the row pointer to
the column name or alias assigned by the implicit cursor. This prints the following from inventory:

(3) Harry Potter and the Sorcerer's Stone [PG]

(3) Harry Potter and the Goblet of Fire [PG-13]

(3) Harry Potter and the Chamber of Secrets [PG]

(2) Harry Potter and the Prisoner of Azkaban [PG]

(1) Harry Potter and the Order of the Phoenix [PG-13]

190 Oracle Database 12¢ PL/SQL Programming

There is no EXIT statement in the example because one isn’t required. The EXIT statement is
implicitly placed at the top of the loop right after the index counter. The index counter in a cursor
loop checks for the presence of another row. The exit condition checks whether all rows have
been read and exits when there are no more rows to read.

Dynamic Implicit Cursor As mentioned earlier, the difference between a dynamic implicit
cursor and static implicit cursor is that the dynamic one embeds locally scoped variables. The
variables act as placeholders and are substituted at runtime with the values from the local variables.

By making only slight changes, we can convert the implicit static cursor from the previous
example into a dynamic static cursor. The following program adds a declaration block to declare
a local variable and adds a placeholder variable to the SELECT statement:

=1 SQL> DECLARE

2 lv_item title VARCHAR2(60) := 'Harry Potter';
BEGIN

4 FOR i IN (SELECT COUNT (*) AS on_hand

5 , item title AS title

6 , item rating AS rating

7 FROM item

8 WHERE item title LIKE 1lv_item title||'%’

9 AND item rating agency = 'MPAA'

10 GROUP BY item title

11 , item rating) LOOP

12 dbms_output.put line(

13 i.on_hand||' '||i.title]||"' rated '||i.rating);

14 END LOOP;

15 END;

16 /

Line 2 adds a local 1v_item title variable and assigns a value of “Harry Potter” to it, and
line 8 includes a reference to the local 1v_item title variable. The variable in the implicit
cursor makes the cursor dynamic rather than static, notwithstanding that it acts like a constant in
this program because the value is assigned in the declaration block. Naturally, it returns the same
row set.

Explicit Cursors

As discussed earlier in this section, you create an explicit cursor when you define it inside a
declaration block. Explicit cursors can be static or dynamic SELECT statements. Static SELECT
statements return the same query each time with potentially different results. The results change as
the data changes in the tables or views. Dynamic SELECT statements act like parameterized
subroutines. They run different queries each time, depending on the actual parameters provided
when they’re opened.

You open static and dynamic explicit cursors differently, provided they are defined with formal
parameters. When they do not have formal parameters, you open them with the same syntax.
The actual parameters are then mapped by local variable substitution.

Explicit cursors require you to open, fetch, and close them regardless of whether you're using
simple loop statements, WHILE loops statements, or cursor FOR loop statements. You use the OPEN
statement to open cursors, the FETCH statement to fetch records from cursors, and the CLOSE
statement to close and release resources of cursors. These statements work with both dynamic and

Chapter 5: Control Structures 191

static cursors inside or outside of a looping structure. Cursor FOR loop statements implicitly open,
fetch, and close cursors for you. The OPEN, FETCH, and CLOSE statements are key elements in
both of the following subsections, “Static Explicit Cursors” and “Dynamic Explicit Cursors,”
where the examples use simple loops.

The prototype for the OPEN statement is

g OPEN cursor name [(parameter [, parameter [, ... 11)1;

There are two prototypes for the FETCH statement. One assigns individual columns to variables,
and the other assigns rows to record structure variables.
The prototype for assigning individual columns to matching variables is

g FETCH cursor name
INTO variable [, variable [, ... 11;

The prototype for assigning rows to record structure variables is

g FETCH cursor name
INTO record variable;

The prototype for the CLOSE statement is
g CLOSE cursor_ name;

Table 5-7 lists the explicit cursor attributes, which work the same way for both dynamic and
static explicit cursors. Although they have the same names as the implicit cursor attributes, listed
in Table 5-6, they work differently. The explicit cursor attributes return different results based on
where they are called in reference to the OPEN, FETCH, and CLOSE statements.

The $FOUND attribute signals that rows are available to retrieve from the cursor, and the
$NOTFOUND attribute signals that all rows have been retrieved from the cursor. The $ISOPEN
attribute lets you know that the cursor is already open, and thus it is something you should consider

Statement State %FOUND %NOTFOUND %ISOPEN %ROWCOUNT
OPEN Before Exception Exception FALSE Exception
After NULL NULL TRUE 0
First FETCH Before NULL NULL TRUE 0
After TRUE FALSE TRUE 1
Next FETCH Before TRUE FALSE TRUE 1
After TRUE FALSE TRUE n+1
Last FETCH Before TRUE FALSE TRUE n+ 1
After FALSE TRUE TRUE n+ 1
CLOSE Before FALSE TRUE TRUE n+ 1
After Exception Exception FALSE Exception

TABLE 5-7. Explicit Cursor Attributes

192 Oracle Database 12c PL/SQL Programming

running before you attempt to open a cursor. As with implicit cursors, the ¥ROWCOUNT attribute
tells you how many rows you've fetched at any given point. Only the $ISOPEN attribute works
anytime without an error. The other three raise errors when the cursor isn’t open. The Table 5-7
matrix captures these changing behaviors.

Static explicit cursors and dynamic explicit cursors are covered next in different subsections to
organize the examples and highlight differences. The examples use simple loop statements, but you
can also use explicit cursors in WHILE loop statements or nested inside range and cursor FOR loops.

Static Explicit Cursors

A static explicit cursor is a SQL SELECT statement that doesn’t change its behavior. An explicit
cursor has four components. You define, open, fetch from, and close a cursor. The following example
program defines, opens, fetches from, and closes a static cursor into a series of scalar variables:

g SQL> DECLARE

2 lv_id item.item id$TYPE;
lv_title VARCHAR?2 (60) ;

4 CURSOR ¢ IS

5 SELECT item_id

6 , item title

7 FROM item;

8 BEGIN

9 OPEN c;

10 LOOP
11 FETCH c
12 INTO 1v_id
13 , lv_title;
14 EXIT WHEN c%NOTFOUND;
15 dbms_output.put line('Title ['|]|lv_title|]|']");
16 END LOOP;
17 CLOSE c;
18 END;
19 /

Line 2 declares a variable by using column anchoring, and line 3 declares a variable by using
a static data type (that mirrors the physical column in the item table). You should really choose
one or the other style, but | wanted you to see both in the same example. The program fetches
two columns into two variables on lines 12 and 13. The assignment works because the data types
of the local variables on lines 2 and 3 match those for the SELECT-list columns on lines 5 and 6
of the cursor definition. The program exits when there are no more records to fetch.

As covered in Chapter 3, cursors offer an alternative to anchoring individual variables to
columns of a table, local record structures, and tables. That alternative lets you define a local
1lv_record variable and anchor it to the structure of the cursor, as shown in the next example:

=1 SQL> DECLARE
2 CURSOR ¢ IS
3 SELECT item id AS id
4 , item title AS title
5 FROM item;
6 lv_record c%ROWTYPE;
7 BEGIN

Chapter 5: Control Structures 193

8 OPEN c;

9 LOOP

10 FETCH c

11 INTO 1v_record;

12 EXIT WHEN c%NOTFOUND;

13 dbms_output.put line('Title ['||lv_record.title||']"');
14 END LOOP;

15 CLOSE c;

16 END;

17/

Line 6 declares an 1v_record variable that inherits a record structure data type from the
SELECT list of the cursor. Line 13 lets you print the tit1le field value from the 1v_record
structure by using the component selector. Using a FETCH statement that takes the structure of a
cursor and assigns it to a single variable is the best practice.

You should not assign columns to local variables unless you have a compelling reason to do
so, and the only reason that seems compelling is that a LOB is being returned as part of the SELECT
list and requires separate management from the handling of the non-LOB values. Sometimes it is
best to handle them in separate cursors. Chapter 6 covers handling nested structures, like varray
and table data types.

The PL/SQL-only alternative to coupling the 1v_record variable to a cursor’s row structure
is to couple the 1v_record to a table/view definition or to an explicit record type (check the
“Records” section in Chapter 4 for a complete example). If we create an item_record record
type in the declaration block, we can define the 1v_record variable on line 9, like this:

e 6 lv_record ITEM RECORD;

While this is a valid option in PL/SQL, it isn’t as effective as coupling the variable data type to
the cursor’s row type. | recommend that you always couple variables to a cursor’s row structure
(over the other alternatives) because it simply makes your code more readable.

To help you avoid going down a dead-end street, you can’t SELECT-INTO an object type.
That means syntax like this will never work:

=1 SQL> DECLARE

6 1lv_object ITEM OBJECT;

7 BEGIN

10 FETCH c

11 INTO 1v_object(lv_id,lv_title);
16 END;

17/

Line 6 now declares the 1v_object variable with a SQL item object object type. The
item object object type mirrors the cursor’s row type. An attempt to assign the values from a
cursor structure to an object type constructor raises the following error:

_—— INTO 1lv _object(lv_id,1lv_title);
*
ERROR at line 11:
ORA-06550: line 11, column 11:

194 Oracle Database 12c PL/SQL Programming

PLS-00308: this construct is not allowed as the origin of an assignment
ORA-06550: line 10, column 5:
PL/SQL: SQL Statement ignored

While you can’t transfer the contents of a cursor’s row type to an object type’s constructor,
you can use a FOR loop to transfer a cursor’s row type to an object.

The FOR Loop Variant of a Static Cursor A cursor FOR loop statement can support direct
assignment from any type of variable by implementing a dynamic SELECT statement. You embed
local variables or cursor parameters in SELECT statements to create a dynamic SELECT statement.
A static FOR loop statement uses a static SELECT statement in lieu of a dynamic SELECT statement.

While you can’t call a FOR loop with parameters when the cursor is static, you can assign
values from the static cursor inside the FOR loop statement. It's done by using the FOR loop’s cursor
index. That's because, unlike a range FOR loop, where the cursor index is a PLS_ INTEGER data
type, a cursor FOR loop’s cursor index is an indirect reference to the rows returned from the cursor.

You can assign a record structure to a matching record structure variable. Likewise, you can
assign a scalar element of a record structure to a matching scalar variable. The 1v_record
variable can be declared by using either an explicit record type or $ROWTYPE anchored to a local
or shared cursor variable.

The following demonstrates assigning a record structure from the cursor index:

=1 SQL> DECLARE

same as previous example

7 BEGIN

8 FOR i IN c LOOP

9 lv_record := i;

10 dbms_output.put line('Title ['||lv_record.title|]|']l");
11 END LOOP;

12 END;

13 /

Line 9 shows the assignment of the FOR loop iterator to the 1v_record variable. As
mentioned, this only works for PL/SQL-only record data structures.

You can assign elements from the cursor to scalar variables of a matching type or to fields of
the anchored record types. An alternate line 9 assigns a SELECT-list element to a field of the
1v_record data type (an anchored record created by using the $ROWTYPE attribute):

= 9 1lv_record.item title := i.item title;

You also can assign the cursor to a SQL object type constructor. You do that by passing the
SELECT-list elements as call parameters to the object type constructor. For example, suppose you
defined the following object type before running the program:

@ SQL> CREATE OR REPLACE

2 TYPE item object IS OBJECT
3 (id NUMBER

4 , title VARCHAR2(60)) ;

5 /

Chapter 5: Control Structures 195

Instead of anchoring 1v_record with the $ROWTYPE attribute to the cursor’s record structure on
line 6, you would assign it your SQL user-defined type (UDT): item object. The modified
declaration of 1v_record is

= 6 1lv_record ITEM OBJECT;

Then, you could assign the cursor’s returned record element by element to the item object
constructor with the following syntax on line 9:

= 9 lv_record.item title := item object(i.item id, i.item title);

Although the FOR loop automates many tasks, unfortunately, it doesn’t provide the ability to
manage behaviors when it returns or fails to return rows. You need to return to the simple loop to
manage those behaviors.

Conditional Return Values It is possible that the cursor may not find any records. When an
implicit or explicit cursor runs but doesn’t find data, no error is raised. If you want to be notified
when the cursor doesn’t find any records, you need to add that feature to your code. You can do
so by using an IF statement and the $NOTFOUND and $ROWCOUNT cursor attributes in a simple
loop (not a FOR loop).

The following simple loop example prints a “No Data Found.” message when the cursor fails
to find any records:

7 SQL> DECLARE
2 CURSOR c IS

3 SELECT item id AS id

4 , item title AS title

5 FROM item

6 WHERE item id = -1;

7 1lv_record Cc%ROWTYPE;

8 BEGIN

9 OPEN c;

10 LOOP

11 FETCH ¢ INTO lv_record;
12 IF c%NOTFOUND THEN
13 IF c%ROWCOUNT = 0 THEN /* No rows returned. */
14 dbms_output.put line('No Data Found') ;

15 ELSE /* One plus rows returned. */
16 dbms_output.put line('No More Data Found') ;
17 END IF;

18 EXIT;

19 ELSE

20 dbms_output.put_line('Title ['||lv_record.title||']");
21 END IF;

22 END LOOP;

23 END;

24/

Line 6 adds a WHERE clause that ensures the query won't return any rows. No rows are returned
by the cursor, and the c$NOTFOUND on line 12 returns true. Since the last SQL statement returned
no rows, the c$ROWCOUNT on line 13 also returns true and prints a “No Data Found.” message.

196 Oracle Database 12c PL/SQL Programming

When the c$ROWCOUNT returns false, the program prints a “No More Data Found.” message. Line
18 exits the loop after it processes either of the output messages. Unfortunately, you can’t replicate
this logic inside a cursor FOR loop statement.

Dynamic Explicit Cursors

Dynamic explicit cursors are very much like static explicit cursors. They use a SQL SELECT
statement. Beyond using variables in SELECT statements or cursors, you can also embed local
variables in INSERT, UPDATE, DELETE, or MERGE statements. These variables take the place of
what would otherwise be literal values.

Dynamic explicit cursors have the same four components as static cursors: you define, open,
fetch from, and close a dynamic cursor. Dynamic explicit cursors also rely on local variable scope
access, as do implicit dynamic cursors.

The following example program defines a cursor as a SELECT statement that queries the
item table for a range of values. Both variables are declared as local variables and assigned
numeric literal values. The names of the local variables must differ from column names or else
the column name values will be substituted in place of the variable values.

g SQL> DECLARE

2 1v_lowend NUMBER := 1010;
lv_highend NUMBER := 1020;

4 CURSOR c¢ IS

5 SELECT item id AS id

6 , item title AS title

7 FROM item

8 WHERE item id BETWEEN lv_lowend AND lv_highend;
9 lv_record c%ROWTYPE;

10 BEGIN
11 OPEN c;
12 LOOP
13 FETCH c INTO 1lv_record;
14 EXIT WHEN c%NOTFOUND;
15 dbms_output.put line('Title ['||lv_record.title||']");
16 END LOOP;
17 END;
18 /

Lines 2 and 3 declare the 1v_1lowend and 1v_highend variables. Line 8 uses the 1v_lowend
and 1v_highend variables as inclusive boundaries of the BETWEEN operator. The values of the
local variables are substituted in the SELECT statement when you run the program. The same logic
works in FOR and WHILE loops.

You can rely on local variables, but doing so can be confusing and can make the code more
difficult to support. While the INSERT, UPDATE, DELETE, and MERGE statements limit you to
embedding local variables, SELECT statements in cursors don’t.

Cursors can have formal parameters, like functions and procedures. Moreover, SELECT
statement cursors should have formal parameters as a best practice. The next example replaces
the prior example by altering the cursor definition and the call to the OPEN statement:

= SQL> DECLARE
2 1v_lowend NUMBER 1005;
3 lv_highend NUMBER := 1021;

O W J o Ul B

10

12
13
14
15
16
17
18
19
20

Chapter 5: Control Structures 197

CURSOR ¢

(ev_low id NUMBER

, cv_high id NUMBER) IS
SELECT item id AS id
, item_title AS title

FROM item
WHERE item id BETWEEN cv_low id AND cv_high id;
item record c%ROWTYPE;
BEGIN
OPEN c (lv_lowend, lv_highend) ;
LOOP

FETCH c INTO item record;
EXIT WHEN c%NOTFOUND;
dbms_output.put line('Title ['||item record.title||']"');
END LOOP;
END;
/

Lines 4 through 6 define a cursor with two numeric formal parameters, cv_low id and

cv_high 1id, which are also the inclusive range values of the BETWEEN operator on line 10.
Line 13 opens the cursor with the 1v_lowend and 1v_highend call parameters.

Note that the local variables have physical sizes but the formal parameters don’t. That's

because formal parameters don’t have physical size until runtime or, in this case, until you pass
call parameters when you open the cursor on line 13.

Opening a cursor in a FOR loop is very much like opening a cursor in a simple loop. You

provide a comma-delimited list of call parameters inside parentheses. The following four lines
replace the six lines from the preceding example:

13
14
15
16

FOR i IN ¢ (lv_lowend, 1lv_highend) LOOP

item := 1i;
dbms_output.put line('Title ['||item.title]||']");
END LOOP;

So far you've seen how to use cursors, but there’s more to see. You have the ability to use

cursors inside cursors, as discussed in the next section.

Subcursors

A nested cursor is a subcursor. You create a subcursor by embedding a correlated subquery inside
the SELECT list of an explicit or dynamic cursor. Correlated subqueries include a join inside the
WHERE clause that links the subquery to the outer query. You can refer to the “Correlated
Subqueries” section of Appendix B for more information on correlated subqueries.

You must explicitly fetch a SELECT list into a list of variables when it includes a subcursor.

Subcursor results are assigned to variables that use a PL/SQL-only REF CURSOR data type. Then,
you need to fetch their results inside a nested loop.

You may be asking yourself, “Why would I go to all that trouble?” To answer that question,

let’s first look at the return set of an ordinary query of three tables. The query uses inner joins to

198 Oracle Database 12c PL/SQL Programming

link three tables through their primary and foreign key columns (and some formatting to provide
clear output).

=1 SQL> COLUMN first name FORMAT A10
SQL> COLUMN last name FORMAT Al0
SQL> COLUMN street address FORMAT A20
SQL> COLUMN city FORMAT A8
SQL> COLUMN state FORMAT A2
SQL> COLUMN postal code FORMAT A5
SQL> SELECT c.first name

2, c.last_name

3, sa.street address

4 a.city

5 a.state province AS state

6 a.postal code

7 FROM contact ¢ INNER JOIN address a

8 ON c.contact_id = a.contact id INNER JOIN street address sa
9 ON a.address_id = sa.address_id
10 WHERE c.last_name = 'Vizquel';

The query returns the following four rows:

@ FIRST NAME LAST NAME STREET ADDRESS CITY ST ZIP
Oscar Vizquel 12 El Camino Real San Jose CA 95192
Doreen Vizquel 12 E1 Camino Real San Jose CA 95192
Doreen Vizquel 41277 Roberts Avenue Fremont CA 94539
Doreen Vizquel Apt #14 Fremont CA 94539

The return set is symmetrical, which means you have the same number of rows for each
column in the query. Let’s look at Doreen Vizquel’s results. There are three rows returned for
Doreen Vizquel because the bottommost street_address table holds three unique results
linked to the same contact row. Likewise, there are two duplicate rows returned for city,
state, and zip because there are two unique street address values linked to the same
address row. This is known as a symmetrical return set, any one row is duplicated for the related
unique rows.

Symmetrical return sets are normal in SQL but generally not too useful in web forms and
reports. For example, suppose the program requirements call for an asymmetrical return set, like
this:

g Formatted Address
1004 Doreen Vizquel
41277 Roberts Avenue, Apt #14
Fremont, CA, 94539

12 E1 Camino Real
San Jose, CA, 95192

1003 Oscar Vizquel
12 El Camino Real
San Jose, CA, 95192

Chapter 5: Control Structures 199

Other than using some fancy SQL*Plus report writing commands, this type of output is not
suited to a SQL SELECT statement. You can write a function that lets you return a data set like the
foregoing by using subcursors.

Since the format contact address function returns a table collection of CLOB data
types, we need to define an appropriate SQL table collection. This syntax creates the table
collection of CLOBs:

=1 SQL> CREATE OR REPLACE
2 TYPE format address_table IS TABLE OF CLOB;
3/

You now can create a function that uses subqueries to format and return a table collection of
formatted contact addresses, like

=1 SQL> CREATE OR REPLACE FUNCTION format_contact_address

2 (pv_last name VARCHAR2) RETURN FORMAT ADDRESS TABLE IS

3

4 /* Declare a reference cursor. */

5 TYPE ref cursor IS REF CURSOR;

6

7 /* Declare a nested cursor. */

8 CURSOR all nested results

9 (cv_last_name VARCHAR2) IS

10 SELECT c.contact_id

11 , c.first name

12 | DECODE (c.middle name,NULL,' ',' '||c.middle name]||' ')
13 || c.last_name AS full name

14 ' CURSOR (SELECT a.city

15 ’ a.state province AS state

16 p CURSOR (SELECT sa.street address
17 FROM street address sa
18 WHERE sa.address_id =
19 a.address_id)
20 ' a.postal code
21 FROM address a
22 WHERE a.contact _id = c.contact id
23 ORDER BY a.start date DESC)
24 FROM contact c
25 WHERE c.last _name = cv_last name
26 ORDER BY c.last name
27 , c.first name;
28
29 /* Declare a street address counter. */
30 lv_street_counter NUMBER := 0;
31 lv_index_counter NUMBER := 1;
32
33 /* Declare two reference cursors. */
34 lv_street cursor REF CURSOR;
35 lv_address cursor REF CURSOR;
36

37 /* Declare local scalar variables. */

200 Oracle Database 12¢ PL/SQL Programming

38 lv_employee_id NUMBER ;

39 lv_full name VARCHAR2 (62) ;

40 1v_city VARCHAR2 (30) ;

41 lv_state VARCHAR2 (2) ;

42 lv_street_address VARCHAR2 (30) ;

43 1v_postal code VARCHAR2 (10) ;

44

45 /* Declare a large string as the output target. */
46 lv_output message VARCHAR2 (300) ;

47 lv_output_table FORMAT_ADDRESS TABLE := format_ address_table() ;
48

49 BEGIN

50

51 /* Open the composite cursor. */

52 OPEN all nested results (pv_last name) ;

53

54 /* Read through the cursor result set. */

55 LOOP

56 FETCH all nested results

57 INTO 1v_employee id

58 , 1v_full name

59 ' lv_address_ cursor;

60 EXIT WHEN all nested_ results%NOTFOUND;

61

62 /* Set message with base cursor. */

63 lv_output _message := 1lv_employee id||' '||lv_£full name||CHR(10) ;
64

65 /* Read through the first-level nested table. */

66 LOOP

67 FETCH lv_address_cursor

68 INTO 1lv_city

69 , lv_state

70 ’ lv_street cursor

71 , 1v_postal code;

72 EXIT WHEN 1lv_address_cursor$NOTFOUND;

73

74 /* Read through the second-level nested table. */
75 LOOP

76 FETCH 1v_street cursor

77 INTO 1lv_street_address;

78

79 /* Check for all reading all subcursor records. */
80 IF 1lv_street cursor3NOTFOUND THEN

81

82 /* Append a line return at the end. */

83 IF 1lv_street counter > 0 THEN

84 1lv_output _message := 1lv_output message||CHR(10) ;
85 lv_street counter := 0;

86 END IF;

87

88 /* Append and print address, then exit subcursor. */

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

Chapter 5: Control Structures

lv_output message := lv_output message] | ' '
| 1v_city]|]|', '||lv_state]|]|"', '
| 1v_postal code||CHR(10) ;

EXIT;
ELSE

/* Append street addresses. */

lv_street counter := 1lv_street counter + 1;

IF 1lv_street_counter = 1 THEN
1v_output message := lv_output message]| |’ '
|| 1v_street address;

ELSE
1v_output message := lv_output message||',
|| 1v_street address;
END IF;
END IF;
END LOOP;

/* Reset message with base cursor. */
lv_output message := lv_output message||CHR(10) ;
END LOOP;

/* Extend space and assign to collection. */
1v_output table.EXTEND;

1lv_output table(lv_index counter) := lv_output message;
lv_index_counter := lv_index counter + 1;
END LOOP;

/* Close cursor resource. */
CLOSE all nested results;

/* Return the formatted address. */
RETURN 1lv_output table;

END;

/

201

Line 5 declares a weakly typed system reference cursor, which is used as the target data type

for the two subcursors. Lines 14 through 23 contain a subcursor that holds another subcursor.
Line 22 contains the correlated subquery’s join between the outer cursor and the first-level subcursor.
Lines 18 and 19 (actually one line split into two to prevent wrapping in the book) contain the
correlated subquery’s join between the first- and second-level subcursors.

Lines 34 and 35 declare two target variables for the subcursors. It's possible to eliminate the

user-defined and weakly typed REF_CURSOR because Oracle provides a generic SYS REFCURSOR
data type for this exact purpose. You would change lines 34 and 35 as follows to use the built-in
weakly typed cursor data type:

T 34

35

1lv_street cursor SYS REFCURSOR;
1lv_address_cursor SYS_REFCURSOR;

202 Oracle Database 12¢ PL/SQL Programming

The first-level subcursor is assigned to the system reference cursor on line 59 inside the
first-level nested loop, and the second-level subcursor is likewise assigned on line 70. You can
then call this function inside the TABLE function, like this:

g SQL> SELECT column_value AS "Formatted Address"
2 FROM TABLE (format contact address('Vizquel')) ;

While I try to avoid subcursors, you also can use subcursors when you have tables that hold
nested tables. You use cross-joins in lieu of the inner joins between cursor and subcursor, or
subcursor and nested subcursor. Leveraging the employee table described in the “Nested
Collection Types” section of Appendix B, you could substitute this cursor:

9 CURSOR all nested results
10 (cv_start_id NUMBER
11 , cv_end id NUMBER) IS
12 SELECT e.employee id
13 , e.first name
14 || DECODE (e.middle name,NULL,' ',' '||e.middle name||' ')
15 || e.last _name AS full name
16 , CURSOR (SELECT n.city
17 , n.state
18 P CURSOR (SELECT s.column value
19 FROM TABLE (n.street address) s)
20 , n.postal code
21 FROM TABLE (e.home_address) n)
22 FROM employee e
23 WHERE e.employee id BETWEEN cv_start id AND cv_end id;

Lines 18 and 19 create a subcursor from a nested Attribute Data Type (ADT). Lines 16 through
21 create a subcursor from a nested user-defined type (UDT). Joins between the collections and
holding row are unnecessary because the Oracle database implicitly maps their relationships.

This section has explained how to use implicit and explicit cursors in your program units.
You've learned that some implicit behaviors are outside of your control. You've also learned that
explicit structures provide you with more control.

Review Section
This section has described the following points about cursor structures:

B Cursor structures return row-by-row managed result sets from SQL SELECT statements.

B Implicit cursors exist for all DML statements, such as the INSERT, UPDATE, DELETE,
and MERGE statements.

B PL/SQL supports the $FOUND, $NOTFOUND, $ISOPEN, and $ROWCOUNT implicit
cursor attributes.

B The SELECT-INTO statement is a single-row implicit cursor.

Chapter 5: Control Structures 203

B The INSERT, UPDATE, DELETE, and MERGE statements are multiple-row implicit
cursors, although you can limit them to a single row.

B Cursors can be static or dynamic, and dynamic implicit cursors can include placeholders
that are references to local variables.

B SELECT statement cursors can have formal parameters, like functions and procedures.

B Cursors support nested cursors, which are called subcursors.

Bulk Statements

Bulk statements let you select, insert, update, or delete large data sets in tables or views. You use
the BULK COLLECT statement with SELECT statements and the FORALL statement to insert,
update, or delete large data sets.

Table 5-8 lists and describes the two bulk collection attributes. The “INSERT Statements”
subsection under the “FORALL Statements” section illustrates how to use the $BULK ROWCOUNT
attribute.

This section explains how to use the BULK COLLECT INTO and FORALL statements. The first
subsection discusses the uses of and differences between parallel scalar collections and record
collections. The subsequent “FORALL Statements” subsection explains how you can use bulk
INSERT, UPDATE, and DELETE statements. While initially shown to you in the “INSERT Statement”
section, the last subsection shows you how to use the $BULK ROWCOUNT (1) and $BULK _
EXCEPTIONS (1) bulk collection attributes.

BULK COLLECT INTO Statements

The BULK COLLECT INTO statement lets you select a column of data and insert it into Oracle
collection data types. You can use a BULK COLLECT statement inside a SQL statement or as part
of a FETCH statement. A SQL statement bulk collection uses an implicit cursor, while a FETCH
statement works with an explicit cursor. You cannot limit the number of rows returned when
performing bulk collection in an implicit cursor. The FETCH statement lets you append the LIMIT
statement to set the maximum number of rows read from the cursor at a time. You can use any
standard or user-defined PL/SQL data type as the target of an implicit cursor statement.

Bulk Attribute Description

$BULK_EXCEPTIONS (i) Lets you see whether or not a row encountered an error during a
bulk INSERT, UPDATE, or DELETE statement. You access these
statistics by putting them in range FOR loop statements.

$BULK_ROWCOUNT (1) Lets you see whether or not an element is altered by a bulk
INSERT, UPDATE, or DELETE statement. You access these statistics
by putting them in range FOR loop statements.

TABLE 5-8. Bulk Collection Attributes

204 Oracle Database 12¢ PL/SQL Programming

The following is a basic prototype of an implicit bulk collection statement:

g SELECT column [, column [, ...]]
COLLECT BULK INTO collection [, collection [, ... 1]
FROM table name
[WHERE where clause statements] ;

Bulk collections performed as part of a FETCH statement use an explicit cursor. They have the
following prototype:

g FETCH cursor name [(parameter [, parameter [, ... 11)]
BULK COLLECT INTO collection [, collection [, ... 11
[LIMIT rows to return];

The number of columns returned by the explicit cursor determines the number of scalar
collection targets, or the structure of a record collection target. The SELECT statement defines the
number and type of columns returned by a cursor.

You can use BULK COLLECT INTO statements to insert a series of targets or a single target. A
series of targets is a set of collection variables separated by commas. The target comma-delimited
collections are known as parallel collections because you generally manage them in parallel. A
single target is a collection of a record structure. You cannot insert some of the columns into a
collection of a record structure and others into scalar collections in the same statement call. Any
attempt to do so raises a PLS-00494 error that disallows coercion into multiple record targets.

The BULK COLLECT INTO statement is much faster than a standard cursor because it has
one parse, execute, and fetch. Ordinary implicit INTO statement cursors or explicit cursors have
more parses, executes, and fetches. Bulk operations scale better as the number of rows increases,
but very large operations require database configurations to support them.

The “Parallel Collection Targets” and “Record Collection Targets” subsections that follow
demonstrate bulk collections using implicit cursors. The last subsection, “LIMIT-Constrained
Collection Targets,” demonstrates explicit cursors along with the LIMIT statement. The LIMIT
statement lets you constrain the size of bulk selections, but you can only use it with explicit
cursors. The last subsection demonstrates how you can work within your database operating
constraints, such as the PGA.

Parallel Collection Targets
Scalar collections are the only supported SQL collection data types. When you want to share data
with external programs or web applications, you should return your bulk selections into a series
of parallel collections. You can exchange these data types with external programs and web
applications, using the Oracle Call Interface (OCI).

The following example program uses an implicit BULK COLLECT INTO statement cursor and
performs a bulk selection into a set of parallel scalar collections:

g SQL> DECLARE

2 -- Declare a collection of a scalar data type.

3 TYPE title collection IS TABLE OF VARCHAR2 (60) ;

4 -- Declare two variables that use the scalar collection.
5 lv_title TITLE COLLECTION;

6 lv_subtitle TITLE COLLECTION;

7 BEGIN

Chapter 5: Control Structures 205

8 -- Call an implicit cursor with bulk collection.
9 SELECT item title
10 , item subtitle
11 BULK COLLECT INTO lV_title
12 p lv_subtitle
13 FROM item;
14 -- Print the output from the bulk collection.
15 FOR 1 IN 1..lv title.COUNT LOOP /* Print first element. */
16 dbms_output.put line('Title ['||lv_title(i)|]|']"');
17 END LOOP;
18 END;
19 /

Line 3 defines a collection type that supports both columns that the program needs to capture.
Lines 5 and 6 declare variables of the locally defined collection. The SELECT statement performs
a bulk collection into the 1v_title and 1v_subtitle collection variables on lines 11 and 12.
Line 15 declares a FOR loop that starts at 1 (or the beginning of a table collection) and ends at the
count of items in the collection. The repeatable statement in the loop prints only one of the two
local variables.

The program demonstrates how you can pass a set of values into two parallel scalar collections.
You should ensure that parallel scalar collections remain synchronized or else you'll encounter an
error with this coding approach. | don’t recommend using this coding approach because it's too
expensive to maintain in terms of time and money. You should only choose this direction if you
have a key business need to move data around using scalar SQL data types. Otherwise, you should
use record collection targets for bulk collection.

Record Collection Targets

The current limitations on building SQL collections limits us to collections of records of PL/SQL-
only structures. This means that you can only use SQL collections of record structures inside
programs that run exclusively in the PL/SQL environment. However, you can wrap these SQL
collections inside pipelined table functions (covered in Chapter 8) to convert them to collections
of SQL object types.

Although you can declare PL/SQL records and collections of records as data types in PL/SQL
bodiless packages (those without package bodies), you can’t use them in a SQL context. That's
because PL/SQL-only data types can’t act as call parameters to functions or procedures when
you call them from a SQL statement. Likewise, PL/SQL-only data types can’t be return types from
PL/SQL functions when you want to call them from a SQL statement.

A better solution is to create a record structure and a collection of the record structure because
then you can declare a variable with the record structure collection as its data type. That lets you
assign a SELECT list directly to a single variable using a BULK COLLECT INTO statement, like

=1 SQL> DECLARE

2 -- Declare a record and collection user-defined type.
TYPE title record IS RECORD

(title VARCHAR2 (60)

, subtitle VARCHAR2 (60)) ;

TYPE title table IS TABLE OF TITLE_ RECORD;

-- Declare a variable of the collection data type.
lv_fulltitle TITLE TABLE;

0w J O Ul b W

206 Oracle Database 12¢ PL/SQL Programming

9 BEGIN

10 SELECT item title

11 S item subtitle

12 BULK COLLECT INTO lV_fulltitle

13 FROM item;

14 -- Print one element of a structure.
15 FOR 1 IN l..lV_fulltitle.COUNT LOOP
16 dbms_output.put line('Title ['||lv_fulltitle(i).title]||']");
17 END LOOP;

18 END;

19 /

Lines 3 through 5 define a record structure of two elements. Line 6 defines title table as
a collection of the title record record structure. Line 8 declares a variable of the title
table collection. Then, the SELECT statement assigns the values of two columns through a bulk
collection into the 1v_fulltitle collection on line 12.

LIMIT-Constrained Collection Targets

The LIMIT statement lets you set the maximum number of rows returned by a bulk collection.
It constrains the bulk collection. You can only constrain the number of rows returned by explicit
cursors in a FETCH statement.

The downside to this approach is tied to how interactive applications work. Interactive applications
generally require all or nothing, not just some of the records. Batch processing programs that
manage large transaction processing steps are the best candidates for leveraging this approach.
So, the LIMIT statement is useful when you're doing batch processing or pulling very large cursors,
but not when you're dealing with interactive programs.

Just take note of these words of advice about setting the LIMIT value: If your LIMIT value is
too large, your Oracle RDBMS will spend an inordinate amount of time managing the cursor in
memory and too little time doing the work. Make sure the LIMIT value is intelligently sized. |
find that setting the LIMIT value to a number between 500 and 1,000 rows is ample. Anything
below 500 isn't worth your time to write the additional code.

The next two subsections demonstrate how to use the LIMIT statement with both the parallel
collection and record collection approaches.

Parallel Collection Targets As discussed earlier, parallel collections are typically synchronized
scalar collection variables. Parallel collections may differ by scalar data type but each must have
the same number of rows and matching index values. The prior examples use bulk collection with
implicit cursors, but you can also use explicit cursors.

The following program demonstrates how to manage a bulk collection ten rows at a time with
an explicit cursor:

=1 SQL> DECLARE

same as previous parallel collection example

7 -- Declare an explicit cursor.

8 CURSOR c¢ IS

9 SELECT item title AS title

10 ' item subtitle AS subtitle
11 FROM item;

12 BEGIN

Chapter 5: Control Structures 207

13 OPEN c;
14 LOOP
15 -- Fetch explicit cursor into a record collection.
16 FETCH c
17 BULK COLLECT INTO 1lv_title
18 S lv_subtitle LIMIT 10;
19 EXIT WHEN lv_title.COUNT = 0;
same as previous printing for loop
25 END LOOP;
26 END;
27 /

Lines 8 through 11 add the definition of an explicit cursor. The cursor is opened and fetched
by using a bulk collection operation on lines 16 through 18. The fetch retrieves only ten rows at a
time because of the appended LIMIT clause. The LIMIT clause means all iterations through the
loop fetch all available rows up to ten rows of data from the open cursor. The last iteration through
the loop shouldn’t fetch any rows. Please note that line 19 introduces a new type of exit guard.
The exit condition in this case checks whether the collection is empty before it exits the loop.
More or less, this approach is equivalent exit logic for an ordinary cursor:

= EXIT WHEN c$NOTFOUND;

While ten is a small number, the idea is to limit consumed memory and minimize the number
of parses, executes, and fetches. A better number is 250 or 500 because that typically doesn’t
bottleneck processing or strain computational resources for the database.

Record Collection Targets Over time, if not immediately obvious, you should find that record
collection variables are typically better solutions than parallel scalar collections. The next program
shows you how to manage bulk collections with an explicit cursor and record collection variable.
The example program places a LIMIT on how many rows can be processed by the bulk collection.
It limits processing to no more than ten rows with each pass through the loop.

The code follows:

{ SQL> DECLARE
same as previous bulk record collection example

9 -- Declare an explicit cursor.
10 CURSOR c IS
11 SELECT item title AS title
12 ’ item subtitle AS subtitle
13 FROM item;

14 BEGIN

15 OPEN c;

16 LOOP

17 -- Fetch explicit cursor into a record collection.
18 FETCH c

19 BULK COLLECT INTO 1lv fulltitle LIMIT 10;
20 EXIT WHEN lv fulltitle.COUNT = 0;

same as previous printing for loop
25 END LOOP;
26 END;

27 /

208 Oracle Database 12¢ PL/SQL Programming

Lines 10 through 13 hold the explicit cursor, and the bulk collect into a record collection
occurs on line 19. The LIMIT clause ensures ten or fewer rows are processed each time the code
traverses the result set from the cursor. Line 20 checks to see when there aren’t any more rows to
process. That's the only time the 1v_fulltitle collection should contain zero elements.

FORALL Statements

The FORALL loop is designed to work with Oracle collections. It lets you insert, update, and delete
bulk data. This section focuses on how to use the FORALL statement and build on the introduction
of collections in Chapter 3. Chapter 6 covers collections in greater depth.

These examples build on the bulk collection examples from the previous section. They also
depend on an item_temp table, which serves as the table for INSERT, UPDATE, and DELETE
statements. You should create the table by using the following syntax:

g SQL> CREATE TABLE item temp

2 (item_id NUMBER
3, item title VARCHAR?2 (62)
4 , item subtitle VARCHAR2 (60)) ;

The following subsections are ordered to support the example code. You insert, update, and
delete the data using FORALL statements. Then, you can drop the item temp table from the
database.

INSERT Statement
Bulk inserts require that you use scalar collections inside the VALUES clause. That means you can
use parallel collections of scalar variables, or you can use dot notation to supply field elements of
a record collection. Any attempt to simply insert the record into the table raises an ORA-00947
“not enough values” error.

The following example code uses scalar collections to perform a bulk insert:

SQL> DECLARE

2 -- Define a record type.

3 TYPE item record IS RECORD

4 (id NUMBER

5 , title VARCHAR2 (62)

6 , subtitle VARCHAR2(60)) ;

7 -- Define a collection based on the record data type.
8 TYPE item table IS TABLE OF ITEM RECORD;

9 -- Declare a variable of the collection data type.
10 lv_fulltitle ITEM TABLE;
11 -- Declare an explicit cursor.
12 CURSOR c IS
13 SELECT item_id AS id
14 , item title AS title
15 , item subtitle AS subtitle
16 FROM item;
17 BEGIN
18 OPEN c;
19 LOOP

20 FETCH c

Chapter 5: Control Structures 209

21 BULK COLLECT INTO 1lv_fulltitle LIMIT 10;

22 EXIT WHEN 1lv_fulltitle.COUNT = O;

23 FORALL i IN lv_ fulltitle.FIRST..lv fulltitle.LAST

24 INSERT INTO item temp

25 VALUES

26 (1v_fulltitle(i).id

27 , lv_fulltitle(i).title

28 , lv_fulltitle(i).subtitle);

29 /* Print the number of rows inserted per iteration. */
30 dbms_output.put line('['||SQL%ROWCOUNT| |'] Inserted.');
31 END LOOP;

32 END;

33/

The FORALL statement on line 23 reads the 1v_fulltitle collection but its size is
constrained with the BULK COLLECT statement’s LIMIT clause. That means the FORALL
statement processes only ten or fewer rows when performing the INSERT statement. The record
type holds an index value to the collection and a component selector (.) to the field element in
the record type. Line 30 shows you how to use the ¥ROWCOUNT bulk collection attribute on the
implicit INSERT statement to the item_temp table. If you've forgotten, the SQL$ROWCOUNT
applies to your last processed DML statement.

The real performance advantage comes by placing the COMMIT statement after the end of the
loop. Otherwise, you commit for each batch of inserts. There are occasions when the size of data
inserted makes it more advantageous to put the COMMIT statement as the last statement in the
loop. You should examine the size factors and discuss them with your DBA when you analyze
statement performance.

If the value of a LIMIT statement is small, such as 10, | recommend that you never commit
inside a loop in production. On the other hand, if the value is between 500 and 1,000, | recommend
that you commit inside the loop. If you don’t write code to commit inside the loop with that type
of record set, you will certainly produce code that adversely impacts the database because it
forces the database to manage unnecessary redo actions.

UPDATE Statement

Bulk updates require that you use parallel scalar collections or field element references to record

collections. As you saw in the previous section, you also must use parallel scalar collections or

field element references to a record collection inside the VALUES clause of an INSERT statement.
The following example code uses scalar collections to perform a bulk UPDATE statement:

% SQL> DECLARE
same as previous bulk insert example

23 -- Bulk update statement in a FORALL loop.

24 FORALL i IN 1lv_fulltitle.FIRST..lv fulltitle.LAST
25 UPDATE item_temp

26 SET item id = 1lv_fulltitle(i).id

27 , item _title = 1lv_fulltitle(i) .title

28 , item_subtitle = 1v_fulltitle(i).subtitle
29 WHERE item id = 1v_fulltitle(i).id

30 AND NOT (item title = 1v_ fulltitle(i).title AND

31 item subtitle = 1lv_fulltitle(i).subtitle);

210 Oracle Database 12¢ PL/SQL Programming

same as previous bulk insert example
END;
/

The FORALL statement on line 24 reads the 1v_fulltitle collection and updates rows
where the conditions in the WHERE clause are met. As with the INSERT statement, you should
judge where the COMMIT statement belongs when updating bulk records.

DELETE Statement
In the scope of a FORALL loop, bulk DELETE statements work the same way as bulk INSERT and
UPDATE statements. The prior discussion has focused on the use of parallel scalar collections or
record collections to perform both bulk inserts and updates. While using record collections is the
preferred solution for the INSERT and UPDATE statements, using record collections is not the
best solution for DELETE statements. You can safely use a single scalar collection of surrogate
keys to identify unique rows in a well-defined table.

The following example code uses a scalar numeric collection to perform bulk delete operations:

=1 SQL> DECLARE

2 -- Define a table of a scalar number data type.

3 TYPE id_table IS TABLE OF NUMBER;
4 -- Declare a collection variable.
5 lv_id 1ID TABLE;
6 /* Declare an explicit cursor to return the primary key
7 value from a table. */
8 CURSOR c¢ IS
9 SELECT item id AS id
10 FROM item;
11 BEGIN
12 OPEN c;
13 LOOP
14 FETCH c
15 BULK COLLECT INTO lv_id LIMIT 10;
16 EXIT WHEN lV_id.COUNT = 0;
17 -- Bulk update statement in a FORALL loop.
18 FORALL i IN lv id.FIRST..lv id.LAST
19 DELETE
20 FROM item temp
21 WHERE item id = 1v_id(i);
22 /* Print the number of rows inserted per iteration. */
23 dbms_output.put_line('['||SQL&ROWCOUNT||']");
24 END LOOP;
25 END;
26 /

Line 3 defines the 1d_table scalar collection, and line 5 declares a local variable of that
data type. Lines 18 through 21 show you how to write bulk DELETE statements against an
item id primary key column.

This section has demonstrated how to use bulk collections and the FORALL statement. Bulk
DML statements provide you with significant performance improvements over row-by-row processing.
You should look for opportunities to use them where they improve your application throughput.

Chapter 5: Control Structures 2711

% BULK_EXCEPTION Handling
Toward the beginning of this “Bulk Statements” section, Table 5-8 introduces the two bulk
collection attributes, $BULK_ROWCOUNT and $BULK_EXCEPTION. You get the number or rows
inserted, updated, or deleted by a bulk statement when you couple SQL (for the last implicit DML
statement) and the $BULK_ROWCOUNT bulk collection attribute—SQL%BULK ROWCOUNT. The
$BULK_ROWCOUNT bulk collection attribute returns the total number, the limit imposed, or the
residual number for the last INSERT, UPDATE, or DELETE statement.

$BULK_EXCEPTION returns three field values: COUNT, ERROR_INDEX, and ERROR CODE.
The ERROR_CODE value is a positive integer, which means you need to multiply any ERROR _
CODE value by -1 before looking for its error message. You can access the fields by first coupling
SQL to the $BULK_EXCEPTION collection attribute and then using a component selector (.)
before the field name, like this:

=1 SQL3BULK_EXCEPTIONS.COUNT

Oracle’s exception handling model is like that of most programming languages—straightforward.
When a program encounters an error, it raises an exception (in the Java programming language, it
throws an exception). The exception block captures and handles thrown exceptions, and exceptions
typically stop the program.

Bulk processing has two options. The default option accepts the default exception handling
paradigm and stops processing a program’s logic with a single error. The override option lets you
log errors and continue with the bulk processing until the completion of an INSERT, UPDATE, or
DELETE statement. You override the default behavior by appending a SAVE EXCEPTIONS clause
to the FORALL statement. Bulk exceptions raise an ORA-24381 error code. You need to define a
user-defined exception (covered briefly in Chapter 3 and in detail in Chapter 7) to manage bulk
exceptions because there isn’t a predefined exception for bulk exceptions in the standard
package.

The following example demonstrates how you handle bulk exceptions. It changes a few things
from the prior example. The record type is different, and a unique constraint on the item title
and item type columns will raise some errors when the program runs. The errors are important
because they show you how to handle bulk exceptions.

=1 SQL> DECLARE

2 /* Define a record type. */

3 TYPE item record IS RECORD

4 (id NUMBER

5 , title VARCHAR2 (62)

6 , type VARCHAR2 (60)) ;

7 /* Define a collection based on the record data type. */
8 TYPE item_table IS TABLE OF ITEM RECORD;

9 /* Declare a variable of the collection data type. */
10 1lv_fulltitle ITEM TABLE;
11 /* Declare an explicit cursor. */
12 CURSOR ¢ IS
13 SELECT item_id AS id
14 , item _title AS title
15 , item type AS type
16 FROM item;

17 /* Declare a bulk error and map it to Oracle's error code. */

212 Oracle Database 12c PL/SQL Programming

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

bulk error EXCEPTION;
PRAGMA EXCEPTION_ INIT (bulk error, -24381);
BEGIN
OPEN c;
LOOP
FETCH c

BULK COLLECT INTO lv_fulltitle LIMIT 5;
EXTIT WHEN lV_fulltitle.COUNT = 0;
FORALL i IN lv_fulltitle.FIRST‘.lv_fulltitle.LAST SAVE EXCEPTIONS
INSERT INTO item_temp
VALUES
(lv_fulltitle(i).id
, 1lv_fulltitle(i).title
, 1lv_fulltitle(i) .type);
/* Print the number of rows inserted per iteration. */
dbms_output.put line(
"['| | SQL$ROWCOUNT| | '] Inserted Successfully');
END LOOP;
EXCEPTION
WHEN bulk error THEN
/* Print the count of bulk errors. */
dbms_output.put_ line(
"['| | SQL¥ROWCOUNT | | '] Inserted Successfully');
/* Print individual errors. */

FOR i IN 1..SQL%BULK EXCEPTIONS.COUNT LOOP
dbms output.put line('[’
| | SQL%BULK EXCEPTIONS (i) .ERROR_INDEX ||'] [
| | SQLERRM(-1 * SQL%BULK EXCEPTIONS (i) .ERROR CODE) ||'1');
END LOOP;
END;
/

Lines 18 and 19 declare a user-defined exception and a precompiler directive that maps the

ORA-24381 exception to a bulk_error exception handler. Line 24 sets the LIMIT of bulk
inserts at five rows for each call of the FORALL loop. The FORALL statement on line 26 has a
SAVE EXCEPTIONS clause at its end, which ensures that exceptions are collected while the
FORALL completes the bulk INSERT statement.

Line 45 calls the SQLERRM function with a complex call parameter. While the call parameter

should be a negative number, the error code field of the $BULK_EXCEPTION statement
returns a positive integer. That’s why we multiply it by a negative inverse (or -1).

i (5]
(5]
[5]
[3]
[4]
(5]

It produces the following type of results:

Inserted Successfully
Inserted Successfully
Inserted Successfully
Inserted Successfully
[ORA-00001: unique constraint (.) violated]
[ORA-00001: unique constraint (.) violated]

Chapter 5: Control Structures 213

The anonymous block processes five rows for each bulk INSERT statement. During the last
bulk INSERT statement of five rows, three rows are inserted successfully while two rows are rejected.
The two rejected rows violate a UNIQUE database constraint on the combination (covered in
Appendix A). The completion of the fourth bulk INSERT statement raises an ORA-24381 exception,
and throws control to the exception block.

This section has shown you how to manage bulk DML statements.

Review Section
This section has described the following points about bulk statements:

Bulk processing can work with parallel collections of scalar data types or collections
of record data types.

The BULK COLLECT statement lets you gather rows from a cursor into a collection,
and collections can be single or parallel collections of scalar data types, or collections
of records.

PL/SQL supports the $BULK_EXCEPTIONS (1) and $BULK_ROWCOUNTS (1) bulk
collection attributes.

The FORALL statement lets you take a collection and pass it to an INSERT, UPDATE,
or DELETE statement.

The $¥ROWCOUNT attribute also works with bulk inserts, updates, and deletes, but in the
case of MERGE statements, you're never sure which rows are inserted or updated.
Record collections work best when FORALL statements work with INSERT or UPDATE
statements.

Single scalar collections work best when FORALL statements work with DELETE
statements.

By default, Oracle’s exception handling stops program logic with a single error, which
isn’t optimal for bulk processing. The $BULK EXCEPTION collection attribute lets you

override the default exception handling process in a FORALL statement, and lets you
capture errors for problem rows while successfully processing those rows without errors.

Supporting Scripts

This section describes programs placed on the McGraw-Hill Professional website to support this

chapter.

The conditional logic.sgl program contains small programs that support the
“Conditional Statements” section of this chapter.

The iterative logic.sqgl program contains small programs that support the
“Iterative Statements” section of this chapter.

The bulk processing logic.sqgl program contains small programs that support
the “Bulk Statements” section of this chapter.

214 Oracle Database 12¢ PL/SQL Programming

Summary

This chapter has examined the control structures in PL/SQL. You should understand how to effectively
use conditional statements and iterative statements. You should also understand how to build and
manage cursors in your PL/SQL programs.

Mastery Check

The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix | for answers to
these questions.

True or False:

1. __ Conjunctive logic involves determining when two or more things are true at the same
time.
2. __Inclusion logic involves determining when one or another thing is true at any time.
3. __ Short-circuit logic occurs with inclusion logic.
4. __ Databases always rely on two-valued logic.
5. ___ Asearched CASE statement may use a string or numeric selector.
6. __ Asimple CASE statement can use a numeric selector.
7. ___Conditional compilation supports conditional compilation flags.
8. ___ A CONTINUE statement lets you skip the balance of an iteration through a loop.
9. __ A SELECT-INTO statement is an example of an explicit cursor.
10. __ The FORALL statement lets you perform bulk INSERT statements.

Multiple Choice:
11. A conditional statement applied against two operands can evaluate which of the following?
(Multiple answers possible)
A. The truth of a comparison involving only not-null values
The non-truth (or falsity) of a comparison involving only not-null values
The truth of a comparison involving one or more null values

The non-truth (or falsity) of a comparison involving one or more null values

mUnNw®

The truth of null values

12. Which of the following are only guard-on-entry loops? (Multiple answers possible)
A. A simple range loop

A range FOR loop

A WHILE loop

A DO-UNTIL loop

A DO-WHILE loop

mOnNw®

13.

14.

15.

Chapter 5: Control Structures 215

Which of the following guards entry and exit to the loop in PL/SQL? (Multiple answers
possible)

A range FOR loop

A cursor FOR loop

A simple loop

A DO-WHILE loop

A WHILE loop

Which of the following are only guard-on-exit loops? (Multiple answers possible)

mO 0w »

A simple cursor loop
A simple range loop
A cursor FOR loop
A WHILE loop

mO 0w »

A range FOR loop

Which of the following collections work best with a bulk delete operation on a well-
defined (or normalized) table with a surrogate key for its single-column primary key?
(Multiple answers possible)

Parallel scalar collections
A single scalar collection
A single record collection
All of the above

None of the above

mO 0w »

CHAPTER

Collections

218 Oracle Database 12c PL/SQL Programming

advent of Java. An array is a collection of a fixed number of elements that share the

same data type. A list is a collection of any number of elements that share the same data
type. A list is generally more flexible than an array because you don’t have to know before you
create a list how many elements belong in the collection

C ollections are arrays and lists—at least, that's the way they’ve been labeled since the

Oracle Database 12¢ provides you with a very powerful collection framework, and the framework
lets you create collections in a SQL or PL/SQL context. You can use the collection framework to
create the equivalent of arrays, sets, bags, hash tables, and unordered tables.

There are four sections in this chapter. The “Introduction to Collections” section explains
the Oracle Database 12c¢ collection framework. The “Object Types: Varray and Table Collections”
section shows you how to create and work with varrays and table collections. The “Associative
Arrays” section shows you how to work with structures that map keys to values. The “Oracle
Collection API” section describes and illustrates the application programming interface (API) for
Oracle’s collection types.

Introduction to Collections

Oracle 8j Database forward provides three types of collections. Two are SQL collections and one
is a PL/SQL-only collection. Oracle implements a SQL array as a varray data type and implements
a SQL list as a table data type. The PL/SQL-only collection is an associative array or an index-by
table data type and is implemented as a list. While the SQL collections are numerically indexed,
you can index an associative array with numbers or strings.

You can implement Oracle SQL collection data types in SQL or PL/SQL. SQL collections are
schema-level object types. Although you can implement SQL collection data types in PL/SQL, it's
best to implement them in SQL, because any SQL data type can be accessed from SQL or PL/SQL.
Associative arrays don’t enjoy this interchangeable characteristic, and their use is limited to inside
a PL/SQL scope.

Oracle Database 12¢ does provide the ability to use a PL/SQL composite data type inside an
embedded SQL statement. However, you must declare a local variable of the PL/SQL collection
type in the local or containing PL/SQL block first. Then, you embed the SQL statement in the local
PL/SQL block. There’s a complete example in the “PL/SQL-Specific Data Types Allowed in SQL”
section of Chapter 2.

Oracle PL/SQL Tables

The Oracle Database PL/SQL Language Reference 12c Release 1 tells us that associative
arrays were previously called PL/SQL tables or index-by tables. Thus, to be consistent with
Oracle’s official lingo, you should use the term associative array instead. If you frequent
Oracle forums, don’t be surprised if you still encounter the term PL/SQL table or index-by
table being used in discussions.

Chapter 6: Collections 219

Scope
Initialization
Assignment

Index

Base Data Type

SQL Collections
May be defined in SQL or PL/SQL scope.
Require initialization before their first use.

Preallocate space before assigning
values. You can preallocate space and
assign values for more than one element
at a time.

Use a sequential set of integers as index
values (at least initially for the table data
types), which makes SQL collections
densely populated arrays and lists.

Use any SQL scalar data type or UDT
object type.

Associative Arrays
Are defined only in PL/SQL scope.
Don't require initialization.

Don’t need to allocate space
because you manually assign
indexes and values one row at
a time.

Use an integer or string as the
index, and the index value may
be in any order you like, which
makes associative arrays sparsely
populated lists.

Use any SQL or PL/SQL scalar
data type or a PL/SQL record type.

TABLE 6-1.

Differences Between SQL Collections and Associative Arrays

Beyond the scope limitation, PL/SQL index-by tables differ from the varray and table object
types in four key ways: initialization, assignment, index, and base data types. Table 6-1 highlights
the differences between how these different collection types work.

Chapter 4 covers the three composite data types: two are the UDT object and PL/SQL record

data types, and the third is a collection. The simplest one is a collection of a scalar data type, like
a number, string, or date. The scalar data type for this type of collection is the collection’s base type.
All collections are final data types. That means you can’t extend their behavior. The reason that
they are final data types isn’t explained in Oracle’s documentation (the Oracle Database PL/SQL
Language Reference and Oracle Object-Relational Developer’s Guide), but Oracle 8i forward
provides a Collection API to help you work with and manage collections. The Oracle Database
PL/SQL Language Reference uses Table 6-2 to qualify how non-PL/SQL composite types map to
these PL/SQL composite types.

Non PL/SQL Composite Type Equivalent PL/SQL Composite Type

Hash table Associative array
Unordered table Associative array
Set Nested table
Bag Nested table
Array Varray

TABLE 6-2. Map of Non PL/SQL to PL/SQL Composite Types

220 Oracle Database 12c PL/SQL Programming

A record data type generally contains a collection of related field elements, similar to a row in
a table. That means a record structure is like a table structure, and a collection of a record
structure is like an in-memory PL/SQL-only table.

Object types have both subtle differences and broad differences from record data types. The
subtle difference occurs when you define a SQL object type without methods, because it creates
a SQL data type that mimics a PL/SQL record type. The subtle difference for assigning data to it
requires that you use a constructor function, which is just like a VALUES clause of an INSERT
statement. The values must match by position and data type the list of attributes in the object type.
Oracle checks the position and data type of attributes by implicitly inspecting the automatically
generated default object constructor (see Chapter 11 for the details).

Before | explain the broad differences, you need to understand how and where you can
define and use SQL and PL/SQL object types and PL/SQL record types. You can define object
types as schema-level objects in any container or pluggable database or inside any PL/SQL
declaration block. You can define record types inside any PL/SQL declaration block.

It's possible to use object and record types in an anonymous or named block that has access
to the declaration block where they’re defined. Object and record types are locally available
when they're defined in the local declaration block. They're also available when defined in an
outer declaration block for nested PL/SQL programs. Object and record types are more broadly
available when they’re defined in package specifications, because any PL/SQL program run by a
user that has execute privileges on that package can use them.

Object types can define the data type of a column in a table, the structure of a table, the data
type of a parameter in a function or procedure, and the data type of a return type from a function.
Record types can also serve as parameters in stored programs or as function return types. Naturally,
collections of object and record types inherit the same features and limitations as their base
data types.

The broad difference between object types and record types are as follows:

B Object types can define column data types and table structures, while record types can't.

B Object types can serve as parameter data types in functions and procedures called from
SQL or PL/SQL, while record types can only work in an exclusively PL/SQL call context.

B Collections of object types can define column data types but not table structures.

B Collections of object types can work in SQL and PL/SQL contexts, while collections of
record types are limited to PL/SQL-only contexts.

The similarities and differences of the base data types impact how you work with collections
of them. Figure 6-1 shows when you can call collections as parameters and function returns. You
should notice that SQL collection data types may be consumed in SQL scope or PL/SQL scope,
with one exception: an aggregate table. Aggregate tables occur whenever you return a SQL
collection from a function or return a PL/SQL collection from a pipelined table function (see
Chapter 8 for more details). Aggregate tables are essentially the same as result sets from SELECT
statements, and that’s why they have an asterisk in Figure 6-1.

Chapter 6: Collections 221

SQL PL/SQL SQL PL/SQL
Collection Call Call Function | Function
Data Type Scope | Parameter | Parameter Return Return
Varray Yes Yes Yes Yes
Nested Table SQL Yes Yes Yes Yes
Aggregate Table* Yes
Varray Yes Yes
Nested Table PL/SQL Yes Yes
Associative Array Yes Yes

FIGURE 6-1. Collection access and return type scopes

Object Types: Varray and Table Collections

As discussed, collections are programming structures that hold sets of like things, and they fall
into two categories, arrays and lists. Arrays typically have a physical size allocated when you
define them, while lists have no physical size limit. Oracle implements arrays as the varray data
type and lists as the table data type.

Oracle lets you define schema-level object types that hold collections of scalar or object data
types. It’s also possible that a collection may hold object types that contain other nested varray or
table collections. Whether a collection holds a scalar or composite data type, it holds what'’s
known as its base data type.

A SQL collection of a scalar data type is an Attribute Data Type (ADT), while a collection of
an object type is a user-defined type (UDT). The allocation of space for new members of a SQL
collection is essential. Space allocation implicitly increments by one the integer value of the next
index. This makes object type collections densely indexed.

The following subsections cover SQL varray and table data types.

Varray Collections

Varray collections are single-dimensional structures that have a maximum number of elements.
The elements all have the same data type. As mentioned, the element data type is the base data
type of the varray collection.

The prototype for creating a SQL varray collection is

g TYPE type name IS {VARRAY | VARYING ARRAY} (size limit) OF data_ type
[NOT NULL] ;

By default, new elements can be null. You must append the NOT NULL clause when you
define a collection to preclude null values, although it's generally a good practice to allow null
values while ensuring you only add elements that aren’t null. You should preclude null values
only when you want to raise an exception while trying to assign a null value to a collection.

222 Oracle Database 12¢ PL/SQL Programming

What'’s in a Name?

As indicated in the prototype, VARRAY and VARYING ARRAY can be used interchangeably,
but the most common use is VARRAY. So, unless you rely on GeSHi (Generic System
Highlighter) tools, most of which highlight VARYING ARRAY but not VARRAY, you should
use the term VARRAY.

You would define a three-element varray of strings in SQL with the following syntax:

= SQL> CREATE OR REPLACE
2 TYPE sql_varray IS VARRAY(3) OF VARCHAR2 (20) ;
3/

Or, like this:

= SQL> CREATE OR REPLACE
2 TYPE sqgl varray IS VARYING ARRAY (3) OF VARCHAR2 (20) ;
3/

In both cases, line 1 uses SQL syntax to create or replace a schema-level object type. Line 2
defines the varray collection, and the syntax on line 2 is how you would define a varray collection
in a PL/SQL declaration block. Line 3 executes or compiles the type.

You can actually construct and use object types within a SQL statement without any other
components. While it’s not too useful, the following example shows how to do it:

g SQL> SELECT column value AS "Three Stooges"
2 FROM TABLE (sql_varray('Moe', 'Larry', 'Curly'));

The SELECT list only returns a column_value pseudocolumn, which holds the results of
any aggregate result returned by an ADT collection. The “Three Stooges” column alias just adds
a formatting touch. The key to reading the collection is the TABLE function, which you can read
more about in Appendix C. The query constructs a three-element collection inside the call to the
TABLE function on line 2.

The results are

M Three Stooges

Moe
Larry
Curly

You can order the return values by appending an ORDER BY clause that references the position
of the column_value pseudocolumn:

=7 3 ORDER BY 1;

You can also override the default sort order with an ORDER MEMBER function when you
implement an object body (see Chapter 11 for the details). Its ill advised to override the default

Chapter 6: Collections 223

sort operation of an ADT. The one exception to that rule is when you're using an encrypted scalar
data type as the base data type of the collection.

You would define a three-element varray of strings in PL/SQL with the following syntax in any

declaration block:

=1 SQL> DECLARE

2

N o U W

/* Define a local PL/SQL collection. */
TYPE sql varray IS VARRAY (3) OF VARCHAR2 (20) ;

BEGIN
END;

The code in the execution and exception blocks would be exactly the same whether you

define the varray collection in SQL or PL/SQL. Let’s rework the example to construct and consume
values from a varray collection in PL/SQL. This time, we declare an 1v_stooges variable by
constructing it with a list of two rather than three string elements. The code follows:

=1 SQL> DECLARE

2

O VW W J o0 U W

/* Declare a collection variable with a constructor call. */
lv_stooges SQL VARRAY := sql varray('Moe', 'Larry');

BEGIN

/* Print the number and limit of elements. */
dbms_output.put line(

"Count ['|]|lv_stooges.COUNT||'] ']||

'Limit ['||lv_stooges.LIMIT||']"');

/* Extend space and assign to the new index. */
lv_stooges.EXTEND;

/* Print the number and limit of elements. */
dbms_output.put_ line(

"Count ['||lv_stooges.COUNT||'] '||

'Limit ['||lv_stooges.LIMIT||']");

/* Assign a new value. */
lv _collection(lv_stooges.COUNT) := 'Curly';

/* Iterate across the collection to the total number of elements. */
FOR i IN 1..1lv_stooges.COUNT LOOP

dbms output.put line(lv_stooges(i));
END LOOP;

END;

Line 3 declares an 1v_stooges variable of the sgl_varray collection shown earlier. The

call to the sgl_varray data type with a list of two strings creates an object type collection with
two elements. It's possible to construct an empty collection by calling the constructor without any
call parameters, like this variation on line 3:

e

lv_stooges SQL VARRAY := sqgl varray();

224 Oracle Database 12¢ PL/SQL Programming

All varray and table data types have three possible states: null, empty, and populated. A null
collection is uninitialized; an empty collection is initialized without any elements; and a
populated collection is initialized with at least one element. You use the IS NULL comparison
operator to check whether a collection is uninitialized before you work with it. The IS EMPTY
comparison operator lets you find an empty collection, and the COUNT function lets you discover
how many elements a collection has. The COUNT function is part of the Oracle Collection APl and
is available for all three collection types. The Collection API also includes the LIMIT function,
which lets you find the maximum number of elements in a varray. You use the COUNT and LIMIT
function by appending them after the component selector (.).

Lines 6 through 8 print a COUNT value of 2 and a LIMIT value of 3 because you have
allocated space for two out of three possible elements in the varray. Line 11 extends memory
space for a third element, which automatically creates a new index value of 3, and it points to a
null element. Lines 14 through 16 print a COUNT and LIMIT value of 3 because you have now
allocated space for all three possible elements. Line 18 assigns a value to the new element of the
collection. It identifies the new element by relying on the 1-based numbering of collections and
the fact that the COUNT function returns a correct index value for the last element in a collection.

Line 23 prints all the elements of the collection, but notice how it identifies the elements of
the collection. It uses a parenthetical reference to the index value of the collection, and that’s
different from other programming languages. Many languages use square brackets to offset index
values, but Oracle uses ordinary parentheses.

If you disallow null values by changing the earlier definition of the sql_varray data type,
the attempt to assign a null value on line 19 would raise the following exception:

g1 1v collection(lv_collection.COUNT) := NULL;

*
ERROR at line 18:
ORA-06550: line 18, column 41:
PLS-00382: expression is of wrong type
ORA-06550: line 18, column 3:
PL/SQL: Statement ignored

The physical size limit guarantees a varray collection can hold only so many elements. This
limit is often a key reason for using or avoiding the varray data type. Choosing a varray data type
as a developer means you want your program to fail when it attempts to assign a value beyond
the limit of possible values. Making that choice is a convenient way to raise an exception when
data violates a “no more than” type of rule. It also eliminates writing additional logic to check
whether the number of results exceeds a target limit. That’s because the varray does that check for
you by raising an out-of-bounds error.

We can generate an out-of-bounds error with the prior sample code by making one change.
Change the constructor call on line 3 from a list of two elements to a list of three elements (using
the original third stooge—Shemp, Curly’s real-life brother), like

2 1lv collection SQL VARRAY := sqgl varray('Moe', 'Larry', 'Shemp’') ;
i _ _ ql_ Y Y P

You would now raise the following exception on line 10 when attempting to add space for an
element beyond the physical limit of three elements:

=1 DECLARE
*

Chapter 6: Collections 225

ERROR at line 1:
ORA-06532: Subscript outside of limit
ORA-06512: at line 10

You would get virtually the same message if you were to attempt to access a varray with an
index value of 0. That's because a varray always starts with an index value of 1. You can have a
0 index value in an associative array because it follows different rules.

Since varray and table collections have the same syntax when working with SQL object types and
PL/SQL record types, to avoid redundancy, those examples are presented in the next section only.

Table Collections

Table collections are single-dimensional structures that have no limit on the number of elements
that they hold—at least, no limit exists other than what’s available in the database resources. The
key resources that may impose limits are the System Global Area (SGA) and the Program Global
Area (PGA). Like a varray collection, the elements of table collections must all have the same data
type. The base type of a table collection, like a varray, is the data type of the elements held in the
collection. Table collections can hold scalar or composite data types.

The prototype for creating a SQL table collection is

g TYPE type name IS TABLE OF data type [NOT NULL];

Unlike the varray collection discussion in the previous section, in this section we work
through table collections of scalar and composite data types. We also will look at local and
package-level PL/SQL collections.

Scalar Table Collections
Like varray collections, you have the option of allowing or disallowing null values. While the default
allows null values, appending a NOT NULL clause disallows them. The best practice is to allow
null values while ensuring that you only add elements that aren’t null (although some programmers
disallow null values to ensure null value assignments raise exceptions).

You would define a table of strings in SQL with the following syntax:

=1 SQL> CREATE OR REPLACE
2 TYPE sqgl_table IS TABLE OF VARCHAR2 (20);
3/

Line 1 uses SQL syntax to create or replace a schema-level object type. Line 2 defines the table
collection, and the syntax on line 2 is how you would define a table collection in a PL/SQL
declaration block. Line 3 runs or compiles the type.

Like the varray collection example in the previous section, you can query a table collection
by using the TABLE function in the FROM clause of a query. Here’s the example of constructing
and consuming the collection in a query:

g SQL> SELECT column value AS "Dunedain"
2 FROM TABLE (sqgl_varray ('Aragorn', 'Faramir', 'Boromir'))
3 ORDER BY 1;

The TABLE function call on line 3 converts the table collection into an aggregate result set.
All return sets from queries are formally aggregate result sets. ADTs display their results by using

226 Oracle Database 12¢ PL/SQL Programming

the column value pseudocolumn. The example also uses a column alias, Ddnedain, to format
the result set from the query, and returns the following results:

g Dinedain
Aragorn
Boromir
Faramir

The problem with ADT collections is that you have no way to unnest them when they’re used
inside a table. That means the only way to add or update an element is through PL/SQL. The “PL/
SQL to the Rescue of Updating an ADT Element” sidebar in the “Nested Table Updates” section of
Appendix B shows you how to update an embedded ADT element. Therefore, in this section I'll
only show you how to add a new element to an ADT by using a PL/SQL function. While an
anonymous block could illustrate it, a forward reference to a function seems more effective to use
with an UPDATE statement.

The code for the add_element function is

g SQL> CREATE OR REPLACE FUNCTION add element
2 (pv_table SQL_TABLE

3 B pv_element VARCHAR2) RETURN SQL TABLE IS

4

5 /* Declare a local table collection. */

6 lv_table SQL_TABLE := sql_table();

7 BEGIN

8

9 /* Check for an initialized collection parameter. */
10 IF pv_table.EXISTS(1l) THEN -- A suboptimal comparison.
11 lv_table := pv_table;

12 END IF;

13

14 /* Check for a not null element before adding it. */
15 IF pv_element IS NOT NULL THEN

16 /* Extend space and add an element. */

17 lv_table.EXTEND;

18 lv_table(lv_table.COUNT) := pv_element;

19 END IF;
20
21 /* Return the table collection with its new member. */
22 RETURN 1lv_table;
23 END;
24 /

Line 2 declares a formal collection parameter, and line 3 declares a formal collection return
type. The logic of the program ensures one of four outcomes:
Adds an element to a collection with at least one preexisting member
Adds an element to an empty collection

Doesn’t add a null element to a populated or empty collection

Initializes an empty collection

Chapter 6: Collections 227

Line 6 declares an empty 1v_table collection because the pv_table call parameter may
hold a null value. Initializing the 1v_table collection prevents raising an uninitialized collection
error.

Line 10 checks whether the pv_table call parameter holds at least one member. It uses the
EXISTS function with what should be the first index value of the table collection. We make that
check because there’s no sense assigning an empty collection to the local 1v_table collection
variable. While the EXISTS function works by using the first index value as a call parameter, it's
a better practice to use an IS NOT EMPTY comparison operator, like

T 10 IF pv_table IS NOT EMPTY THEN -- The BEST PRACTICE always!

You ask, “Why is it a better practice?” That's a great question. The answer is tricky, and it is
specific to table collections. While varray and table indexes start out at 1, and they are densely
populated with sequential integers, it's possible to delete elements. Deleting elements creates gaps
in the sequence of index values. That's why checking for the first element may or may not work.
All it does is check whether the first element is present. That’s not what you want to know in this
type of comparison. You want to know whether a table collection is populated. That’s why you should
always use the IS EMPTY comparison operator to check whether a table collection is populated.

You can add an element to an ADT that is nested inside a table when you call the add_an_
element function inside an UPDATE statement. The following UPDATE statement show you how
to add a new element to a nested ADT inside the employee table (the employee table is defined
in the “Nested Table Updates” section of Appendix B).

=1 SQL> UPDATE TABLE (SELECT e.home_address
2 FROM employee e
3 WHERE e.employee id = 1) e
4 SET e.street address = add an element(e.street address, 'Suite 622')
5 e.city = 'Oakland'
6 WHERE e.address_id = 1;

Line 4 calls the add_an_element function with the original street address ADT column
value and a string literal value. Line 4 then assigns the function result to the street address
ADT column. You also can write an update function to change an ADT column value (see
Appendix B for an example), and a delete function to remove an element from an ADT column.

Line 15 verifies the pv_element value isn't null. It extends space for the table collection
and assigns the pv_element value to the collection on lines 17 and 18. You can test the add_
element function in a query, like

g SQL> SELECT column_value AS "Dunedain"
2 FROM TABLE (add_element (sgl_table('Faramir', 'Boromir')
3 , "Aragorn'))
4 ORDER BY 1;

It prints the ordered set:

g Dinedain
Aragorn
Boromir
Faramir

228

Oracle Database 12¢ PL/SQL Programming

The Case of the Missing Index

All varray and table collections start out with numeric index values, and they start with 1 in
all cases. While you can’t remove an element from a varray, you can remove an element
from a table collection. You do it by using the DELETE procedure from the Collection API.
That means a dense table index may become sparse over the instruction sequence of your
program.

A deleted item is a major issue for most developers because they increment across
collections by using a FOR loop. A FOR loop simply iterates to the next member and it can't
skip index gaps. However, the best method to illustrate the easy way and the hard way of
navigating across a sparsely populated table collection (or at least one at risk of being
sparsely populated) is to use a WHILE loop, so that’s what we’ll use in the following sample
programs.

The first sample program iterates across the collection without using an increment-by-
one logic. This is the easy way to iterate across any collection where the numeric index
value may have gaps or the index is a string (more or less a linked list).

SQL> DECLARE
2 /* Declare a meaning-laden variable name and exclude the
lv_ preface from the variable name. */

4 current INTEGER;
5
6 /* Declare a local table collection. */
7 1v_table SQL_TABLE :=
8 sgl table('Aragorn', 'Faramir', 'Boromir') ;
9 BEGIN
10 /* Remove the lead element of a table collection. */
11 lV_table.DELETE (1) ;
12
13 /* Set the starting point. */
14 current := 1lv table.FIRST;
15
16 /* Check pseudo index value less than last index value. */
17 WHILE (current <= lv table.LAST) LOOP
18 /* Print current value. */
19 dbms_output.put line(
20 'Index ['||current||']['|]|lv_table(current) ||']");
21
22 /* Shift the index to the next value. */
2 current := lv_ table.NEXT (current) ;
24 END LOOP;
25 END;
26 /

Note on line 4 that the current variable violates the generic rules for naming variables
(it lacks the prefix 1v_). That's because the current variable name has special meaning as
the current index value, and it makes our program more readable. The current variable
holds the current index value. Line 14 assigns the starting index value, which in this case is 2.

Chapter 6: Collections 229

The WHILE loop guard on entry checks whether the current value is less than the last value
(also the maximum value). Line 23 increments the current index to the next available value,
which may mean by one, two, or more. The NEXT function takes the current index value to
find the next index value.

The hard way to iterate across a collection with a sparse index uses increment-by-one
logic and a CONTINUE, GOTO, or IF statement to skip over logic when an index value is
missing, as shown in the following sample program:

SQL> DECLARE

2 /* Declare a local counter variable. */

3 lv_counter INTEGER := 0;

4

5 /* Declare a local table collection. */

6 lv_table SQL TABLE :=

7 sgl table('Aragorn', 'Faramir', 'Boromir') ;
8 BEGIN

9 /* Remove the lead element of a table collection. */
10 lv_table.DELETE(1) ;

11

12 /* Check pseudo index value less than last index value. */
1z WHILE (lv_counter <= lv_ table.LAST) LOOP

14 /* Increment the index counter. */

15 lv_counter := 1lv_counter + 1;

16

17 /* Check whether the index returns a value. */
18 IF lv_table.EXISTS(lv counter) THEN

19 dbms_output.put line(
20 'Values ['||1lv_counter||']['||lv_table(lv_counter) ||']"');
21 END IF;
22 END LOOP;
23 END;
24 /

Line 3 declares the 1v_counter variable and sets the initial value to 0, but line 10
deletes that element. Line 13 checks whether the counter value is less than or equal to the
last numeric index value before entering the loop. Line 18 checks if an index value references
an element in the collection. It only prints output when the element is found.

The first example works best for sparsely populated indexes. The second example, minus
the check for a valid index value, works best for densely populated indexes.

Let’s look at reimplementing this as an associative array (previously called PL/SQL tables or
index-by tables) collection. Recall that we have two options: implement a local table collection
or implement a package-level table collection. Any user with execute privileges on the package
where you define a table data type can use a package-level variable.

230 Oracle Database 12¢ PL/SQL Programming

The following uses a local table collection data type:

g SQL> DECLARE

2 /* Define a local table collection. */

3 TYPE plsgl table IS TABLE OF VARCHAR2 (20) ;

4

5 /* Declare a local table collection. */

6 1v_table PLSQL TABLE :=

7 plsgl table('Aragorn', 'Faramir', 'Boromir') ;
8 BEGIN

9 /* Loop through the collection and print the results. */
10 FOR 1 IN 1v_table.FIRST..lv_table.LAST LOOP

11 dbms_output.put line(lv_table(i)) ;

12 END LOOP;

13 END;

14 /

Line 3 defines a local table collection. Lines 6 and 7 declare a local variable that uses the
local p1sgl table collection type. A range FOR loop lets us navigate through the collection
and print results. This local p1sgl table data type is only available inside the anonymous
block program.

A better solution with an associative array collection requires that you implement it in a
package specification. While you've only had a brief introduction to packages in Chapter 3, it’s
necessary to define a package specification to support this example.

You can define PL/SQL-only data types in a package specification. Variables defined in package
specifications are package-level data types. Sometimes package specifications only act to define
UDTs. When they do so, they don’t have accompanying package bodies and are known as
bodiless packages.

The initial type library defines only a table collection data type:

SQL> CREATE OR REPLACE PACKAGE type library IS

2 /* Define a local table collection. */

3 TYPE plsql table IS TABLE OF VARCHAR2 (20);
4 END;

5 /

Line 3 shows that the definition of a package-level collection type is the same as the definition
of a local PL/SQL collection type. The next program mirrors the prior anonymous block program
with one exception: it no longer defines a local plsqgl table collection type. That's because
the 1v_table variable uses the package-level data type.

g SQL> DECLARE

2 /* Declare a local table collection. */

3 1v_table TYPE LIBRARY.PLSQL TABLE :=

4 type library.plsgl table('Aragorn', 'Faramir', 'Boromir') ;
5 BEGIN

10 END;

11/

Chapter 6: Collections 231

Line 3 declares a variable by referring to the package name and data type name. The component
selector (.) selects the data type from the package specification. You should note that both the
data type and table collection constructor must reference the package and data type.

Having shown you the possibilities with scalar collections, the next section shows you how to
work with composite collections.

Composite Table Collections

There are two types of composite collections. One is a collection of an object type, and the other
is a collection of an object type that holds a nested collection. Collections that hold other collections
are multilevel collections.

A composite data type or object type that holds only scalar variables is a symmetrical element,
which means all elements contain one instance of the composite set of columns. A composite
data type that holds scalar and composite data types can still be symmetrical provided that the
nested composite data type is like a record structure (or a single row). A composite data type is
asymmetrical when it has one member attribute (or field) that is a collection data type.

The subsections that follow show you how to implement symmetrical and asymmetrical
composite variables in collections. Appendix B discusses how you work with composite data
types in tables. The same appendix also shows you how to write unnested queries and update
nested tables.

Symmetrical Composite Table Collections To look at an example of a symmetrical composite
table collection, we first need to create a few composite object types. A simple composite object
type has two or more columns, and this one has just two attributes (or fields) to keep it manageable.
Recall that object types are SQL data types, not PL/SQL data types, and that you must define them
as schema-level objects.

The following creates a prominent object composite object type at the schema level:

= SQL> CREATE OR REPLACE

2 TYPE prominent object IS OBJECT
3 (name VARCHAR2 (20)

4 , age VARCHAR2 (10)) ;

5 /

Next, let’s create another composite object type that uses the original prominent object
composite object type. The people object composite object type holds one copy of the
prominent object composite object type, as qualified in the following example:

=1 SOL> CREATE OR REPLACE

2 TYPE people object IS OBJECT

3 (race VARCHAR?2 (10)

4 , exemplar PROMINENT OBJECT) ;
5 /

Line 4 defines a variable of the prominent object composite object type.
The last step creates a table collection of the composite object type:

g SQL> CREATE OR REPLACE
2 TYPE people table IS TABLE OF people object;
3/

232 Oracle Database 12¢ PL/SQL Programming

Like the varray and table collection examples presented earlier, the primary definition is on
line 2. After creating these types, you can query them with the following (albeit complex) syntax:

SQL> COLUMN EXEMPLAR FORMAT A40
SQL> SELECT *
2 FROM TABLE (
SELECT CAST (COLLECT (
people object (
'Men'
, prominent object ('Aragorn', '3rd Age')
)
) AS people table
)
FROM dual) ;

O W O J o U1 B W

The query shows that you need to call the COLLECT function to put the composite object into
a runtime collection. Then, you can CAST the runtime collection to a known schema-level
collection data type. Finally, you can SELECT the data by using the TABLE function to convert it
into an aggregate result set (fancy speak for any result set from a SELECT statement).

It prints the following:

e RACE EXEMPLAR (NAME, AGE)

Men PROMINENT OBJECT ('Aragorn', '3rd Age')

The only problem with this output is the constructor versus column values for the nested
pseudo (at this point) collection. You can fix that by unnesting the query with a CROSS JOIN, like

g SQL> SELECT o.race, n.name, n.age
10 FROM dual) o CROSS JOIN
11 TABLE (
12 SELECT CAST (COLLECT (exemplar) AS prominent table)
13 FROM dual) n;

Line 1 (or the SQL line) shows the SELECT list’s three columns. If you were to include an
asterisk, the query would return four columns. In addition to the three columns from the SELECT
list, it would return the exemplar column, because the cross join simply adds the new columns
to the same row of data. The o alias represents the outer query, and the n alias represents the
nested table, which is based on a prominent object object type. This returns the nested
columns matched against the single row where they're linked. A cross join (or Cartesian product)
returns the number of rows found in the nested table because it's always matched against the
containing row.

It prints

Men Aragorn 3rd Age

The TABLE function returns an aggregate result set that is compatible with the rest of the
query. The SELECT statement and the CAST and COLLECT functions let us work with a single
element rather than a real table collection. The exemplar column is returned by the query but

Chapter 6: Collections 233

filtered out by the SELECT list’s choice (formally projection) of columns. You can check the
“Unnesting Queries” section in Appendix B for more information on this approach.

It's actually a much simpler query when you have a real people table collection. The
following query fabricates a collection of two elements. The fabricating syntax creates a multilevel
people table collection. Here's the code without the COLLECT and CAST functions:

g SQL> SELECT o.race, n.name, n.age
2 FROM TABLE (

3 people table(

4 people_object (

5 'Men'

6 , prominent object ('Aragorn', '3rd Age'))
7 , people object (

8 'E1f!

9 , prominent object ('Legolas', '3rd Age'))
10)) o CROSS JOIN
11 TABLE (
12 SELECT CAST (COLLECT (exemplar) AS prominent table)
13 FROM dual) n;

Lines 3 through 9 (fewer lines would be necessary without the constraints of the printed page)
construct a people_table collection of two composite elements. Lines 6 and 9 construct the
nested prominent object composite type for each element of the collection. Then, the TABLE
function lets us query the contents of the dynamically created table collection.

It prints
= RACE NAME AGE
Men Aragorn 3rd Age
E1f Legolas 3rd Age

Shifting the code from SQL exploration of composite object types, the following creates a
local people table instance, and it reads and prints selected contents:

g SQL> DECLARE

2 /* Declare a table collection. */

3 lv_tolkien table PEOPLE_TABLE :=
4 people_table (
5 people_object (
6 'Men'
7 , prominent object ('Aragorn', '3rd Age'))
8 , people object (
9 'E1f!
10 , prominent object ('Legolas', '3rd Age'))) ;
11 BEGIN
12 /* Add a new record to collection. */
13 lv_tolkien table.EXTEND;
14 lv_tolkien table(lv tolkien table.COUNT) :=
15 people object('Dwarf’
16 , prominent object('Gimili', '3rd Age')):;

17

234 Oracle Database 12c PL/SQL Programming

18 /* Read and print values in table collection. */

19 FOR i IN 1lv_tolkien table.FIRST..lv tolkien table.LAST LOOP

20 dbms_output.put_ line (

21 lv_tolkien table(i).race||': '||lv_tolkien table(i).exemplar.name);
22 END LOOP;

23 END;

24/

The initial constructor call on lines 3 through 10 is exactly like the one in the preceding
query. You allocate space on line 13 and then add a new composite element to the collection on
lines 14 through 16.

Line 21 provides the syntax to read the scalar and composite columns of the collection. In
both cases, you must first access the 1v_tolkien collection variable by providing an index
value. You read the scalar column by referring to its race attribute name. It's more complex to
access the nested composite object. After referring to the 1v_tolkien collection variable with
an index value, you access the exemplar attribute name. The exemplar attribute identifies the
nested composite type, and lets you append with a dot (.) either of its scalar attributes. The
example accesses the nested name attribute.

It prints

Men: Aragorn
E1f: Legolas
Dwarf: Gimili

You can also transfer an object type to a PL/SQL record structure or collection. The SELECT -
INTO statement from the “Single-Row Implicit Cursors” section of Chapter 5 lets you assign a
single object type or one of a collection of object types to a record type. The BULK COLLECT INTO
statement from the “Record Collection Targets” section of Chapter 5 lets you assign an object
collection to a PL/SQL record collection. Rather than write two full examples with a people
object and people table, we've got only one that simply limits the number of people
object rows returned by the collection:

g SQL> DECLARE

2 /* Declare a PL/SQL record. */
TYPE tolkien record IS RECORD

4 (race VARCHAR2 (10)

5 , name VARCHAR2 (20)

6 , age VARCHAR2 (10)) ;

7

8 /* Declare a table of the record. */

9 TYPE tolkien plsgl table IS TABLE OF TOLKIEN RECORD;
10
11 /* Declare record and table collection variables. */
12 lv_tolkien record TOLKIEN RECORD;
13 lv_tolkien plsqgl table TOLKIEN PLSQL TABLE;
14
15 /* Declare a table collection. */

16 lv_tolkien table PEOPLE_TABLE :=

Chapter 6: Collections 235

17 people table(
Same definition as prior example ...
24 BEGIN
25 /* Single-row implicit subquery. */
26 SELECT o.race, n.name, n.age
27 INTO lv_tolkien record
28 FROM TABLE (1v_tolkien table) o CROSS JOIN
29 TABLE (
30 SELECT CAST (COLLECT (exemplar) AS prominent table)
31 FROM dual) n
32 WHERE ROWNUM < 2;
33
34 dbms_output.put_line(
35 "['"]|1v_tolkien record.racel||']l '||
36 "["]|1v_tolkien record.name||'] '||
37 "[']||1v_tolkien record.age ||'l');
38 END;
39/

Lines 3 through 6 define the tolkien_ record structure, and line 9 defines a table of the
tolkien record data type. The SELECT-INTO query found on lines 26 through 32 returns
one row from the 1v_tolkien table collection and assigns that row to our local 1v_
tolkien record variable.

Line 32 limits the table collection to one row with the backward-compatible ROWNUM
comparison, which prior to Oracle Database 12c¢ has always been a pseudo top-n query. Oracle
Database 12c lets you do better because it provides real top-n query syntax. You can replace line 32
with the following in an Oracle Database 12¢ database:

= 32 FETCH FIRST 1 ROWS ONLY;

From my perspective, the Oracle Database 12¢ top-n query syntax is much clearer than the
older syntax. After the SELECT- INTO query, the program prints the record’s values:

g [Men] [Aragorn] [3rd Age]

Replacing INTO with BULK COLLECT INTO on line 27 lets the program perform a bulk
operation. The bulk operation performed by the following line 27 transfers all rows from the table
collection into the local variable of the anonymous block program:

27 BULK COLLECT INTO lv_tolkien plsql table

It's important to note that bulk collections require a table data type of PL/SQL records as their
target variables. That's why we created the 1v_tolkien plsgl table variable as a collection
of records.

Whether or not you replace line 32 (with the FETCH FIRST 1 ROWS ONLY clause), the
modified program can't print results. That’s because it now retrieves one or more rows into a
collection. Effectively, with the bulk collect, we changed the target assignment from a composite
record structure to a composite collection of the same record structure. The assignment target
change breaks our printing logic. We now need to print elements of the collection one at a time,
and that means printing them in loop.

236 Oracle Database 12¢ PL/SQL Programming

The easiest way to accomplish the change is with a FOR loop, as shown:

e Gl EE /* Loop through the result set and print the results. */
34 FOR i IN 1..lv_tolkien plsqgl table.COUNT LOOP
35 dbms_output.put line(
36 "[']||1v_tolkien plsqgl table(i).race||']l '||
37 "[']||1v_tolkien plsqgl table(i).name||'] '||
38 "[']|1v_tolkien plsqgl table(i).age ||']");
39 END LOOP;

You should note that the collection rows are referred to by their index value on lines 36
through 38. The component selector (.) then connects the row to a field of the record type.
Although I've advocated that you move data to SQL data types, sometimes you do need to move
object collection data back to the older (or from the perspective of some, legacy) PL/SQL
collection data types. Now you have examples of doing that one row or many rows at a time.

The SELECT-INTO or BULK COLLECT INTO assignment is generally the most effective way
to move data quickly from a table collection of object types into a table collection of PL/SQL
records, but there is an alternative way. It requires you to initialize the collection as an empty
collection, allocate space, and assign elements one at a time. It’s that one at a time assignment in
a loop that should alert you to the fact you could create a CPU bottleneck.

NOTE

DBAs who say they hate PL/SQL usually mean that they hate the
programs produced by developers who lack the knowledge to write
unnesting queries that outperform row-by-row assignments.

While you can construct a table collection without members, you can’t construct an instance
of a record data type. That's because a record data type doesn’t have a default constructor
function. The first change to our program occurs on line 13, where we construct an empty
collection of records. It requires this change:

= 13 1v_tolkien plsql table TOLKIEN PLSQL TABLE := tolkien plsql table();

If we didn’t know any better, we might try to assign the object type directly to the record type.
In that scenario, we would rework the execution block to look like the following:

=1 SQL> DECLARE

2 B

24 BEGIN

25 /* Loop through transferring elements one-by-one. */
26 FOR i IN 1..lv tolkien table.COUNT LOOP

27 lv_tolkien plsqgl table.EXTEND;

28 lv_tolkien plsql table(i) := 1lv_tolkien_ table(i);
29 END LOOP;

30 ... never gets here, so no sense in wasting space
38 END;

39/

Chapter 6: Collections 237

Line 27 would work because the collection is an object type. Line 28 would fail because we
can’t assign an object instance to a PL/SQL RECORD data structure. The attempt generates the
following error:

—— 1v_tolkien plsqgl_table(i) := 1lv_tolkien table(i);
*
ERROR at line 28:
ORA-06550: line 28, column 34:
PLS-00382: expression is of wrong type
ORA-06550: line 28, column 5:
PL/SQL: Statement ignored

The error states that you can’t assign an object type to a PL/SQL RECORD data type. They're
mutually incompatible. You can assign the element values of the object type to the element values
of the RECORD data type. The execution block would be rewritten to do the following:

= SQL> DECLARE

2 .
24 BEGIN
25 /* Loop through transferring elements one-by-one. */
26 FOR i IN 1..1lv_tolkien table.COUNT LOOP
27 lv_tolkien plsgl table.EXTEND;
28 1lv_tolkien plsgl table(i) .race := lv_tolkien table(i).race;
29 lv_tolkien plsqgl_table(i) .name := 1lv_tolkien_ table(i).exemplar.name;
30 lv_tolkien plsgl table(i).age := lv_tolkien table(i).exemplar.age;
31 END LOOP;
32
33 /* Loop through the result set and print the results. */
34 FOR i IN 1..lv tolkien plsgl table.COUNT LOOP
35 dbms_output.put_ line(
36 "['||1v_tolkien plsql table(i).race||'] '||
37 "['|]|1v_tolkien plsql table(i).name||'] '||
38 "['||1v_tolkien plsql table(i).age ||']1");
39 END LOOP;
40 END;
a1/

Line 28 assigns the race attribute by referring to the object instance by its index value in the
collection and its name. Lines 29 and 30 must use the exemplar attribute to access the nested
column values of name and age. Once assigned to the record structure, there aren’t any nested
fields. In this example, the record structure is simple, or absent any nested record structures.

NOTE
You can't assign constructed object instances to PL/SQL RECORD data

types.

As you may imagine, listing only one dwarf, elf, or man (from the Lord of the Rings trilogy)
isn’t very useful. This type of information would be more natural if the nested composite type
were a collection of the people object composite object type. Such a change makes it an
asymmetrical composite data type, and the subject of the next section.

238 Oracle Database 12c PL/SQL Programming

Asymmetrical Composite Table Collections As qualified earlier, an asymmetrical composite
varray or table collection holds scalar and collection fields. The former has one row and the latter
has one to many rows.

Leveraging our examples from the prior section, let’s add a prominent_table collection
type that has a base type of prominent object composite types. After all, the Lord of the Rings
trilogy has more than one prominent dwarf, elf, or man, as well as a few prominent women (though
unfortunately no female dwarves, females belong to their respective race of dwarves, elves, and men).

SQL> CREATE OR REPLACE
2 TYPE prominent table IS TABLE OF prominent object;
3/

Having created a prominent_table collection type, let’s redefine both the people
object and people table composite types. The syntax to create an asymmetrical people
object is

g1 SQL> CREATE OR REPLACE

2 TYPE people object IS OBJECT
3 (race VARCHAR2 (10)

4 , eXemplar PROMINENT TABLE) ;
5 /

Line 4 changes from a prominent object data type to a prominent table collection
type. There’s really no change between the prior and current syntax of the people table
because its base type remains unchanged. The base type is the now modified people object
composite object, but Oracle Database 12c takes care of that change through type evolution.

The last step creates a table collection of the asymmetrical composite data type:

g1 SQL> CREATE OR REPLACE
2 TYPE people table IS TABLE OF people object;
3/

While it’s nice to see how to do things in SQL (and if you’d like more insight, check the
“Unnesting Queries” section in Appendix B), let'’s implement the new type in an anonymous PL/
SQL program. The following program initializes a multilevel collection and then assigns a new
element to the collection. The size of this program is large, but that’s necessary to give you a
complete picture of the moving parts.

= SQL> DECLARE

2 /* Declare a table collection. */

3 1v_tolkien PEOPLE TABLE :=

4 people_table (

5 people_object (

6 'Men'

7 , prominent table (

8 prominent object ('Aragorn', '3rd Age')
9 , prominent object ('Boromir', '3rd Age')
10 , prominent object ('Faramir', '3rd Age')

Chapter 6: Collections 239

11 , prominent object ('Eowyn', '3rd Age')))
12 , people object (

13 'Elves'

14 , prominent table (

15 prominent object ('Legolas', '3rd Age')
16 , prominent object ('Arwen', '3rd Age'))));
17 BEGIN

18 /* Add a new record to collection. */

19 lv_tolkien.EXTEND;

20 lv_tolkien(lv_tolkien.COUNT) :=

21 people object ('Dwarves'

22 , prominent table(

23 prominent object('Gimili', '3rd Age')

24 , prominent object('Gloin','3rd Age')));

25

26 /* Read and print values in table collection. */

27 FOR i1 IN lv_tolkien.FIRST..lv_tolkien.LAST LOOP

28 FOR j IN

29 lv_tolkien(i) .exemplar.FIRST..lv tolkien(i).exemplar.LAST LOOP
30 dbms_output.put_ line(

31 1v_tolkien(i).race||': '||1lv_tolkien(i) .exemplar (j) .name);
32 END LOOP;

33 END LOOP;

34 END;

35/

Lines 3 through 16 construct a new multilevel table collection. Line 19 allocates space for a
new element. Lines 20 through 24 add a new multilevel composite people object variable to
the 1v_tolkien collection.

Line 28 shows how you can perform a nested loop against the multilevel table collection. While
the initial FOR loop works with the 1v_tolkien variable, the nested FOR loop works with the
embedded exemplar variable. Moreover, the nested loop reads through the embedded exemplar
table collection. Line 30 shows how you must use the index value of both collections. You
reference the element in 1v_tolkien collection, then the element in exemplar collection,
and finally the attribute of the exemplar table collection.

It prints

g Men: Aragorn
Men: Boromir
Men: Faramir
Men: Eowyn
Elves: Legolas
Elves: Arwen
Dwarves: Gimili
Dwarves: Gloin

This chaining of operations works no matter how many levels you have in a multilevel collection.
While the syntax is verbose, there’s not another alternative when working with multilevel collections.

240 Oracle Database 12c PL/SQL Programming

Review Section
This section has described the following points about SQL collection types:

B SQL collections are defined as schema-level object types.

B SQL collections require construction, which you do by calling the type name with a
list of actual parameters that map to the definition of the object type’s attributes.

B SQL collections with a base scalar data type are Attribute Data Types (ADTs), while
collections of object types are user-defined types (UDTs).

B SQL collections have a base type, and it can be either a scalar or composite data type;
and a SQL collection is a multilevel collection when its base composite data type is
also a collection.

B SQL collections can be function and procedure formal parameters and function return
types in both SQL and PL/SQL operating contexts.

B A varray collection is defined with a fixed size, while a table collection is not constrained
by a maximum size value.

B The varray always has a sequential or densely populated index.

B The table collection starts with a sequential or densely populated index, but it is possible
to delete elements from the collection, which creates gaps in the sequence of index values,
potentially making the index sparsely populated.

Associative Arrays

Associative arrays are also single-dimensional structures of an Oracle Database 12c¢ database, and
they can hold the same base data types as SQL collections. As discussed in the “Oracle PL/SQL
Tables” sidebar, they were previously known as PL/SQL tables. This section focuses on single-
dimensional structures of the associative array.

Associative arrays are single-dimensional composite data types, and they can hold only a
scalar or composite base data type. You can’t define a multidimensional collection because
collections can’t hold multiple copies of a base type across each element (row). While collections
can’t hold other composite data types, they can hold another copy of the collection in each row.
When collections hold other collections, they’re called multilevel collections.

Associative arrays cannot be used as column data types in tables. They may be used only as
programming structures. You can only use associative arrays in a PL/SQL context, which means
you can't pass a PL/SQL collection as a parameter from within a SQL statement or as a return
value from a function.

It is important to note some key issues presented by associative arrays. These issues drive a
slightly different approach to illustrating how you use them. Associative arrays

B Do not require initialization and have no constructor syntax. They also do not need to
allocate space before assigning values.

B Can be indexed numerically in Oracle Database versions up to and including 12c. In
Oracle Database 12¢ forward, they can also use unique variable-length strings.

B Can use any integer as the index value, which means any negative, positive, or zero
whole numbers.

Chapter 6: Collections 241

B Are implicitly converted from equivalent $ROWTYPE, record type, and object type return
values to associative array structures.

B Require special treatment when using a character string as an index value in any database
using globalized settings, such as NLS_COMP or NLS_SORT initialization parameters.

TIP

Unique strings as indexes can encounter sorting differences when
the National Language Support (NLS) character set changes during
operation of the database.

The following subsections describe how you can best use associative arrays in your PL/SQL
programs.

Defining and Using Associative Arrays

The syntax to define an associative array in PL/SQL has two possibilities. One is

g CREATE OR REPLACE TYPE type name AS TABLE OF base type [NOT NULL]
INDEX BY [PLS_INTEGER | BINARY INTEGER | VARCHAR2 (size)];

The same issues around enabling or disabling null values in nested tables apply to associative
arrays. As a rule, you should ensure that data in an array is not null. You can do that either
programmatically or by enabling the constraint when defining an associative array. It is a decision
that you will need to make on a case-by-case basis.

You can use a negative, positive, or zero number as the index value for associative arrays.
Both PLS INTEGER and BINARY INTEGER data types are unconstrained types that map to call
specifications in C/C++, C#, and Java in Oracle Database 12c.

The other possible syntax to define an associate array in PL/SQL is

g CREATE OR REPLACE TYPE type name AS TABLE OF base type [NOT NULL]
INDEX BY key type;

The key type alternative enables you to use VARCHAR2, STRING, or LONG data types in
addition to PLS_INTEGER and BINARY INTEGER. Both VARCHAR2 and STRING require a size
definition. The LONG data type does not require a size definition; however, the LONG data type is
considered deprecated, so avoiding its use is recommended.

As discussed, unlike SQL varray and table collections, associative arrays do not require
initialization and can’t call a constructor. Other than that, the only major difference between
associative arrays and SQL varray and table collections is where you can use them. Associative
arrays are limited to an exclusively PL/SQL scope. You can create associative arrays with a
base object type, record data type, or scalar data type. Record types also can hold embedded
object types.

The following subsections explain how to work with associative arrays of scalar and composite
data types, respectively.

Associative Arrays of Scalar Data Types

Working with an associative array of a scalar data type is simpler than working with an associative
array of a composite data type. This collection type is an ADT and has some differences from
collections of composite data types. One difference is that Oracle Database 12c¢ returns the values

242 Oracle Database 12¢ PL/SQL Programming

from an ADT as the column_value column, whereas it returns values from composite base
types by their field names.

You have the option of using a numeric index or a key (or string) index with associative arrays.
The next two subsections present numerically indexed associative arrays and key indexed associative
arrays, respectively.

Numerically Indexed Associative Arrays For demonstration purposes, assume that you confused
associative arrays with SQL varray or table collections and tried to construct an instance of
the associative array in your declaration block, as shown in the following program:

=1 SQL> DECLARE

2 /* Define an associative array of a scalar data type. */

3 TYPE suit_table IS TABLE OF VARCHAR2 (7 CHAR)

4 INDEX BY BINARY INTEGER;

5

6 /* Declare and attempt to construct an object. */

7 lv_suit CARD TABLE := suit table('Club', 'Heart', 'Diamond', 'Spade');
8 BEGIN

9 NULL;

10 END;

11/

The associative array definition on lines 3 and 4 is fine. However, the attempt to assign the
result of a constructor function on line 7 raises a PLS-00222 doesn’t exist in scope error, as
shown next, because associative arrays don’t have constructor functions that you can call:

lv_suit CARD TABLE := suit table('Club', 'Heart', 'Diamond', 'Spade') ;
*
ERROR at line 7:
ORA-06550: line 7, column 25:
PLS-00222: no function with name 'SUIT TABLE' exists in this scope
ORA-06550: line 7, column 9:
PL/SQL: Item ignored

The failure on line 7 occurs because the INDEX BY clause makes the collection an associative
array, not a nested table. As mentioned, you can’t call a constructor with an associative array
because one doesn't exist.

The correct way to assign values to an associative array requires that you assign them one at
a time in the execution or exception block. Each assignment provides a value and an index value,
and the index values may or may not be sequential values. As a rule, they are sequential values,
but there’s no guarantee that they are sequential when your program reads them (and that’s why
you need to be careful about how you read them in your programs).

The reworked program (which excludes a duplicate declaration block) is

g SQL> DECLARE

8 BEGIN

9 /* Assign values to an ADT. */
10 lv_suit(l) := 'Club’';
11 lv _suit(2) := 'Heart';

12 lv _suit(3) := 'Diamond’;

13
14
15
16
17
18
19
20

Chapter 6: Collections 243

lv_suit(4) := 'Spade’';

/* Loop through a densely populated indexed collection. */
FOR i IN 1lv_suit.FIRST..lv_suit.LAST LOOP

dbms_output.put line(lv_suit(i));
END LOOP;

END;

Lines 10 through 13 assign the suits of a deck of cards to the associative array of card suits.

Line 17 prints the elements of the 1v_suit associative array.

Having covered the basics, let’s revisit an associative array of an object type. You create the

necessary suit object object type like this:

=1 SQL> CREATE OR REPLACE

2
3
4

TYPE suit object IS OBJECT
(suit VARCHAR2 (7)) ;

The suit_object mimics the scalar data type used in the two previous programs. Staying as

close as possible to the preceding two examples, the following shows you how to implement a
numerically indexed associative array of an object type:

g SQL> DECLARE

2

W 0 0 Ul b W

10
11
12
13
14
15
16
17
18
19
20

/* Define an associative array of an object type. */
TYPE suit table IS TABLE OF suit object
INDEX BY BINARY INTEGER;

/* Declare an associative array. */
lv_suit SUIT TABLE;

BEGIN

/* Populate elements of the associative array. */
lv_suit(l) := suit object('Club');

lv_suit(2) := suit object('Heart');

lv_suit(3) := suit object('Diamond') ;

lv_suit(4) := suit object('Spade');

/* Read the object type contents. */
FOR i IN 1..1lv_suit.COUNT LOOP

dbms_output.put line(lv_suit (i) .suit);
END LOOP;

END;

Lines 3 and 4 define the local associative array. Line 7 declares the 1v_suit variable as an

associative array. You should note that the declaration of the 1v_suit variable doesn't use a
constructor function. That's because only the elements of the associative array are constructed.
Lines 10 through 13 assign constructed instances of the suit_object to the numerically
indexed elements of the associative array. The “Associative Arrays of Composite Data Types”
section later in this chapter covers how you work with elements of composite data types.

244 Oracle Database 12¢ PL/SQL Programming

Key (or String) Indexed Associative Arrays

Having mastered the difference between SQL and

PL/SQL associative arrays, you know that you can’t call a nonexistent constructor function. You
also know that SQL varray and table collections only use numeric indexes. Associative arrays

enable you to create collections with key or string indexes, and this section shows you how to
implement them.

Instead of creating a collection of cards, as does the previous program, the following program

assigns a number to each card. Numbered cards are assigned their respective numbers, aces are
assigned 1, and the Jack, Queen, and King face cards map to numbers 11, 12, and 13, respectively.

g SQL> DECLARE

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

/* Variable name carries meaning. */
current VARCHAR2 (5) ;

/* Define an associative array of a scalar data type.
TYPE card table IS TABLE OF NUMBER
INDEX BY VARCHAR2(5) ;

/* Declare and attempt to construct an object. */
1lv_card CARD_TABLE;

BEGIN
/* Assign values to an ADT. */
lv_card('One') := 1;
lv_card('Two') := 2;
lv _card('Queen') := 12;
lv_card('King') := 13;

/* Set the starting point. */
current := 1lv_card.FIRST; -- First alphabetical key.

/* Check pseudo index value less than last index value.

WHILE (current <= lv_card.LAST) LOOP
/* Print current value. */
dbms_output.put_ line
'Values ['||current]||']['||lv_card(current)||']");

/* Shift the index to the next value. */
current := 1lv_card.NEXT (current) ;
END LOOP;
END;
/

*/

Line 7 defines the index as a five-character string. Lines 13 through 25 assign numbers to

string index values. Line 28 provides a safeguard to entry of the WHILE loop by initializing the
first index value. The WHILE loop reads through the indexes from lowest to highest, which means
alphabetically. That means the program prints

= Values [Ace] [1]

Values [Eight] [8]
Values [Five] [5]

Chapter 6: Collections 245

The ordering of printed values may surprise you. Associative arrays are always navigated from
the lowest to highest value based on the NL.S_COMP and NL.S_ SORT alphabetical rules. It's probably
one of the reasons you don’t see too many collections indexed by strings.

Associative Arrays of Composite Data Types
While it's simpler to work with an associative array of scalar data types, most collections are of
composite data types. A collection that uses a SQL object type or a PL/SQL record type is an
object collection or a record collection, respectively. Oracle Database 12¢ maintains the field or
attribute names in the data catalog when you define these types of collections.

The next example reuses the SQL prominent object object type defined in an earlier
example of this chapter. Rather than have you flip back a few pages to find it, the type’s definition is

= SQL> CREATE OR REPLACE

2 TYPE prominent object IS OBJECT
3 (name VARCHAR2 (20)

4 , age VARCHAR2 (10)) ;

5 /

While you could pull lines 2 through 4 from the SQL object type definition to create a PL/
SQL-only version in a declaration block, the pattern of assignment differs between an object data
type and a record data type.

The following program defines a prominent_table associative array that uses a
prominent object object type as its base type. Naturally, the prominent table collection
has a local PL/SQL-only scope. You can assign the result of a constructor function to each element
in this collection because its base type is an object type. If its base type were a record data type,
you would need to make record-to-record or field-level assignments to the collection. The following
program also shows you how to assign and retrieve values from an associative array of a composite

data type.
=1 SQL> DECLARE
2 /* Declare a local type of a SQL composite data type. */
3 TYPE prominent table IS TABLE OF prominent object
4 INDEX BY PLS_INTEGER;
5
6 /* Declare a local variable of the collection data type. */
7 lv_array PROMINENT TABLE;
8 BEGIN
9 /* The initial element uses -100 as an index value. */
10 lv_array(-100) := prominent object('Bard the Bowman', '3rd Age');
11
12 /* Check whether there are any elements to retrieve. */
13 IF 1lv_array.EXISTS(-100) THEN
14 dbms_output.put line(
15 "[']|1lv_array(-100) .name||'] ['||1lv_array(-100).age||']"');
16 END IF;
17 END;
18 /

Line 10 assigns a value to the —100th element of the local 1v_array variable that is declared
on line 7. While it'’s unconventional to use negative integers as index values, the program uses

246 Oracle Database 12c PL/SQL Programming

one to show you that it’s possible. You can use any integer value in any order as the index value of
an associative array. Please note that the object type requires two string attributes, and that’s what
we supply in the constructor.

If you were to remark out the assignment on line 10 or change the index value, the references
to the element on line 15 would fail. That's because it would reference an unknown index value
and then it would raise the following runtime exception:

=1 DECLARE
*

ERROR at line 1:
ORA-01403: no data found
ORA-06512: at line 12

Line 15 also shows you how to refer to embedded attribute or field values of the object type.
You must reference them by using their attribute names. That means you can work with either the
whole set of attributes or only one attribute at a time.

You should always take the precaution of evaluating the presence of an associative array’s
index value, because its absence raises an exception. By so doing, your program only references
elements that have valid index values. Line 13 checks whether there is an element with an index
value of -100. The program only reaches line 15 when there’s a valid element at the specified
index value.

Refactoring the prior example, let's examine how a record data type works in an associative
array. To properly extend what you’ve done so far, let’s use a composite record data type made up
of a scalar data type and object type. The program code follows:

= SQL> DECLARE

2 /* Define a symmetrical record data type. */
3 TYPE prominent record IS RECORD
4 (id INTEGER
5 , element PROMINENT OBJECT);
6
7 /* Declare a local type of a SQL composite data type. */
8 TYPE prominent table IS TABLE OF prominent record
9 INDEX BY PLS INTEGER;
10
11 /* Declare a local variable of the collection data type. */
12 1lv_array PROMINENT TABLE;
13 BEGIN
14 /* The initial element uses 1 as an index value. */
15 lv_array(1l) .id := 1;
16 lv_array(1l) .element := prominent object('Bilbo Baggins', '3rd Age');
17 /* The initial element uses 1 as an index value. */
18 lv_array(2).id := 2;
19 lv_array(2) .element := prominent object('Frodo Baggins', '3rd Age');
20
21 /* Check whether there are any elements to retrieve. */
22 FOR i IN 1..lv_array.COUNT LOOP
23 IF 1lv_array.EXISTS (i) THEN
24 dbms_output.put line('['||lv_array(i).id||']'][]|

25 "['||1v_array(i) .element.name||']"'||

Chapter 6: Collections 247

26 "[']||1lv_array(i) .element.age||']"');
27 END IF;

28 END LOOP;

29 END;

30 /

Lines 3 through 5 define a composite record data type with a scalar integer and a composite
object type. You can access the id field name by prefacing it with the 1v_array variable name
with a subscript index value and the component selector (.). The other field in the record data
type is more complex because it's an embedded object type. As you nest composite data types,
you require another component selector to get to the nested fields or attributes.

Lines 15 and 18 assign integer values to the id field of the prominent record record data
type. The assignments to the two 1d fields are direct assignments. Lines 16 and 19 assign a
constructed object instance to the element field of the same record data type. The assignments
to the two element fields are also direct assignments, but the assignments to the name and age
attributes are indirect assignments. That because they are made through the object type’s
constructor function. Lines 24 through 26 retrieve the 14 field value and the element field
value’s name and age attributes.

T 10 lv_array(-100) := 1lv_prominent record;

You have seen in this section how to work with associative arrays. We'll explore the Oracle
Collection API next.

Review Section
This section has described the following points about PL/SQL associative arrays:

B Associative arrays are defined as PL/SQL-only data types.
Associative arrays must be assigned elements one at a time.

|
B Associative arrays with a base scalar data type are Attribute Data Types (ADTs).
|

Associative arrays with a base composite data type are PL/SQL user-defined types
(UDTs).

Composite type associative arrays with a base record type must be assigned one record
at a time or one record element at a time, and those with a base object type must be
assigned a constructed object type.

B Associative arrays have a sparsely populated index, which may be numeric (negative,
positive, or zero integer) values or string index values.

Oracle Collection API

Oracle 8/ Database introduced the Collection API, which provides simplified access to collections.
It works with all three collection types. SQL varray and table collections use integers as indexes.
Associative arrays in Oracle Database 11g and forward support numeric and string index values.

The Collection APl methods are really not “methods” in a truly object-oriented sense. They
are functions and procedures. While EXTEND, TRIM, and DELETE are procedures, the rest are
functions. Table 6-3 summarizes the Oracle Databases 12c Collection API.

248 Oracle Database 12c PL/SQL Programming

Method
COUNT

DELETE

EXISTS

EXTEND

FIRST

LAST

Definition

Returns the number of elements that have been allocated space in varray and table
data types, and returns the total of all elements in associative arrays. The return value
of the COUNT method can be smaller than the return value of LIMIT for the varray
collection.

It has the following prototype:

PLS INTEGER COUNT

Lets you remove elements from table collections and associative arrays. It doesn’t
work with varray collections, and an attempt to remove an element from a varray
raises a PLS-00306 exception.

The DELETE method takes two formal parameters; one is mandatory and the other is
optional. Both parameters are index values and must occur in ascending order. The
DELETE procedure deletes everything from the parameter n to m, inclusively, when
you supply two parameters.

The prototypes are as follows:

void DELETE (n)

void DELETE (n, m)

Checks to find an element with the supplied index in a collection. It returns true when
the element is found and null when an initialized varray or table is empty. It has one
mandatory parameter, which is a valid index value.

It has the following prototype:

Boolean EXISTS (n)

Allocates space for one or more new elements in a varray or table collection. It has two
optional parameters. It adds space for one element by default without a parameter.
The first parameter designates how many physical spaces should be allocated in
memory, the only constraint being the limit (or maximum value) of the varray.

The second parameter is an index value. When the function receives two parameters,
the first determines how many elements to add and the second is an index value. The
EXTEND procedure uses the index value to copy a value into the newly added space.
It has the following prototypes:

void EXTEND

void EXTEND (n)

void EXTEND (n, 1)

Returns the lowest subscript value in a collection. It can return a

PLS INTEGER, VARCHAR2, or LONG type.

It has the following prototype:

mixed FIRST

Returns the highest subscript value in a collection. It can return a

PLS_INTEGER, VARCHAR2, or LONG type.
It has the following prototype:

mixed LAST

TABLE 6-3.

Oracle Database 12c Collection API

Chapter 6: Collections 249

Method Definition

LIMIT Returns the highest possible subscript value in a collection. It can only return a
PLS INTEGER type, and can only be used by a VARRAY data type.
It has the following prototype:

mixed LIMIT

NEXT (n) Returns the next higher subscript value in a collection when successful; otherwise
returns false. The return value is a PLS INTEGER, VARCHAR2, or LONG type. It requires
a valid index value as an actual parameter and raises an exception when the index is
invalid.
It has the following prototype:

mixed NEXT (n)

PRIOR(n) Returns the next lower subscript value in a collection when successful; otherwise
returns false. The return value is a PLS INTEGER, VARCHAR2, or LONG type. It requires
a valid index value as an actual parameter and raises an exception when the index is
invalid.
It has the following prototype:

mixed PRIOR (n)

TRIM Removes a subscripted value from a collection. It has one optional parameter. Without
an actual parameter, it removes the highest element from the array. An actual parameter
is interpreted as the number of elements removed from the end of the collection.

It has the following prototype:
void TRIM
void TRIM (n)

TABLE 6-3. Oracle Database 12¢ Collection API

Note that only the EXISTS method fails to raise an exception when a SQL varray or table
collection element is null. Instead, it returns true because it checks for an element allocated in
memory. Any scalar data type element may contain a null or a value, and any object type element
may contain a null, empty, or object instance.

The following tests the limit of the EXISTS method:

=1 SQL> DECLARE

2 /* Define the table collection. */

3 TYPE empty table IS TABLE OF prominent object;
4 /* Declare a table collection variable */

5 lv_array EMPTY TABLE := empty table(null);

6 BEGIN

7 /* Check whether the element is allocated in memory. */
8 IF lv_array.EXISTS(1l) THEN

9 dbms_output.put line('Valid collection.');
10 ELSE

11 dbms output.put line('Invalid collection.');
12 END IF;

13 END;

14 /

250 Oracle Database 12c PL/SQL Programming

Line 5 declares a local 1v_array table collection with a single null element value. Line 8
checks whether there’s memory allocated for the first element of the collection, and it returns true
and prints

g Valid collection.

That’s why you should combine it with an evaluation that checks whether the element
contains a value. You can modify line 8 like this to check for memory allocation and a value:

= 3 IF 1lv_array.EXISTS(1l) AND lv_array(l) IS NOT NULL THEN

The conjunction operator (AND) guarantees that when the EXISTS function returns false, the
comparison operation stops. Conjunctive operators perform short-circuit evaluation, and they
pare the evaluation tree when one comparison is false. A short-circuit evaluation guarantees that
the second condition is never reached when the first is false.

There are five standard collection exceptions, described in Table 6-4.

The following subsections examine each of the Collection APl methods in alphabetical order,
with examples to demonstrate each of the methods in action. Some examples include multiple
Collection API methods because, like the coverage of the collection types, it is hard to treat
the Collection APl methods in isolation. Where a single example fully covers multiple methods,
it will be cross referenced.

COUNT Method

The COUNT method is a function. It has no formal parameter list. It returns the number of elements
in the array. The number of elements in an array corresponds to the closing boundary element
of a collection because Oracle Database uses 1-based index numbering. The following example
program returns the number of items in a collection by using the COUNT method:

7 SQL> DECLARE

2 /* Define a table collection. */
3 TYPE x_table IS TABLE OF INTEGER;
Collection Exception Raised By
COLLECTION_ IS NULL An attempt to use a null collection.
NO_DATA FOUND An attempt to use a subscript that has been deleted or is

nonexistent in an associative array.

SUBSCRIPT_BEYOND_ COUNT An attempt to use a numeric index value that is higher than the
current maximum number value or an element that has been
deleted from a table. The error applies only to varray and table
collections.

SUBSCRIPT OUTSIDE_LIMIT An attempt to use a numeric index value outside of the LIMIT
return value. The error applies only to a varray collection.

VALUE_ERROR An attempt is made to use a data type that cannot be converted
to a PLS_INTEGER type.

TABLE 6-4. Collection Exceptions

Chapter 6: Collections 251

4

5 /* Declare an initialized table collection. */

6 lv_table NUMBER_TABLE := number table(1,2,3,4,5);

7 BEGIN

8 DBMS_OUTPUT.PUT LINE ('How many? ['||lv_table.COUNT||']"');
9 END;
10 /

Line 8 prints

g How many? [5]

The best use case for the COUNT function involves checking the number of elements before
performing some task with the collection.

DELETE Method

The DELETE method is a procedure. It is an overloaded procedure. (If the concept of overloading
is new to you, consult Chapter 9.) One version of the procedure takes a single formal parameter,
and the other version takes two formal parameters. You provide the index to delete when you use
one parameter. You provide a range of index values when you use two parameters. The lower of
the two index values must be the first parameter to delete and the higher of the two must be the
last parameter to delete. You would provide the index value twice if you were deleting a single
index value with a call to the two-parameter version.

The following anonymous block program shows you how to perform range deletions:

; SQL> DECLARE
2 /* Declare variable with meaningful name. */

3 current INTEGER;

4

5 /* Define a table collection. */

6 TYPE x_table IS TABLE OF VARCHAR2 (6) ;

7

8 /* Declare an initialized table collection. */

9 lv_table X TABLE := xtable('One','Two', 'Three', 'Four', 'Five');
10 BEGIN

11 /* Remove one element with an index of 2. */

12 1v_table.DELETE (2,2) ;

13

14 /* Remove elements for an inclusive range of 4 to 5. */
15 lv_table.DELETE(4,5);

16

17 /* Set the starting index. */
18 current := 1lv table.FIRST;

19
20 /* Read through index values in ascending order. */
21 WHILE (current <= lv_table.LAST) LOOP
22 dbms_output.put_ line(
23 'Index ['||current||'] Value ['||lv_table(current)||']"');
24 /* Shift index to next higher value. */

25 current := 1lv_table.NEXT (current) ;

252 Oracle Database 12¢ PL/SQL Programming

26 END LOOP;
27 END;
28 /

Line 12 removes one element from the collection, by using the index of 2. You really don't
need to call the inclusive range version of the DELETE procedure to remove a single element.
It would be simpler to use the single-element DELETE procedure on line 12, like

T 12 lv_table.DELETE (2) ;

Line 15 removes two elements from the collection, which is the right way to use the inclusive
range version of the function. While the program starts with five elements, it has only two when it
enters the WHILE loop:

g Index [1] Value [One]
Index [3] Value [Three]

As a rule of thumb, call with a single index when you want to delete one element. Call with
two index values when you want to delete two or more elements. While the use case for the
DELETE procedure supports removing an element from the collection, you really have to ask
yourself why you let the element into the collection. All too often, the DELETE procedure filters
out results that you should have removed with a WHERE or HAVING clause from a cursor.

NOTE

The WHERE clause filters in or out rows from a DML statement. The
HAVING clause filters out aggregated rows from a DML statement with
aggregation functions in the SELECT list.

EXISTS Method

The EXISTS method is a function. It supports only one formal parameter, which should be a valid
index value. The index value may be a number or a unique string. A unique string index only works
when you use it against an associative array. The EXISTS function returns true or null, and it
generally works best inside a conditional IF statement.

As mentioned, the EXISTS function doesn’t raise a COLLECTION IS NULL exception when
it encounters an empty collection. Instead, it returns a null value when a varray or table collection
is empty. There are two varieties of null element collections. One is a varray or table that has been
initialized without any elements. The other is an associative array without any elements.

The following program demonstrates the best way to use the EXISTS method:

=1 SOL> DECLARE
2 /* Define table. */

3 TYPE x_table IS TABLE OF VARCHAR2 (10) ;

4

5 /* Declare an index counter. */

6 lv_index NUMBER := 1;

7

8 /* Declare a local collection variable. */
9 lv_table X TABLE := x table();

10 BEGIN

Chapter 6: Collections 253

11 IF lv_table.EXISTS(lv_index) AND NOT lv_table.COUNT = 0 THEN
12 dbms_output.put line('List ['||lv_table(lv_index)|]|']"');
13 END IF;

14 END;

15 /

Line 3 defines a table collection. Line 9 declares the 1v_table variable as an initialized
collection. Line 11 uses the EXISTS function to check for the first element. Since one doesn’t
exist, it returns a null. Conjunctive logic (the AND logical operator) uses the COUNT function next,
and it checks whether there aren’t any elements. The logic on line 11 could be rewritten to check
whether there are more than zero elements, like

e 11 IF 1lv_table.EXISTS(1lv_index) AND 1lv_table.COUNT > 0 THEN

You need to ask both questions to ensure that you don’t attempt to access a nonexistent index
value. That's because the EXISTS function returns a null when the index isn’t found. The function
returns nothing because the table collection is empty. If you rework line 9 to create a table collection
of one or more elements,

09 lv_table X TABLE := x table('Something');
the program would print the following string:

g List [Something]

You can avoid runtime errors by using the EXISTS function before working with an element
of the collection. That's the sole use case for its existence.

EXTEND Method

The EXTEND method is a procedure. Like DELETE, it’s also an overloaded procedure. (Chapter 9
covers overloading, if that’s a new concept to you.) There are three overloaded versions of the
EXTEND procedure:

B One takes no parameters. It allocates space for one element.

B One takes one parameter. It allocates space for the number of elements designated by the
parameter.

B One takes two parameters. Like the one-parameter version, it allocates space for the number
of elements designated by the first parameter. The second parameter must be a valid index
value, and it’s used to copy the value from the referenced index into the newly allocated
space.

The following program shows how to allocate new space with the EXTEND procedure (leveraging
the anonymous block from the DELETE procedure example):

7 SQL> DECLARE
same as the DELETE procedure

8 /* Declare an initialized table collection. */
9 lv_table X TABLE := x table('Ome');
10 BEGIN

254 Oracle Database 12c PL/SQL Programming

11 /* Extend space, and assign a value. */
12 lv_table.EXTEND;
13
14 /* Assign a value to the last allocated element. */
15 lv_table(lv_table.COUNT) := 'Two';
16
same as the DELETE procedure
27 END;
28 /

Line 9 changes from the earlier example by constructing a collection of only one element.
Line 12 extends space for one element. Line 15 identifies the last added element by calling the
COUNT function.

The program prints

g Index [1] Value [Onel
Index [2] Value [Twol]

The use case for the EXTEND method exists when you want to assign an unknown number of
elements from a cursor to a varray or table collection. It gives you two principal alternatives. One
adds the space one element at a time (as shown in the previous example). The other adds all the
space at one time, but it requires that you know how many elements will be added to the collection.

FIRST Method

The FIRST method is a function. It returns the lowest index value used in a collection, which is one
of the boundary elements of a collection. The FIRST function returns a numeric 1 when working
with a varray or table collection. It returns the lowest integer value from an associative array indexed
numerically. Similarly, it returns the lowest string index value from an associative array; which value
is considered lowest depends on how strings are sorted (based on the NLS_COMP and NLS_SORT
alphabetical rules).

While the rule applying to numbers is clear, the rule for strings sometimes isn’t. The following
example creates a string-indexed associative array and then prints its first value:

=1 SQL> DECLARE

2 /* Define an associative array. */

3 TYPE x_table IS TABLE OF INTEGER

4 INDEX BY VARCHAR2 (9 CHAR) ;

5

6 /* Declare an associative array variable. */

7 1lv_table X TABLE;

8 BEGIN

9 /* Add elements to associative array. */
10 lv_table('Seven') := 7;
11 1v_table('Eight') := 8;
12
13 /* Print the element returned by the lowest string index. */
14 dbms_ output.put line(
15 'Index ['||lv_table.FIRST||']['||lv_table(lv_table.FIRST)||']1");
16 END;

17/

Chapter 6: Collections 255

Lines 10 and 11 assign two elements to an associative array. The values are entered lowest to
highest, but the indexes are ordered highest to lowest when treated as sorted strings. Lines 14 and
15 (for book formatting purposes) print the index and value of the collection for the first element
of the associative array:

g Index [Eight] [8]

The FIRST function is critical in finding the first index value in any collection, but its importance
becomes most evident when searching for the first index value in a sparsely populated index. The
use case for the FIRST function is to determine definitively where you should start when navigating
a collection.

LAST Method

The LAST method is a function. Like the FIRST function, the LAST function returns the index of
a boundary element of the collection. The LAST function returns the highest index value used in a
collection. The LAST function also returns the same value as the COUNT function in varray and
table collections, which isn’t always the same value returned by the LIMIT function. While the
LAST function returns the highest integer value from varray and table collections, it returns either
the highest integer value or the highest string index value from an associative array. Oracle Database
uses the NL.S_COMP and NLS_SORT values to create alphabetical sorting rules, which decide how
to sort strings.

If you replace the FIRST function call with a LAST function call on line 15 from the sample
program for the FIRST method (presented in the previous section), the program prints the highest
alphabetical string index and value:

= 14 dbms_output.put line (
15 "Index ['||lv_table.LAST||']['||x list(lv_table.LAST)||']"');

And, that is
g Index [Seven] [7]

The LAST function is critical in finding the last index value in any collection, but its [referring
to LAST indeed of FIRST] importance becomes most evident when searching for the last index
value in an associative array and a sparsely populated string index.

LIMIT Method

The LIMIT method is a function. It returns the highest possible subscript value for a varray, and
you can't use it with any other type of collection.
The example program that follows illustrates the LIMIT method:

g SQL> DECLARE

2 /* Define an associative array. */
TYPE x_varray IS VARRAY(5) OF INTEGER;

/* Declare an initialized table collection. */
lv_array X VARRAY := x varray(l,2,3);

BEGIN
/* Print the count and limit values. */

0w J o U kW

256 Oracle Database 12c PL/SQL Programming

9 dbms_output.put line(

10 "Count ['||1lv_array.COUNT||']: Limit['||lv_array.LIMIT||']');
11 END;

12/

Line 3 defines a five-element varray collection. Line 6 constructs the varray with three
elements. Line 10 prints the count and limit of elements in the varray, which are

g Count [3]: Limit [5]

The LIMIT function serves the purpose of qualifying the maximum number of elements in a
varray. The use case for the LIMIT function would be using it as a guard condition to avoid adding
more than the maximum number of elements in a varray.

NEXT Method

The NEXT method is a function. It returns the next index value by receiving the current index
value. Since Oracle collections act like singly linked lists, not rings, when you get to the last
index, the NEXT method returns a null. While you can increment one at a time with a densely
populated index, you can’t do the same with a sparsely populated index. The NEXT function lets
you move from one index to another whether the index is densely or sparsely populated.

The following snippet from an earlier example shows how you use the NEXT function:

= 10 BEGIN

11 /* Set the starting index. */

12 current := 1lv table.FIRST;

13

14 /* Read through index values in ascending order. */
15 WHILE (current <= lv_table.LAST) LOOP

16 dbms_output.put line(

17 "Index ['||current]||'] Value ['||lv_table(current)|]|']"');
18 /* Shift index to next higher value. */

19 current := 1lv_table.NEXT (current) ;

20 END LOOP;

21 END;

22/

Line 12 assigns the lowest index value to a current variable. Line 15 evaluates the current
variable’s value against the highest index value. The comparison uses a less-than or equal operator
because you want to exit the loop before the NEXT function returns a null value. Ultimately, line
19 shifts the index value to the next highest value.

Navigating across a sparsely populated index is the essential use case for the NEXT function.
You should navigate from the lowest to the highest index value in table collections and associative
arrays with the NEXT function.

PRIOR Method

The PRIOR method is a function. It returns the prior element’s index value by using the current
index value as an argument to the function. Like the NEXT function, the PRIOR function lets you
move across a collection by skipping missing index values in a sparsely populated index. Unlike
the NEXT function, which moves from the lowest to the highest index value, the PRIOR method
traverses the index from the highest to the lowest index value.

Chapter 6: Collections 257

Refactoring the WHILE loop from the prior section, you would decrement a collection with

the PRIOR function like this:

10
11
12
13
14
15
16
17
18
19
20
21
22

BEGIN
/* Set the starting index. */
current := 1lv table.LAST;

/* Read through index values in ascending order. */
WHILE (current <= lv_table.FIRST) LOOP
dbms_output.put line(

"Index ['||current||'] Value ['||lv_table(current)||']");
/* Shift index to next higher value. */
current := 1lv_table.PRIOR(current) ;
END LOOP;
END;
/

The change on line 12 requires starting with the return value of the LAST function rather than

the return value of the FIRST function. Line 15 also makes a similar change, and it replaces a
call to the LAST function with a call to the FIRST function. Line 19 replaces the NEXT function
call with a PRIOR function call because it's now decrementing through the collection.

Like the NEXT function, the PRIOR function’s use case is managing a decrementing process

across a sparsely populated index list. The PRIOR function lets you navigate from the highest to
lowest index value without worrying about gaps in the index sequence of values.

TRIM Method

The TRIM method is a procedure, and it’s an overloaded procedure. (Again, consult Chapter 9 if
the concept of overloading is new to you.) The TRIM procedure only works with varray and table
collections. There are two overloaded versions of the TRIM procedure:

B One takes no parameters. It deallocates space for one element.

B One takes one parameter. It deallocates space for the number elements designated by the

parameter.

The following program deallocates existing space from a collection:

=1 SQL> DECLARE

2

0 J 0 Ul W

10
11
12
13
14

/* Declare variable with meaningful name. */
current INTEGER;

/* Define a table collection. */
TYPE x_table IS TABLE OF VARCHAR2 (6) ;

/* Declare an initialized table collection. */

lv_table X TABLE := x_table('One', 'Two', 'Three', 'Four', 'Five');
BEGIN

/* Remove three elements from the end of the table. */

lv_table.TRIM(3);

/* Set the starting index. */

258 Oracle Database 12c PL/SQL Programming

15 current := 1lv_table.FIRST;

16

17 /* Read through index values in ascending order. */
18 WHILE (current <= lv_table.LAST) LOOP

19 dbms_output.put_ line(

20 "Index ['||current||'] Value ['||1lv_table(current)|]|']"');
21 /* Shift index to next higher value. */

22 current := 1lv_table.NEXT (current) ;

23 END LOOP;

24 END;

25/

Line 9 declares an 1v_table table collection variable with five elements. Line 12 removes
the last three elements by trimming them.
The program prints the first two elements:

g Index [1] Value [One]
Index [2] Value [Twol]

The use case for the TRIM procedure is removing elements from the end of a collection. You
can remove one element or a set of elements. When you trim the elements, you remove both their
values and their space. That means the COUNT function would return 2 after the TRIM procedure
call on line 12 of the preceding program.

You have now gone through the complete Oracle 12c¢ Collection API. It is time to summarize
what you have covered in the chapter.

Review Section
This section has described the following points about the Oracle Collection API:

B The Oracle Collection API simplifies working with all three types of Oracle collections.

B The methods of the Oracle Collection API are functions or procedures; some only
work with one or two of the collection types, while others perform differently based on
the type of collection.

B The LIMIT function only works with varray collections, and it captures the maximum
number of elements allowed in the collection.

B The overloaded EXTEND procedure only works with varray and table collections, and
it allocates space before you can assign values.

B The EXISTS function lets you check whether an element has been allocated memory.
B The DELETE procedure lets you remove an element from a collection.

B The COUNT function returns the number of elements in a varray or table collection. The
COUNT and LIMIT function can return the same number for a varray collection, but
only when the varray collection is full.

B The NEXT, PRIOR, FIRST, and LAST functions let you traverse sparsely populated
index lists by painlessly skipping gaps in the sequence.

B The TRIM procedure lets you deallocate space from varray and table collections.

Chapter 6: Collections 259

Supporting Scripts
This section describes programs placed on the McGraw-Hill Professional website to support this
chapter.
B The sql collection.sgl program contains small programs that support the “Object
Types: Varray and Table Collections” section of this chapter.

B The symmetrical composites.sqgl program contains fully functional examples for
the redacted versions in the chapter.

B The asymmetrical composites.sqgl program contains fully functional examples for
the redacted versions in the chapter.

B The associative array.sql program contains small programs that support the
“Associative Arrays” section of this chapter.

B Thecollection api.sgl program contains small programs that support the “Oracle
Collection API” section of this chapter.

Summary

This chapter has covered the definition and use of varrays, nested tables, and associative arrays,
which are the Oracle Database 12c¢ collection types. You have worked through examples in SQL
DML and PL/SQL that use Oracle Database 12c collections. Finally, you have explored the details
of the Oracle Collection API.

Mastery Check

The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix | for answers to
these questions.

True or False:

__SQL varray collections can only be used in a SQL context.

___Table collections can be used in a SQL context or a PL/SQL context.

___Associative arrays can be used only in a PL/SQL context.

___Atable collection can hold a record or object type as its composite base data type.
___Avvarray has a fixed number of elements when you define it.

___Avarray or table of a scalar variable is an Attribute Data Type (ADT).

___Avarray or table of a composite data type is a user-defined type (UDT).

__ A LIMIT function from the Oracle Collection API only works with table collections.

__ABULK COLLECT statement can work with a table collection of object types.

S eI NS R WM

—

The TABLE function lets you consume a varray or table collection as an ordinary SQL
result set.

260 Oracle Database 12c PL/SQL Programming

Multiple Choice:

11.

12.

13.

14.

15.

Which of the following is a densely populated index in an Oracle varray or table collection?
(Multiple answers possible)

A.
B.

C.
D.
E.

A sequence of negative integers without any gaps in the sequence of integers

A sequence of positive integers starting at a number of your choosing without any gaps
in the sequence of integers

A sequence of positive integers starting at 1 without any gaps in the sequence
A sequence of letters without any gaps in the sequence of integers

A sequence of positive integers starting at 1 with some gaps in the sequence of integers

Which of the following support string indexes? (Multiple answers possible)

mO O = >

PL/SQL tables
Table collections
Varray collections
Associative arrays

Java ArrayList classes

Which of the following is a sparsely populated index in an Oracle varray or table collection?
(Multiple answers possible)

A.
B.

C.
D.
E.

A sequence of negative integers without any gaps in the sequence of integers

A sequence of positive integers starting at a number of your choosing without any gaps
in the sequence of integers

A sequence of positive integers starting at 1 without any gaps in the sequence
A sequence of letters without any gaps in the sequence of integers

A sequence of positive integers starting at 1 with some gaps in the sequence of integers

Which of the following are boundary elements of collections? (Multiple answers possible)

mO O = >

The index value returned by the FIRST function
The index value returned by the COUNT function
The index value returned by the LIMIT function
The index value returned by the LAST function
All of the above

Which of the following collections work in SQL and PL/SQL contexts? (Multiple answers
possible)

A.

mOO0w®

Varray collections of scalar data types
Varray collections of record data types
Table collections of scalar data types
Table collections of object data types
All of the above

CHAPTER

Error Management

262 Oracle Database 12¢ PL/SQL Programming

his chapter covers PL/SQL error management.

Two types of PL/SQL errors exist: those that happen at compilation time (also known as syntax
errors or compile-time errors) and those that happen at runtime (also known as semantic errors).
You will see compilation errors in both anonymous and named blocks—functions, procedures,
packages, or user-defined object types. Compilation errors are easier to find because Oracle
immediately alerts you when it comes across syntax errors. Semantic errors occur as a result of
bad logic in your program, and they can be very subtle. In some cases, only a keen eye catches
them before runtime. You handle semantic errors in the exception blocks of your PL/SQL programs.

As stated, runtime errors are complex and more difficult to solve because they only occur
occasionally. Two scenarios exist for runtime errors: they are raised automatically, such as
NO_DATA FOUND errors, or they are not raised automatically. The latter are logical errors. You
must create user-defined exceptions for logical errors. Moreover, logical errors cannot be
managed when they occur inside the declaration block—unless exception assignments are made
via static string or numeric literal variables that act like constants.

You will learn about both compilation errors and runtime errors in this chapter. You’ll also
learn how to capture and manage thrown exceptions.

The following topics are covered in this chapter:

B Exception types and scope
B Compilation errors

M Runtime errors
B Exception management built-in functions

B User-defined exceptions
B Declaring user-defined exceptions

B Dynamic user-defined exceptions

B Exception Stack Functions

Although this chapter is designed to be read sequentially, you can skim through it first and
then quickly dive into almost any section that you are particularly interested in.

Exception Types and Scope

As previously mentioned, two types of errors exist in PL/SQL: compilation errors and runtime
errors. A compilation error occurs if you have made an error typing a program, such as forgetting
a comma, period, identifier, or semicolon. As defined in Chapter 4, identifiers include reserved
words and keywords as well as both subroutine and variable names. These compilation errors are
lexical errors. The compiler catches lexical errors when it parses the program’s plain text file. Parsing
is the process of reading a text file to ensure that it meets the lexical usage rules of a programming
language.

Runtime errors occur when actual data fails to meet the rules (or, more precisely, the programming
instructions) defined by your program unit.

Chapter 7: Error Management 263

Chapter 3 explains variable and subroutine scopes. Variable and subroutine scopes have two
views. One view is a top-down availability of variables and subroutines, and the other view is
bottom-up accessibility to variables and subroutines. Developers who design their code before
they write any of it take a top-down view, while those who write code before they design it take
a bottom-up view. The first version of your program code should always take a top-down view,
while the progressive iterations from prototype to finished product benefit from a bottom-up view.

The amount of time it takes you to write and maintain good code decreases as your ability to
understand and manage exceptions increases. That's because when you design first, you add
exception handlers. The exception handlers provide you with clues that tell you where the code
is broken and what you need to do to fix it.

Compile-time errors are often easy to see because they identify the line number of the exception
or the line following the exception. The lines with errors fail to compile and Oracle’s exception
handling engine keeps track of the line and row numbers where syntax errors occur.

NOTE

Compile-time errors may have incorrect numbers when debugging
triggers because the trigger declaration isn't counted by the parsers in
the line count of the trigger body, or anonymous block.

Runtime errors aren’t quite so easy to see. That’s because when runtime exception are thrown
and potentially re-thrown by the calling program. The first runtime exception throws (or raises,
according to Oracle semantics) an exception. Either a local handler or the calling handler catches
the exception. Handlers may handle the exception or re-throw it. That process can repeat itself
until the exception reaches the point where it all started.

Figure 7-1 shows this exception management process.

The next two subsections cover compilation errors and runtime errors in more depth.

Compilation Errors
Compilation errors are generally typing errors. The parsing of your PL/SQL text file into a set of
interpreted instructions, known as p-code, finds lexical errors. Lexical errors occur when you
misuse a delimiter, identifier, literal, or comment. You can misuse lexical units by

B Forgetting a semicolon (the statement terminator)

B Using only one delimiter when you should use two, such as failing to enclose a string
literal

B Misspelling an identifier (reserved words and keywords)

B Commenting out a lexical value required by the parsing rules
There are three general patterns for error messages:
B Prior line errors Point to an error on the prior statement line, which is generally a

missing statement terminator.

B Current line errors Point to the column of the error or one column after the error. The
difference generally means that the parser is looking for a missing lexical unit.

B Declaration errors Point to any failure in the declaration block, and generally have the
actual error line as the last line of the error message.

264 Oracle Database 12¢ PL/SQL Programming

Declaration
Block
Execution COm[f;latmn
Block Failure

Execution @@
Block

z()/
1| Declaration
Block g
T\
A

Exception
Block |C==

Exception
% Block

i
TEN T E

Thrown Exception

FIGURE 7-1. Exception scope and routing

The following program should print a Hello World message, but it fails to compile because it
is missing the statement terminator on line 2:

g SQL> BEGIN

2 dbms_output.put line('Hello World.')
3 END;
4 /

This raises the following error message:
] END;
*

ERROR at line 3:
ORA-06550: line 3, column 1:
PLS-00103: Encountered the symbol "END" when expecting one of the following:

°
.= s .
= . (% ;

The symbol ";" was substituted for "END" to continue.

This error message may look undecipherable, but it is actually quite informative when you
know how to read it. The first line of the error message provides either the line where the error
occurred or the line after the error. The second line places an asterisk immediately below the error

Chapter 7: Error Management 265

location or the first column of the line. The PLS-00103 error message raised by the example says
that a lexical unit is missing immediately before the END reserved word. This typically means the
error occurred one statement line before the echoed error message line. The error message also
provides five possible lexical values for a missing symbol. The parser suggests using a semicolon.
In this case the semicolon or statement terminator is the missing lexical unit. The semicolon
should end the statement on line 2.

The next example shows a compilation error where the error occurs on the same line:

=1 SQL> DECLARE

2 lv_a NUMBER := 0;

3 1v_b NUMBER;

4 1v_c NUMBER;

5 BEGIN

6 lv_c := 1lv_a 1v_b;

7 dbms_output.put_line('['||lv_c||']1");
8 END;

9 /

The error message displayed is

e lv.c :=1v.a 1lv b;
*
ERROR at line 6:
ORA-06550: line 6, column 17:
PLS-00103: Encountered the symbol "LV B" when expecting one of the following:

(*@ % & =-+ ; </ > at in is mod remainder not rem
<an exponent (**)> <> or != or ~= >= <= <> and or like LIKE2
LIKE4 LIKEC between || multiset member SUBMULTISET
The symbol "." was substituted for "LV _B" to continue.

The PLS-00103 error message says that a lexical unit is missing immediately before the
variable 1v_b. The asterisk on the second line below the variable 1v_b tells you that the error
occurs immediately before the variable. You can fix this program by placing any arithmetic
operator in between the 1v_a and 1v_b variables.

A variation on the prior error message places the asterisk immediately below where the error
occurs in a statement line. The following program raises this type of error message:

=1 SQL> DECLARE

2 lv_a NUMBER;
3 BEGIN

4 lv.a = 1;

5 END;

6 /

Line 4 contains a comparison operator when it should use an assignment operator. The error
message points to the comparison operator as the problem:

e lva - 1
*

ERROR at line 4:
ORA-06550: line 4, column 8:

266 Oracle Database 12c PL/SQL Programming

PLS-00103: Encountered the symbol "=" when expecting one of the following:
= . (@ % ;
The symbol ":= was inserted before "=" to continue.

The error message points to the incorrect use of a comparison operator. This is an easy type of
error message to read and understand.

You receive a less obvious error message when you trigger an error in the declaration block.
The following example tries to assign a two-character string to a one-character variable in the
declaration block:

=1 SQL> DECLARE

2 lv_a CHAR := 'AB';

3 BEGIN

4 dbms_output.put line('['||lv_al||']1");
5 END;

6 /

The program raises the following error message, which would provide very little information if
you were trying to apply the previously discussed rules:

== DECLARE
*

ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character string buffer too small
ORA-06512: at line 2

The error points to line 1. Unlike the earlier errors, this does not point to a problem before
the DECLARE statement. It tells you that the error occurs in the declaration block. The statement
following the ERROR at line 1 message describes the problem, and the following line tells
you the line number where it occurs.

It's important to note that the last line is actually the first error written to the exception stack.
The ORA-06512 error on the last line of the error message points to the line number where the
problem occurs. The next line put in the stack describes the problem. The third message says the
problem occurs in the declaration block.

The error occurs when the program tries to assign a string literal 'AB' into a single-character-
sized variable. The error occurs after parsing the program when it attempts to bind any string and
numeric literal values to variables.

Runtime Errors

Runtime errors can happen in declaration, execution, and exception PL/SQL blocks. The easiest to
catch and handle are those errors thrown from an execution block because they are caught first
by any local exception block and next by any containing block. On the other hand, only an external
exception block can catch errors thrown from declaration or exception blocks.

Exception blocks contain WHEN blocks, which catch specific errors or general errors. The prototype
for the WHEN block is

g WHEN [predefined exception | user defined exception | OTHERS] THEN
[RETURN | EXIT];

Chapter 7: Error Management 267

The WHEN block can take an Oracle predefined exception name, a user-defined exception, or
the catch-all OTHERS keyword. You use the OTHERS reserved word when you want a WHEN clause
to catch any exception. Unless you want to skip your specific exception handlers, the WHEN
OTHERS exception handler should always be the last exception handler.

Later in the chapter, Table 7-2 lists Oracle predefined exception names. The predefined errors
map to known error numbers. They are defined in the sys. standard package. Oracle predefines
these errors as follows in the sys . standard package:

g 162 CURSOR_ALREADY OPEN exception;
163 pragma EXCEPTION_ INIT (CURSOR_ALREADY OPEN, '-6511');

Alternatively, you can define your own exceptions, which is a two-step process. First, you
assign a variable that uses the EXCEPTION data type. Second, you map your user-defined
EXCEPTION variable to a specific error numbers. The PRAGMA (a precompiler instruction) lets
you map the exception to the error number, as done in the sys. standard package.

The “User-Defined Exceptions” section, later in this chapter, covers the process of creating
user-defined exceptions. Oracle also provides two built-in exception handling functions:
SQLCODE and SQLERRM. They provide a simplified way to see the raised error code and its
message. Table 7-1 explains the SQLCODE and SQLERRM built-in functions.

The following subsections cover execution and exception block errors first and then declaration
block errors. They’re ordered that way because you need to see how the basic mechanics work
before you see how they fail.

Execution and Exception Block Errors

Errors raised in the execution block are thrown to the local exception block where they are caught
and managed. Exception handler is another name for the exception block in PL/SQL. When the
local exception block fails to catch an exception, it throws the exception back to the program
that called it. That program may be the SQL*Plus environment, a SQL statement (more on this in
Chapter 8), or a PL/SQL block. In fact, the PL/SQL block can simply be an outer block, which is
the simplest way to demonstrate the behavior.

Function Oracle Predefined Error User-Defined Error

SQLCODE Returns a negative integer for Returns a positive 1 if no EXCEPTION INIT
standard Oracle exceptions, except ~ PRAGMA is defined. If an EXCEPTION INIT
the NO_DATA FOUND exception, PRAGMA is defined, it returns a valid number
which returns a positive 100. in the range of ~20001 to —20999.

SQLERRM Returns the error code and Returns a 1 and a “User-Defined Exception”
message of a standard Oracle message when the exception is thrown by
exception. SQLERRM is an the RATISE statement. Returns a valid negative
overloaded function that operates integer in the qualified range and a text
only in the exception block. message when the exception is thrown by

the raise application info function.

TABLE 7-1. Oracle Exception Management Built-in Functions

268

Oracle Database 12c PL/SQL Programming

Oracle Built-in Exception Handling Functions

The SQLCODE function returns the error number associated with an exception. The SQLERRM
function returns the error number and the message associated with an exception. Unfortunately,
how they work is not as simple as the preceding sentences suggest, because they work
differently under different scenarios. That's why they’re qualified next. They’re also covered
in Appendix C.

The SQLCODE Exception Function The SQLCODE function returns one of three values.
It returns a negative number for all predefined Oracle exceptions, except the NO DATA
FOUND exception. The SQLCODE function returns a positive 100 for a NO DATA FOUND
exception. The SQLCODE function also returns a positive 1 when a user-defined exception is
raised.

The SQLERRM Exception Function The SQLERRM function returns an error code and
either an empty string or a message. It returns the following:

B A code and message for any unhandled error code or Oracle predefined exception
name.

B A 100 code value and a User-Defined Exception message for a user-defined exception
thrown by the following statement:

RAISE user defined exception;

B A-20001 to -20999 code value and a customized message for a user-defined
exception thrown by the following function call:

RAISE APPLICATION ERROR (error code, customized message) ;

The PRAGMA EXCEPTION INIT maps a negative integer to an error message. A call to
the RAISE APPLICATION ERROR function throws that error with a customized message.
Then, the SQLERRM function returns the code and customized message.

You should keep track of user-defined messages, because developers tend to use and
reuse the same number for different kinds of errors. This practice of reusing errors for
different purposes confuses system users and administrators. It makes it difficult, if not
impossible, to understand what specific errors mean. The question is, how can you manage
it? | suggest that you create a common lookup table in which to store and maintain the list
of defined errors and then require developers to log their use of user-defined messages in
that table. Then, whenever a developer needs to know which error numbers are in use, they
can check the values in the table. This approach avoids reusing user-defined values and
makes identification of errors and maintenance of user-defined messages a snap.

Chapter 7: Error Management 269

Calling programs should have generic exception handlers to manage any exceptions re-thrown
by other program units. The next program shows you how to handle a locally raised exception in
a local exception block. The exception block only manages a value error exception. While a
number of things can raise a value error exception, the following program raises the error by
trying to put a two-character string in a one-character variable:

=1 SQL> DECLARE

2 lv_a VARCHAR2 (1) ;

lv_b VARCHAR2(2) := 'AB';
BEGIN

lv_a := 1v b;
EXCEPTION

WHEN value_ error THEN

dbms_output.put_line(
'You can''t put ['||lv_b]||'] in a one character string.');

END;
/

H O WV o Jo0 Ul b W

B

Line 1 declares a one-character 1v_a variable. Line 3 declares a two-character 1v_b variable.
Line 5 attempts to assign the two-character variable to the one-character variable; it fails and raises
the following error:

] You can't put [AB] in a one character string.

This shows you how a local error is caught and managed by a local exception block. It also
uses the value error built-in exception in the WHEN clause. The WHEN clause becomes a
value_error exception handler, and it only catches and manages ORA-06502 errors. Any
other exception would be ignored and thrown to the SQL*Plus session.

The following raises a NO_DATA FOUND error inside the inner block. Since the only
exception handler only checks for a value error built-in exception, the error isn’t caught.
Instead, it is re-thrown to the calling block, as shown:

=1 SQL> DECLARE

2 lv_a VARCHAR2 (1) ;

3 BEGIN

4 DECLARE

5 1v_b VARCHAR2 (2) ;

6 BEGIN

7 SELECT 1 INTO 1lv b

8 FROM dual

9 WHERE 1 = 2;

10 1lv_a := 1v_b;

11 EXCEPTION
12 WHEN value error THEN
13 dbms_output.put_ line(
14 'You can''t put ['||1v_b]||'] in a one character string.');
15 END;
16 EXCEPTION
17 WHEN others THEN

18 dbms_output.put line(

270 Oracle Database 12¢ PL/SQL Programming

19 'Caught in outer block ['||SQLERRM||'].");
20 END;
21/

The SELECT-INTO query on lines 7 through 9 fails to select a numeric literal value into a
local variable. That's because the WHERE clause always returns false (after all, 1 isn’t equal to 2).
The local value error exception handler is skipped and the error is re-thrown to the calling
scope or outer block. The others exception handler catches the NO DATA FOUND exception.

You should always put the others exception handler last in a list of exception handlers
because it’s generic and catches all other exceptions—both those that you anticipate and those
that you don’t anticipate.

The preceding program'’s exception handler in the outer block prints the following SQLERRM
message:

g Caught in outer block [ORA-01403: no data found].

You can manually raise a user-defined exception without encountering one. The RAISE
statement lets you throw such an error. The following program uses this technique to show you
what happens when an error is raised inside an exception block:

= SQL> DECLARE

2 1v_a VARCHAR2 (1) ;

3 e EXCEPTION;

4 BEGIN

5 DECLARE

6 lv_b VARCHAR2(2) := 'AB';

7 BEGIN

8 RAISE e;

9 EXCEPTION

10 WHEN others THEN
11 lv_a := 1lv_b;
12 dbms_output.put line('Never reaches this line.');
13 END;
14 EXCEPTION
15 WHEN others THEN
16 dbms output.put line(
17 'Caught in outer block->'||dbms utility.format error backtrace);
18 END;
19 /

Line 8 calls the RAISE statement to throw an error. It passes control to the exception block
that starts on line 9. Line 11 attempts to assign a two-character string to a one-character variable-
length string. The error passes control from the inner block to the outer block’s exception handler.

NOTE
Always put the general others error handler at the end of any list of
exception handlers.

The outer block calls the format _error backtrace function and returns

g Caught in outer block->ORA-06512: at line 11

Chapter 7: Error Management 271

The ORA-06512 exception identifies the line number where the error occurred. This line
number is calculated by parsing the file submitted to run the program. You can find that line number
by running the script file from SQL*Plus and then typing list (actually, you only need to type the
letter I). It lists the program with the line numbers that are reported by an ORA-06512 error. You
can query the DBA , ALL , or USER_SOURCE view when the program is a stored function,
procedure, package, or object type.

You can replace the call to format error backtrace with two calls to Oracle Database
12c’s new utl call stack package. One call gets the error number and the other call gets the
line number, as qualified later in the chapter in Table 7-3. However, neither of these functions
returns the “ORA-"or “: at ” substrings, which make the format error backtrace output
readable.

You return a value from the backtrace line function with the following call:

g utl call stack.backtrace line(utl_call stack.backtrace depth)
and you get the line number for the error with the following function call:
g utl call stack.backtrace line(utl_call stack.backtrace depth)

The “Exception Stack Functions” section later in this chapter expands on these types of
supporting utilities for exception handling. The ut1l call stack package is also mentioned in
Appendix C.

This section has demonstrated the basics of runtime exception management. You should note
that when you raise an error in the execution block, it is handled locally, if possible. When the
local exception block doesn’t manage the error, the error is sent to an outer block or SQL*Plus
environment. PL/SQL throws exceptions raised in an exception block to an outer block or the
SQL*Plus environment.

Declaration Block Errors

As demonstrated earlier in the chapter, if you attempt to assign a two-character string literal to a
one-character variable, an exception is raised at compile time. A runtime exception is raised
when you call the program with an inappropriate value for the assignment. Like raised errors in
the exception block, you can’t catch runtime errors in the local exception block, because the
declaration block throws the error back to the calling program’s scope.

The next example rewrites an earlier example from the chapter. It assigns the value of a
substitution variable to a local variable. (The “Interactive Mode Parameter Passing” section of
Appendix A explains the use of substitution variables.) It doesn’t raise a compile-time error
because substitution variables don’t have a physical size until runtime.

g SQL> DECLARE
2 lv_a CHAR := '&input';

BEGIN

dbms_output.put line('['||1lv_al||']");
EXCEPTION

WHEN OTHERS THEN

dbms_output.put_line('['||SQLERRM||"']"

END;
/

o Ul o Ul W

272 Oracle Database 12¢ PL/SQL Programming

Line 2 assigns a substitution variable to the local variable. Assigning a value of 'AB" to the
substitution variable raises a runtime exception like the following:

=1 DECLARE
*

ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character string buffer too small
ORA-06512: at line 2

The inner anonymous block raises an unhandled exception because the exception block on
lines 5 through 7 can’t manage runtime exceptions.
The following program shows you how to capture the raised exception in the outer block:

= SQL> BEGIN
2 DECLARE

lv_a CHAR := '&input';
BEGIN
dbms_output.put_line('['||lv_a||']");
END;
EXCEPTION
WHEN OTHERS THEN
dbms_output.put line('['||SQLERRM]||']");
END;
/

H O w oo 30 Ul b W

o

You capture the exception raised on line 3 by nesting the original program in another program.
The container program captures the unhandled exception when the nested program throws it back
to its calling program’s scope.

This same behavior exists in stored program units, like functions and procedures. While
procedures require wrapping their calls, functions don’t. If you call a function directly from SQL,
it can raise an unhandled exception.

== NOTE
(4 You can call stored functions from SQL when they return a native SQL
data type.

The following function replicates the dynamic assignment problem, but does so in a stored
programming unit:

g SQL> CREATE OR REPLACE FUNCTION runtime error
2 (1v_input VARCHAR2) RETURN VARCHAR2 IS

a VARCHAR2 (1) := lv_input;
BEGIN

NULL;
EXCEPTION

WHEN others THEN

dbms_output.put line ('Function error.');

END;
/

O VW 0 J 0 Ul B W

=

Chapter 7: Error Management 273

Line 2 takes a single input parameter. A call to the runtime_error function passes any
valid VARCHAR?2 string (that's up to 32,768 bytes when the MAX STRING SIZE is set to
EXTENDED). That's possible because formal parameters of functions or procedures have no
physical size limit. Formal VARCHAR2 parameters inherit their size from the calling parameters.

Inside the function, you assign the formal parameter to a one-character 1v_input variable.
The assignment raises a runtime exception when the input is greater than a one-character string.

You can call this function in SQL by using it as a SELECT-list element of a query, like:

SQL> SELECT runtime_error ('AB') FROM dual;
It generates the following unhandled exception:

g SELECT runtime error ('AB') FROM dual;
*

ERROR at line 1:

ORA-06502: PL/SQL: numeric or value error: character string buffer too small
ORA-06512: at "PLSQL.RUNTIME ERROR", line 3

This section has demonstrated that you should make dynamic assignments in execution
blocks because PL/SQL doesn’t catch dynamic assignment errors in local exception handlers.

= TIP
4 Cood PL/SQL coding practices avoid dynamic assignments in
declaration blocks.

Review Section
This section has described the following points about exception types and scope:

B Compile-time errors typically are typing errors, and they occur during the parsing
of PL/SQL programs. They can include errors with lexical units, and they can be the
misspelling of or misuse of identifiers as variable names. The misspelled or misused
identifiers are typically keywords or reserved words in SQL or PL/SQL languages.

B A compile-time error may point to one of three locations: the first character of the
next line, when the error occurs as the last element of the preceding line; a character
immediately following the error on the same line; or the beginning of the declaration
block, for a nonparsing error.

B Runtime errors occur after the program is parsed and literal values are assigned to
local variables.

B Runtime errors can occur in the declaration, execution, or exception blocks.
B Runtime errors thrown in the execution block are handled by the local exception block.

B Runtime errors thrown in the declaration or exception block can’t be handled by local
exception blocks.

274 Oracle Database 12¢ PL/SQL Programming

Exception Management Built-in Functions

Oracle provides a series of predefined exceptions in the sys. standard package. These are
useful tools in your debugging of Oracle PL/SQL programs. Most errors raise a negative number

as their error number.

You find error codes by using the SQLCODE built-in function. The SQLERRM built-in function

returns both error codes and messages. The earlier “Oracle Built-in Exception Handling Functions”

’

section explains how the SQLCODE and SQLERRM functions work. You can also find more coverage
in Appendix C on these two error handling functions.
The predefined exceptions are noted in Table 7-2.

Exception
ACCESS INTO NULL

CASE NOT_ FOUND

COLLECTION IS NULL
CURSOR_ALREADY OPEN

DUP_ VAL ON INDEX

INVALID CURSOR

INVALID NUMBER

LOGIN_ DENIED

NO DATA FOUND

Error
ORA-06530

ORA-06592

ORA-06531

ORA-06511

ORA-00001

ORA-01001

ORA-01722

ORA-01017

ORA-01403

When Raised

When you attempt to access an uninitialized
object.

When you have defined a CASE statement
without an ELSE clause and none of the CASE
statements meet the runtime condition.

When you attempt to access an uninitialized
table or varray collection.

When you attempt to open a cursor that is
already open.

When you attempt to insert a duplicate value
to a table’s column when there is a unique
index on it.

When you attempt a disallowed operation on a
cursor, like closing a closed cursor.

When you attempt to assign something other
than a number to a number or when the
LIMIT clause of a bulk fetch returns a non-
positive number.

When you attempt to log in with a program to
an invalid username or password.

When you attempt to use the SELECT - INTO
structure and the statement returns a null
value; when you attempt to access a deleted
element in a nested table; or when you attempt
to access an uninitialized element in an
associative array.

TABLE 7-2. Predefined Exceptions in the Standard Package

Chapter 7: 275

Error Management

Exception
NO DATA NEEDED

NOT LOGGED ON

PROGRAM ERROR

ROWTYPE MISMATCH

SELF_IS NULL

STORAGE ERROR

SUBSCRIPT BEYOND COUNT

SUBSCRIPT OUTSIDE LIMIT

SYS_INVALID ROWID
TIMEOUT ON RESOURCE
TOO_ MANY ROWS

USERENV_COMMITSCN ERROR

VALUE ERROR

ZERO _DIVIDE

Error
ORA-06548

ORA-01012

ORA-06501

ORA-06504

ORA-30625

ORA-06500

ORA-06533

ORA-06532

ORA-01410

ORA-00051

ORA-01422

ORA-01725

ORA-06502

ORA-01476

When Raised

When a caller to a pipelined function signals
no need for further rows.

When a program issues a database call and
is not connected, which is typically after the
instance has disconnected your session.

When an error occurs that Oracle has not yet
formally trapped. This happens all too often
with a number of the object features of the
database.

When your cursor structure fails to agree with
your PL/SQL cursor variable, or an actual cursor
parameter differs from a formal cursor parameter.

When you try to call an object type non-static
member method in which an instance of the
object type has not been initialized.

When the SGA has run out of memory or has
been corrupted.

When the space allocated to a table or varray
collection is smaller than the subscript value
used.

When you use an illegal index value to access
a varray or table collection, which means a
non-positive integer.

When you try to convert a string into an invalid
ROWID value.

When the database is unable to secure a lock
to a resource.

When using the SELECT - INTO structure and
the query returns more than one row.

You can only use the function

userenv ('COMMITSCN') as a top-level
expression in a VALUES clause of an INSERT
statement or as a right operand in the SET
clause of an UPDATE statement. It's raised
when a system change number (SCN) can’t be
written to a database file.

When you try to assign a variable into another
variable that is too small to hold it.

When you try to divide a number by zero.

TABLE 7-2.

Predefined Exceptions in the Standard Package

276 Oracle Database 12c¢ PL/SQL Programming

These predefined exceptions are very handy tools for writing exception handlers. You should
use these when they meet your exception handling needs. When they don’t meet your needs, you
should create user-defined exceptions.

User-Defined Exceptions

You can declare user-defined exceptions in the following three ways. This section explains all
three and shows you how to implement and throw them.

B Declare an EXCEPTION variable in the declaration block, which you can throw by using
the RAISE statement.

B Declare an EXCEPTION variable and map it to a standard Oracle exception with a
PRAGMA (or precompiler) instruction in the declaration block. This type of error occurs
when the code generates the standard Oracle exception.

B Usethe raise_application_error function to create a dynamic exception. This
technique doesn’t require you to declare an EXCEPTION variable. The function lets you
map a user-defined error code to a message. You can call the raise application
error function in the execution or exception blocks. Calling the function throws a
dynamic exception. It's important to note that you must use an integer in the range of
—-20000 to —20999 as the error number.

NOTE

Oracle E-Business Suite and other software applications already use
numbers in the —20000 to —20999 range for their exceptions. You should
try to avoid conflicts when working with the Oracle E-Business Suite.

The “Declaring User-Defined Exceptions” subsection shows you how to work with the first
two types of user-defined exceptions. The subsequent “Dynamic User-Defined Exceptions”
subsection shows you how to use the third type of exception.

Declaring User-Defined Exceptions

This section shows you how to declare an exception and raise it. It also shows you how to declare
a precompiler instruction or compiler directive that lets you map an exception to an error code.
Moreover, it covers the first two types of user-defined exceptions.

You declare an exception like any other variable in PL/SQL. After declaring it, you can raise
the exception, but you have no way to catch it in the exception handler. The purpose behind your
user-defined exception dictates which way you declare it.

The following program declares and raises an exception:

SQL> DECLARE
2 e EXCEPTION;
3 BEGIN
4 RAISE e;
5 dbms_output.put line('Can''t get here.');
6 EXCEPTION

Chapter 7: Error Management 277

7 WHEN OTHERS THEN /* Catch all exceptions. */
8 /* Check user-defined exception. */
9 IF SQLCODE = 1 THEN
10 dbms_output.put_line('This is a ['||SQLERRM||'].");
11 END IF;
12 END;
13/

Line 2 declares a local EXCEPTION variable. Line 4 raises the user-defined exception. Since
there’s no PRAGMA (or precompiler) instruction, it raises an error code of 1. The exception block
uses a generic handler to catch all exceptions on line 7, and line 9 checks for a user-defined
exception code.

The program raises the exception and prints

g This is a [User-Defined Exception] .

A two-step declaration process lets you declare an exception and map it to a number. The first
step is to declare an EXCEPTION variable. The second step is to declare a PRAGMA, which is a
precompiler instruction or compiler directive. PRAGMA instructions let you direct the compiler to
perform something differently than the default behavior.

While PL/SQL supports a number of PRAGMA directives, you use the following compiler
directive to map an exception string to an error code:

g PRAGMA EXCEPTION INIT(locally declared exception, error code) ;

= TIP

You should avoid mapping a user-defined exception to an error code
that is already a predefined exception, as qualified in Table 7-2.

The following example program defines an EXCEPTION variable and maps the exception to
an error number:

g1 SQL> DECLARE

2 1v_a VARCHAR2 (20) ;

3 invalid userenv parameter EXCEPTION;

4 PRAGMA EXCEPTION INIT (invalid userenv_ parameter,-2003) ;
5 BEGIN

6 lv_a := SYS CONTEXT ('USERENV', 'PROXY PUSHER') ;

7 EXCEPTION

8 WHEN invalid userenv parameter THEN

9 dbms_output.put line (SQLERRM) ;
10 END;
11/

Line 3 declares a local EXCEPTION variable. Line 4 provides the compiler directive that maps
the exception name to an error number. Line 6 raises a real ORA-02003 error code because
proxy pusher isn’t a valid USERENV system context. Line 8 is a specialized exception handler
that only catches invalid calls to the sys context function.

278 Oracle Database 12¢ PL/SQL Programming

The choice of invalid userenv_parameter also mirrors its actual definition in the
sys.standard package body. The code prints the standard Oracle error message:

g ORA-02003: invalid USERENV parameter

Our prior example relies on a predefined Oracle exception. Let's examine what happens
when we map a user-defined error code to a local exception. Again, it’s important to note that
you must declare user-defined error codes in the range of —20001 to —20999.

The following maps a local exception to a user-defined error code:

g SQL> DECLARE

2 e EXCEPTION;

3 PRAGMA EXCEPTION INIT (e,-20001);
4 BEGIN

5 RAISE e;

6 EXCEPTION

7 WHEN e THEN

8 dbms output.put line (SQLERRM) ;

9 END;
10 /

Line 3 maps the local exception to a valid user-defined error code. Line 5 raises or throws the
exception. Line 7 catches our local exception and prints

=1 ORA-20001:

The SQLERRM function returns only the user-defined error code because there’s no standard
message associated with user-defined error codes. The next section shows you how to fix that
deficit with the RAISE_ APPLICATION ERROR function.

Dynamic User-Defined Exceptions

This section shows you how to declare an exception, assign it a number, and provide it with a
user-defined error message. This is the third type of exception, a dynamic user-defined exception.
This section also introduces the idea of an error stack, which is a collection of cascading exceptions.

The RAISE APPLICATION ERROR function lets you raise an exception and provide a
customized error message. The prototype for the dynamic RAISE_APPLICATION ERROR
function is

g RAISE APPLICATION ERROR (error number, error message [, keep errors])

The function’s first formal parameter is an error number, which must be in the range of
—20000 to —20999. You raise an ORA-21000 error when you provide any other value. The second
formal parameter is a user-defined error message. You can provide any string message value you'd
like, but try to keep it under 68 characters, because SQLERRM returns a nine-character error code,
a semicolon, and white space before the error message. The last formal parameter is optional.
The optional parameter has a default value of FALSE. You override it by providing a TRUE value,
in which case you're instructing the function to add the new error message to any existing
error stack.

Chapter 7: Error Management 279

It’s possible to show how to use the dynamic RAISE_APPLICATION_ ERROR function without
declaring an exception or compiler directive. The following raises a dynamic exception without a
local exception or compiler directive:

M SQL> BEGIN

2 RAISE APPLICATION_ ERROR(-20001,'A not too original message.');
3 EXCEPTION

4 WHEN others THEN

5 dbms_output.put line (SQLERRM) ;

6 END;

7/

Line 2 raises the dynamic exception. Line 4 catches any exception because it uses the generic
others keyword. The program prints

e ORA-20001: A not too original message.

The next program combines declaring an EXCEPTION variable and a compiler directive with
declaring a dynamic exception. It shows you how they work together in a program. Why bother
declaring an EXCEPTION variable and compiler directive when dynamic exceptions don’t need
them? Because you can create a custom exception handler when you combine them with a
dynamic exception.

The anonymous block code follows:

g1 SQL> DECLARE

2 e EXCEPTION;

3 PRAGMA EXCEPTION INIT (e,-20001);

4 BEGIN

5 RAISE APPLICATION_ERROR(-20001,'A less original message.');
6 EXCEPTION

7 WHEN e THEN

8 dbms_output.put_ line (SQLERRM) ;

9 END;
10 /

Line 2 declares the exception variable. Line 3 declares the compiler directive with a user-
defined error code value. Line 5 throws the exception with the same user-defined error code. Line
7 catches the dynamic error because the error code values on lines 3 and 5 couple the behavior
of the exception variable and dynamic exception.

The specialized error handler prints the same dynamic error message:

@] ORA-20001: A less original message.

Unlike the message files for standard Oracle errors, this message is dynamic to your PL/SQL
program units. The SQLERRM built-in function does not look up the message in an external file for
a dynamic exception. Instead, it uses the string literal value provided as the second parameter to
the RAISE_APPLICATION ERROR function.

TIP
Oracle stores error messages by language in several of the Oracle
home directories, and all the error messages have a *.msg file type.

280 Oracle Database 12¢ PL/SQL Programming

Building on what you now know, let’s add and shift some code from a prior example and
then look at how to generate an error stack with the RAISE APPLICATION ERROR function.
The following program simply throws and captures a value error exception:

g SQL> DECLARE

2 1v_a VARCHAR2 (1) ;
3 1lv_b VARCHAR2 (2) := 'AB';
4 BEGIN
5 lv a := 1lv_b;
6 dbms_output.put line('Never reaches this line.');
7 EXCEPTION
8 WHEN value error THEN
9 RAISE APPLICATION ERROR(-20001,'A specific message.');
10 WHEN others THEN
11 dbms_output.put line (SQLERRM) ;
12 END;
13/

Line 5 throws a value_error exception by attempting a two-character assignment to a
one-character variable. The value error exception handler raises a dynamic exception on
line 9, which suppresses the original exception:

g DECLARE
*

ERROR at line 1:
ORA-20001: A specific message.
ORA-06512: at line 9

This is the default behavior of the RAISE APPLICATION ERROR function. The last element
of the exception is an ORA-06512 error. It reports the line number that threw the exception,
which is line 9, where you raise the application error. You can change the default behavior of
the RATSE APPLICATION ERROR function by replacing the default value of the optional third
parameter.

The modified line 11 would look like this:

s 11 RAISE_APPLICATION_ ERROR (-20001,'A specific message.', TRUE) ;

It would raise the following error stack:
= DECLARE
*

ERROR at line 1:

ORA-20001: A specific message.

ORA-06512: at line 9

ORA-06502: PL/SQL: numeric or value error: character string buffer too small

What'’s lost in this approach is the original line number of the error. What's gained is a list of
all raised exceptions. In real code, the RAISE_ APPLICATION ERROR function would provide a
meaningful error to your support personnel, who could then proceed to troubleshoot the problem.

Chapter 7: Error Management 281

This section has demonstrated how to declare exceptions and use them. You have seen how to
map existing Oracle errors and error message definitions to user-defined exceptions. You have
also seen how to provide your own error messages dynamically.

Review Section
This section has described the following points about user-defined exceptions:

B You can declare user-defined exceptions in any declaration block.

B You can declare a PRAGMA, which is a precompiler instruction or compiler directive
that maps an error code to a user-defined exception.

B The RAISE statement lets you throw an exception.

B A RAISE statement with an Oracle error code lets the SQLERRM function return an
error code and message.

B A RAISE statement with a user-defined error code lets the SQLERRM function return
only an error code because there’s no external message file that supports the error code.

B The RAISE APPLICATION ERROR function lets you raise a dynamic error code and
message with or without an exception stack.

Exception Stack Functions

The exception stack is a first-in, last-out data structure. The first error thrown becomes the last
error displayed. This is analogous to a stack of printed paper. The first page printed is at the
bottom of the stack, and the last page printed is at the top.

PL/SQL throws an exception in the execution block when a failure occurs. The failure triggers
or fires any exception handlers in the local exception block. Program units re-throw exceptions
when they’re not handled locally. This re-throwing can occur once, twice, or several times. It
continues until control returns to the outermost PL/SQL block.

The behavior or re-throwing exceptions creates an error stack. You analyze the error stack to
find the root cause. The root cause is always the first error thrown.

There are two approaches to managing errors in PL/SQL. Which approach you should choose
depends on your application transaction control requirements. You raise an exception to stop the
process when you run into a fatal business logic gap. Such an exception stops the business
process and rolls back the transaction to a state where the data is safe and consistent.
Alternatively, you log a nonfatal business process error by using an autonomous block of code.
The best way to do that is to use a database trigger, which Chapter 12 covers.

Oracle Database 12c introduces the utl_call_ stack package, which contains the
functions and procedures listed in Table 7-3. Oracle Database 10g forward only has the format
error backtrace function, which you find in the dbms_utility package.

We need to create a couple of stored procedures before we use the utl call stack
package. They're kept very short to show a three-level call stack:

=1 SOL> CREATE OR REPLACE PROCEDURE pear IS
2 /* Declare two variables. */
3 lv_one character VARCHAR2(1);

282 Oracle Database 12¢ PL/SQL Programming

Package Function
backtrace depth

backtrace_line

backtrace unit

current edition

concatenate subprogram

dynamic_depth
error depth
error msg

error number

lexical depth

owner

unit line

subprogram

Description

Returns the number of backtrace items in the backtrace. It returns
a PLS_INTEGER of 1 or greater, and returns a O in the absence
of an exception.

Returns the line number of the backtrace unit at the specified
backtrace depth. It takes a single input parameter, which is the
result from the backtrace depth function. It returns the line
number where the error occurred at that particular depth of
execution.

Returns the name of the unit at the specified backtrace depth.

It takes a single input parameter, which is the result from the
backtrace depth function. It returns a module name or a null
value for an anonymous block.

Returns the current edition name of the unit of the subprogram
at the specified dynamic depth. It takes a single input parameter,
which is the result from the backtrace depth function. It
returns the edition name of the program where the database
employs edition-based redefinition.

Returns a concatenated form of a unit-qualified name. Takes
the qualified name as an input parameter and returns the fully
qualified program name.

Returns the number of subprograms on the call stack.
Returns the number of errors on the error stack.
Returns the error message of the error at the specified error depth.

Returns the error number of the error at the specified error depth.
It takes a single input parameter, which is the result from the
backtrace depth function.

Returns the lexical nesting level of the subprogram at the specified
dynamic depth. It takes a single input parameter, which is the result
from the backtrace depth function.

Returns the owner name of the unit of the subprogram at the
specified dynamic depth. It takes a single input parameter, which
is the result from the backtrace depth function.

Returns the line number of the unit of the subprogram at the
specified dynamic depth. It takes a single input parameter, which
is the result from the backtrace depth function.

Returns the unit-qualified name of the subprogram at the specified
dynamic depth. It takes a single input parameter, which is the
result from the backtrace depth function.

TABLE 7-3. Functions in the utl_call_stack Package

Chapter 7: Error Management 283

4 lv_two_character VARCHAR2(2) := 'AB';
5 BEGIN

6 lv_one character := lv_two_ character;
7 END pear;

8 /

Staying with the simple example of assigning a two-character string to a one-character variable,
the pear procedure declares 1v_one character and 1v_two_character variables on
lines 3 and 4, respectively. The assignment of the two-character value to the one-character variable
on line 6 will throw an error whenever you call the pear procedure. The lack of an exception
handler in the pear procedure means it throws the error back to its caller.

The orange procedure is even simpler because it doesn’t include any variable declarations:

=1 SOL> CREATE OR REPLACE PROCEDURE orange IS

2 BEGIN

3 pear () ;

4 END orange;
5 /

The call to the pear procedure on line 3 causes the pear procedure to throw an exception.
That exception can’t be handled because the orange procedure doesn’t have any exception
handlers for the error.

The apple procedure mimics the orange procedure. It only calls the orange procedure.
Like the orange procedure, the apple procedure doesn’t have any exception handlers, which
means it re-throws any exception from the orange procedure to its calling scope program:

g SQL> CREATE OR REPLACE PROCEDURE apple IS
2 BEGIN
3 orange () ;
4 END apple;
5 /

There’s no surprise with the apple procedure. Like the preceding orange procedure, the
apple procedure calls the orange procedure. The apple procedure re-throws the caught
exception to its calling scope because it lacks an exception handler. The calling scope is the
following anonymous block program:

=1 SQL> BEGIN

2 apple;

3 EXCEPTION

4 WHEN others THEN

5 FOR i IN REVERSE 1..utl call stack.backtrace depth LOOP

6 /* Check for an anonymous block. */

7 IF utl call stack.backtrace unit(i) IS NULL THEN

8 /* utl call stack doesn't show an error, manually override. */
9 dbms_output.put_ line(
10 "ORA-06512: at Anonymous Block, line ' |
11 utl call stack.backtrace line(i)) ;
12 ELSE
13 /* utl_call_stack doesn't show an error, manually override. */

14 dbms_output.put_ line(

284 Oracle Database 12¢ PL/SQL Programming

15 'ORA-06512: at '||utl call stack.backtrace unit (i) ||

16 ', line '||utl call stack.backtrace line(i));

17 END IF;

18

19 /* The backtrace and error depth are unrelated, and the depth of
20 calls can be and generally is higher than the depth of errors. */
21 IF i = utl call stack.error depth THEN

22 dbms_output.put line(

23 "ORA-'| |LPAD (utl call stack.error number(i),5,0)

24 [|' '|]utl_call stack.error msg(i));

25 END IF;

26 END LOOP;

27 END;

28 /

Line 2 calls the apple procedure, which ultimately returns an exception. The anonymous
block program does have an exception handler. The exception handler manages any exception by
starting a decrementing loop on line 5 and ending on line 26. Line 7 checks to see if the
backtrace unit function returns a null value. It returns a null when the calling program is an
anonymous block program and has the qualified name of a stored function or procedure.

Lines 10 and 15 place the traditional ORA-06512 error code before the program units that
raise the exception because it’s not captured by the ut1l_call_stack package. You only find
the original thrown error in the error stack managed by the utl call stack package. This can
be illustrated when you try to call for the exception at a backtrace depth rather than an error
depth. For example, this program has a backtrace depth of 4 and an error depth of 1. That's why
line 21 exists.

Line 21 checks whether the error depth is equal to the backtrace depth. If you removed the IF
block on lines 21 and 25, the program would fail because it would make a call to a nonexistent
error depth on line 23, like this:

T 23 "ORA-'| |LPAD (utl call stack.error number(i),5,0)
It would result in the following exception:

e EECIN
*

ERROR at line 1:

ORA-64610: bad depth indicator

ORA-06512: at "SYS.UTL_CALL_ STACK", line 130

ORA-06512: at line 21

ORA-06502: PL/SQL: numeric or value error: character string buffer too small

Suffice it to say, you always need to differentiate between the backtrace depth and error depth
to avoid errors like that. As a rule of thumb, the error depth is always less than the backtrace
depth. This is a new feature, so it may evolve between releases.

Let’s move back to analyzing the earlier program. Line 22 left-pads the error number with
zeros to return a five-digit number because the function returns the number as an integer. Line 22
also puts an 'ORA- ' string in front of the left-padded error code and appends the error message
after the error code.

= ORA-06512:

ORA-06512:
ORA-06512:
ORA-06512:
ORA-06502

22

23

Chapter 7: Error Management

The foregoing program prints

at VIDEO.PEAR, line 6

at VIDEO.ORANGE, line 3

at VIDEO.APPLE, line 3

at Anonymous Block, line 2
PL/SQL: numeric or value error:

285

character string buffer too small

You can raise the same stack trace with a call to the format_error backtrace function,
which is found in the dbms_utility package. That means switching lines 22 through 24 with
the following lines 22 and 23 would replace all the preceding logic for a stack trace:

dbms_output.put line(
dbms utility.format error backtrace) ;

However, the stack trace from the format error backtrace function doesn’t print well
when you call it from inside the put_1ine procedure, because it forces additional line breaks.
It takes some effort, but we can get a clean stack trace by making the following changes to our
program:

g SQL> DECLARE

lv_length NUMBER ;
lv_counter NUMBER := 0;
1lv_begin NUMBER := 1;
1lv_end NUMBER ;
lv_index NUMBER := O;
lv_trace VARCHAR2 (2000) ;
BEGIN
apple;
EXCEPTION
WHEN others THEN
FOR i1 IN REVERSE 1..utl call stack.backtrace depth LOOP
/* The backtrace and error depth are unrelated, and the depth of
calls can be and generally is higher than the depth of errors.
IF i = utl call stack.error depth THEN

/* Capture the stack trace. */
lv_trace := dbms_utility.format_error backtrace;

/* Count the number of line returns - ASCII 10s. */
lv_length := REGEXP_COUNT (lv_trace,CHR(10),1);

/* Read through the stack to remove line returns. */

WHILE (lv_counter < 1lv_length) LOOP

/* Increment the counter at the top. */
lv_counter := 1lv_counter + 1;

/* Get the next line return. */
lv_end := REGEXP_ INSTR(lv_trace,CHR(10),1lv begin,1);

/* Cut out the first substring from the stack trace. */

*/

dbms output.put line (SUBSTR(lv_ trace,lv begin,lv end - 1lv begin));

286 Oracle Database 12c PL/SQL Programming

32

33 /* Assign the substring ending to the beginning. */
34 lv_begin := 1lv_end + 1;

35 END LOOP;

36 END IF;

37 END LOOP;

38

39 /* Print the actual original error message. */

40 dbms_output.put_line(

41 "ORA-'| |LPAD (utl call stack.error number(i),5,0)
42 []": ']|utl _call stack.error msg(i));

43 END IF;

44 END LOOP;

45 END;

46 /

Line 15 ensures that the evaluation process begins with the first item in the error stack. Line
28 marks the index location within the string for line returns. Line 31 prints only the substring
from the stack trace. Lines 40 through 42 print the original error.

This prints the following stack trace:

g ORA-06512: at "VIDEO.PEAR", line 6
ORA-06512: at "VIDEO.ORANGE", line 3
ORA-06512: at "VIDEO.APPLE", line 3
ORA-06512: at line 9
ORA-06502: PL/SQL: numeric or value error: character string buffer too small

This knowledge comes in handy when you want to render the stack trace in HTML. You can
make a slight modification to replace the line returns with HTML
 tags (which adds line
returns enabled for web pages).

The best-practice steps for making such a change require adding a few lines to the preceding
program. The following displays the key modifications:

g SQL> DECLARE

8 lv_break VARCHAR2 (6) := '
';
9 BEGIN
10 apple;

11 EXCEPTION

31 /* Replace and cut out the next substring from stack trace. */
32 lv_trace := REGEXP REPLACE(lv_trace,CHR(10),1lv break,lv end,1);
33 lv_end := lv_end + LENGTH(lv_break);

34 dbms_output.put line(

35 SUBSTR (1v_trace,lv_begin,lv_end - 1lv_begin)) ;

42 END;

43/

Chapter 7: Error Management 287

Line 8 adds a new local variable for an HTML
 tag. Line 32 replaces the line return
with the HTML line break tag. Line 33 adds the length of the tag to reset the ending point for the
current substring and starting point for the next substring.

The modified program prints

g ORA-06512: at "VIDEO.PEAR", line 6

ORA-06512: at "VIDEO.ORANGE", line 3

ORA-06512: at "VIDEO.APPLE", line 3

ORA-06512: at line 10

ORA-06502:

PL/SQL: numeric or value error: character string buffer too small

This section has shown you how to use both stack trace tools. It has also given you some
ideas for how you can mix and match the tools to get a desired result.

Review Section
This section has described the following points about user-defined exceptions:

Oracle provides you with the ut1l call stack package to manage exception stacks.

The dbms_utility package provides you with the format error backtrace
function, which generates a stack trace.

The utl call stack package keeps tabs of the execution stack separately from the
error stack.

It's possible to parse and convert the text output from the format _error backtrace
function to HTML output.

Supporting Scripts
This section describes programs placed on the McGraw-Hill Professional website to support
the book.

The exception handling.sgl program contains small programs that support the
exception types, built-in functions, and user-defined exceptions.

B The stack trace management.sgl program contains programs that support how
you manage stack traces as covered in this chapter.
Summary

This chapter has explained how to work with PL/SQL error management. It has qualified the
differences between compilation errors and runtime errors. You have also learned about the
unhandled behavior of runtime errors that occur in declaration blocks and how to handle raised
errors in both the execution and exception blocks.

288 Oracle Database 12¢ PL/SQL Programming

Mastery Check

The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix | for answers to
these questions.

True or False:

1.

o U kW

N

10.

__Oracle PL/SQL programming requires you to understand how to capture and analyze
both compile-time errors and runtime errors.

___A compile-time error may occur when you try to run an anonymous block program.
___Aruntime error may occur when you try to compile a stored procedure.
___Aruntime error may occur when you call a stored procedure.

___A THROW command raises a runtime exception.

___It's possible to declare a user-defined EXCEPTION variable with the same error code
as a predefined exception.

A PRAGMA is a precompiler instruction or compiler directive.

An EXCEPTION INIT complier directive lets you map a user-defined EXCEPTION
variable to a message.

A raise application_error function call lets you map only a user-defined error
code to a custom error message.

___Acalltothe format_error backtrace function from the utl call stack
package creates a stack trace.

Multiple Choice:

11.

12.

Which of the following error codes belongs to a predefined exception? (Multiple answers
possible)

A. ORA-01402

B. ORA-01722

C. ORA-06548

D. ORA-01422

E. ORA-00001

Which of the following is a predefined exception keyword? (Multiple answers possible)
A. CURSOR_IS OPEN
B. INVALID NUMBER
C. LOGIN DENIED

D. NO DATA FOUND
E. VALUE INCORRECT

Chapter 7: Error Management 289

13. Which of the following lets you raise an exception in PL/SQL? (Multiple answers possible)

14.

15.

A.

mU O =

A THROW e; statement
A RAISE e; statement
A THROW; statement
A RAISE; statement

Araise application error function call

Which of the following are functions of the utl call stack package? (Multiple
answers possible)

mO 0w

The backtrace error function
The backtrace depth function
The error number function

The subprogram_name function

The error depth function

Which of the following displays an HTML-ready stack trace? (Multiple answers possible)

A.

mO 0w

The utl call stack.current edition function

The dbms _utility.format stack trace function

The dbms_utility.format error backtrace function
All of the above

None of the above

PART
[

PL/SQL Programming

CHAPTER

Functions and Procedures

294 Oracle Database 12¢ PL/SQL Programming

s you've seen in previous chapters, there are two types of subroutines: functions and
procedures. You use these to build database-tier libraries to encapsulate application
functionality, which is then collocated on the database tier for efficiency.

This chapter covers the following subroutine topics:

B Function and procedure architecture
M Transaction scope

M Functions
M Creation options
B Pass-by-value functions

B Pass-by-reference functions

B Procedures
B Pass-by-value procedures
B Pass-by-reference functions

Oracle Database 12c supports subroutines that are stored as functions and procedures in the
database. They are named PL/SQL blocks. You can deploy them as stand-alone subroutines or as
components in packages. Packages and object types can contain both functions and procedures.
Anonymous blocks can also have local functions and procedures defined in their declaration
blocks. You can also nest functions and procedures inside other functions and procedures.

You publish functions and procedures as stand-alone units or within packages and object types.
Stand-alone units are also known as schema-level functions or procedures. Publishing functions
and procedures within packages and object types means that they are defined in the package
specification or object type, not in the package body or object type body. They're local subroutines
when you define functions or procedures inside package bodies or object type bodies. Local
subroutines aren’t published subroutines. Likewise, subroutines defined in the declaration block
of anonymous block programs are local subroutines.

You deploy collections of related functions and procedures in packages and object types.
Packages and object types serve as library containers in the database. Packages act as primary
library containers because you don’t have to create instances to use them, whereas some subroutines
in object types require you to create instances to use them. Packages also let you overload functions
and procedures. Chapter 9 covers packages.

User-defined object types are SQL data types. Inside object types, functions and procedures
can be defined as class- or instance-level subroutines. Class functions and procedures are static
subroutines, and you can access them the same way you use functions and procedures in packages.
Instance-level subroutines are only accessible when you create an instance of an object type.
Chapter 11 covers object types.

The sections work sequentially to build a foundation of concepts. If you wish to skip ahead,
browsing from the beginning may provide clarity to later sections.

Chapter 8: Functions and Procedures 295

Function and Procedure Architecture

As described in Chapter 4, functions and procedures are named PL/SQL blocks. You can also call
them subroutines or subprograms. They have headers in place of the declaration block. The header
defines the function or procedure name, a list of formal parameters, and a return data type for
functions. Formal parameters define variables that you can send to subroutines when you call
them. You use both formal parameters and local variables inside functions and procedures. While
functions return a data type, procedures don't. At least, procedures don’t formally list a return data
type, because they return a void. The void is explicitly defined in other programming languages,
like C, C#, Java, and C++. Procedures can return values through their formal parameter list variables
when they are passed by reference.

Local functions and procedures don’t require, but should have, forward-referencing stubs.
While stored functions and procedures define their parameter list and return types in the database
catalog, local functions don't. Providing forward-referencing stubs for local functions or procedures
avoids a procedure or function “not declared in this scope” error. The “Local Named Blocks” section
in Chapter 3 has an example of the best practice.

There are four types of generic subroutines in programming languages. The four types are defined
by two behaviors: whether they return a formal value or not and whether their parameter lists are
passed by value or by reference.

You set formal parameters when you define subroutines. You call subroutines with actual
parameters. Formal parameters define the list of possible variables, and their position and data type.
Formal parameters do not assign values other than a default value, which makes a parameter optional.
Actual parameters are the values you provide to subroutines when calling them. You can call
subroutines without an actual parameter when the formal parameter has a default value. Subroutines
may be called without actual parameters if all their formal parameters are defined as optional.

Subroutines are black boxes. They're called that because black boxes hide their implementation
details and only publish what you can send into them or receive from them. Table 8-1 describes
and illustrates these subroutines.

The “Black Box”

The black box (the term comes from engineering lexicon) is part of verification and validation.
Verification is a process that examines whether you built something right. Validation checks
whether you built the right thing. For example, you validate that the manufacturing line is
producing iPod nanos, and then you verify that they are being made to the new specification.

Integration testing validates whether components work as a part. You can’t see how the
product works. You only know what it should do when you provide input, like a function
that should add two numbers. If one plus one equals two, then the function appears to work
per expectations. This is black box testing.

Black box testing is the process of validation. Verification requires peering into the black
box to inspect how it behaves. This type of testing is white box testing because you can see
how things actually work—step by step. Unit testing verifies that your function or procedure
builds the thing right. An example would be verifying that you're using the right formula to
calculate the future value of money using compounding interest.

296 Oracle Database 12c PL/SQL Programming

Subroutine Description Subroutine Illustration

Pass-by-value functions: Input
They receive copies of values when they are called. These functions

return a single output variable upon completion. The output variable
can be a scalar or compound variable. This type of function can also

perform external operations, like SQL DML statements to the database. Output«) B;ad‘
0x

Pass-by-reference functions: Reference Input
They receive references to variables when they are called. The

references are actual parameters to the function. Like other functions,
they return a single output value, which can be a scalar or compound

variable. Unlike functions that work with values, this type of function Output «): Black
. Box
can change the values of actual parameters. They return their actual
parameter references upon completion to the calling program. This j&
f function can al rform external ions, lik L DML
type of function can also perform external operations, like SQ Reference Output

statements to the database, but only in the context of a PL/SQL block.

Pass-by-value procedures: Input
They receive copies of values when they are called. Procedures do

not return an output variable. They only perform internal operations
on local variables or external operations, like SQL statements to the

database. Black
Box

Pass-by-reference procedures: Reference Input

They receive references to variables when they are called. Procedures

do not return an output variable. This type of procedure can change

the value of actual parameters. They return their actual parameter

references upon completion to the calling program. They can also Black

perform external operations, like SQL statements to the database. Box

Reference Output jg

TABLE 8-1. List of Subroutine Types

Subroutines are functions when they return output and are procedures when they don't.
Functions return output as values represented as SQL or PL/SQL data types. Chapter 4 qualifies
the characteristics of PL/SQL data types, and Appendix B discusses SQL data types. Pass-by-value
functions are sometimes called expressions because you submit values that are returned as a
result. When the return data type is a SQL type, you can call the function inside a SQL statement.

Creating a pass-by-value function is like baking a cake. You put variables inside a black box,
mix them up, and you get a result. The original ingredients or variables are consumed by making
the cake. Creating a pass-by-reference function is like polishing a gem stone. You put the stone
in with a solution and polish it. The solution dissipates but the stone remains; the stone is your
pass-by-reference or IN OUT mode variable. The remaining case is an OUT mode pass-by-reference
variable. Consider the analogy of slicing up salami into pieces. Until you complete the process,
you don’t know how many slices it yields. The number of pieces is the OUT mode variable result.

Chapter 8: Functions and Procedures 297

NOTE

Data types are defined in the database catalog two ways. They can be
defined as native or user-defined SQL types, or as user-defined PL/SQL
types inside package specifications.

You can use functions as right operands in assignments because their result is a value of a
data type defined in the database catalog. Both pass-by-value and pass-by-reference functions fill
this role equally inside PL/SQL blocks. You can use pass-by-reference functions in SQL statements
only when you manage the actual parameters before and after the function call. You can also use
the CALL statement with the INTO clause to return SQL data types from functions.

NOTE
Technically, you only need to handle SQL session bind variables before
the call to a pass-by-reference function.

Figure 8-1 shows how you can assign the return value from a function in a PL/SQL block.
SQL statements typically use pass-by-value functions because they don’t manage reference output.
Most SQL function calls submit columns or literals as actual parameters and expect a scalar return
value. A SQL function call mimics a SQL expression, which is a SQL query that returns only one
column and row.

Procedures can’t serve as right operands. Procedures also must have runtime scope set inside
a calling PL/SQL block. You cannot call procedures in SQL statements. However, you can use
the CALL statement or EXECUTE statement to run procedures in SQL*Plus. Procedures are also
self-contained units, whereas functions can only run as part of an assignment, comparative evaluation,
or SQL statement.

Generic or default functions and procedures run inline, which means that they run in the same
process context as their calling program unit. Inline programs exist in the same transaction scope
as the calling program. An inline program can’t commit without committing any DML statements
processed before its call in the transaction scope. Autonomous programs run in a separate process
context and have an independent transaction control.

Left Operand Operator Right Operand
Input
i o Black)
Variable = Output H): Box ;
Target Assignment Function Call

FIGURE 8-1. Assignment of a function result

298 Oracle Database 12c PL/SQL Programming

Oracle Database 12c¢ adds the ability to white list the callers of any function or procedure.
You do that by providing the ACCESSIBLE BY clause with a list of functions, procedures, packages,
and object types. Once you white list a function or procedure, only those white listed functions,
procedures, packages, or object types that are white listed may call the function or procedure.

PL/SQL functions or procedures can also run SQL statements inside their black boxes. These
actions are not represented in the previous diagrams. Figure 8-2 shows a modified pass-by-value
function that actually updates the database. This gets more complex for pass-by-reference functions
because they have an output, reference output, and database action as outcomes of a single
function. A function that calls an INSERT, UPDATE, or DELETE statement typically can’t run inside
a query. It can run inside another PL/SQL block.

NOTE
You can include SQL statements in functions.

You can call a pass-by-value function from inside a SELECT statement when it meets one of
two conditions. One condition requires that there can’t be any embedded DML statements because
you can’t have a transaction context inside a query. The other condition lets you embed DML
statements when a function runs autonomously.

You can’t use a pass-by-reference function because there’s no way to manage an IN OUT or
oUT-only mode parameter (covered in the upcoming Table 8-2). Autonomous programs run
in a different session context from their caller. That means the embedded INSERT, UPDATE, or
DELETE statements don’t return a direct acknowledgement of their success or failure, unless the
function raises an exception.

Any attempt to call a non-autonomous function inside a query with an INSERT, UPDATE, or
DELETE statement fails with an ORA-14551 error. Likewise, an attempt to use a pass-by-reference
function returns an ORA-06572 error, which means the function has IN OUT or OUT-only mode
formal parameters.

The benefit of wrapping an INSERT, UPDATE, or DELETE statement in an autonomous
function is that you can create a wait-on-completion function. A wait-on-completion function
returns one value when successful and another when not. Typically, this is done by returning a 1
for true and a 0O for false, which mimics a Boolean in a SQL context. You can’t create a wait-on-
completion autonomous procedure without using an OUT mode parameter. That means wait-on-
completion procedures can’t work in SQL statements. Wait-on-completion functions or procedures
let you check for completion of a spawned or forked process before continuing with your current
program’s execution. Wait-on-completion functions are also known as pessimistic functions

Input

Output 4{ 1] Black DDL/DML =
Box

Oracle

FIGURE 8-2. Pass-by-value functions with read-write access to the database

Chapter 8: Functions and Procedures 299

BOOLEAN EXPRESSION

Input

IF | Output ﬁ SQL = THEN

some_statement;
END IF;

FIGURE 8-3. Pessimistic functions guarantee outcomes of SQL statements.

because they verify an event before continuing to process programming logic. Figure 8-3 displays
a generic pessimistic function.

PL/SQL qualifies functions and procedures as pass-by-value or pass-by-reference subroutines
by the mode of their formal parameter lists. PL/SQL supports three modes—read-only, write-only,
and read-write. The IN mode is the default and designates a formal parameter as read-only. OUT
mode designates a write-only parameter, and IN OUT mode designates a read-write parameter
mode. Table 8-2 presents the details of these available parameter modes.

By default, Oracle Database 12c¢ programs send copies of all parameters to subroutines
when they call them. Although this may seem strange, because it is contrary to the concept of
pass-by-reference subroutines, it is exactly what you'd expect for a pass-by-value subroutine.

When subroutines complete successfully, they copy OUT or IN OUT mode parameters back
into external variables. This approach guarantees the contents of an external variable are unchanged
before a subroutine completes successfully. This eliminates the possibility of writing partial result
sets because an error terminates a subroutine. When an exception is thrown by a subroutine, you
have an opportunity to attempt recovery or write variables to log files.

You can override the default behavior of passing copies of variables when calling functions
and procedures for local transactions. This means you use fewer resources and actually pass a
reference, not a copy of data. You cannot override that default behavior when calling the program
unit via a database link or external procedure call. You override the copy behavior by using the
NOCOPY hint.

The NOCOPY hint doesn’t override the copy rule when

B An actual parameter is an element of an associative array. The NOCOPY hint works when
you pass a complete associative array but not a single element.

B An actual parameter is NOT NULL constrained.

B An actual parameter is constrained by scale.

B An actual parameter is an implicitly defined record structure, which means you used
either the $ROWTYPE or $TYPE anchor.

B An actual parameter is an implicitly defined record structure from a FOR loop, which fails
because the native index has restricted scope to the loop structure.

B An actual parameter requires implicit type casting.

300 Oracle Database 12¢ PL/SQL Programming

Mode
IN

ouT

IN OUT

Description

The IN mode, the default mode, means you send a copy as the actual parameter.
Any formal parameter defined without an explicit mode of operation is implicitly
an IN-only mode parameter. It means a formal parameter is read-only. When you
set a formal parameter as read-only, you can’t alter it during the execution of the
subroutine. You can assign a default value to a parameter, making the parameter
optional. You use the IN mode for all formal parameters when you want to define
a pass-by-value subroutine.

The OUT mode means you send a reference, but a null as an initial value. A
formal parameter is write-only. When you set a formal parameter as write-only,
no initial physical size is allocated to the variable. You allocate the physical size
and value inside your subroutine. You can't assign a default value, which would
make an OUT mode formal parameter optional. If you attempt that, you raise a
PLS-00230 error. The error says that an OUT or IN OUT mode variable cannot
have a default value. Likewise, you cannot pass a literal as an actual parameter
to an OUT mode variable because that would block writing the output variable.
If you attempt to send a literal, you’ll raise an ORA-06577 error with a call from
SQL*Plus, and a PLS-00363 error inside a PL/SQL block. The SQL*Plus error
message states the output parameter is not a bind variable, which is a SQL*Plus
session variable. The PL/SQL error tells you that the expression (or, more clearly,
literal) cannot be an assignment target. You use an OUT mode with one or more
formal parameters when you want a write-only pass-by-reference subroutine.

The IN OUT mode means you send a reference and starting value. A formal
parameter is read-write. When you set a formal parameter as read-write, the
actual parameter provides the physical size of the actual parameter. While you
can change the contents of the variable inside the subroutine, you can’t change
or exceed the actual parameter’s allocated size. The IN OUT mode restrictions
on default values and literal values mirror those of the OUT mode.

TABLE 8-2.

Subroutine Parameter Modes

You can define functions, procedures, packages, or object types in either of two ways:

B Definer rights model This default model of operation ensures that stored programs work
with local data that resides in the same schema. It automatically sets AUTHID to DEFINER.

B Invoker rights model You can define a subroutine to write to the current user’s local
repository. You do this by defining the AUTHID as CURRENT_USER. The invoker rights
model has a single code repository that allows independent users to act on local data.
This type of model requires you to maintain multiple copies of tables or views in different
schemas or databases. You then grant the EXECUTE privilege to other schemas. The invoker
rights model best supports distributed computing models.

Chapter 8: Functions and Procedures 301

What Is Local Data?

Oracle qualifies local data as materialized views, synonyms, tables, or views. Tables and
materialized views are physically stored data. Views are runtime queries drawn from tables,
materialized views, and other views. Synonyms are pointers to materialized views, synonymes,
tables, or views.

You can write to a local materialized view, table, view, or synonym from a stored
subprogram collocated in the same schema. Synonyms can point to objects in the same
schema or another schema. When the object is defined in another schema, you must have
privileges to read or write to them for a synonym to translate correctly to the object. A local
synonym can resolve a schema, component selector (the period or dot), and object name
into a local schema name.

The examples in this chapter and the book use the definer rights model, which is the more
common solution. The differences between the two models are described in detail in Appendix A.

Oracle Database 11g introduced changes in how name and positional notation work in both
SQL and PL/SQL. With those changes, they actually now work the same way in both SQL and
PL/SQL. This fixes a long-standing awkwardness in how you made function and procedure calls
in the database.

Review Section
This section has described the following points about the architecture of functions and procedures:

B Pass-by-value functions are black boxes that perform tasks by consuming inputs and
returning a completely new result.

B Pass-by-value procedures are black boxes that perform tasks by consuming inputs
without returning a result.

B Pass-by-reference functions are black boxes that perform tasks by consuming some
inputs and returning other inputs as altered values to the calling variables, and
returning a completely new result.

B Pass-by-reference procedures are black boxes that perform tasks by consuming some
inputs and returning other inputs as altered values to the calling variables.

B Inline functions and procedures run in the same transaction scope as the calling
program unit.

B Autonomous functions and procedures run in a different transaction scope from the
calling program unit.

B The IN mode is the default mode and is a pass-by-value parameter, and the IN OUT
and OUT modes are pass-by-reference parameters.

B The ACCESSIBLE BY clause lets you white list functions and procedures.

B Final control of whether the NOCOPY hint passes a copy or a reference to the parameter
rests with Oracle’s PL/SQL engine.

302 Oracle Database 12c PL/SQL Programming

Transaction Scope

As discussed in the “Data Transactions” section of Appendix A, transaction scope is a thread of
execution—a process. You establish a session when you connect to the database. What you do
during your session is visible only to you until you commit any changes to the database. After
committing the changes, other sessions can see the changes you’ve made.

During a session, you can run one or more PL/SQL programs. They execute serially, or in
sequence. The first program can alter the data or environment before the second runs, and so on.
This is true because your session is the main transaction. All activities depend on one or more
prior activities. You can commit work, making all changes permanent, or reject work, repudiating
all or some changes.

Functions and procedures are the natural way to guarantee ACID compliance when you want
to guarantee the ACID compliance across two or more DML statements. Appendix A explains
ACID compliance. Oracle Database 12c¢ database implements all INSERT, UPDATE, DELETE,
and MERGE statements as ACID-compliant transactions. However, sometimes you may want to
perform two DML statements against the same or different tables, and the only way to guarantee
that such behavior is ACID compliant is to use a function or procedure. You enclose the collection
of DML statements in a single transaction scope within the stored program unit, as illustrated in

Figure 8-4.
2PC Stored Program Table Resource Other Sessions
Rg Savepoint Existing
R
Atomic & Consistent ows %’
Deleted Row ;2
DML Statements Original Row
]
8 Altered Row
o
— =
Z 2 New Row
i o
2 P
Isolated
Error =
Raised?
New
Q
Durable & 2
T / Existing g
S 2 Rows
o c
8 Commit

FIGURE 8-4. Stored program transaction flow

Chapter 8: Functions and Procedures 303

Guaranteeing the ACID compliance of two or more DML statements when they work against
one or more tables is the core purpose of functions and procedures. The other purpose of functions
and procedures is to isolate and modularize your program logic.

Transaction scope is fairly straightforward when you work within a single context. A context is
a process or program scope. Oracle Database 12c manages program scope by individual sessions.
That means any program that runs inside a single session has one operational context. Within that
operational context or session, Oracle functions and procedures may call SQL statements, and
SQL statements may call named PL/SQL blocks. These internal calls within the scope of an operational
transaction are known as context switches.

Functions and procedures have one of two types of scope. They are dependently scoped by
default, which means that they run inline or in the same transaction scope as the main process.
The main process is the calling program. However, you can set functions or procedures to run
in their own operational scope by defining them as autonomous transactions. It's always more
complex to manage autonomous transactions because they run independently.

NOTE

Don’t confuse an inline flow with the compiler trick of inlining
subroutines. The latter means taking a copy of a discrete stand-alone
program and embedding it as a local routine.

Autonomous transactions can commit their local work independently of the calling program—
that is, provided they don't create resource contention, which is where two independent processes
try to change the same data. Oracle’s MVCC architecture prevents a direct collision, and that’s
one of the reasons individual autonomous programs must have their own COMMIT statement.
The cOMMIT statement makes all changes spawned by autonomous block changes permanent
notwithstanding the main program control rules.

Autonomous transactions are great when you want something to happen notwithstanding the
success or failure of something else. They're useful when you want to write data in a trigger before
raising an exception that causes the main program’s failure. However, they’re dangerous for the
same reason. You can inadvertently write data states when you don’t want them written.

You should note that transaction scope is controlled by using the SAVEPOINT, ROLLBACK,
and COMMIT commands. Both autonomous functions and procedures must include their own
COMMIT statement. If you fail to provide a minimum of a COMMIT statement inside an autonomous
program unit, it fails to compile.

Calling Subroutines

Prior to Oracle Database 11g, you could use both positional notation and named notation when
calling subroutines in PL/SQL program units, but you could not use named notation in SQL calls
to functions. Oracle Database 11g fixed that shortfall and introduced mixed notation calls too.

Positional notation means that you provide a value for each variable in the formal parameter
list. The values must be in sequential order and must also match the data type. Named notation
means that you pass actual parameters by using their formal parameter name, the association
operator (=>), and the value. Named notation lets you only pass values to required parameters,
which means you accept the default values for any optional parameters.

The new mixed notation means that you can now call subroutines by a combination of positional
notation and named notation. This becomes very handy when parameter lists are defined with all

304 Oracle Database 12c PL/SQL Programming

mandatory parameters first, and optional parameters next. It lets you avoid naming the mandatory
parameters and lets you skip optional parameters where their default values work. It does not
solve exclusionary notation problems. Exclusionary problems occur with positional notation when
optional parameters are interspersed with mandatory parameters, and when you call some but not
all optional parameters.

The following function lets you experiment with these different approaches. The function accepts
three optional parameters and returns the sum of three numbers.

= CREATE OR REPLACE FUNCTION add_three_ numbers

(a NUMBER := 0, b NUMBER := 0, ¢ NUMBER := 0) RETURN NUMBER IS
BEGIN

RETURN a + b + c¢;
END;

/

The first three subsections show you how to make positional, named, and mixed notation
function calls. The last one demonstrates how to make exclusionary notation calls.

Positional Notation

You use positional notation to call the function as follows:

= BEGIN
dbms_output.put line(add three numbers(3,4,5));
END;
/

Named Notation

You call the function using named notation as follows:

=1 BECGIN
dbms_output.put line(add three numbers(a => 4,b => 5,c => 3));
END;
/

Mixed Notation

You call the function by a mix of both positional and named notation as follows:

G BECIN

dbms_output.put line(add three numbers(3,c => 4,b => 5));
END;
/

There is a restriction on mixed notation. All positional notation actual parameters must occur
first and in the same order as they are defined by the function signature. You cannot provide a
position value after a named value without raising an exception.

Exclusionary Notation

As mentioned, you can also exclude one or more of the actual parameters when the formal
parameters are defined as optional. All parameters in the add_three numbers function are

Chapter 8: Functions and Procedures 305

optional. The following example passes a value to the first parameter by positional reference and
to the third parameter by named reference:

= BECIN
dbms_output.put line(add three numbers(3,c => 4));
END;
/

When you opt to not provide an actual parameter, it acts as if you're passing a null value.
This is known as exclusionary notation. Oracle has recommended for years that you should list
optional parameters last in function and procedure signatures. They’ve also recommended that you
sequence optional variables so that you never have to skip an optional parameter in the list.
These recommendations exist to circumvent errors when making positional notation calls.

You can't really skip an optional parameter in positional notation call. This is true because all
positional calls are in sequence by data type, but you can provide a comma-delimited null value
when you want to skip an optional parameter in the list. Oracle supports mixed notation calls
from Oracle Database 11g forward. You can now use positional notation for your list of mandatory
parameters and named notation for optional parameters. This lets you skip optional parameters
without naming all parameters explicitly.

SQL Call Notation

Previously, you had only one choice. You had to list all the parameters in their positional order
because you couldn’t use named references in SQL. This was fixed in Oracle Database 11g;
now you can call parameters just as you do from a PL/SQL block. The following demonstrates
mixed notation in a SQL call:

M SQL> SELECT add three numbers(3,c => 4,b => 5)
2 FROM dual;

As in earlier Oracle Database releases, you can only call functions that have IN-only mode
variables from SQL statements. You cannot call a function from SQL when any of its formal
parameters are defined as IN OUT mode or OUT-only mode variables without handling the actual
parameter in SQL*Plus as a session bind variable. This is true because you must pass a variable
reference when a parameter has an OUT mode.

Review Section

This section has described the following points about the transaction scope of functions and
procedures:

B A transaction scope lets you manage multiple DML statements against one or more tables
with an ACID-compliant guarantee that all or none of the DML statements work or fail.

B Default transaction scope occurs in a single operational context.

B Autonomous functions and procedures run in their own operational context and require
a minimum of a COMMIT instruction to compile.

B Oracle supports positional, named, mixed, and exclusionary call notation in SQL and
PL/SQL contexts.

306 Oracle Database 12c PL/SQL Programming

Functions

As previously described, PL/SQL has pass-by-value and pass-by-reference functions. Both types of
functions return output values. Function output values can be any SQL or PL/SQL data type. You
can use functions that return SQL data types inside SQL statements. Functions returning PL/SQL
data types work only inside PL/SQL blocks.

One exception to these general rules is that you cannot call a stored function that contains a
DML operation from inside a SQL query. If you do, it raises an ORA-14551 error saying that it
can’t perform a DML operation inside a query. However, you can call a function that performs a
DML operation inside INSERT, UPDATE, and DELETE statements.

Functions can also contain nested named blocks, which are local functions and procedures.
You define named blocks in the declaration block of the function. You can likewise nest anonymous
blocks in the execution block.

The following illustrates a named block function prototype:

[{EDITIONALBE | NONEDITIONALBE}] FUNCTION function name

(parameter [IN] [OUT] [NOCOPY] sqgl datatype | plsgl datatype
[, parameter [IN] [OUT] [NOCOPY] sqgl datatype | plsgl datatype
[, ... 1]) RETURN [sqgl data type | plsql data type]

[AUTHID [DEFINER | CURRENT USER]]

[DETERMINISTIC | PARALLEL_ ENABLE]

[PIPELINED]

[ACCESSIBLE BY

([{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]unit name)
[, [{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]lunit name)]
[,... 110

[RESULT _CACHE [RELIES ON table name [, table name [, ...]1]11] IS
declaration statements
BEGIN

execution statements
RETURN variable;

[EXCEPTION]
exception handling statements

END [function name];

/

You call functions by providing any required parameters as a list of arguments inside opening
and closing parentheses. No parentheses are required when functions aren’t defined with required
parameters. This differs from most other programming languages. Calls in other languages require
an empty set of opening and closing parentheses.

The prototype for a function call with actual parameters from SQL*Plus is

g CALL function name (parameter [, parameter [, ...11)
INTO target variable name;

When there aren’t any mandatory formal parameters, the prototype differs, as shown:

@ CALL function name INTO target variable name;

Chapter 8: Functions and Procedures 307

Assignments inside PL/SQL blocks with mandatory parameters look like:

g target variable name :=
function name(parameter [, parameter [, ...11);

The assignment prototype drops the parentheses when unnecessary:
@] target variable name := function name;
Returning a function value as an expression is done by using the following prototype:

g external function name (function name(parameter
[, parameter [, ...11));

There are several optional configurations that you can use when creating functions. You can
define a function to support a definer rights or invoker rights model by including the AUTHID
clause. You can also guarantee the behavior of a function, which makes it possible to use functions
in SQL statements, function-based indexes, and materialized views. You can also configure functions
to return pipelined tables and, in Oracle Database 12c, shared result sets from the cache in the SGA.

As previously introduced, Oracle Database 12c now lets you white list callers of functions,
procedures, packages, or object types via the ACCESSIBLE BY clause. You should use it anytime
you want your security API to validate before calling stored functions. Chapter 2 contains a full
example of white listing a 1ibrary function.

As discussed, you can define formal parameters in one of three modes:

B IN mode, for read-only parameters
B OUT mode, for write-only parameters

B IN OUT mode, for read-write parameters.

The parameter modes let you create pass-by-value and pass-by-reference functions. You build
a pass-by-value function when you define all parameters as IN mode. Alternatively, you build a
pass-by-reference function when you defined one or more parameters as an IN OUT mode or
OoUT-only mode parameters.

The next three sections discuss how you can create functions. The first section examines the
optional clauses that let you create functions for various purposes. The second section examines
pass-by-value functions, and the third discusses pass-by-value functions.

Function Model Choices

What are the rules of thumb with regard to choosing a pass-by-value or pass-by-reference function?
They're quite simple, as you'll see.

You should implement a pass-by-value function when you want to produce a result by consuming
the input. You also should implement a pass-by-value function when you want to use the function
in a SQL statement. A pass-by-value function is ideal when its transaction scope is autonomous.
In object-oriented programming terms, you want to use a pass-by-value function when you want
the lowest possible coupling—message coupling.

When programs are loosely coupled, they’re more flexible and reusable in applications. Tightly
coupled programs are intrinsically linked to form a processing unit—like root beer and vanilla
ice cream are used make a traditional root beer float, so are these programs blended to form a
processing unit.

308 Oracle Database 12c PL/SQL Programming

You implement a pass-by-reference function when you need to couple behavior of the calling
and called program units (known as data coupling). This happens when the function is called in a
single threaded execution scope, which is the default in most transactional database applications.
Tightly coupled programs such as these let you opt to return values through the IN OUT or OUT
mode formal parameters. When the parameters receive raw and return processed data, the formal
return value of the function becomes a signal of success or failure.

PL/SQL functions that use the return type to signal success or failure typically implement
either a Boolean or number data type. They use the Boolean when you design them to work
exclusively inside PL/SQL blocks and a number when they might need to work in either a SQL
or PL/SQL scope.

A pass-by-reference function is ideal when you want to couple client-side interaction with
server-side modules. In this context, you should define the function as autonomous. Autonomous
functions run in their own transaction scope and are thereby independent of the calling transaction
scope. The only way you know whether they succeeded or failed is to capture their return state
through the function return type.

A pass-by-reference function is generally a bad idea when you simply want to couple two
server-side programs. When the programs are on the same tier and might be called in the same
serial transaction scope, you should implement the behavior as a pass-by-reference procedure. A
pass-by-reference procedure is a specialized form of a function that returns no value. Procedures
are most similar to C, C++, C#, or Java methods that return a void rather than a tangible data type.

Creation Options

You create functions for SQL statements, function-based indexes, and materialized views by using
the DETERMINISTIC clause or the PARALLEL ENABLE clause. The DETERMINISTIC and
PARALLEL_ ENABLE clauses replace the older RESTRICT REFERENCES precomplier instructions
that limited what functions could do when they were in packages. The new clauses let you assign
the same restrictions to functions in packages, and they also let you assign them to stand-alone
stored functions.

The PIPELINED clause lets you build functions that return pipelined tables. Pipelined tables
act like pseudo-reference cursors and are built using modified PL/SQL collection types. They let
you work with PL/SQL collections of record structures without defining them as instantiable
user-defined object types. You can also read the collections in SQL statements as you would an
inline view.

Obiject table functions let you return a varray or table collection directly to any DML statement.
That is, if you remember to wrap the result in a TABLE function call. The object table function lets
you stop writing pipelined table functions, except for legacy PL/SQL code. You will probably use
pipelined table functions to wrap legacy PL/SQL functions that return associative arrays of scalar
or record data types.

Oracle Database 11g introduced the cross-session result cache for definer rights functions.
Oracle Database 12c lets you cache the results of invoker rights functions. It does this by adding
the current user identity to the cached results. You implement the result cache feature by defining
functions with the RESULT CACHE clause. The cross-session result cache stores the actual parameters
and result for each call to these functions and, for invoker rights programs, the CURRENT USER
value. A second call to the function with the same actual parameters finds the result in the
cross-session cache and thereby avoids rerunning the code. The result is stored in the SGA.
When the result cache runs out of memory, it ages out the least used function call results.

Chapter 8: Functions and Procedures 309

Backward Compatibility Issues for Functions
Functions were restricted subroutines before Oracle 8/ Database (8.1.6). You had to define
them with a guarantee of performance, which was known as their level of purity. The guarantees
limited whether functions could read or write to package variables or to the database.

These limits can still be imposed on functions inside packages by using the RESTRICT
REFERENCES PRAGMA options listed in the following table. A PRAGMA is a precomplier
instruction.

Option Description

RNDS The RNDS option guarantees a function reads no data state. This means you
cannot include a SQL query of any type in the function. It also cannot call
any other named block that includes a SQL query. A PL.S-00452 error is
raised during compilation if you have a query inside the function’s program
scope that violates the PRAGMA restriction.

WNDS The WNDS option guarantees a function writes no data state. This means you
cannot include SQL statements that insert, update, or delete data. It also
cannot call any other named block that includes a SQL query. A PLS-00452
error is raised during compilation if you have a DML statement inside the
function’s program scope that violates the PRAGMA restriction.

RNPS The RNPS option guarantees a function reads no package state, which means
that it does not read any package variables. This means you cannot access a
package variable in the function. It also cannot call any other named block that
reads package variables. A PL.S-00452 error is raised during compilation if
you have a query inside the function’s program scope that violates the PRAGMA
restriction.

WNPS The WNPS options guarantees a function writes no package state, which means
that it does not write any values to package variables. This means you cannot
change package variables or call another named block that changes them. A
PLS-00452 error is raised during compilation if you have a statement inside
the function’s program scope that violates the PRAGMA restriction.

TRUST The TRUST option instructs the function not to check whether called programs
enforce other RESTRICT REFERENCES options. The benefit of this option
is that you can slowly migrate code to the new standard. The risks include
changing the behavior or performance of SQL statements. For reference, the
other options guard conditions necessary to support function-based indexes
and parallel query operations.

You should define these PRAGMA restrictions in package specifications, not in package
bodies. There should be only one PRAGMA per function. You can include multiple options in
any RESTRICT REFERENCES precomplier instruction. The TRUST option can be added to
restricting PRAGMA instructions when you want to enable a restricted function to call other

(continued)

310 Oracle Database 12c PL/SQL Programming

unrestricted functions. The TRUST option disables auditing whether called functions adhere
to the calling program unit’s restrictions—level of purity.

NOTE

You should consider replacing these restricting precompiler
instructions with the DETERMINISTIC clause or PARALLEL
ENABLE clause to guarantee the behavior of a function.

Backward compatibility is nice but seldom lasts forever. You should replace these old
precompiler instructions by defining functions with the new syntax. This means making
functions DETERMINISTIC when they are used by function-based indexes. Likewise, you
should define functions as PARALLEL ENABLE when they may run in parallelized operations.

DETERMINISTIC Clause

The DETERMINISTIC clause lets you guarantee that a function always works the same way with
any inputs. This type of guarantee requires that a function doesn’t read or write data from external
sources, like packages or database tables. Only deterministic functions work in materialized
views and function-based indexes. They are also recommended solutions for user-defined functions
that you plan to use in SQL statement clauses, like WHERE, ORDER BY, or GROUP BY; or SQL
object type methods, like MAP or ORDER.

Deterministic functions typically process parameters in the exact same way. This means that
no matter what values you submit, the function works the same way. They should not have internal
dependencies on package variables or data from the database. The following function is deterministic
and calculates the present value of an investment:

=1 SQL> CREATE OR REPLACE FUNCTION pv

2 (future value NUMBER

3 , periods NUMBER

4 , interest NUMBER)

5 RETURN NUMBER DETERMINISTIC IS

6 BEGIN

7 RETURN future value / ((1 + interest) **periods) ;
8 END pv;

9 /

Assume you want to know how much to put in a 6 percent investment today to have $10,000
in five years. You can test this function by defining a bind variable, using a CALL statement to put
the value in the bind variable, and querying the result against the DUAL table, like this:

=1 SOL> VARIABLE result NUMBER
SQL> CALL pv(10000,5,6) INTO :result;
SQL> COLUMN money today FORMAT 9,999.90
SQL> SELECT :result AS money today
2 FROM dual;

Chapter 8: Functions and Procedures 311

Materialized Views
Unlike a standard view in a relational database, a materialized view is a cached result set.
As a cached result set, it is stored as a concrete table.

Materialized views are more responsive to queries because they don’t demand resources
to dynamically build the view each time. The trade-off is that materialized views are often
slightly out of date because underlying data may change between when the view is cached
versus it is accessed.

You can use function-based indexes in materialized views provided they use deterministic
functions. Deterministic functions always produce the same result value when called with
any set of actual parameters. They also guarantee that they don’t modify package variables
or data in the database.

Consider using materialized views when the underlying table data changes infrequently
and query speed is important. Materialized views are possible solutions when developing
data warehouse fact tables.

The function call uses positional notation but could also use named notation or mixed notation.
It prints the formatted present value amount:

=1 MONEY TODAY

7,472.58

You use deterministic functions inside materialized views and function-based indexes. Both
materialized views and function-based indexes must be rebuilt when you change the internal
working of deterministic functions.

PARALLEL_ENABLE Clause

PARALLEL ENABLE lets you designate a function to support parallel query capabilities. This type
of guarantee requires that a function doesn’t read or write data from external sources, like packages
or database tables. You should consider designating functions as safe for parallel operations to
improve throughput, but the Oracle Database 12c¢ optimizer may run undesignated functions
when it believes they are safe for parallel operations. Java methods and external C programs are
never deemed safe for parallel operations.

The following function supports parallel SQL operations and merges last name, first name,
and middle initial into a single string:

=1 SQL> CREATE OR REPLACE FUNCTION merge

2 (last_name VARCHAR2

3 , first name VARCHAR2

4 , middle initial VARCHAR2)

5 RETURN VARCHAR2 PARALLEL ENABLE IS

6 BEGIN

7 RETURN last name ||', '||first name||' '||middle initial;
8 END;

9 /

312 Oracle Database 12c PL/SQL Programming

You can use the function safely in database queries, like

g SQL> SELECT merge (last_name,first_name,middle_initial) AS full_name
2 FROM contact
3 ORDER BY last name, first name, middle initial;

This query depends on the code discussed in the introduction and returns

= FULL_NAME

Sweeney, Ian M
Sweeney, Irving M

Parallel operations do not always occur when you use the PARALLEL ENABLE hint. Parallel
operations are more expensive with small data sets. The Oracle Database 12c optimizer judges
when to run operations in parallel mode. Also, sometimes the optimizer runs functions in parallel
when they’re not marked as parallel enable. It makes this decision after checking whether the
function can support the operation. It is a good coding practice to enable functions for parallel
operation when they qualify.

PIPELINED Clause

The PIPELINED clause provides improved performance when functions return collections, like
varray or table collections. You'll also note performance improvements when returning system
reference cursors by using the PIPELINED clause. Pipelined functions also let you return aggregate
tables. Aggregate tables act like collections of PL/SQL record structures. They only work in SQL
statements.

This section discusses collection concepts. Chapter 6 covers collections for those new to
PL/SQL. Collections are arrays and lists of scalar and compound variables. Pipelined functions
only work with table or varray collections. These two types of collections are indexed by sequential
numbers. You can also build collections of user-defined SQL object types, which are treated like
single-dimensional arrays of number, strings, or dates.

The easiest implementation of a pipelined function involves a collection of scalar values
defined by a SQL data type. You define a NUMBERS data type as a varray collection of NUMBER
by using the following command:

SQL> CREATE OR REPLACE
2 TYPE numbers AS VARRAY (10) OF NUMBER;
3/

The 10 in parentheses after the VARRAY sets the maximum number of elements in the collection,
as qualified by Chapter 6. VARRAY data types are very similar to arrays. Arrays in most programming
languages are initialized with a fixed size or memory allocation.

After you create the collection data type, you can describe it at the SQL command line:

=1 SQL> DESCRIBE NUMBERS
NUMBERS VARRAY (10) OF NUMBER

Chapter 8: Functions and Procedures 313

= NOTE

‘X When you create types in the database, the DDL command acts

like a PL/SQL block. These commands require a semicolon to end
the statement and a forward slash to execute it (or compile it into the
database).

A pipelined function depends on available SQL or PL/SQL collection data types. These types
are limited to varray or table collections. You can define SQL collection types of scalar variables
or user-defined object types.

The following defines a pipelined function that returns a list of numbers:

™ SQL> CREATE OR REPLACE FUNCTION pipelined_numbers
2 RETURN NUMBERS
PIPELINED IS
list NUMBERS := numbers(0,1,2,3,4,5,6,7,8,9);
BEGIN
FOR 1 IN 1..list.LAST LOOP
PIPE ROW(list(i));
END LOOP;
RETURN;
END ;
/

H O LW o J o Ul B W

o

The function returns the NUMBERS user-defined SQL data type from the data catalog. That
means it's a SQL table collection. The function declares a local table collection of NUMBERS on
line 4. It also initializes the table collection. As discussed in Chapter 6, you initialize a table
collection by calling the user-defined SQL data type name with an empty set of parentheses or
with a list of the base type of the collection. In this case, it's a base type of numbers. Line 7
assigns elements from the collection to the pipe.

You can then query the results as follows:

=1 SQL> SELECT *

2 FROM TABLE (pipelined numbers) ;

The output is a single column with the ordinal numbers from 0 to 9.

Pipelined functions can also use PL/SQL collection types. PL/SQL collection types can hold
scalar variables or user-defined object types like their SQL equivalents. They can also be collections
of record structures. This means they are similar to system reference cursors.

Unlike system reference cursors, PL/SQL collection types cannot be defined as SQL or PL/SQL
data types. They can only be defined as PL/SQL data types. In order to return these types in stored
functions, they must be defined inside a package specification. Chapter 9 covers packages in depth.

The following package specification declares a record structure, a table collection that uses
the account record data structure, and a function that returns the table collection:

=1 SQL> CREATE OR REPLACE PACKAGE pipelined IS

2 /* Declare a PL/SQL record and collection type. */
3 TYPE account_record IS RECORD

4 (account VARCHAR?2 (10)

5 , full name VARCHAR2 (42)) ;

314 Oracle Database 12c PL/SQL Programming

6 TYPE account_table IS TABLE OF account_record;
7

8 /* Declare a pipelined function. */

9 FUNCTION pf RETURN account table PIPELINED;

10 END pipelined;

11/

Line 6 declares a collection of the record structure declared above it. Line 9 declares a pf
function as a pipelined function. You should take careful note that the collection on line 6 is a
table collection rather than an associative array. A pipelined table function requires the data to be
put in a table or varray collection.

The p£ function is implemented in the package body:

7 SQL> CREATE OR REPLACE PACKAGE BODY pipelined IS
2 /* Implement a pipelined function. */
FUNCTION pf

4 RETURN account collection

5 PIPELINED IS

6 /* Declare a collection control and collection

7 variable. */

8 counter NUMBER := 1;

9 account ACCOUNT COLLECTION := account collection();
10

11 /* Declare a cursor. */

12 CURSOR c¢ IS

13 SELECT m.account_ number

14 , c.last name || ', '||c.first name full name
15 FROM member m JOIN contact c

16 ON m.member id = c.member id

17 ORDER BY c.last name, c.first name;

18 BEGIN

19 FOR 1 IN c LOOP
20 /* Allot space and add values to collection. */
21 account.EXTEND;
22 account (counter) .account := i.account number;
23 account (counter) . full name := i.full name;
24 /* Assign the record structure to the PIPE. */
25 PIPE ROW (account (counter)) ;
26 counter := counter + 1;
27 END LOOP;
28 RETURN;
29 END pf;
30 END pipelined;
31/

The package body implements only the p£f function. Inside the p£ function, line 8 implements
a counter for the account table collection. Line 9 declares and initializes the account collection.
The account and full name fields are individually assigned variables from the cursor because
a PL/SQL record type doesn’t support a constructor call.

Chapter 8: Functions and Procedures 315

There is a more efficient assignment available. You can assign the iterator of a cursor FOR
loop directly to a table collection when the list of data types match. The syntax replaces lines 22
and 23 with this:

= 22 account (counter) := i;
23

As you can see, the assignment went from two individual field assignments on lines 22 and 23
to a single record assignment from the cursor on line 22. You’ll most likely use the direct cursor
assignment any time you're working with a collection of PL/SQL records.

Varray and table collections are internal objects of a package when you implement them in a
package. While they require explicit construction when the base type is an object, they can’t accept
constructed object assignments when the base type is a PL/SQL record structure.

Varray and table collections require you to allocate space before adding elements to a
collection. The EXTEND method on line 19 allocates space for one element and then values are
assigned to components of that indexed element. As discussed, they may be assigned by field
element or by record through the cursor pointer, or iterator of a cursor FOR loop.

Line 25 assigns the PL/SQL collection to a PIPE, which translates the collection into a SQL
result set, which you may then display or consume as a result set with the TABLE function. The
PIPE is a simplex (one-way communication channel) FIFO (First In, First Out) translator. Line 28
returns the PIPE, which is the table collection as a SQL result set.

You can call the function using the package name, component selector, and function name,
as shown:

=1 SQL> SELECT *

2 FROM TABLE (pipelined.pf) ;

This returns rows from the record structure:

= ACCOUNT FULL_NAME

B293-71447 Sweeney, Ian
B293-71446 Sweeney, Irving

It may appear that you're limited to packages because that’s where you've declared the
account_table return type. While package varray and table collections aren’t directly available
in the data dictionary, they are available to other PL/SQL programs because they’re implicitly
created in the data catalog. The fact that they’re declared in a package specification also lets us
implement them in stand-alone functions.

The following stand-alone function implements the same logic as the p£f pipelined function,
the difference being that it’s a stand-alone schema-level function:

=1 SQL> CREATE OR REPLACE FUNCTION pf
2 RETURN pipelined.account collection
3 PIPELINED IS
4 /* Declare a collection control and collection variable. */
5 counter NUMBER := 1;
6 account PIPELINED.ACCOUNT COLLECTION :=
7 pipelined.account collection() ;
8

316 Oracle Database 12c PL/SQL Programming

9 ... cursor redacted to save space
15 BEGIN
17 FOR 1 IN c¢ LOOP
18 /* Allot space and add values to collection. */
19 account.EXTEND;
20 account (counter) := i;
21
22 /* Assign the record structure to the PIPE. */
23 PIPE ROW (account (counter)) ;
24 counter := counter + 1;
25 END LOOP;
26 RETURN;
27 END pf;
28 /

The only difference is how you reference the PL/SQL collection type. Note on lines 6 and 7
that the pipelined package name precedes the table collection type. It does so for the variable’s
data type on line 6 and the constructor function call on line 7.

You can now call the function by referencing only the function name, like

=1 SQL> SELECT *

2 FROM TABLE (pf);
You can use pipelined functions to build views, like this:

SQL> CREATE OR REPLACE VIEW pipelined view AS

2 SELECT result.account
3 , result.full name
4 FROM TABLE (pf) result;

Views built by calls to pipelined functions require INSTEAD OF triggers to manage inserts,
updates, and deletes. At least, you build the INSTEAD OF trigger when you want to allow DML
operations.

Pipelined functions are designed to let you use collections of scalar variables or record
structures. The previously demonstrated pipelined functions convert the PL/SQL collection into an
aggregate table. You cannot reuse the pipelined table in another PL/SQL scope, but you can use it
in SQL scope queries.

Prior to Oracle Database 12c¢, a pipelined table function was your only alternative to access a
PL/SQL collection in a SQL statement. Now you can access a local PL/SQL associative array in a
SQL statement. There’s no sense in repeating the full example from Chapter 2, but the following
unnamed block shows you how to use a PL/SQL associative array in a query:

=1 SQL> DECLARE

2 lv_list TYPE DEFS.PLSQL TABLE;

3 BEGIN

4 list := implicit convert;

5 FOR i IN (SELECT column value

6 FROM TABLE (lv_list)) LOOP
7 dbms_output.put line (i.column_value) ;
8 END LOOP;

9 END;

0 /

Chapter 8: Functions and Procedures 317

Pipelined Results Are Limited to SQL Scope
There is a temptation to pass the return value from a pipelined function to another PL/SQL
module because it isn’t clear that these aggregate tables are designed only for use in SQL
statements. You receive a PLS-00653 error when you try to pass a pipelined function result
to another PL/SQL program as an actual parameter. A PLS-00653 error states that
“aggregate/table functions are not allowed in PL/SQL scope.” Pipelined table results are
only accessible in SQL scope.

The following procedure passes compilation checks because it refers to a valid PL/SQL
collection type:

SQL> CREATE OR REPLACE PROCEDURE read pipe
2 (pipe_in pipelined.account collection) IS

3 BEGIN

4 FOR i IN 1..pipe in.LAST LOOP

5 dbms_output.put (pipe_in (i) .account) ;

6 dbms_output.put (pipe_in (i) .full name) ;
7 END LOOP;

8 END read pipe;

9 /

This seems a logical segue to control the reading of a pipelined table. The following
demonstrates how you would call the procedure by passing the result set of a call to the
pipelined p£ function:

EXECUTE read pipe (pf) ;
This raises the following error message:

BEGIN read pipe (pf); END;

*
ERROR at line 1:
ORA-06550: line 1, column 10:
PLS-00653: aggregate/table functions are not allowed in PL/SQL scope

The error occurs because the actual data type passed to the procedure is a pipelined
aggregate or table with equivalent values but not a PL/SQL collection data type. Fortunately,
the error message gives you great feedback when you know that a pipelined aggregate table
isn't a PL/SQL collection type.

Line 6 refers to the local 1v_1ist associative array, which is based on an associative array
type defined in the type defs package example. Oracle Database 12c knows how to translate
the associative array in the context switch between PL/SQL and SQL because 1v_1ist is declared
in the local block where you call the SELECT statement.

You now know how to use pipelined functions and understand their strengths and weaknesses.
They're great tools when you want to get data into a query or view that requires procedural logic.

318 Oracle Database 12c PL/SQL Programming

Object Table Functions

Although no clause exists for object table functions, it seems best to discuss them here because
they are the new alternative to pipelined table functions. They let you convert SQL collections to
a SQL result set. This eliminates the need for using PL/SQL associative arrays in all but a few rare
cases. One of those would be when you want a sparsely populated string-based index.

As a rule, SQL table collections perform as well as associative arrays. They also are more
flexible to work with when you call them from external languages, like Java.

Creating an object table function is a three-step process: you define the record structure as
an object type, then define the collection, and finally define a function to show how to return
the collection from a PL/SQL context to a SQL context.

Ultimately, you can simply query the models inside a SQL statement. This makes lists and
arrays of SQL object types reusable in the context of external programming languages such as
C#, C++, Java, and Hypertext Preprocessor (PHP).

You create the base SQL user-defined type (UDT) like this:

g SQL> CREATE OR REPLACE TYPE title structure IS OBJECT
2 (title wvarchar2(60)
3 , subtitle varchar2(60)) ;

4/

You can create the collection by using a varray or table collection. A table collection is always
the more flexible option because it doesn’t have a predefined number of elements. You create a
SQL table collection of the object type like this:

g1 SQL> CREATE OR REPLACE
2 TYPE title_table IS TABLE OF title_structure;
3/

The following function is a rather trivial example but is effective because of its readability and
small size (it has one less input parameter than the earlier anonymous block). Naturally, when you
write real logic, it will be a bit more complex, because this could easily be solved as an ordinary

query:
SQL> CREATE OR REPLACE FUNCTION get full titles
2 (pv_title VARCHAR2) RETURN TITLE TABLE IS
3
4 -- Declare a variable that uses the record structure.
5 1v_counter PLS INTEGER := 1;
6
7 -- Declare a variable that uses the record structure.
8 lv_title_table TITLE_TABLE := title_table();
9
10 -- Declare dynamic cursor structure.
11 CURSOR c (cv_search VARCHAR2) IS
12 SELECT item title, item subtitle
13 FROM item
14 WHERE REGEXP_LIKE(item title
15 , 'S.x'|]ev_search||'.*r, i)
16 AND item type =
17 (SELECT common_lookup_ id

18 FROM common_ lookup

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Chapter 8: Functions and Procedures

WHERE common_ lookup type =
'"DVD_WIDE SCREEN')
ORDER BY release date;

BEGIN
-- Open the cursor and map results to collection.
FOR i IN c¢ (pv_title) LOOP
lv_title table.EXTEND; -- Extends memory.

/* The assignment pattern for a SQL Collection is
incompatible with the cursor return type, and you
must construct an instance of the object type
before assigning it to collection. */

lv_title table(lv_counter) :=

title structure(i.item title,i.item subtitle);

lv_counter := lv_counter + 1; -- Increment counter.
END LOOP;
RETURN lv_title_table;
END;
/

319

Line 8 declares the collection variable by instantiating it as a null value collection. Inside the
FOR loop, line 26 extends memory space for a new element in the collection. Lines 32 and 33
assign an instance of the title structure to an indexed element of the collection. It is critical that
you note that the assignment requires that you explicitly construct an instance of the structure by

passin

g actual parameters of equal type.

You can then query the result as follows:

] SOL>

2

SELECT title
FROM TABLE (get full titles('Harry'));

The column name is no longer that of the table but is that of the element in the SQL record
structure. This differs from the column_value pseudocolumn returned by an Attribute Data Type
(ADT) collection, as qualified in Chapter 6. It doesn’t appear that they put the Harry Potter movies
into moratorium after all. The results from the query are

Harry Potter and the Sorcerer's Stone
Harry Potter and the Chamber of Secrets

Composite variables are tremendously valuable assets in the PL/SQL and SQL programming
environment. They let you define complex logic in named blocks that you can then simply query
in C#, Java, or PHP programs. You should take advantage of composite variables where possible.

RESULT_CACHE Clause
The RESULT CACHE clause was new in Oracle Database 11g. Oracle Database 12c¢ extends the
behaviors of result cache functions to work with invoker rights programs. A result cache function
stores the function name, the call parameters, the results, and the CURRENT USER value in the

SGA. Oracle Database 12¢ adds the CURRENT USER value to the stored results. This is how
Oracle Database 12¢ maintains different result sets for different callers of the same function.

320 Oracle Database 12¢ PL/SQL Programming

The RESULT CACHE clause instructs the PL/SQL engine to check the result cache for function
calls with matching actual parameters. A matching function call also stores the result, and the
cache returns the result and skips rerunning the function. This means the function only runs
when new parameters are sent to it.

= NOTE
W Cross-session functions only work with IN mode formal parameters.

The prototype for the RESULT CACHE clause has an optional RELIES_ON clause. The
RELIES ON clause is critical because it ensures any change to the underlying table invalidates
the result cache. This also means any DML transactions that would change result sets. The
RELIES ON clause ensures that the cache is dynamic, representing the current result set. You
can list any number of dependent tables in the RELIES ON clause, and they're listed as comma-
delimited names.

The next example depends on the downloadable code from the publisher’s website. You can
find a description of the code in the Introduction. Also, this example builds upon the discussion
of table collections in Chapter 6.

This statement lets you build a collection of VARCHAR2 values:

= SQL> CREATE OR REPLACE
2 TYPE strings AS TABLE OF VARCHAR2 (60) ;
3/

This function implements a cross-session result cache with the RELIES_ON clause:

=1 SQL> CREATE OR REPLACE FUNCTION get title
2 (pv_partial title VARCHAR2) RETURN STRINGS

3 RESULT CACHE RELIES ON(item) IS

4 /* Declare control and collection variable. */

5 counter NUMBER := 1;

6 return value STRINGS := strings();

7

8 -- Define a parameterized cursor.

9 CURSOR get_title

10 (cv_partial title VARCHAR2) IS

11 SELECT item_title

12 FROM item

13 WHERE UPPER (item title) LIKE '%'||UPPER(cv_partial title) ||'%';
14 BEGIN

15 -- Read the data and write it to the collection in a cursor FOR loop.
16 FOR i IN get_title(pv_partial title) LOOP

17 return_value.EXTEND;

18 return value (counter) := i.item title;

19 counter := counter + 1;
20 END LOOP;
21 RETURN return value;

22 END get title;
23/

Chapter 8: Functions and Procedures 321

Line 3 qualifies the get_title function as a result cache function. The cached results don’t
change between calls when the function is deterministic. They do change when the function is
nondeterministic. All functions that rely on data in the tables are nondeterministic. You use the
RELIES ON clause when working with nondeterministic functions.

Cached values are discarded when there’s a change to any table in the RELIES ON list.
Oracle discards cached results when there’s an INSERT, UPDATE, or DELETE statement against
the item table in this case.

While it's possible that some table changes may not merit discarding cached results, you
should routinely list all tables that are referenced in the result cache function. The RELIES ON
clause ensures the integrity of the result set against changes in the source data only when you
include all tables in the clause.

NOTE
The RELIES ON clause can accept one actual parameter or a list of
actual parameters.

You can test the get _title function with the following anonymous block program:

=1 SQL> DECLARE

2 lv_list STRINGS;

3 BEGIN

4 lv_list := get title('Harry');

5 FOR i IN 1..1lv list.LAST LOOP

6 dbms_output.put line('list('|[i|]"') : ['||lv_list(i)]|]']1");
7 END LOOP;

8 END;

9 /

Like the earlier examples with a pipelined table function, you can test the get_title
function inside a query:

SQL> SELECT column_value
2 FROM TABLE (get title('Harry'));

After calling the result cache function, you insert, delete or update dependent data. Then, you'll
find new result sets are displayed. This change ensures that stale data never misleads the user. The
RELIES ON clause ensures the integrity of the result set, but it does cost you some processing
overhead.

TIP
You should consider excluding the RELIES ON clause to improve
transactional efficiency in data warehouse implementations.

The preceding sections have covered the available options for defining functions. These skills
are assumed when discussing pass-by-value functions.

322 Oracle Database 12¢ PL/SQL Programming

Pass-by-Value Functions

A pass-by-value function receives values when they’re called. They return a single thing upon
completion. The tricky parts with this type of function are the data types of the inputs and outputs.
Inputs are formal parameters and have only one mode in pass-by-value programs, and that’s an
IN-only mode. An IN-only mode means that you send a copy of either a variable value or a literal
value into the function as a raw input. These copies are actual parameters or call parameters. All
raw materials (call parameters) are consumed during the production of the finished goods—or the
return value of this type of function. The return type value of the function must be assigned to a
variable in a PL/SQL block, but it can also be returned as an expression in a SQL query.

Functions return a single output variable. Output variables can be scalar values or composite
data types. This means that a single variable can contain many things when it is a composite data
type.

As discussed, you can define pass-by-value functions as deterministic or parallel enable when
the functions don't alter package variables or database values. You can also define functions to
return pipelined tables that mimic SQL or PL/SQL collections. The results of pipelined functions
require that you use them in SQL scope. All functions except those created with pipelined results
support result caches.

Whether functions interact with the file system or database does not impact how they act
inside your PL/SQL code block. You can use a function to assign a result to a variable, or return
a variable as an expression. Figure 8-1, earlier in the chapter, illustrates using a function as a right
operand in an assignment operation.

A sample hello whom function, a variation on the classic hello world function,
demonstrates a pass-by-value function:

g SQL> CREATE OR REPLACE FUNCTION hello whom
2 (pv_name IN VARCHAR2) RETURN VARCHAR2 IS

3 /* Default name value. */

4 lv_name VARCHAR2(10) := 'World';
5 BEGIN

6 /* Check input name and substitute a valid value. */
7 IF pv_name IS NOT NULL THEN

8 lv_name := pv_name;

9 END IF;

10 /* Return the phrase. */

11 RETURN 'Hello '||lv_name||'!"';

12 END;

13/

When you call the hello whom function from a query, like this:

SQL> SELECT hello whom('Henry') AS "Salutation"
2 FROM dual;

it prints
g Salutation

Hello Henry!

Chapter 8: Functions and Procedures 323

Line 2 explicitly qualifies the IN mode of operation for the pass-by-value parameter. The default
for parameters when none is provided is the IN mode. So, omitting from the function’s signature
doesn’t change a pass-by-value parameter’s mode of operation.

The following line 2 is functionally equivalent to the previous one:

=1 2 (pv_name VARCHAR2) RETURN VARCHAR2 IS

As a rule, providing the mode of operation adds clarity to your function. However, most
programmers leave it out.

Inexperienced programmers sometimes reverse the logic of the IF block and check for a null
parameter and then try assigning the local variable to the parameter:

e IF pv_name IS NULL THEN
8 pv_name := lv_name;

It raises the following message:

g Errors for FUNCTION HELLO WHOM:
LINE/COL ERROR

8/5 PL/SQL: Statement ignored
8/5 PLS-00363: expression 'PV _NAME' cannot be used as an assignment
target

You can use a function that returns a variable as an expression when you put it inside a call to
another PL/SQL built-in function, like this:

g SQL> EXECUTE dbms_output.put line (TO_CHAR (pv(10000,5,6),'9,999.90'));

The most embedded pass-by-value function runs first in the preceding line. That means the
call to the pv function returns a value as a call parameter to the TO_CHAR SQL built-in function.
The TO_CHAR function formats the first call parameter’s value with the format mask provided as
the second call parameter. It outputs the following when SERVEROUTPUT is enabled:

= 7,472.58

The preceding example uses the pv function demonstrated earlier in this chapter’s
“DETERMINISTIC Clause” section. It also uses the TO_CHAR built-in function, which you can
read more about in Appendix D on SQL built-in functions.

As mentioned, Oracle Database 12c introduces white listing as a new feature. You can white
list the earlier hello whom function like this:

=1 SQL> CREATE OR REPLACE FUNCTION hello_ whom
2 (pv_name IN VARCHAR2) RETURN VARCHAR2
3 ACCESSIBLE BY
4 (FUNCTION video.gateway
5 , PROCEDURE video.backdoor
6 , PACKAGE video.api
7 , TYPE video.hobbit) IS
8 /* Default name value. */

324 Oracle Database 12¢ PL/SQL Programming

9 lv_name VARCHAR2(10) := 'World';

10 BEGIN

11 /* Check input name and substitute a valid value. */
12 IF pv_name IS NOT NULL THEN

13 lv_name := pv_name;

14 END IF;

15 /* Return the phrase. */

16 RETURN 'Hello '||lv_name||'!"';

17 END;

18 /

Lines 3 through 7 specify the authorized list of callers, which is known as a white list. White
lists authorize a list of functions, procedures, packages, and object types to perform some activity.
They're the opposite of black lists, which disallow access to a list of functions, procedures, packages,
and object types. After you white list the hello_ whom function, you can attempt to call it from a
query, like this:

g1 SQL> SELECT hello_whom('Henry') AS "Salutation"
2 FROM dual;

It raises the following exception:

g SELECT hello_whom('Henry') AS "Salutation"

*
ERROR at line 1:
ORA-06552: PL/SQL: Statement ignored
ORA-06553: PLS-904: insufficient privilege to access object HELLO WHOM

At present, there doesn’t appear to be any way in Oracle Database 12c¢ to grant privileges to
queries from a schema. That means you’d need to wrap a call to the hello world function in
one of the authorized modules, like this gateway function:

= SOL> CREATE OR REPLACE FUNCTION gateway

2 (pv_name IN VARCHAR2) RETURN VARCHAR2 IS
3 BEGIN

4 /* Return the phrase. */

5 RETURN hello whom(pv_name) ;

6 END;

7/

When you call the authorized gateway function from a query, like this:

g SQL> SELECT gateway('Samuel') AS "Salutation"
2 FROM dual;

it calls the white-listed hello whom function on line 5 and returns the following result:

g Salutation

Hello Samuel!

Chapter 8: Functions and Procedures 325

PL/SQL pass-by-value functions are defined by the following six rules:

All formal parameters must be defined as write-only variables by using the IN mode.

All formal parameters are locally scoped variables that cannot be changed during
execution inside the function.

Any formal parameter can use any valid SQL or PL/SQL data type. Only functions with
parameter lists that use SQL data types work in SQL statements.

Any formal parameter may have a default initial value.

The formal return variable can use any valid SQL or PL/SQL data type, but pipelined
return tables must be used in SQL statements. You can’t access pipelined table results in
another PL/SQL scope.

Any system reference cursor cast from a SQL query into a function is not writeable and
therefore must be passed through an IN mode parameter.

System Reference Cursor Functions

All cursor result sets are static structures stored in the Oracle SGA. Cursor variables are actually
references or handles. The handle points to an internally cached result set from a query. You populate
cursor variables by fetching records, typically by using

g OPEN cursor name FOR select statement;

You access cursors by using a reference or handle that lets you scroll their content. Once you
declare an implicit or explicit cursor structure, you can then assign its reference to a SQL cursor
data type. You can also return these cursor variables as function return types or as IN OUT or OUT
reference variables in function and procedure signatures. The result sets are read-only structures.

The following shows how to return a cursor using a function:

g SQL> CREATE OR REPLACE FUNCTION get full titles
RETURN SYS REFCURSOR IS

2

O 0V 00 o Ul kW

=

lv_title cursor SYS REFCURSOR;

BEGIN

OPEN 1lv_title cursor FOR
SELECT item title, item subtitle
FROM item;

RETURN 1lv_title cursor;

END;

/

The function uses the predefined SYS REFCURSOR, which is a weakly typed system reference
cursor. A weakly typed reference cursor can assume any record structure at runtime, whereas a
strongly typed reference cursor is anchored to a database catalog object.

The OPEN clause creates a reference in the SGA for the cursor. You can then pass the reference
to another PL/SQL block as a cursor variable, as shown in the following anonymous block:

g1 SQL> DECLARE

2
3
4

/* Declare a record and collection type. */
TYPE full title record IS RECORD
(item title item.item title%TYPE

326 Oracle Database 12¢ PL/SQL Programming

5 , item subtitle item.item subtitle%TYPE);
6 1lv_full title table FULL_TITLE RECORD;
7
8 /* Declare a system reference cursor variable. */
9 lv_title cursor SYS REFCURSOR;
10 BEGIN
11 /* Assign the reference cursor function result. */
12 lv_title cursor := get full titles;
13
14 /* Print one element at a time. */
15 LOOP
16 FETCH 1lv_title cursor INTO 1lv_full title table;
17 EXIT WHEN titles$NOTFOUND;
18 dbms_output.put line('Title ['|]|lv_full title table.item title||']");
19 END LOOP;
20 END;
21/

NOTE

There is never an OPEN statement before the loop when a cursor is
passed into a subroutine because the cursor is already open. Cursor
variables are actually references that point into a specialized cursor
work area in the SGA.

The receiving or processing block needs to know what record type is stored in the cursor.
Some programmers use this requirement to argue that you should use only strongly typed reference
cursors. In PL/SQL-only solutions, they have a point. The other side of the argument can be
made for weakly typed reference cursors when you query them through external programs using
the OCl libraries. In these external languages, you can dynamically discover the structure of
reference cursors and manage them discretely through generic algorithms.

Deterministic Pass-by-Value Functions
Let’s examine a deterministic pass-by-value function, calculating the future value of a bank
deposit. The following builds the £v function:

SQL> CREATE OR REPLACE FUNCTION fv

2 (current_value NUMBER := 0

3 , periods NUMBER := 1

4 , interest NUMBER)

5 RETURN NUMBER DETERMINISTIC IS

6 BEGIN

7 /* Compounded Daily Interest. */

8 RETURN current value* (1+((1+((interest/100)/365))**365-1) *periods) ;
9 END fv;
10 /

The function defines three formal parameters. Two are optional parameters because they have
default values. The default values are the current balance of the account and the 365 days of the

Chapter 8: Functions and Procedures 327

year (for non-leap years). The third parameter is mandatory because no value is provided. As
discussed, the IN mode is the default, and you do not have to specify it when defining functions.
As a general practice, mandatory parameters come before optional parameters. This is critical
when actual parameters are submitted in positional order. Oracle Database 11g supports positional
order, named notation order, and mixed notation.
After defining an output variable, you use the CALL statement to run the function using named
notation:

g SQL> VARIABLE future value NUMBER
SQL> CALL fv(current value => 10000, periods => 5, interest => 4)
2 INTO :future value
3/

You can then use the following to select the future value of $10,000 after five years at 4 percent
annual interest compounded daily:

g SQL> SELECT :future value FROM dual;
Alternatively, you can format with SQL*Plus and call the function in SQL with this statement:

g SQL> COLUMN future value FORMAT 99,999.90
SQL> SELECT fv(current value => 10000, periods => 5, interest => 4) FROM dual;

Both the CALL statement and SQL query return a result of $12,040.42. The compounding of
interest yields $40.42 more than an annual rate. There might be an extra penny or two, depending
on where leap year falls in the five years, but the function doesn’t manage that nuance in the
calculation.

As covered in Chapter 2, Oracle Database 12¢ lets you embed functions inside the WITH
clause of a SELECT statement. You need to suppress the SQL terminator value, a semicolon (;)
by default, before you embed a function inside the WITH clause of a SELECT statement. The SQL
terminator restriction on embedding functions means you must run the SELECT statement from
a customized SQL*Plus environment. The better alternative is to create a view in the specialized
SQL*Plus session, which other programs can then use without specialized rules.

The following deterministic glue function and person view were introduced in Chapter 2.
Together, they show you how to embed a deterministic function in the WITH clause of a SELECT

statement.
g SQL> WITH
2 FUNCTION glue
3 (pv_first name VARCHAR2
4 , Pv_last name VARCHAR2) RETURN VARCHAR2 IS
5 lv_full name VARCHAR2(100);
6 BEGIN
7 lv_full name := pv_first name || ' ' || pv_last name;
8 RETURN 1lv_ full name;
9 END;
10 SELECT glue(a.first name,a.last name) AS person
11 FROM actor a

12/

328 Oracle Database 12¢ PL/SQL Programming

Pass-by-Value Functions That Wrap Java Libraries
It's possible to write the programming logic for your stored functions and procedures in Java
libraries. Then, you write a PL/SQL wrapper that accesses the library.

The following TwoSignersdava library checks whether there are two authorized
signers on a group account. You would use it to return a 0 (or false flag) when it’s fine to add
a second authorized signer, or return a 1 (or true flag) when there are already two authorized
signers. You can create this library from the SQL*Plus command line:

SQL> CREATE OR REPLACE AND COMPILE JAVA SOURCE NAMED "TwoSignersJava" AS

2

3 // Required class libraries.

4 import java.sgl.*;

5 import oracle.jdbc.driver.*;

6

7 // Define class.

8 public class TwoSignersJava {

9

10 // Connect and verify new insert would be a duplicate.

11 public static int contactTrigger (Integer memberID)

12 throws SQLException {

13 Boolean duplicateFound = false; // Control default value.
14

15 // Create a Java 5 and Oracle 11lg connection forward.

16 Connection conn =

17 DriverManager.getConnection ("jdbc:default:connection:") ;
18

19 // Create a prepared statement that accepts binding a number.
20 PreparedStatement ps =
21 conn.prepareStatement ("SELECT null " +
22 "FROM contact ¢ JOIN member m " +
23 "ON c.member id = m.member id " +
24 "WHERE c.member id = ? " +
25 "HAVING COUNT (*) > 1");
26
27 // Bind the local variable to the statement placeholder.
28 ps.setInt (1, memberID) ;
29

30 // Execute query and check if there is a second value.

31 ResultSet rs = ps.executeQuery() ;

32 if (rs.next())

33 duplicateFound = true; // Control override value.
34

35 // Clean up resources.

36 rs.close() ;

37 ps.close() ;

38 conn.close () ;

39
40 /* Return 1 (true) when two signers and 0 when they don't. */
41 if (duplicateFound) return 1;
42 else return 0; }}

43 /

Chapter 8: Functions and Procedures 329

Lines 16 and 17 would be on a single line normally but they’re split across two lines
here to accommodate the formatting of the book’s text. The internal connection syntax on
line 17 works for Java 5 forward, and you would replace it with the following for an Oracle
Database 10g database (technically no longer supported with the production release of
Oracle Database 12¢). When you migrate Java libraries from an Oracle Database 10g
database forward to an Oracle Database 11g or 12c database, you need to change internal
Oracle connection syntax.

15 // Create an Oracle 10g JDBC connection.
16 Connection conn = new OracleDriver () .defaultConnection() ;

The PL/SQL wrapper for this library is

SQL> CREATE OR REPLACE FUNCTION two_signers

2 (pv_member id NUMBER) RETURN NUMBER IS

3 LANGUAGE JAVA
4 NAME 'TwoSingersJava.contactTrigger (java.lang.Integer) return int';
5

/

Line 3 designates that you have implemented the function body in Java for the
two_signers function. Line 4 maps the Java data types to the native Oracle types.
The following shows you how to test all the moving parts:

SQL> SELECT CASE
2 WHEN two_signers (member id) = 0 THEN 'Only one signer.'

3 ELSE 'Already two signers.'

4 END AS "Available for Assignment"

5 FROM contact ¢ JOIN member m USING (member id)
6 WHERE c.last name = 'Sweeney'

7

OFFSET 1 ROWS FETCH FIRST 1 ROWS ONLY;

Although, you'd probably call the two_signers function from a WHERE clause. For
example, you'd do so if you wanted your production code to insert data from the contact
and member tables, with a WHERE clause checking for a zero value from the two_signers
function.

The function on lines 2 through 9 simply concatenates two strings with a single-character
white space between them. Assuming that you disable the SQLTERMINATOR in SQL*Plus, the
semicolons are treated as ordinary characters in the query. You should also note that the SQL
statement is run by the SQL*Plus forward slash and that the complete statement doesn’t have a
terminating semicolon on line 11.

Unfortunately, you can’t suppress the SQLTERMINATOR value when you make calls from
other programming languages. The means you need to wrap any query with an embedded
function in a WITH clause as a view.

330 Oracle Database 12¢ PL/SQL Programming

Assuming you create an actor_v view by using the preceding query, you could query the
result like this:

SQL> COLUMN person FORMAT Al8
SQL> SELECT a.person
2 FROM actor_v;

And retrieve results, like

Nicolas Cage
Diane Kruger

Embedding deterministic functions in a view seems a logical thing to do when your business
case requires a deterministic function inside a query. After all, views do abstract or hide logic from
application programmers.

Nondeterministic Pass-by-Value Functions
The key difference between nondeterministic and deterministic functions is simple: the former
relies on inputs and data, while the latter relies only on inputs. That means you may get different
results with the same inputs from a nondeterministic function. Naturally, that can’t happen in a
deterministic function.

In Oracle Database 12¢, you can now write a nondeterministic function by including a cursor
that searches for a partial string in a first or last name. The full name function delivers that
functionality:

SQL> CREATE OR REPLACE FUNCTION full name
2 (pv_search name VARCHAR2) RETURN VARCHAR2 IS

3 /* Declare local return variable. */
4 lv_retval VARCHAR2 (50) ;
5 /* Declare a dynamic cursor. */
6 CURSOR get_names
7 (cv_search name VARCHAR2) IS
8 SELECT c.first name, c.middle name, c.last name
9 FROM contact c
10 WHERE REGEXP_LIKE (c.first name, cv_search name, 'i'")
11 OR REGEXP_LIKE (c.last name, cv_search name, 'i')
12 OFFSET 1 ROWS FETCH FIRST 1 ROWS ONLY; -- New Oracle 12c feature.
13 BEGIN
14 /* Check for a middle name. */
15 FOR i IN get names('".*'||pv_search name||'.*$') LOOP
16 IF i.middle_name IS NOT NULL THEN
17 lv_retval := i.first name||' '||i.middle_name||' '||i.last_name;
18 ELSE
19 lv_retval := i.first name||' '||i.last name;
20 END IF;
21 END LOOP;
22 END;

23/

Chapter 8: Functions and Procedures 331

The call parameter determines the results from a table of data. The function returns only one
row because of the use of an Oracle Database 12c new top-n query restriction. Line 12 guarantees
that the function only returns a single row where the first and last names match the search criteria.
The result changes when you change the input, but the result of a nondeterministic program also
returns when the underlying data changes in the tables.

TIP

The any character before ('*.*') and after (' . *3$') regular
expressions is used in two places within the dynamic cursor but only
provided once with the call parameter to the cursor.

A

The key piece of knowledge about nondeterministic functions is that they depend on two
dynamic inputs. One is the call parameters and the other is the data stored in the database.

B Call parameters can’t change during execution of the function, which means formal
parameters can’t be assignment targets inside the function. You raise a PLS-00363 error
that tells you the expression (formal parameter) can’t be used as an assignment target.

B Nondeterministic functions may return different results when called with the same
parameters because another user can change the data stored in the database between
the two calls.

DML-Enabled Pass-by-Value Functions
Functions also let you process DML statements inside them. Some people think that functions
shouldn’t be used to perform DML statements simply because, historically, procedures were used.
The only downside of embedding a DML statement inside a function is that you can’t call that
function inside a query. At least, you can’t call it when it’s in the same operational context unless
it'’s an autonomous function. An attempt at calling an inline (or default) function raises an
ORA-14551 error. The error message says that you can’t have a DML operation inside a query.
Recall from the discussion of the function and procedure architecture that pessimistic
functions return an affirmative result when they succeed and a negative result when they fail.
Inside an exclusively PL/SQL scope, you can write a pessimistic function with a Boolean return
type. A pessimistic function also must include Transaction Control Language (TCL) statements
when it runs in an autonomous context. Let’s create a small avatar table to look at how a
pessimistic function works:

=1 SQL> CREATE TABLE avatar
2 (avatar_id NUMBER GENERATED AS IDENTITY
3 , avatar name VARCHAR2 (30)) ;

The following demonstrates a pessimistic function that inserts a row into the avatar table
when successful:

g SQL> CREATE OR REPLACE FUNCTION add avatar
2 (pv_avatar name VARCHARZ2) RETURN BOOLEAN IS
/* Set function to perform in its own transaction scope. */
PRAGMA AUTONOMOUS TRANSACTION;
/* Set default return value. */

Ul W

332 Oracle Database 12¢ PL/SQL Programming

0 J O

11
12
13
14
15
16
17

lv_retval BOOLEAN := FALSE;
BEGIN
/* Insert row into avatar. */
INSERT INTO avatar (avatar_name)
VALUES (pv_avatar name) ;
/* Save change inside its own transaction scope. */
COMMIT;
/* Reset return value to true for complete. */
lv_retval := TRUE;
RETURN 1lv retval;
END;
/

Line 2 defines a Boolean return type. Line 4 declares a compiler directive that makes the

function an autonomous program unit. Line 12 commits the work that occurs only within the function.
Line 15 returns a local Boolean variable.

g SOL

You can test the pessimistic function with the following anonymous block program:

> DECLARE
/* Declare local variable. */
lv_avatar VARCHAR2 (30);

/* Declare a local cursor. */
CURSCR capture_result
(cv_avatar name VARCHAR2) IS
SELECT avatar_name
FROM avatar
WHERE avatar_name = cv_avatar_name;
BEGIN
IF add avatar ('Earthbender') THEN
dbms_output.put line('Record Inserted');
ROLLBACK;
ELSE
dbms output.put line('No Record Inserted');
END IF;

OPEN capture result ('Earthbender') ;

FETCH capture_result INTO 1lv_avatar;

CLOSE capture_ result;

dbms_output.put line('Value ['||lv_avatar||']l.");
END;
/

Line 11 calls the pessimistic add_avatar function and returns true. That means the add_

avatar autonomous function inserted a row in a discrete transaction scope. The ROLLBACK
statement on line 13 can’t roll back the transaction because it was committed in another transaction
scope.

The test program prints the following on line 20, which shows the written row:

Value [Earthbender].

Chapter 8: Functions and Procedures 333

You can modify the return type of the function with the following changes:

g1 SQL> CREATE OR REPLACE FUNCTION add_avatar

2 (pv_avatar_name VARCHAR2) RETURN NUMBER IS
6 lv_retval NUMBER := 0;
7 BEGIN
13 /* Reset return value to true for complete. */
14 lv_retval := 1;
15 RETURN 1lv_retval;
16 END;
17/

Line 2 changes the return type of the function to a NUMBER. Line 6 sets the initial value of the
local return variable to 0, which typically indicates a false value. Line 14 resets it to 1, which
serves as our true value.

You can now call the altered pessimistic function from a SQL SELECT statement, like this:

g SQL> SELECT CASE

2 WHEN add_avatar ('Firebender') = 1 THEN 'Success' ELSE 'Failure'
3 END AS Autonomous
4 FROM dual;

Line 2 returns the Success string after inserting the Firebender value. This is a very powerful
feature of autonomous functions, and becomes more powerful when you enclose a query like this
in aview.

Recursive Functions

Using recursive functions is a useful tool for solving some complex problems, such as advanced
parsing. A recursive function calls one or more copies of itself to resolve a problem by converging
on a result. Recursive functions look backward in time, whereas nonrecursive functions look
forward in time. Recursive functions are a specialized form of pass-by-value functions.

Nonrecursive programs take some parameters and begin processing, often in a loop, until
they achieve a result. This means they start with something and work with it until they find a result
by applying a set of rules or evaluations. This means nonrecursive programs solve problems moving
forward in time.

Recursive functions have a base case and a recursive case. The base case is the anticipated
result. The recursive case applies a formula that includes one or more calls back to the same
function. One recursive call is known as a linear or straight-line recursion. Recursive cases that
make two or more recursive calls are nonlinear. Linear recursion is much faster than nonlinear
recursion, and the more recursive calls, the higher the processing costs. Recursive functions use
the recursive case only when the base case isn’t met. A result is found when a recursive function
call returns the base case value. This means recursive program units solve problems moving
backward in time, or one recursion after another.

334 Oracle Database 12¢ PL/SQL Programming

Solving factorial results is a classic problem for linear recursion. The following function
returns the factorial value for any number:

SQL> CREATE OR REPLACE FUNCTION factorial
2 (n BINARY DOUBLE) RETURN BINARY DOUBLE IS
BEGIN
IF n <= 1 THEN
RETURN 1;
ELSE
RETURN n * factorial(n - 1);
END IF;
END factorial;
/

O WOV O J o0 U B W

The base case is met when the IF statement resolves as true. The recursive case makes only
a single call to the same function. Potentially, the recursive case can call many times until it also
returns the base case value of 1. Then, it works its way back up the tree of recursive calls until an
answer is found by the first call.

Fibonacci numbers are more complex to derive because they require two recursive calls for
each level of recursion. A recursive program is nonlinear when it makes two or more calls that are
separated by an operator. These are nonlinear for two reasons:

B Mathematical operators have a lower order of precedence than function calls. That means
functions are always called first, before other operators perform their respective functions.

B Each recursive call may spawn zero or two recursive function calls. A linear recursion
calls one copy at each level of the recursion, and a nonlinear recursion calls more than
one copy at any level of recursion.

The following Fibonacci function maintains title case in the database thanks to the quoted
identifier, which is a specialized delimiter (check Table 4-1 for delimiter details). After all, credit
should be given to a great mathematician!

SQL> CREATE OR REPLACE FUNCTION "Fibonacci®
2 (n BINARY DOUBLE) RETURN BINARY DOUBLE IS
BEGIN
/* Set the base case. */
IF n < 2 THEN
RETURN n;
ELSE
RETURN fibonacci(n - 2) + fibonacci(n - 1);
END IF;
END "Fibonacci";

/

H O w oo 30 Ul b W

o

Lines 6 and 8 have RETURN statements. This really is suboptimal as a coding practice because
there should only be one RETURN statement in any function. The alternative to this design would
be to add a local variable to the function and then assign the results from the base or alternate
case to that local variable.

Chapter 8: Functions and Procedures 335

The addition operator on line 8 has a lower order of precedence than a function call. Therefore,
the recursive call on the left is processed first until it returns an expression. Then, the recursive call
on the right is resolved to an expression. The addition happens after both recursive calls return
expressions.

Calling a preserved case function requires a trick, as shown next. The following
FibonacciSequence function calls the Fibonacci function eight times, which gives us the
classic Fibonacci sequence (the same one left by Jacques Sauniére when he’s murdered in the
Louvre by Silas in Dan Brown’s The Da Vinci Code):

=1 SQL> CREATE OR REPLACE FUNCTION "FibonacciSequence"
2 RETURN VARCHAR2 IS

3 /* Declare an output variable. */

4 lv_output VARCHAR2 (40) ;

5 BEGIN

6 /* Loop through enough for the DaVinci Code myth. */
7 FOR i1 IN 1..8 LOOP

8 IF 1lv_output IS NOT NULL THEN

9 lv_output := 1lv _output||', '||LTRIM(TO CHAR("Fibonacci"(i),'999"'));
10 ELSE
11 lv_output := LTRIM(TO_ CHAR("Fibonacci" (i), '999'"));
12 END IF;

13 END LOOP;

14 RETURN 1lv_output;

15 END;

16 /

Lines 9 and 11 take the binary double and format it into a number without any leading white
space. Note that the double quotes enclose only the function name and not the parameter list. That's
the trick to calling case-preserved function names. Line 11 runs the first call to the Fibonacci
program, and line 9 runs for all subsequent calls. Line 9 concatenates results to the original string.

You can query the case-preserved FibonacciSequence with this syntax:

g SQL> SELECT "FibonacciSequence"
2 FROM dual;

It produces the following output:

= FibonacciSequence

This discussion has demonstrated how you can implement recursion. You should note that
recursion lends itself to pass-by-value functions because you only want the base case returned.
While you can call recursive functions using pass-by-reference semantics, you shouldn’t. Recursive
parameters should not be altered during execution because that creates a mutating behavior in
the recursive case.

You should explore recursion when you want to parse strings or are checking for syntax rules.
It is much more effective than trying to move forward through the string.

This section has explained how to use pass-by-value functions. The next section builds on this
information and explores pass-by-reference functions.

336 Oracle Database 12¢ PL/SQL Programming

Pass-by-Reference Functions

Pass-by-reference functions can exhibit many of the behaviors we’ve worked through earlier in the
chapter. As discussed, they can have IN, IN OUT, or OUT mode parameters. An IN mode parameter
passes in a value that can change but is consumed wholly. An IN OUT mode parameter passes in
a reference that can change and be returned in a new state. An OUT mode parameter passes in
nothing but can return something.

You use pass-by-reference functions when you want to perform an operation, return a value
from the function, and alter one or more actual parameters. These functions can only act inside
the scope of another program or environment. The SQL*Plus environment lets you define session-
level variables (also known as bind variables) that you can use when you call these types of
functions. You cannot pass literals (like dates, numbers, or strings) into a parameter defined as
OUT or IN OUT mode.

PL/SQL pass-by-reference functions are defined by the following six rules:

B At least one formal parameter must be defined as a read-only or read-write variable by
using the OUT mode or IN OUT mode, respectively.

B All formal parameters are locally scoped variables that you can change during operations
inside the function.

B Any formal parameter can use any valid SQL or PL/SQL data type. Only functions with
parameter lists that use SQL data types work in SQL statements.

B Any IN mode formal parameters can have a default initial value.

B The formal return variable can use any valid SQL or PL/SQL data type, but pipelined
return tables must be used in SQL statements. You can’t access pipelined table results in
another PL/SQL scope.

B Any system reference cursor cast from a SQL query into a function is not writeable and
therefore must be passed through an IN mode parameter.

The following pass-by-reference counter function demonstrates returning an altered
parameter variable value and a discrete return variable. The IN OUT mode pv_number variable
submits a number that’s incremented inside the counter function. The counter function’s
formal return type is a VARCHAR2, and it holds a message about the incoming and outgoing value
of the pv_number parameter.

g SQL> CREATE OR REPLACE FUNCTION counter

2 (pv_number IN OUT INTEGER

3 , pv_increment by IN INTEGER DEFAULT 1)
4 RETURN VARCHAR2 IS

5 /* Declare a return value. */

6 lv_return VARCHAR2 (50) := 'Inbound [';

7 BEGIN

8 /* Add inbound value. */

9 lv_return := lv_return || pv_number |[|'] ';
10

11 /* Replace a null value to ensure increment. */
12 IF pv_number IS NOT NULL THEN

13 pv_number := pv number + pv_increment by;

14 ELSE

Chapter 8: Functions and Procedures 337

15 pv_number := 1;

16 END IF;

17

18 /* Add inbound value. */

19 lv_return := lv_return || 'Outbound [' || pv_number ||']';
20

21 /* Return increment by module. */

22 RETURN 1lv return;

23 END;

24 /

Line 2 defines the IN OUT mode pv_number parameter. Line 12 checks whether the
pv_number isn't null. Line 13 increments the value of pv_number by one. Line 15 assigns a
value of 1 to pv_number when the original number is null. Both lines 13 and 15 assign new
values to the pv_number parameter. This is possible because a pass-by-reference parameter
with either IN OUT mode or OUT mode is a valid assignment target. That differs from IN mode
parameters, which can’t be assignment targets in the function.

You can test the counter function with the following anonymous block:

SQL> DECLARE

2 /* Declare an increment by value. */
3 lv_counter INTEGER := O;

4 lv_increment_by INTEGER := 1;

5 BEGIN

6 /* Loop through five times. */

7 FOR 1 IN 1..5 LOOP

8 dbms_output.put line(

9 "Counter ['|[|i]|]|"'] {'||counter(lv_counter)|]|'}"');
10 END LOOP;
11 END;
12/

The output from the anonymous block is

g Counter [1] {Inbound [0] Outbound [1]}
Counter [2] {Inbound [1] Outbound [2]}

As you can see in the output, the IN OUT mode actual parameter is always incremented by
one. A read-only (OUT mode) formal parameter can’t work in this type of call because the new
value is never read.

Changing the IN OUT mode to OUT mode for the pv_number parameter gives you a
completely different function. With the following change to the parameter list of the counter
function, every call now holds a null value:

=1 2 (pv_number OUT INTEGER
The same anonymous block program yields these results:

g Counter [1] {Inbound [] Outbound [1]}
Counter [2] {Inbound [] Outbound [1]}

338 Oracle Database 12¢ PL/SQL Programming

This section has covered how you define and use a pass-by-reference function. You should
recognize that there are two types of pass-by-reference parameters. One type has a value on entry
and exit: IN OUT mode variables. The other always has a null value on entry and should have a
value on exit: OUT mode parameters.

Review Section
This section has described the following points about the behaviors and characteristics of functions:

B The DETERMINISITIC clause designates that a program always returns the same
results with the same parameters.

B The PARALLEL ENABLE clause designates that a function supports parallel query
capabilities; these are best implemented with both the DETERMINISTIC and
PARALLEL ENABLE clauses.

B The PIPELINED clause lets you create pipelined table functions, which translate
PL/SQL associative array collections into SQL aggregate result sets.

B In lieu of the PIPELINED clause, you can convert or wrap associative arrays as SQL
table collections.

B The RESULT CACHE clause lets you cache result sets from deterministic and
nondeterministic functions and, effective with Oracle Database 12¢, lets you work
with invoker rights functions.

B Pass-by-value functions take IN-only mode variables and don't let you use the
parameters as assignment targets.

B A system reference cursor function returns a PL/SQL system reference cursor.

B The difference between deterministic and nondeterministic functions is that
nondeterministic functions have runtime dependencies on internally referenced tables.

B You can embed DML statements inside autonomous pass-by-value functions, which
requires that you provide Transaction Control Language (TCL) commands inside the
functions. These types of functions are known as pessimistic functions.

B Oracle supports both linear and nonlinear recursive functions.

B Oracle supports IN OUT and OUT mode parameters in pass-by-reference variables.

Procedures

A procedure is essentially a function with a void return type. As such, you can't use it as a right
operand because it doesn’t have a return value. Procedures, like functions, are black boxes.
Procedures provide a named subroutine that you call within the scope of a PL/SQL block. Although
the behavior differs slightly whether you pass call parameters by value or reference, the inputs
and outcomes are the only way to exchange values between the calling block and the procedure.

Procedures cannot be right operands or called from SQL statements. They do support using
IN, OUT, and IN OUT mode formal parameters.

Chapter 8: Functions and Procedures 339

Like functions, procedures can also contain nested named blocks. Nested named blocks are
local functions and procedures that you define in the declaration block. You can likewise nest
anonymous blocks in the execution block or procedures.

The following illustrates a named block procedure prototype:

g1 [{EDITIONALBE | NONEDITIONALBE}] PROCEDURE procedure name

(parameterl [IN] [OUT] [NOCOPY] sgl datatype | plsgl datatype
, parameter?2 [IN] [OUT] [NOCOPY] sgl datatype | plsgl datatype
, parameter (n+1) [IN] [OUT] [NOCOPY] sgl datatype | plsgl datatype)
[ACCESSIBLE BY
([{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.lunit name)
[, [{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]unit name)]
(... 111
[AUTHID DEFINER | CURRENT _USER] IS

declaration statements
BEGIN

execution statements
[EXCEPTION]

exception handling statements
END [procedure name] ;

/

You can define procedures with or without formal parameters. Formal parameters in procedures
can be either pass-by-value or pass-by-reference variables in stored procedures. Pass-by-reference
variables have both an IN mode and an OUT mode. Similar to functions, a procedure is created as
a pass-by-value procedure when you don't specify the parameter mode, because it uses the default
IN mode. Compiling (creating or replacing) the procedure implicitly assigns the IN mode phrase
when none is provided. Like functions, formal parameters in procedures also support optional default
values for IN mode parameters.

The ACCESSIBLE BY clause lets you white list callers of the procedure. You can white list
functions, procedures, packages, or object types.

The AUTHID clause sets the execution authority model. The default is definer rights, which
means anyone with execution privileges on the procedure acts as if they are the owner of that
same schema. Defining the AUTHID as CURRENT USER overrides the default and sets the execution
authority to invoker rights. Invoker rights authority means that you call procedures to act on your
local data, and it requires that you replicate data objects in any participating schema.

As in functions, the declaration block is between the IS and BEGIN phrases, while other blocks
mirror the structure of anonymous block programs. Procedures require an execution environment,
which means you must call them from SQL*Plus or another program unit. The calling program
unit can be another PL/SQL block or an external program using the OCl or JDBC.

Procedures are used most frequently to perform DML statements and transaction management.
You can define procedures to act in the current transaction scope or an independent transaction
scope. As with functions, you use the PRAGMA AUTONOMOUS TRANSACTION to set a procedure
so that it runs as an independent transaction.

Pass-by-Value Procedures

A pass-by-value procedure receives values when they’re called. They return nothing tangible
to the calling scope block, but they can interact with the database. Pass-by-value procedures

340 Oracle Database 12c PL/SQL Programming

implement a delegation model. Procedures are often used to group and control a series of DML
statements in the scope of a single transaction.

The mode of all formal parameters is IN-only for pass-by-value procedures. This means they
receive a copy of an external variable or a numeric or string literal when you call the procedure.
Call parameters can’t be changed during the execution of a subroutine. You can transfer the contents
from a call parameter to a local variable inside the procedure and then update that calling scope
variable.

As discussed, you can define pass-by-value procedures to run autonomously in a separate
transaction scope, or you can accept the default and have them run in the current transaction
scope. Pass-by-value procedures frequently run in the current transaction scope. They organize
database DML statements, such as INSERT statements to multiple tables.

PL/SQL pass-by-value procedures are defined by the following five rules:

B All formal parameters must be defined as write-only variable by using the IN mode.

B All formal parameters are locally scoped variables that cannot be changed during execution
inside the procedure.

B Any formal parameter can use any valid SQL or PL/SQL data type.
B Any formal parameter may have a default initial value.

B Any system reference cursor cast from a SQL query into a function is not writeable and
therefore must be passed through an IN mode parameter. This includes those passed as
explicit cursor variables and those cast using the CURSOR function. As mentioned in the
section “System Reference Cursor” earlier in the chapter, cursor variables are actually
references or handles. The handles point to internally cached result sets, which are read-
only structures.

Sometimes you’ll want to build smaller reusable program units. For example, each INSERT
statement could be put into its own stored procedure. You accomplish that by implementing
pass-by-reference procedures. These new procedures expand the parameter lists by using both
primary and foreign key parameters. The parameter list change makes the procedures capable of
exchanging values between programs.

The adding avatar procedure demonstrates a procedure that inserts values into two tables.
The procedure uses two call parameters. The first value goes to the first table, and the second
value goes to the second table. I've opted for a small table to demonstrate the concept without
losing too much of the SQL syntax. This example relies on the avatar and episode tables.
They're defined with Oracle Database 12¢ identity columns.

The first table is the avatar table:

=1 SQL> CREATE TABLE avatar

2 (avatar_id NUMBER GENERATED AS IDENTITY
3 CONSTRAINT avatar_pk PRIMARY KEY
4 , avatar name VARCHAR2 (30)) ;

Line 2 creates the avatar_ id column as an identity column with a primary key constraint.
It's necessary to define a primary key constraint for the avatar id column because the
episode table refers to that column for its foreign key column.

Chapter 8: Functions and Procedures

The following defines the episode table:

g SQL> CREATE TABLE episode

2 (episode id NUMBER GENERATED AS IDENTITY

3 CONSTRAINT episode pk PRIMARY KEY

4 , avatar id NUMBER CONSTRAINT episode nnl NOT NULL
5 , episode name VARCHAR2 (30)

6 , CONSTRAINT episode_ fkl FOREIGN KEY (avatar id)

7 REFERENCES avatar (avatar id));

341

Line 4 defines a NOT NULL constraint for the avatar id column. Lines 6 and 7 define an
out-of-line foreign key constraint for the same avatar_ id column. Together these two constraints
mean that it's impossible to insert a row into the episode table without providing a valid value

from the list of possible values in the primary key avatar_ id column of the avatar table.
The adding contact procedure shows you how to use a pass-by-value procedure to
manage multiple DML statements across a single transaction scope:

=1 SQL> CREATE OR REPLACE PROCEDURE adding avatar
2 (pv_avatar name VARCHAR2

3 , pv_episode name VARCHAR2) IS
4
5 /* Declare local variable to manage IDENTITY column
6 surrogate key. */
7 lv_avatar id NUMBER;
8 BEGIN
9 /* Set a Savepoint. */
10 SAVEPOINT all or none;
11
12 /* Insert row into avatar. */
13 INSERT INTO avatar (avatar name)
14 VALUES (pv_avatar name)
15 RETURNING avatar id INTO lv_avatar id;
16
17 /* Insert row into avatar. */
18 INSERT INTO episode (avatar id, episode name)
19 VALUES (lv_avatar id, pv_episode name) ;
20
21 /* Save change inside its own transaction scope. */
22 COMMIT;
23 EXCEPTION
24 WHEN OTHERS THEN
25 ROLLBACK TO all or none;
26 END;
27 /

Lines 2 and 3 define the formal parameters for the adding_ avatar procedure. Line 10 sets
a SAVEPOINT, which is a beginning point for the transaction. Lines 13 through 15 insert a row
into the avatar table. The RETURNING INTO clause returns the value from the identity column
into a local variable. Line 19 uses the 1v_avatar id local variable as the foreign key value
when it inserts into the episode table. After the INSERT statements to both the avatar and

episode tables, the writes to both tables are committed on line 22. If there’s an exception,
line 25 rolls back any part of the transaction that may have occurred.

342 Oracle Database 12¢ PL/SQL Programming

This anonymous block program tests the procedure:

SQL> BEGIN

2 adding avatar ('Airbender', 'Episode 1');
3 END;
4 /

Unfortunately, the identity columns are not backward compatible with prior editions of the
database. Oracle Database 11g supports sequence calls in INSERT statements with the .nextval
and . currval pseudocolumns. The .nextval pseudocolumn supports pseudocolumns for primary
key columns. The . currval pseudocolumn supports pseudocolumns for foreign key columns,
and you must call the . currval pseudocolumn in the same session after you call the .nextval
pseudocolumn.

Here are the equivalent lines in an Oracle Database 11g database:

——
13 INSERT INTO avatar (avatar id, avatar name)
14 VALUES (avatar s.nextval, pv_avatar name) ;
18 INSERT INTO episode (episode id, avatar id, episode_name)
19 VALUES (episode_ s.nextval, avatar s.currval, pv_episode name) ;
Stepping back one release to Oracle Database 10g, you must query the .nextval result into
a local variable before you try to use it in an INSERT statement. Here is the code for performing
that task:
T 12 /* Get the sequence into a local variable. */
13 SELECT avatar_s.nextval
14 INTO lv_avatar id
15 FROM dual;

Pass-by-value procedures let you perform tasks in the database or external resources. When
you designate a pass-by-value procedure as an autonomous program unit with a compile directive,
the procedure becomes optimistic and a no-wait module. Pass-by-value procedures also let you
manage primary and foreign keys in a single program scope.

Pass-by-Reference Procedures

A basic pass-by-reference procedure takes one or more call parameters by reference. Inside the
procedure, the values of the reference variables can change. Their scope is defined by the calling
program unit, and to some extent they treat variables much like nested anonymous blocks.

As discussed, you can define pass-by-reference procedures to run autonomously. Then, they
execute in a separate transaction scope. You can also accept the default and run them in the current
transaction scope. They organize database DML statements to move data between the program
and database, or they send data to external program units.

PL/SQL pass-by-reference procedures are defined by the following five rules:

B At least one formal parameter must be defined as a read-only or read-write variable by
using the OUT mode or IN OUT mode, respectively.

B All formal parameters are locally scoped variables that you can change during operations
inside the procedure.

Chapter 8: Functions and Procedures 343

B Any formal parameter can use any valid SQL or PL/SQL data type.
B Any IN mode formal parameters can have a default initial value.

B Any system reference cursor cast from a SQL query into a procedure is not writeable and
therefore must be passed through an IN mode parameter.

Pass-by-value procedures let you put sequences of multiple DML statements into a single
transaction and program scope. You are able to share values, like primary and foreign keys, inside
of the black box when using them. Pass-by-value procedures can function as pessimistic programming
blocks. That’s accomplished by using an OUT mode parameter to signal success or failure.

The following is a pass-by-reference variation of the adding_avatar procedure:

g SQL> CREATE OR REPLACE PROCEDURE adding avatar

2 (pv_avatar_ name IN VARCHAR?2

3 , pv_episode name IN VARCHAR2

4 , pv_completion OUT BOOLEAN) IS
5

6 /* Declare local variable to manage IDENTITY column
7 surrogate key. */

8 lv_avatar_ id NUMBER;

9 BEGIN

10 /* Set completion variable. */
11 pv_completion := FALSE;

12

13 /* Set a Savepoint. */

14 SAVEPOINT all_or none;

15
24
25 /* Save change inside its own transaction scope. */
26 COMMIT;
27
28 /* Set completion variable. */
29 pv_completion := TRUE;
30 EXCEPTION
31 WHEN OTHERS THEN
32 ROLLBACK TO all_or none;
33 END;
34/

Line 4 introduces a pv_completion pass-by-reference variable, and it has OUT mode
operation. That means you can’t assign a value but can receive a value at the completion of the
procedure. Line 11 assigns an initial value to the pv_completion variable. The assignment
precedes setting the SAVEPOINT for the transaction. After the COMMIT statement, line 29 assigns
TRUE to the pv_completion variable. An exception would stop execution of the transaction
and roll back the DML statements to the SAVEPOINT. The pass-by-reference procedure returns
false when the transaction doesn’t complete and returns true when it does. If you added a compiler
directive to make this an autonomous transaction, it would become a wait-on-completion
autonomous procedure because the pv_completion parameter must be returned to the calling
scope. Removing the pass-by-reference parameter, you get a no-wait pass-by-value procedure.

344 Oracle Database 12¢ PL/SQL Programming

Inlining Subroutine Calls
Inlining is a compiler behavior that copies an external subroutine into another program. This
is done to avoid the overhead of frequently calling an external subroutine. While leaving
the decision to the compiler is always an option, you can designate when you would like to
suggest an external call is copied inline.

You designate a subroutine call for inlining by using the following prototype:

PRAGMA INLINE (subroutine name, 'YES'|'NO')

The compiler ultimately makes the decision whether to inline the subroutine, because
precomplier instructions are only hints. There are other factors that make inlining some
subroutines undesirable. This PRAGMA affects any call to the function or procedure when
it precedes the call. It also impacts every call to CASE, CONTINUE-WHEN, EXECUTE
IMMEDIATE, EXIT-WHEN, LOOP, and RETURN statements.

The behavior of the PRAGMA INLINE precomplier hint changes depending on the
setting of the PLSQL_OPTIMIZE_ LEVEL session variable. Subprograms are inlined when
PLSQL OPTIMIZE LEVEL is setto 2 and are only given a high priority when set to 3. If
the PLSQL_OPTIMIZE LEVEL is set to 1, subprograms are only inlined when the compiler
views it as necessary.

Smaller units, like pass-by-reference procedures, are more reusable but are harder to manage.
They can exist for every table or view in your application. Lager units, like pass-by-value procedures,
let you manage complex processes in a single black box. They tend to implement what are
sometimes called workflow units. Pass-by-value procedures are generally more process centric
than data-centric wrappers and less expensive to maintain. However, you should note that
pass-by-reference procedures are ideal for supporting stateless web-based applications.

The best rule of thumb is probably that all procedures should focus on process-centric activities.
Then, you can choose which subroutine best suits your task.

Review Section
This section has described the following points about the behaviors and characteristics of

procedures:
B You can define procedures as pass-by-value or pass-by-reference modules.

B A pass-by-value procedure is an optimistic program when you make it an autonomous
unit with a compiler directive.

B A pass-by-reference procedure is a pessimistic program. Making a procedure an autonomous
program unit with a compiler directive doesn’t change its status as a pessimistic module.

B Procedures can create ACID-compliant transactions that span multiple tables.

B Itis possible to inline program execution with a compiler directive.

Chapter 8: Functions and Procedures 345

L] L]
Supporting Scripts
This section describes programs placed on the McGraw-Hill Professional website to support the book.
B Thedeterministic.sql, java_library.sql, merging.sql, pass_by
reference.sql, pipelined.sql, recursive.sql, and result cache.sqgl

programs contain fully functional examples for the redacted versions in the “Functions”
section of this chapter.

B The avatar.sgl program contains small programs that support the “Procedures” section
of this chapter.

Summary

You should now have an understanding of transaction scope and how to implement functions
and procedures. This should include knowing when to choose a function over a procedure and
vice versa.

Mastery Check

The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix | for answers to
these questions.

True or False:
1. __ A pass-by-value function takes parameters that are consumed completely and changed
into some outcome-based value.

2. ___An INLINE compiler directive lets you include a stand-alone module as part of your
compiled program unit.

3. ___Apass-by-reference function takes literal values for any of the call parameters.
___ A pass-by-value procedure takes literal values for any of the call parameters.

__The RETURN statement must always include a literal or variable for all pass-by-value
and pass-by-reference functions.

6. You need to provide forward-referencing stubs for local functions or procedures to
avoid a procedure or function “not declared in this scope” error.

7. You can't assign an IN mode parameter a new value inside a stored function or procedure.

You can’t assign an IN OUT mode parameter a new value inside a stored function or
procedure.

9. You can’tembed an INSERT, UPDATE, or DELETE statement in any function that you
plan to call from a SQL SELECT statement.

10. __ Some functions can only be called from within a PL/SQL scope.

346 Oracle Database 12c PL/SQL Programming

Multiple Choice:

11.

12.

13.

14.

15.

Which types of subroutines return a value at completion? (Multiple answers possible)
A pass-by-value function

A pass-by-value procedure

A pass-by-reference function

A pass-by-reference procedure

All of the above

Which of the following clauses are supported in PL/SQL? (Multiple answers possible)

mO O = >

An INLINE clause

A PIPELINED clause

A DETERMINISTIC clause

A NONDETERMINISTIC clause

mO O = >

A RESULT CACHE clause

Which call notations are supported by the Oracle Database 12c¢ database? (Multiple
answers possible)

Positional notation
Named notation

Mixed notation

CPow

Object notation
E. Exclusionary notation

Which of the following isn’t possible with a result cache function in the Oracle Database
12¢ database? (Multiple answers possible)

A. A definer rights deterministic pass-by-value function

B. An invoker rights deterministic pass-by-value function

C. A definer rights nondeterministic pass-by-value function

D. An invoker rights nondeterministic pass-by-value function
E. A definer rights nondeterministic pass-by-reference function

Which of the following is specifically a backward-compatible Oracle 8i Database compiler
directive?

A. RESTRICT ACCESS
INLINE
AUTONOMOUS
DETERMINISTIC
EXCEPTION_INIT

mOnNOw®

CHAPTER

Packages

348 Oracle Database 12c PL/SQL Programming

group functions and procedures as components into libraries. Inside these package libraries

you can have shared variables, types, and components. Components are functions and
procedures. Unlike stand-alone stored functions and procedures, covered in Chapter 8, stored
packages divide their declaration from their implementation. Package specifications publish the
declaration, and package bodies implement the declaration.

P ackages are the backbone of Oracle Database 12¢ application development. They let you

This chapter explains how to declare, implement, leverage, and manage stored packages. It is
written in a way to help the novice user grasp package concepts; however, the ideas contained
herein are suitable for even the advanced PL/SQL programmer.

This chapter covers the following package-related topics:

Package architecture
Package specification
Package body

Definer versus invoker rights mechanics

Managing packages in the database catalog

While packages aren’t object types, they can mimic some features of object types. As you'll
see later in this chapter, you can use the SERIAL REUSABLE precompiler directive to make
packages state-aware. So, if you're unfamiliar with the concept of object types, you may want to
look ahead and glance through Chapter 11 before covering serially reusable packages.

Package Architecture

Packages are stored libraries in the database. They are owned by the user schema where they’re
created, like tables and views. This ownership makes packages schema-level objects in the database
catalog, like stand-alone functions and procedures.

Package specifications declare variables, data types, functions, and procedures, and the package
declaration publishes them to the local schema. You use package variables and data types in other
PL/SQL blocks, and you call published functions and procedures from PL/SQL blocks inside or
outside of the package where they’re declared.

Oracle Database 12c¢ adds the ability to white list packages, which restricts the callers to a list
of functions, procedures, other packages, and object types. While all users, other than the owner,
must be granted the EXECUTE privilege on a package to call its published components, a white-
listed package must also authorize its callers.

Other than the ability to white list, the same rules that apply to tables, views, and SQL data
types apply to packages. Stand-alone modules (like stand-alone functions and procedures) also
have the ability to white list their callers. Published components have context inside the package,
just as stand-alone components have context inside a user’s schema.

The Oracle Database 12¢ security model lets you grant the EXECUTE privilege on any
package to all users (through a grant to PUBLIC). This effectively makes it possible to grant public
access to packages. Alternatively, you can restrict access to packages when you choose to do so.
Prior to Oracle Database 12c¢, an invoker rights package always runs with the privilege of its
invoker, meaning the invoker rights package might perform operations unintended by or forbidden
to its owner when the invoker user holds greater privileges than the owner. Oracle Database 12¢

Chapter 9: Packages 349

has also narrowed the scope of invoker rights programs. By default, it now disallows inheritance
of user privileges. You must override that default (ill advised) by granting either the INHERIT
PRIVILEGES or INHERIT ANY PRIVILEGES privilege to the caller of the package to replicate
the behavior of earlier Oracle Database releases. These Oracle Database security tools let you
narrow privileges to targeted audiences.

You define (declare and implement) package-only scope functions and procedures in package
bodies. Package-only scope functions and procedures can access anything in the package
specification. They can also access anything declared before them in the package body. However,
they don’t know anything declared after them in the package body. This is true because PL/SQL
uses a single-pass parser. Parsers place identifiers into a temporary name space as they read
through the source code. A parser fails when identifiers are referenced before they are declared.
This is why identifiers are declared in a certain order in PL/SQL declaration sections. Typically, you
declare identifiers in the following order: data types, variables, exceptions, functions, and procedures.

The sequencing of identifiers solves many but not all problems with forward referencing (see
the sidebar). Sometimes a component implementation requires access before another component
exists. While you could shift the order of some components to fix this sequencing problem, it is
often more effective to declare a forward-referencing stub, which declares a subroutine without
implementing it. You can do this in any declaration block.

Forward Referencing

The concept of forward referencing is rather straightforward. To use an analogy, after you
arrive home from a conference, you can’t send a text message to a new acquaintance from that
conference if you didn’t get their cell phone number. In the same vein, you can’t call a
function or procedure until you know its name and formal parameter list.

The following example, similar to one in Chapter 3, demonstrates that the local first
procedure can't call the local second procedure until the second procedure has been
declared, or placed in scope. The example is missing a forward-referencing stub or prototype
for the second procedure, which means the £irst procedure doesn’t know anything
about the second procedure when it wants to call it.

SQL> DECLARE

2 -- Placeholder for a forward-referencing stub.

3 PROCEDURE first (pv_caller VARCHAR2) IS

4 BEGIN

5 dbms_output.put line('"First" called by ['||pv_caller||']");
6 second ('First') ;

7 END;

8 PROCEDURE second (pv_caller VARCHAR2) IS

9 BEGIN

10 dbms_output.put line('"Second" called by [']||pv_caller||']");
11 END;

12 BEGIN

13 first ('Main') ;

14 END;

15 /

(continued)

350

Oracle Database 12c¢ PL/SQL Programming

The program raises the following exception because it lacks a forward-referencing stub
for the local second procedure:

second ('First') ;
*

ERROR at line 6:

ORA-06550: line 6, column 5:

PLS-00313: 'SECOND' not declared in this scope
ORA-06550: line 6, column 5:

PL/SQL: Statement ignored

You can fix the error by providing a forward-referencing stub on line 2. It would look
like the following:

2 PROCEDURE second (pv_caller VARCHAR2) ;
This prints

"First" called by [Main]
"Second" called by [First]

The execution block knows everything in its declaration block or external declaration
block(s). The forward-referencing stub lets the PL/SQL single-pass parser put the second
procedure declaration in its list of identifiers. It is added before the parser reads the first
procedure because single-pass parsers read from the top down. When the parser reads the
first procedure, it knows about the second procedure. The parser then validates the call
to the second procedure and looks for the implementation of second later in the program
to compile the code successfully. The parser raises a PLS-00328 error if the subprogram is
missing after reading the complete source code.

NOTE
Java uses a two-pass parser and lets you avoid forward
declarations.

Package specifications exist to declare implementations. Package bodies provide
implementations of the declarations found in the package specifications. Package bodies must
implement all functions and procedures defined by the package specification. However, local
functions and procedures can raise errors when you fail to provide them in the package body.

Figure 9-1 depicts the package specification and body. It shows you that the package
specification acts as an interface to the package body. You can declare variables, types, and
components inside both the package specification and the body. Those declared in the package
specification are published, while those declared only in the package body are private
components.

You can use published package-level user-defined types in other programs but you can’t use
private user-defined types in other programs. Named blocks defined inside component
implementations are private modules, or part of the black box of local functions or procedures.

Chapter 9: Packages 351

Package Package
Specification Body
L~ L~
Referenced Types |[dC == 1 Types |CC

Input/Output“D: Variables |@C TEC] Variables

& Components G

Input/Output “D: Components

b

FIGURE 9-1. PL/SQL package architecture

(See the sidebar “The ‘Black Box'” in Chapter 8 for details about the black box.) The advantage of
defining functions in a package body is that they can be shared across all public and private
functions and procedures. You need to ensure that forward-referencing stubs or specifications exist
at the top of your package bodies because their compilation process includes a single-run parser.

Types can be referenced by external PL/SQL blocks. You can assign values to package
variables or use their values. Constants are specialized variables that disallow assignments. You
can only use the values of constants as right operands. External PL/SQL blocks call package
functions and procedures when they’re declared in a package specification. Components declared
only in the package body call published components through their package declarations.

Chapter 4 discusses scalar and composite data types that are available in anonymous and
named blocks. All of these are available in packages because they’re named blocks. You can use
any scalar or compound variable available in your package specification or body. You can also
create user-defined data types in your package or package body. When user-defined data types
are defined in the package specification, they are publicly available to anyone who either has the
correct privileges or is white listed. When user-defined data types are defined in the package
body, they are available only privately to PL/SQL blocks implemented in the package body.

As with functions and procedures, you can declare variables, types, and components in your
package specification or body. Unlike stand-alone functions and procedures, you can access and
use data types from your package specification in other PL/SQL blocks. You only need to preface
the components with the package name and the component selector (.) before the data type, as
shown in the following call:

g EXECUTE some package.some procedure('some string') ;

NOTE

Package types may include shared cursors. Shared cursors are
mutually exclusive structures during runtime in Oracle Database 12c,
which means they can be run by only a single process at any time.

352 Oracle Database 12¢ PL/SQL Programming

The way in which you implement variables and data types is the same whether you're
declaring them in a package specification or in a package body. You'll also find that, in addition
to doing everything described in Chapter 8, functions and procedures also support overloading.
Overloading is typically an object-oriented programming language (OOPL) feature, and it lets you
define a function name with different signatures (or parameter lists). You can overload functions or
procedures that are defined in package specifications. Unfortunately, you can’t overload functions
or procedures that are defined and implemented in the package body.

Overloading
Overloading means that you create more than one function or procedure with the same
identifier (or component name) but different signatures. Function and procedure signatures
are defined by their respective formal parameter lists. An overloaded component differs in
either the number of parameters or the data types of parameters in respective positions.
While PL/SQL supports named, mixed, and positional notation (Oracle Database 11g forward),
formal parameters are only unique by position and data type. Parameter names do not
make formal parameter lists unique.

For example, you cannot overload the adding function that uses two numbers by simply
changing the formal parameter names, like this:

SQL> CREATE OR REPLACE PACKAGE not overloading IS
2 FUNCTION adding (a NUMBER, b NUMBER) RETURN NUMBER;
3 FUNCTION adding (one NUMBER, two NUMBER) RETURN BINARY INTEGER;
4 END not_overloading;
5 /

NOTE

PL/SQL allows you to overload functions and procedures by
simply renaming variables, but at runtime the ambiguity raises a
PLS-00307 exception.

You can compile this package specification and implement its package body without
raising a compile-time error. However, you can’t call the overloaded function without
finding that too many declarations of the function exist. The ambiguity between declarations
raises the PLS-00307 exception. The return data type for functions is not part of their
signature. A change in the return data type for functions does not alter their unique
signatures because the return type isn’t part of the signature.

Redefining the package declaration as follows lets you call either implementation of the
adding function. The data types now differ between the two declarations.

SQL> CREATE OR REPLACE PACKAGE overloading IS

2 FUNCTION adding (a NUMBER, b NUMBER) RETURN NUMBER;

FUNCTION adding (a VARCHAR2, b NUMBER) RETURN NUMBER;

FUNCTION adding (a NUMBER, b VARCHAR2) RETURN NUMBER;

FUNCTION adding (a VARCHAR2, b VARCHAR2) RETURN BINARY INTEGER;
END not_ overloading;

/

<N o0 U W

Chapter 9:

Packages

353

The following illustration shows you how overloading works inside the black box. In the first
signature, the second parameter is a CLOB and third is a DATE, while their positions are reversed

in the second signature. A drawing of the sample adding function would show two round
funnels for the VARCHAR2 parameters and two square funnels for the NUMBER parameters.

Reference Input

Black Box

—— Assignment Channel)

& = =
I~ o
OB Bl OB R
3 © S 3 2
<
> UJ UJ UJ
Position 1 | Position 2 | Position 3 | Position 4 | Position 5
Name A Name B Name C Name D Name E

Output q:)

Only one of the
overloaded
functions
returns a value.

(Pass-by-reference Return Channel —— ’

=p= Assignment Channel

VARCHAR2

C o ¢

g

(CNUMBER
INTEGER

Position 2 | Position 3 | Position 4 | Position 5

Position 1
Name A

Name B Name C Name D Name E

a2 D

Pass-by-reference Return Channel —|>—-)

\\\ /6

Reference Output

(continued)

354

Oracle Database 12c¢ PL/SQL Programming

You call an overloaded function or procedure name with a list of actual parameters.
Inside the black box, the runtime engine identifies the sequence and data types of the actual
parameters. It matches the calls against possible candidates. When the runtime engine finds
a matching candidate, it sends the actual parameters to that version of the function or
procedure.

This information is stored in the database catalog. You can see it in the CDB_, ALL ,
DBA , and USER_ARGUMENTS views. If there isn’t a signature that matches a function call,
the PL/SQL runtime engine returns an ORA-06576 error, indicating you've called an invalid
function or procedure.

The next three sections cover how you define and implement packages. They examine the
details of package specifications and bodies, and examine how you can manage packages
through the Oracle Database 12c¢ catalog.

Review Section
This section has described the following points about package architecture:

B Packages have the published package specification and private package body.

B The private package body implements everything defined in the public package
specification, and may implement private user-defined data types, variables, cursors,
functions, and procedures.

B Packages can have a white list that limits those who can call it.

B Package specifications eliminate the need for forward-referencing public functions and
procedures because the definitions of those functions and procedures are defined in
the data catalog.

B Package bodies require forward-referencing stubs for private functions and procedures
because their compilation process relies on a single-run parser.

B Packages support overloading public function and procedure signatures.

Package Specification

The package specification declares a package as a black box to a user’s schema, but it also publishes
the available public functions and procedures. After compiling a package specification, you can
create packages and functions that use it. The implementation isn’t necessary until you want to
test the parts.

You can use the SQL*Plus DESCRIBE command to see the functions and procedures inside a
package. Unfortunately, the package variables and data types are not visible when you describe
a package by using the DESCRIBE command.

You can determine the package variables and data types by inspecting the package specification
found in the text column of the CDB_, ALL , DBA , and USER_SOURCE administrative views.
While the text column displays the data catalog information from the package specification,

Chapter 9: Packages 355

it doesn’t necessarily display the implementation because you can wrap your code when you
compile it. Wrapping the implementation obfuscates the code by converting it into a meaningless
set of characters. Appendix F discusses wrapping your PL/SQL code.

You can query the data catalog information, and sometimes the actual source, from the
USER_SOURCE view for definer rights programs. To see invoker rights programs, owned by
another user typically, you need to have superuser privileges to use the CDB , ALL _, or DBA
SOURCE administrative view.

From SQL*Plus you can query the CDB_, ALL _, or DBA SOURCE administrative view by using
the following formatting commands and SELECT statement:

@] SQL> -- Set page break to maximum SQL*Plus value.
SQL> SET PAGESIZE 49999
SQL> -- Set column formatting for 80-column display.

SQL> COLUMN line FORMAT 99999 HEADING "Line#"
SQL> COLUMN text FORMAT A73 HEADING "Text"

SQL> -- Query any source in the user's account.
SQL> SELECT line

2, text

3 FROM user source

4 WHERE UPPER(name) = UPPER('&input name');

NOTE

Oracle Database 12c and previous releases store all metadata by
default in uppercase strings. You can override that default behavior in
Oracle Database 12c¢, as described in the sidebar “Case-Sensitive Table
and Column Names” of Appendix B. The UPPER function around the
column name ensures you’ll always match uppercase strings from

the database catalog.

The next five subsections discuss the prototype features and serially reusable precompiler
directive of a package specification and how you work with variables, types, and components.
They point out changes in behavior between serially reusable packages and non-serially reusable
packages. Non-serially reusable packages are the default. Types are subdivided into structures,
cursors, and collections.

Prototype Features

The prototype for a package specification lists all components as optional because it is possible to
build a package without any components. The prototype shows the possibilities for package
variables, types, and subroutines (functions and procedures).

Since the previous edition of this book, the package specification prototype includes two new
elements: the optional EDITIONABLE clause, introduced in Oracle Database 11g Release 2, and
the white-listing ACCESSIBLE BY clause, introduced in Oracle Database 12c. Following is a
generic package specification:

g CREATE [OR REPLACE] PACKAGE package name
[EDITIONABLE | NONEDITIONABLE]
[AUTHID {DEFINER | CURRENT USER}]
[ACCESSIBLE BY

356 Oracle Database 12¢ PL/SQL Programming

(FUNCTION some schema.function name
[, PROCEDURE some schema.procedure name

[, PACKAGE some schema.package name

[, TYPE some schema.object type name]ll)] IS

[PRAGMA SERIALLY REUSABLE;]

[variable name [CONSTANT] scalar data type [:= value];]
[collection name [CONSTANT] collection data type [:= constructor] ;]
[object name [CONSTANT] object data type [:= constructor];]

[TYPE record structure IS RECORD
(field name data type

[, field name data type

L ... 11051

[CURSOR cursor name
[(parameter name data type
[, parameter name data type
[, ... 111 1s

select statement;]

[TYPE ref cursor IS REF CURSOR [RETURN { catalog row | record structure }];]
[user exception name EXCEPTION;
[PRAGMA EXCEPTION INIT (user exception name,-20001) ;1]

[FUNCTION function name

[(parameter [IN] [OUT] [NOCOPY] sgl data type | plsgl data type
[, parameter [IN] [OUT] [NOCOPY] sgl data type | plsgl data type
[, ... 111

RETURN { sqgl data type | plsqgl data type }

[DETERMINISTIC | PARALLEL_ ENABLED]

[PIPELINED]

[RESULT CACHE [RELIES ON (table name) 11];]

[PRAGMA RESTRICT REFERENCES ({ DEFAULT | function name }

, option [, option [, ... 11); 1]
[PROCEDURE procedure name
[(parameterl [IN] [OUT] [NOCOPY] sgl data type | plsqgl data type
[, parameter2 [IN] [OUT] [NOCOPY] sgl data type | plsgl data type

[, parameter(n+1) [IN] [OUT] [NOCOPY] sgl data type | plsgl data typel)];]
END package_ name;

Z= NOTE

W The OR REPLACE clause is very important. Without it, you must drop
the package specification before attempting to re-declare it.

Definer rights packages use an AUTHID value of DEFINER, while invoker rights packages use
an AUTHID value of CURRENT USER. Appendix A describes definer and invoker rights in more
detail, and they’re touched on in the “Schema-Level Programs” sidebar a bit later in this chapter.

Chapter 9: Packages 357

The EDITIONABLE clause lets you create multiple copies of the same package in the database
at the same time. These EDITIONABLE packages only apply to certain editions of the database,
and they enable virtually zero-downtime upgrades of the database. You should check the
Oracle Database Advanced Application Developer’s Guide for more information on editions in
the Oracle Database 11g Release 2 and Oracle Database 12c¢ release.

The ACCESSIBLE BY clause lets you white list a package. White listing limits those in the list
as the only authorized callers of public functions and procedures. White listing also extends itself
to public variables and data types. Refer to Chapter 2 for coverage on white listing as a new feature.
A package specification is white listed like this:

@] SQL> CREATE OR REPLACE PACKAGE small_one
2 ACCESSIBLE BY
(FUNCTION video.gateway
, PROCEDURE video.backdoor
, PACKAGE video.api
, TYPE video.hobbit) IS
FUNCTION add
(1v_a NUMBER
, 1lv.b NUMBER) RETURN NUMBER;
END small one;

/

H O LV oo Jo U W

B

You use the ACCESSIBLE BY clause only in package specifications, as shown on lines 2
through 6. Waiting until the “Package Body” section to introduce the small_one package body
(or implementation) would be a bit disjointed, so here’s the package body for the small one
package:

g SQL> CREATE OR REPLACE PACKAGE BODY small one IS
2 FUNCTION add
(1v_a NUMBER
, 1lv.b NUMBER) RETURN NUMBER IS
BEGIN
RETURN 1lv_a + 1v_b;
END add;
END small one;
/

W W J o0 Ul b W

Note the absence of an ACCESSIBLE BY clause from the package body declaration. You can
then create the gateway function to call the small one.add function. The function compiles
because the small one package specification includes the gateway function on its white list.

The gateway function takes two parameters and passes them through to the white-listed add
function, as you can see in the following implementation of the gateway function:

7 SQL> CREATE OR REPLACE FUNCTION gateway

2 (pv_a NUMBER

3 , pv_b NUMBER) RETURN NUMBER IS
4 BEGIN

5 RETURN small one.add(pv_a, pv_b);
6 END;

7/

358 Oracle Database 12¢ PL/SQL Programming

You can test the whole thing with the following anonymous block program:

g SQL> BEGIN

2 dbms_output.put line(gateway(2,2)) ;
3 END;
4/

The call to the gateway function passes in two 2s and gets back a 4.

Serially Reusable Precompiler Directive

The SERIALLY REUSABLE PRAGMA (precompiler directive or instruction) can only be used in a
package context. You must use it in both the package specification and the body. This practice
differs from the PRAGMA instructions covered in previous chapters for exceptions, functions, and
procedures. The SERIALLY REUSABLE PRAGMA is important when you want to share variables
and cursors because it guarantees their starting state each time they’re called.

The CONSTANT qualifier lets you designate variables as read-only and static variables. While
not mentioned in earlier chapters, you can also designate any variable as a CONSTANT in any
anonymous or named block. A constant can’t be used as an assignment target in any package where
it is defined. Constants become more important when you share them through package specifications.

NOTE

You cannot use package variables as assignment targets when theyre
defined as constants. Any attempt to assign a value to a constant raises
a PLS-00363 exception.

Package exceptions are helpful development tools because they can be referenced by other
program units. All you need do to use a package exception in other programs is prepend the
package name and component selector to the exception.

For example, you would declare an exception like

g sample exception EXCEPTION;
PRAGMA EXCEPTION INIT (sample exception,-20003);

Chapter 7 demonstrates how you can leverage exceptions. You declare them in packages just
as you do in stand-alone functions and procedures, or anonymous blocks.

The section “System Reference Cursors” in Chapter 4 only discusses strongly and weakly
typed reference cursors. There, the chapter covers strongly typed reference cursors as data types
anchored to a catalog object, like a table or view. Package specifications let you share record type
definitions with other PL/SQL blocks. This feature lets you share record types with other PL/SQL
blocks and anchor reference cursors to package-defined record types.

The nested function definition also shows the potential for pipelined and cached result sets.
You should remember to use a collection as the return type of pipelined functions. If you forget,
the compilation cycle raises a PLS-00630 exception stating that you must return a supported
collection.

NOTE
i\
* The cached result set feature works for stand-alone (schema-level)
functions but doesn’t work for functions inside packages.

Chapter 9: Packages 359

Schema-Level Programs

Stored functions, procedures, packages, and objects are schema-level programs. Only
schema-level programs can be defined as programs with definer rights or invoker rights. The
default model of operation is definer rights, which means the code runs with the permissions
available to the owner of the schema. You can define a schema-level program as an invoker
rights model by including the AUTHID as CURRENT USER. An invoker rights model runs
with the permissions of the schema that calls the component.

The definer rights model runs with the privileges of the owning schema and is best
suited for a centralized computing model. The AUTHID as DEFINER sets a schema-level
program as a definer rights model, but it is unnecessary because that’s the default. The
invoker rights model requires you to maintain multiple copies of tables or views in different
schemas or databases.

Package specifications define packages. The package body only implements the declaration
from the package specification. The package specification is the schema-level program. You
can define a package as definer rights or invoker rights, but all components of the package
inherit a single mode of operation.

You raise a PLS-00157 exception when try to set the mode of operation for functions
and procedures when they’re inside packages. Functions and procedures defined inside
packages are not schema-level programs. They’re actually nested components of packages.
They inherit the operational mode of the package.

The sidebar “Backward Compatibility Issues for Functions” in Chapter 8 includes a table that
covers the precomplier options that restrict function performance. The package specification
introduces a DEFAULT mode, which means apply the limitations to all functions defined in the
package. Again, these precomplier options that restrict function behaviors and the TRUST option
are intended more for backward compatibility than for new development.

Variables

Packages are non-serially reusable by default. This means that a second user isn’t guaranteed the
same package after a first user calls a package. The default works well when you don’t declare
shared variables or cursors in a package specification because the functions and procedures are
reusable. At least, they're reusable when they don’t depend on package variables. Moreover, you
should always make packages serially reusable when they contain shared variables.

You define a package as serially reusable by placing the SERIALLY REUSABLE PRAGMA in
the package specification, as shown next. The PRAGMA changes the basic behavior of package
variables. A serially reusable package creates a new (fresh) copy of the package when it is called
by another program unit, whereas a default (non—serially reusable) package reuses variables.

=1 PRACMA SERIALLY REUSABLE;

While you declare variables like any other anonymous or named block, they are not hidden
inside the black box. Package-level variables are publicly accessible from other PL/SQL programs.
This means package-level variables are public or shared variables. They are also subject to change
by one or more programs. The duration of package-level variables varies in any session. The length

360 Oracle Database 12c PL/SQL Programming

of time can extend through the life of a connection or can be shortened when other packages
displace it in the SGA. The older and less-used packages can age out of the SGA because of how
the least-used algorithm works. The least-used algorithm acts more or less like a garbage collector
for the database. It is very similar to the garbage collector in a JVM (Java Virtual Machine).

Enabling other program units to change package-level variables generally isn’t a good
practice. In fact, it couples the behavior of two or more programs on something that can change
state unexpectedly. As a rule of thumb, you should avoid public variables. It's a better coding
practice to implement package variables inside the package body, which makes them behave like
protected attributes in OOPLs such as C++, C#, or Java.

You can access shared constants or variables from package specifications. Constants have
fixed values whether you declare the package as serially reusable or non-serially reusable.
Variables don’t have a fixed value in either case. A serially reusable package guarantees the initial
values of variables because a call to the package always gets a new copy of the package. A non-
serially reusable package doesn’t guarantee the initial value because it can’t. A non-serially
reusable package variable returns either the initial value or last value of a variable. The last value
is returned when the package still resides in the SGA from a prior call in the same session.

The following example creates a shared variables package specification and demonstrates
the behavior of a non—serially reusable package specification. The package defines a constant and
a variable. You can use the package specification to test the behavior of shared variables.

g SQL> CREATE OR REPLACE PACKAGE shared IS

2 1v_protected CONSTANT NUMBER := 1;
3 pv_unprotected NUMBER := 1;
4 END shared;

5 /

The following change unprotected procedure changes the state of the package-level
variable and then prints the 1v_unprotected variable value. It takes one formal parameter,
which can be any number.

g SQL> CREATE OR REPLACE PROCEDURE change unprotected
2 (pv_value NUMBER) IS

3 /* Declare the initial package variable value. */
4 1lv_package var NUMBER := shared.lv unprotected;
5 /* Define the unit to run in a discrete session. */
6 PRAGMA AUTONOMOUS_ TRANSACTION;
7 BEGIN
8 shared.lv_unprotected := shared.lv_unprotected + pv_value;
9 dbms_output.put line(
10 'Calls ['||pv_valuel||'] + [']|]|lv_package var||']"'
11 || * = ['||shared.lv_unprotected||']");
12 END change unprotected;
13 /
NOTE

‘\ You can access package specification variables from PL/SQL blocks
but not from SQL commands.

Chapter 9: Packages 361

Line 4 captures the value from the package-level variable before reassigning it a value on
line 8. Lines 9 through 11 print the output as the number to add, the initial value of the 1v_
unprotected package-level variable, and the new value of the 1v_unprotected package-
level variable. You can test the durability of the shared package-level variable with the following
anonymous block program. It calls the change_unprotected function four times.

g SQL> BEGIN

2 FOR 1 IN 1..4 LOOP
3 change unprotected (i) ;
4 END LOOP;
5 END;
6 /
It prints
g Calls [1] + [1] = [2]

Calls [2] + [2] = [4]

Calls [3] + [4] = [7]

Calls [4] + [7] = [11]

You should note that number to add increments by one, and the initial value starts at 1 and
becomes the new_value the next time you call the change_unprotected function. This type of
incrementing continues until the package ages out of the SGA, or you switch connections.

You use the following command to reset the shared variables package to age out of the
SGA:

7 SQL> ALTER PACKAGE shared variables COMPILE SPECIFICATION;

The procedure always returns 3 when you redefine it as serially reusable. This is true because
each call to the package gets a fresh copy. Serially reusable packages re-initialize the values of
shared variables. The only difference between a serially reusable variable and a constant is that a
constant can never change its value, while the variable can. The change is lost on any subsequent
call to the package when the package is serially reusable. As a rule of thumb, package
specification variables should always be constants.

Types

There are two generalized types that you can declare in packages: static data types and dynamic
data types. Data types are typically PL/SQL structures, collections, reference cursors, and cursors.
All of these can be dynamic or static data types. They are dynamic when their declaration anchors
their type to a row or column definition. You use the $ROWTYPE to anchor to a row and the
$TYPE to anchor to a column, as qualified in the “Attribute and Table Anchoring” section of
Chapter 3. Types are static when they rely on explicitly declared SQL data types, such as DATE,
INTEGER, NUMBER, or VARCHAR2.

As a general rule, package specifications are independent of other schema-level objects.
You build dependencies when you anchor types declared in package specifications to catalog
objects, like tables and views. If something changes in the dependent table or view, the package
specification becomes invalid. As discussed later in the chapter, in the section “Managing Packages
in the Database Catalog,” changes in package specifications can create a cascade reaction that
invalidates numerous package bodies and stand-alone schema-level programs.

362 Oracle Database 12¢ PL/SQL Programming

Pseudotypes or Attributes

The $ROWTYPE and $TYPE act as pseudotypes because they inherit the base catalog type
for a table or column, respectively. More importantly, they implicitly anchor PL/SQL
variable data types to the database catalog, shared package cursors, or local cursors. They
are also known as attributes because they’re preceded by the attribute indicator (the %
symbol). The important point to remember is that these attributes inherit a data type and
anchor a variable’s data type to the database catalog.

Beyond the dynamic or static condition of package types, a shared cursor is a package cursor.
Shared cursors are dynamic insofar as they return different data sets over time. Other package data
types don't inherit anything beyond the default values that may be assigned during their declaration.

You can use any PL/SQL record type or collection type that you declare in a package
specification as a formal parameter or function return data type of a named PL/SQL block. You
can’t use these PL/SQL data types in SQL statements. PL/SQL blocks that reference package-level
record and collection types are dependent on the package. If the package specification becomes
invalid, so do the external program units that depend on the package declarations.

Chapter 8 contains an example using this technique in the “PIPELINED Clause” section. There
it declares a pipelined package specification that contains a record type and a collection type.
The collection type is dependent on the record structure. The stand-alone p£ pipelined function
returns an aggregate table to the SQL environment. The stand-alone function uses the package-
level collection type, which implicitly relies on the package-level record structure. This example
demonstrates how you can use record and collection types found in package specifications in
other PL/SQL blocks.

Declaring shared cursors in the package specification anchors a cursor to the tables or views
referenced by its SELECT statement. This makes the package specification dependent on any
referenced tables or views. A change to the tables or views can invalidate the package
specification and all package bodies that list the invalid specification as a dependent.

Shared cursors can be queried simultaneously by different program units. The first program
that opens the cursor gains control of the cursor until it is released by a CLOSE cursor command.
Prior to Oracle Database 11g, these shared cursors were not read consistent and required that
you declare the package serially reusable to ensure they performed as read-consistent cursors.
Any attempt to fetch from an open shared cursor by another process is denied immediately. An
ORA-06511 ‘cursor already open’ exception should be thrown, but the error message can be
suppressed when the calling program runs as an autonomous transaction. Autonomous
transactions suppress the other error and raise an ORA-06519 exception. Unfortunately, PL/SQL
doesn’t have a WAIT n (seconds) command syntax that would allow you to wait on an open
cursor. This is probably one reason some developers avoid shared cursors.

The following demonstrates a shared cursor package specification definition:

=1 SQL> CREATE OR REPLACE PACKAGE shared types IS
2 CURSCR item cursor IS

3 SELECT i.item id

4 , i.item title

5 FROM item 1i;

6 END shared cursors;

7

/

Chapter 9: Packages 363

You can then access the shared cursor in an anonymous or named block, as follows:

g SQL> BEGIN

2 FOR i IN shared types.item cursor LOOP

3 dbms_output.put line('['||i.item id||']['|]|i.item title]||']");
4 END LOOP;

5 END;

6 /

= NOTE

y

You can also reference any package specification collection type by
prepending the package name and component selector.

There’s the temptation to use a reference cursor defined by a record structure. You may choose
that development direction because you don’t want to create a view. The following declares a
strongly typed PL/SQL-only reference cursor:

=1 SOL> CREATE OR REPLACE PACKAGE shared types IS
2 CURSOR item cursor IS

3 SELECT i.item id

4 , i.item title

5 FROM item i;

6 TYPE item type IS RECORD

7 (item_id item.item id%TYPE -- Anchored to the data catalog.
8 , item title item.item title%TYPE); -- Anchored to the data catalog.
9 END shared types;
0 /

You can now use the reference cursor but not with the package-level cursor. Reference cursors
only support explicit cursors. You can test the shared package-level record structure and cursor by
first creating a SQL session-level (or bind) variable, like

g SQL> VARIABLE refcur REFCURSOR

Then, you can run the following anonymous block program:

=1 SQL> DECLARE
2 TYPE package typed IS REF CURSOR RETURN shared types.item type;

quick PACKAGE TYPED;
BEGIN

OPEN quick FOR

SELECT item id, item title FROM item;

:refcur := quick;

END;

/

0w W J o0 Ul B W

The package typed variable uses the package specification data type to create a strong
reference cursor that is dependent on a package-level data type as opposed to a schema-level
table or view. The record structure is a catalog object declared in the context of the package.

364 Oracle Database 12c PL/SQL Programming

The anonymous block returns the cursor results into the bind variable. You can query the bind
variable reference cursor as follows:

g1 SQL> SELECT :refcur FROM dual;

The query will return the results from the explicit query in the FOR clause. You should note
that OPEN reference cursor FOR sqgl_statement; fails if you change the query so that
it returns a different set of data types or columns.

NOTE

The substitution of a dynamic reference for a literal query raises a
PLS-00455 exception, which is “cursor such-and-such cannot be
used in a dynamic SQL OPEN statement.”

Shared record structures, collections, and reference cursors are the safest types to place
in package specifications. They become accessible to anyone with the EXECUTE privilege on
the package, but they aren’t part of the output when you describe a package. As mentioned in the
beginning of the “Package Specification” section, you must query the source to find the available
package specification types.

Components: Functions and Procedures

The components in package specifications are functions or procedures. They have slightly different
behaviors than their respective schema-level peers. Package specification functions and procedures
are merely forward-referencing stubs. They define the namespace for a function or procedure and
their respective signatures. Functions also define their return types.

The package specification information is recorded in the CDB_, ALL_, DBA , and USER_
ARGUMENTS catalog views. These catalog views are covered in the “Checking Dependencies”
subsection later in this chapter.

You define a function stub as follows:

g FUNCTION a function
(a NUMBER := 1
, b NUMBER) RETURNS NUMBER;

You define a procedure stub like this:

g PROCEDURE a procedure
(a NUMBER := 1
, b NUMBER) ;

The sample declarations assign a default to the first formal parameter, which makes it optional.
When there’s an optional parameter before mandatory parameters, you need to use named notation.
The package specification is also where you provide any PRAGMA instructions for package-level
functions and procedures. Two PRAGMA instructions can apply to either the whole package or
all functions in a package. The SERIALLY REUSABLE precomplier instruction must be placed
in both the package specification and the body. The RESTRICT REFERENCES precomplier
instruction applies to all functions when you use the keyword DEFAULT instead of a function name.

Chapter 9: Packages 365

The following precomplier instruction restricts the behavior of all functions in the package
and guarantees they can’t write any database state:

=1 SQL> CREATE OR REPLACE PACKAGE financial IS
2 FUNCTION fv
(current NUMBER, periods NUMBER, interest NUMBER) RETURN NUMBER;
FUNCTION pv
(future NUMBER, periods NUMBER, interest NUMBER) RETURN NUMBER;
PRAGMA RESTRICT REFERENCES (DEFAULT, WNDS) ;
END financial;

/

O 0w O Ul b W

Chapter 8 contains the implementation of the £v and pv functions declared in the package
specification. They don’t write data states, and their implementations would succeed in a package
body.

Review Section
This section has described the following points about the package specification:

B Package specifications publish the public functions and procedures of the package,
but package specifications don’t publish the package’s user-defined public variables
and data types.

B Package variables and user-defined data types aren’t visible without physically
inspecting the package specification stored in the data catalog.

B You can use the CDB_, ALL , DBA , and USER_SOURCE administrative views to see
the source of any package’s specification, provided it isn’t wrapped (see Appendix F).

B You can restrict package specifications by limiting the package to an edition or
by white listing which named blocks can call the package’s public functions and
procedures.

B Packages are OOPL components. Packages let you overload functions and procedures,
and they maintain public variable state during the scope of a session or until they age
out of the database’s SGA.

B You must use the SERIALLY REUSABLE precompiler instruction to guarantee the
state of public variables and data types. (As a word of advice, it’s a bad practice in
OOPLs to declare public variables.)

Package Body

A package body contains both public and private parts. Public parts are defined in the package
specification. Private parts are declared and implemented only in the package body.

You must implement all public functions and procedures in a package body. Public functions
and procedures are those declared in the package specification as function and procedure
prototypes. When you implement a package body, you must guarantee that public function and
procedure signatures match exactly with their prototypes. That means that all the parameters in
the parameter list must match the variable name, data type, and any default value found in their
respective prototype.

366 Oracle Database 12¢ PL/SQL Programming

Package bodies also include private variables, data types, functions, and procedures. You're at
liberty to implement private functions and procedures as you like.

NOTE

When migrating an obsolete Oracle 9i database, you need to know
that formal parameters declared in the specification weren’t enforced
in the package body in Oracle 9i Database. This means you’ll need
to provide them manually to migrate old PL/SQL code forward to
supported versions of Oracle Database.

The next four subsections discuss the prototype features of a package body and how you can
implement variables, types, and components in your package bodies. They point out changes in
behavior between serially reusable packages and non—serially reusable packages. As mentioned,
packages are non-serially reusable by default. As in the “Package Specification” section earlier,
types are subdivided into structures, cursors, and collections.

Prototype Features

The package body prototype is very similar to the package specification prototype. The package
body can declare almost everything that the specification sets except two things. You can't
reference the new Oracle Database 12c ACCESSIBLY BY clause inside the package body,
because it’s only allowed in the package specification. You can’t define PRAGMA instructions for
functions inside a package body. Any attempt raises a PLS-00708 error that says you must put
them in the package specification.

You can use EXCEPTION INIT PRAGMA instructions for package-level exceptions, provided
they’re unique from those declared in your package specification. You can also override a variable
that is declared in the package specification. You do this by declaring the variable again in the
package body. When you do this, you make both copies of this variable inaccessible to your
package body. Any reference inside a package body to the doubly declared variable raises a
PLS-00371 exception when you attempt to compile the package body. The exception tells you
that at most one declaration for the variable is permitted. This exception indicates not only that
Oracle didn’t intend users to take advantage of this behavior, but that it may actually be a bug.

The prototype for a package body follows:

@ CREATE [OR REPLACE] PACKAGE package name
[EDITIONABLE | NONEDITIONABLE] IS
[PRAGMA SERIALLY REUSABLE;]

[variable name [CONSTANT] scalar data type [:= value];]
[collection name [CONSTANT] collection data type [:= constructor];]
[object name [CONSTANT] object data type [:= constructor];]

[TYPE record structure IS RECORD
(field name data type
[, field name data type
L1171

[CURSOR cursor_name
[(parameter name data type

Chapter 9: Packages

[, parameter name data type
L, ...11)1 18

select_ statement;]

367

[TYPE ref cursor IS REF CURSOR [RETURN { catalog row | record structure }];]

[user exception name EXCEPTION;
[PRAGMA EXCEPTION INIT (user exception name,-20001) ;1]

-- This is a forward-referencing stub to a function implemented later.

[FUNCTION function name

[(parameter [IN] [OUT] [NOCOPY] sgl data type | plsgl data type
[, parameter [IN] [OUT] [NOCOPY] sqgl data type | plsgl data type
[, ...)]

RETURN { sgl data type | plsgl data type }

[DETERMINISTIC | PARALLEL ENABLED]

[PIPELINED]

[RESULT _CACHE [RELIES ON (table name) 11;]

-- This is a forward-referencing stub to a procedure implemented
[PROCEDURE procedure name

[(parameter [IN] [OUT] [NOCOPY] sgl data type | plsgl data type
[, parameter [IN] [OUT] [NOCOPY] sgl data type | plsgl data type
[, ...)11

[FUNCTION function name

[(parameter [IN] [OUT] [NOCOPY] sgl data type | plsgl data type
[, parameter [IN] [OUT] [NOCOPY] sgl data type | plsgl data type
[, ... 111

RETURN { sgl data type | plsgl data type }

[DETERMINISTIC | PARALLEL ENABLED]

[PIPELINED]
[RESULT CACHE [RELIES ON (table name)]] IS
[PRAGMA AUTONOMOUS TRANSACTION;] -- Check rules in Chapter
some_declaration statement; -- Check rules in Chapter
BEGIN
some_execution statement; -- Check rules in Chapter
[EXCEPTION
WHEN some_exception THEN
some exception handling statement;] -- Check rules in Chapter

END [function name] ;]

[PROCEDURE procedure name
[(parameter [IN] [OUT] [NOCOPY] sqgl data type | plsgl data type
[, parameter [IN] [OUT] [NOCOPY] sgl data type | plsgl data type

[, ... 111 18
[PRAGMA AUTONOMOUS_TRANSACTION;] -- Check rules in Chapter
some_declaration statement; -- Check rules in Chapter

BEGIN
some _execution statement; -- Check rules in Chapter

later.

368 Oracle Database 12c PL/SQL Programming

[EXCEPTION
WHEN some exception THEN
some exception handling statement;] -- Check rules in Chapter 7.
END [procedure name] ;]
END [package name] ;
/

You must include the SERIALLY REUSABLE PRAGMA (precomplier directive) in the package
body if the package specification uses it. This practice differs from the PRAGMA instructions
covered earlier.

Variables

Package-level variables declared in package bodies differ from those declared in package
specifications. You can’t access package-level variables outside of the package. That's why they’re
sometimes called protected or private. Only functions and procedures published by the package
specification can access package-level variables. This makes these variable very much like
instance variables in an OOPL like Java, which would make them private variables. At least,
package-level variables retain their state from the point of the first call to the package until the
end of the session or they age out of the SGA.

Packages act like classes, and package functions and procedures act like methods in OOPL
classes. In that vein, published functions and procedures are public, package-level functions and
procedures are protected (or limited to the package scope), and local functions and procedures
are private. Package-level variables are called protected and private interchangeably by developers,
but they should be considered private to the package and protected to the functions and
procedures of the package.

The following package specification creates a function and a procedure. The get function
returns the value of a package body variable. The set procedure lets you reset a package body
variable’s value. This package is non-serially reusable, so it retains its variable values until the
package ages out of the SGA.

=1 SQL> CREATE OR REPLACE PACKAGE package variables IS
2 /* Declare package components. */
3 PROCEDURE set (value VARCHAR2) ;
4 FUNCTION get RETURN VARCHAR2;
5 END package variables;
6 /

Package specifications don’t know which private components exist in package bodies. The
implementation details of private components are not visible outside of the package body. Public
functions and procedures can access any private component, such as private variables, data types,
functions, and procedures. Other PL/SQL programs can also call any of the public functions and
procedures. At least, other programs can call them if the programs are granted the EXECUTE
privilege on the package or are included in the white list of authorized callers.

Package bodies declare private variables, data types, functions, and procedures. Any public
function or procedure can access and use any of the private components because they share
the same implementation scope. Private functions and procedures also can call other private
functions and procedures. In both cases, functions and procedures in a package body can call

Chapter 9: Packages 369

other functions and procedures without prepending the package name and component selector (.).
However, in some circles, it’s considered a good practice to include the package name before
calls to private functions and procedures. From my perspective, it certainly avoids ambiguity.
Likewise, you can use the package name and component selector to qualify local or private variables
and data types.

The package body implements the previous package specification as follows:

=1 SOL> CREATE OR REPLACE PACKAGE BODY package variables IS

2 /* Declare package scope variable. */
3 variable VARCHAR2 (20) := 'Initial Value';
4 /* Implement a public function. */

5 FUNCTION get RETURN VARCHAR2 IS

6 BEGIN

7 RETURN variable;

8 END get;

9 /* Implement a public procedure. */
10 PROCEDURE set (value VARCHAR2) IS
11 BEGIN
12 variable := value;
13 END set;
14 END package variables;

15/

The get function returns the package-level variable. The set procedure resets the package-
level variable. After you compile the program, you can test the behavior by declaring a session-
level (bind) variable. Call the get function to return a value into the bind variable. You can then
query the bind variable:

=1 SQL> VARIABLE outcome VARCHAR2 (20)
SQL> CALL package variables.get () INTO :outcome;
SQL> SELECT :outcome AS outcome FROM dual;

The output is

=1 OUTCOME

Initial Value

Execute the set procedure to reset the variable’s value. Call the get function again before
you requery the bind variable. The test results are

g SQL> EXECUTE package variables.set ('New Value') ;
SQL> CALL package variables.get () INTO :outcome;
SQL> SELECT :outcome AS outcome FROM dual;

The output is

g OUTCOME

New Value

370 Oracle Database 12c PL/SQL Programming

If you rerun the package variables get function in the same session, it works differently.
You would print “New Value” first, not “Initial Value,” because the package hasn't aged out of
the SGA.

A CREATE OR REPLACE DDL command replaces a package specification only when there’s
a change between the original package specification and the new package specification. Otherwise,
the DDL command simply skips the process. You can change the package body’s implementation
without altering the status or definition of the package specification.

You can force a change and refresh variables by changing sessions, or by running an ALTER
command to recompile the package specification. After recompilation, all variables are returned
to their initial values. You can alter the package before rerunning the script and see the same
results shown previously.

The syntax to recompile only a package specification is

=1 ALTER PACKAGE package variables COMPILE SPECIFICATION;

Only local variables, those declared in functions and procedures, have a fresh value each
time you call them. That's because they don’t retain their values in between calls.

If you change the package from non-serially reusable to serially reusable, the test results
change. Each call to a serially reusable package body gets a new copy of both the package
specification and the body. The package-level variable is always the same.

NOTE
‘\ You can't call a serially reusable package from a SELECT statement.

As a rule, you should consider declaring packages as non—serially reusable libraries. If you
adopt that rule, you should avoid public variables. When you declare public variables, you invite
other programs to couple their behavior by using them.

If you must declare public variables (and I'd love to see the use case that supports this), you
should declare them only as constants in the package specification. If you want to make your
packages cohesive (independent) and avoid coupling (dependency), you should declare package
variables in the package body. Alternatively, you can declare local variables inside both public
and private functions and procedures.

Ultimately, all package variables should have protected or private access in packages.
Although PL/SQL doesn’t have formal access modifiers like those in C++, C#, and Java, variable
access is set by the following rules:

B Variables declared in a package specification are public access, which means any other
PL/SQL code module may use them.

B Variables declared in the package body are protected access, which means you limit the
scope of access to subroutines of the package.

B Variables declared in the declaration block of the subroutines are local or private to the
subroutine where they’re declared, which means only that subroutine can access them.

Some developers who come from a business perspective of “let’s get it done quickly” don’t
adhere to these guidelines. Unfortunately, packages that don’t maximize cohesion and minimize
coupling are no better than stand-alone functions and procedures.

Chapter 9: Packages 371

Singleton Design Pattern

A Singleton design pattern lets you construct only one instance of an object. It guarantees
any subsequent attempt to construct an instance fails until the original object instance is
discarded. This pattern is widely used in OOPLs, such as C++, C#, and Java.

You can guarantee a single instance of a package in any session, too. To do so, you simply
embed a call to a locally scoped function or procedure as the first step in all published
functions and procedures. The locally scoped function or procedure holds a local variable
that should match a package-level control variable. If the values match, the local function
or procedure changes the package-level variable to lock the package.

You also need another locally scoped function or procedure as the last step in all
published functions and procedures. The last step resets all package variables to their initial
state. The easiest way to accomplish this is to write a procedure that resets the default values
for package variables. You call the resetting procedure as the last statement in your published
function or procedure.

Don't forget to reset the control variable with the other variables. If you forget to reset
the control variable, the package will be locked until the end of the session or until it ages
out of the SGA.

Types

As with the package specification, you can declare dynamic or static data types in package bodies.
Data types are typically PL/SQL structures, collections, reference cursors, and cur