

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM /

®

Oracle Database 12c
PL/SQL Programming

Michael McLaughlin

New York Chicago San Francisco
Athens London Madrid Mexico City
Milan New Delhi Singapore Sydney Toronto

00-FM.indd 1 12/17/13 4:07 PM

Copyright © 2014 by McGraw-Hill Education (Publisher). All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without the prior written permission of publisher, with
the exception that the program listings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

ISBN: 978-0-07-181244-3

MHID: 0-07-181244-X

e-book conversion by Cenveo® Publisher Services

Version 1.0

The material in this e-book also appears in the print version of this title: ISBN: 978-0-07-181243-6,

MHID: 0-07-181243-1

McGraw-Hill Education e-books are available at special quantity discounts to use as premiums and sales
promotions, or for use in corporate training programs. To contact a representative, please visit the Contact Us
pages at www.mhprofessional.com.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. All other trademarks are the property of their
respective owners, and McGraw-Hill Education makes no claim of ownership by the mention of products that contain
these marks.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle
Corporation and/or its affiliates.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill Education
does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or
omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any
information contained in this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to
store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create
derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the
work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE
WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained
in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor
its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or
for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed
through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental,
special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of
them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

eBook 243-1cr_pg.indd 1 12/17/13 4:26 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / iii

To Lisa, my eternal companion, inspiration, wife,
and best friend; and to Sarah, Joseph, Elise, Ian, Ariel,
Callie, Nathan, Spencer, and Christianne—our terrific,

heaven-sent children. Thank you for your constant support,
patience, and sacrifice that made writing

yet another book possible.

00-FM.indd 3 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / iv

About the Author
Michael McLaughlin is a professor at BYU–Idaho in the Computer Information Technology
Department of the Business and Communication College. He is also the founder of McLaughlin
Software, LLC, and is active in the Utah Oracle User’s Group. He is the author of eight other
Oracle Press books, such as Oracle Database 11g & MySQL 5.6 Developer Handbook, Oracle
Database 11g PL/SQL Programming, and Oracle Database 11g PL/SQL Workbook.

Michael has been writing PL/SQL since it was an add-on product for Oracle 6. He also writes
C, C++, Java, Perl, PHP, and Python.

Michael worked at Oracle Corporation for over eight years in consulting, development, and
support. While at Oracle, he led the release engineering efforts for the direct path CRM upgrade
of Oracle Applications 11i (11.5.8 and 11.5.9) and led PL/SQL forward compatibility testing for
Oracle Applications 11i with Oracle Database 9i. He is the inventor of the ATOMS transaction
architecture (U.S. Patents #7,206,805 and #7,290,056). The patents are assigned to Oracle
Corporation.

Prior to his tenure at Oracle Corporation, Michael worked as an Oracle developer, systems and
business analyst, and DBA beginning with Oracle 6. His blog is at http://blog.mclaughlinsoftware.com.

Michael lives in eastern Idaho within a two-hour drive to Caribou-Targhee National Forest,
Grand Teton National Park, and Yellowstone National Park. He enjoys outdoor activities with his
wife and children (six of nine of whom still live at home).

About the Contributing Author
John Harper currently works for the Church of Jesus Christ of Latter-day Saints as a principal
database engineer. He greatly enjoys working with the data warehousing, business intelligence,
and database engineers there.

John’s mentors include Michael McLaughlin, Robert Freeman, Danette McGilvary, and many
others who have spent considerable time becoming the experts in their industry. He is both awed
and inspired by their abilities and feels lucky to be associated with them.

Recently, John has had the opportunity to work closely with some of the top-notch minds in
database security. He hopes to produce a series of publications focused on Oracle products such
as Oracle Audit Vault and Database Firewall, and Oracle Data Redaction.

John enjoys Japanese martial arts. During his teenage years and early adulthood, he took
jujitsu, karate, judo, and aikido. He loves aikido and hopes to teach it one day. He would also
love to learn kyudo if he can find any spare time.

John lives with his wife of over 23 years in Northern Utah County, Utah. They have one adopted
daughter, whom they cherish and thoroughly spoil. He has been working with databases for the
past 14 years, specializing in Oracle administration, database architecture, database programming,
database security, and information quality.

About the Technical Editor
Joseph McLaughlin is an iPhone and Ruby web developer at Deseret Book in Salt Lake City, Utah.
He has extensive backend database development experience with Oracle, MySQL, and PostgreSQL.
His favorite development languages are Objective-C and Ruby.

Joseph is a recent graduate of BYU–Idaho with a degree in Computer Information Technology.
While a college student and independent consultant, Joseph designed, developed, and deployed
four mobile applications for the iPhone or iPod Touch.

Aside from programming, Joseph enjoys playing basketball and watching the Boston Red Sox
win, especially when they win the World Series.

00-FM.indd 4 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / v

Contents at a Glance

PART I
Oracle PL/SQL

 1 Oracle PL/SQL Development Overview . 3

 2 New Features . 17

 3 PL/SQL Basics . 43

 4 Language Fundamentals . 111

 5 Control Structures . 153

 6 Collections . 217

 7 Error Management . 261

PART II
PL/SQL Programming

 8 Functions and Procedures . 293

 9 Packages . 347

 10 Large Objects . 385

 11 Object Types . 449

 12 Triggers . 491

 13 Dynamic SQL . 545

PART III
Appendixes and Glossary

 A Oracle Database Primer . 595

 B SQL Primer . 695

v

00-FM.indd 5 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / vi

vi Oracle Database 12c PL/SQL Programming

 C SQL Built-in Functions . 893

 D PL/SQL Built-in Packages and Types . 965

 E Regular Expression Primer . 999

 F Wrapping PL/SQL Code Primer . 1019

 G PL/SQL Hierarchical Profiler Primer . 1029

 H PL/SQL Reserved Words and Keywords . 1045

 I Mastery Check Answers . 1055

 Glossary . 1085

 Index . 1101

00-FM.indd 6 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / vii

Contents

Acknowledgments . xix
Introduction . xxi

PART I
Oracle PL/SQL

 1 Oracle PL/SQL Development Overview . 3
PL/SQL’s History and Background . 4
Oracle Development Architecture . 6

The Database . 7
The PL/SQL Language . 9
The Oracle Processing Architecture . 12
Two-Tier Model . 13
N-Tier Model . 13

Summary . 15
Mastery Check . 15

 2 New Features . 17
New SQL Features . 18

Data Catalog DIRECTORY Qualifies a LIBRARY Object 19
Define Tables with Valid-Time (VT) Support . 19
Enhanced Oracle Native LEFT OUTER JOIN Syntax . 20
Default Values for Columns Based on Sequences . 20
Default Values for Explicit Null Insertion . 22
Identity Columns . 23
Increased Size Limits of String and Raw Types . 24
Pass Results from SQL Statements to External Programs 24
Native SQL Support for Query Row Limits and Offsets 26
Oracle Database Driver for MySQL Applications . 29
SQL CROSS APPLY, OUTER APPLY, and LATERAL . 29
Bequeath CURRENT_USER Views . 31

vii

00-FM.indd 7 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / viii

viii Oracle Database 12c PL/SQL Programming

New PL/SQL Features . 32
Caching of Invoker Rights Functions . 32
Ability to White List PL/SQL Program Unit Callers . 32
Native Client API Support for PL/SQL Types . 34
New PL/SQL Package UTL_CALL_STACK . 34
DBMS_UTILITY Adds EXPAND_SQL_TEXT Subprogram 34
DBMS_SQL Adds a New Formal Schema

to the PARSE Procedure . 35
PL/SQL Functions in SQL WITH Clause . 35
PL/SQL-Specific Data Types Allowed in SQL . 37
Implicit REF CURSOR Parameter Binding . 40

Supporting Scripts . 40
Summary . 41
Mastery Check . 41

 3 PL/SQL Basics . 43
Block Structure . 44

Execution Block . 44
Basic Block Structure . 45
Declaration Block . 48
Exception Block . 49

Behavior of Variables in Blocks . 50
Anonymous Blocks . 50
Nested Anonymous Blocks . 55
Local Named Blocks . 57
Stored Named Blocks . 60

Basic Scalar and Composite Data Types . 63
Scalar Data Types . 63
Attribute and Table Anchoring . 65
Composite Data Types . 68

Control Structures . 81
Conditional Structures . 81
Iterative Structures . 83

Exceptions . 92
User-Defined Exceptions . 93
Dynamic User-Defined Exceptions . 94

Bulk Operations . 95
Functions, Procedures, and Packages . 97

Functions . 97
Procedures . 99
Packages . 100

Transaction Scope . 106
Single Transaction Scope . 106
Multiple Transaction Scopes . 107

00-FM.indd 8 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM /

Contents ix

Database Triggers . 108
Summary . 109
Mastery Check . 109

 4 Language Fundamentals . 111
Lexical Units . 112

Delimiters . 112
Identifiers . 118
Literals . 119
Comments . 121

Variables and Data Types . 122
Variable Data Types . 123
Scalar Data Types . 126
Large Objects (LOBs) . 142
Composite Data Types . 144
System Reference Cursors . 147

Summary . 150
Mastery Check . 150

 5 Control Structures . 153
Conditional Statements . 154

IF Statements . 162
CASE Statements . 166
Conditional Compilation Statements . 169

Iterative Statements . 172
Simple Loop Statements . 172
FOR Loop Statements . 179
WHILE Loop Statements . 181

Cursor Structures . 185
Implicit Cursors . 185
Explicit Cursors . 190

Bulk Statements . 203
BULK COLLECT INTO Statements . 203
FORALL Statements . 208

Supporting Scripts . 213
Summary . 214
Mastery Check . 214

 6 Collections . 217
Introduction to Collections . 218
Object Types: Varray and Table Collections . 221

Varray Collections . 221
Table Collections . 225

Associative Arrays . 240
Defining and Using Associative Arrays . 241

00-FM.indd 9 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / x

x Oracle Database 12c PL/SQL Programming

Oracle Collection API . 247
COUNT Method . 250
DELETE Method . 251
EXISTS Method . 252
EXTEND Method . 253
FIRST Method . 254
LAST Method . 255
LIMIT Method . 255
NEXT Method . 256
PRIOR Method . 256
TRIM Method . 257

Supporting Scripts . 259
Summary . 259
Mastery Check . 259

 7 Error Management . 261
Exception Types and Scope . 262

Compilation Errors . 263
Runtime Errors . 266

Exception Management Built-in Functions . 274
User-Defined Exceptions . 276

Declaring User-Defined Exceptions . 276
Dynamic User-Defined Exceptions . 278

Exception Stack Functions . 281
Supporting Scripts . 287
Summary . 287
Mastery Check . 288

PART II
PL/SQL Programming

 8 Functions and Procedures . 293
Function and Procedure Architecture . 295
Transaction Scope . 302

Calling Subroutines . 303
Positional Notation . 304
Named Notation . 304
Mixed Notation . 304
Exclusionary Notation . 304
SQL Call Notation . 305

Functions . 306
Function Model Choices . 307
Creation Options . 308
Pass-by-Value Functions . 322
Pass-by-Reference Functions . 336

00-FM.indd 10 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM /

Contents xi

Procedures . 338
Pass-by-Value Procedures . 339
Pass-by-Reference Procedures . 342

Supporting Scripts . 345
Summary . 345
Mastery Check . 345

 9 Packages . 347
Package Architecture . 348
Package Specification . 354

Prototype Features . 355
Serially Reusable Precompiler Directive . 358
Variables . 359
Types . 361
Components: Functions and Procedures . 364

Package Body . 365
Prototype Features . 366
Variables . 368
Types . 371
Components: Functions and Procedures . 371

Definer vs. Invoker Rights Mechanics . 375
Managing Packages in the Database Catalog . 378

Finding, Validating, and Describing Packages . 379
Checking Dependencies . 380
Comparing Validation Methods: Timestamp vs. Signature 381

Summary . 382
Mastery Check . 382

 10 Large Objects . 385
Working with Internally Stored LOB Types . 387

LOB Assignments Under 32K . 387
LOB Assignments over 32K . 389

Reading Files into Internally Stored Columns . 398
Reading Local Files into CLOB or NCLOB Columns . 399
Reading Local Files into BLOB Columns . 402
Working with LOBs Through Web Pages . 404

Working with Binary Files (BFILEs) . 413
Creating and Using Virtual Directories . 413
Reading Canonical Path Names and Filenames . 419

Understanding the DBMS_LOB Package . 427
Package Constants . 427
Package Exceptions . 428
Opening and Closing Methods . 429
Manipulation Methods . 430
Introspection Methods . 436

00-FM.indd 11 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / xii

xii Oracle Database 12c PL/SQL Programming

BFILE Methods . 440
Temporary LOB Methods . 441
Security Link Methods . 442

Supporting Scripts . 446
The LONG to CLOB Script . 446
Manage LOBs from the File System . 446
Manage CLOB and BLOB LOBs Through the Web . 446
Manage BFILE LOBs Through the Web . 446

Summary . 446
Mastery Check . 447

 11 Object Types . 449
Object Basics . 453

Declaring Objects Types . 453
Implementing Object Bodies . 456
White Listing Object Types . 461
Getters and Setters . 463
Static Member Methods . 465
Comparing Objects . 467

Inheritance and Polymorphism . 475
Declaring Subclasses . 477
Implementing Subclasses . 478
Type Evolution . 481

Implementing Object Type Collections . 483
Declaring Object Type Collections . 483
Implementing Object Type Collections . 483

Supporting Scripts . 487
Summary . 487
Mastery Check . 488

 12 Triggers . 491
Introduction to Triggers . 492
Database Trigger Architecture . 495
Data Definition Language Triggers . 499

Event Attribute Functions . 501
Building DDL Triggers . 512

Data Manipulation Language Triggers . 515
Statement-Level Triggers . 516
Row-Level Triggers . 518

Compound Triggers . 527
INSTEAD OF Triggers . 532
System and Database Event Triggers . 536
Trigger Restrictions . 538

Maximum Trigger Size . 538
SQL Statements . 538
LONG and LONG RAW Data Types . 539

00-FM.indd 12 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM /

Contents xiii

Mutating Tables . 539
System Triggers . 540

Supporting Scripts . 541
Summary . 541
Mastery Check . 541

 13 Dynamic SQL . 545
Dynamic SQL Architecture . 547
Native Dynamic SQL (NDS) . 547

Dynamic Statements . 548
Dynamic Statements with Inputs . 550
Dynamic Statements with Inputs and Outputs . 554
Dynamic Statements with an Unknown Number of Inputs 558

DBMS_SQL Package . 560
Dynamic Statements . 561
Dynamic Statements with Input Variables . 564
Dynamic Statements with Variable Inputs and Fixed Outputs 566
Dynamic Statements with Variable Inputs and Outputs 571
DBMS_SQL Package Definition . 576

Supporting Scripts . 591
Summary . 591
Mastery Check . 591

PART III
Appendixes and Glossary

 A Oracle Database Primer . 595
Oracle Database Architecture . 596
Starting and Stopping the

Oracle Database 12c Server . 603
Unix or Linux Operations . 604
Microsoft Windows Operations . 609

Starting and Stopping the Oracle Listener . 610
Multiversion Concurrency Control . 615

Data Transactions . 616
DML Locking and Isolation Control . 619

Definer Rights and Invoker Rights . 620
Definer Rights . 620
Invoker Rights . 621

SQL Interactive and Batch Processing . 622
SQL*Plus Command-Line Interface . 622
Oracle SQL Developer Interface . 644

Database Administration . 652
Provisioning Users . 652
Using Database Constraints . 661

00-FM.indd 13 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / xiv

xiv Oracle Database 12c PL/SQL Programming

Security Hardening . 670
Data Governance . 681

SQL Tuning . 684
EXPLAIN PLAN Statement . 685
DBMS_XPLAN Package . 686

SQL Tracing . 690
Tracing Session Statements . 691
Convert Raw Trace Files to Readable Trace Files . 693

Summary . 694

 B SQL Primer . 695
Oracle SQL Data Types . 699
Data Definition Language (DDL) . 703

CREATE Statement . 704
ALTER Statement . 773
RENAME Statement . 791
DROP Statement . 792
TRUNCATE Statement . 794
COMMENT Statement . 795

Data Manipulation Language (DML) . 795
ACID Compliant Transactions . 795
INSERT Statement . 799
UPDATE Statement . 815
DELETE Statement . 829
MERGE Statement . 834

Transaction Control Language (TCL) . 841
Queries: SELECT Statements . 843

Queries that Return Columns or Results from Columns 845
Queries that Aggregate . 861
Queries that Return Columns or Results Selectively . 866

Join Results . 876
Joins that Splice Together Rows . 878
Joins that Splice Collections . 888

Summary . 891

 C SQL Built-in Functions . 893
Character Functions . 894

ASCII Function . 894
ASCIISTR Function . 895
CHR Function . 895
CONCAT Function . 896
INITCAP Function . 896
INSTR Function . 897
LENGTH Function . 897
LOWER Function . 898

00-FM.indd 14 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM /

Contents xv

LPAD Function . 898
LTRIM Function . 899
REPLACE Function . 899
REVERSE Function . 900
RPAD Function . 900
RTRIM Function . 901
UPPER Function . 901

Data Type Conversion Functions . 902
CAST Function . 902
CONVERT Function . 904
TO_CHAR Function . 905
TO_CLOB Function . 907
TO_DATE Function . 907
TO_LOB Function . 908
TO_NCHAR Function . 910
TO_NCLOB Function . 910
TO_NUMBER Function . 910

Date-time Conversion Functions . 911
ADD_MONTHS Function . 911
CURRENT_DATE Function . 911
CURRENT_TIMESTAMP Function . 912
DBTIMEZONE Function . 912
EXTRACT Function . 912
FROM_TZ Function . 913
LAST_DAY Function . 913
LOCALTIMESTAMP Function . 914
MONTHS_BETWEEN Function . 914
NEW_TIME Function . 915
ROUND Function . 916
SYSDATE Function . 916
SYSTIMESTAMP Function . 917
TO_CHAR(date) Function . 917
TO_DSINTERVAL Function . 918
TO_TIMESTAMP Function . 918
TO_TIMESTAMP_TZ Function . 919
TO_YMINTERVAL Function . 919
TRUNC(date) Function . 920
TZ_OFFSET Function . 920

Collection Management Functions . 921
CARDINALITY Function . 921
COLLECT Function . 921
POWERMULTISET Function . 925
POWERMULTISET_BY_CARDINALITY Function . 926
SET Function . 926

00-FM.indd 15 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / xvi

xvi Oracle Database 12c PL/SQL Programming

Collection Set Operators . 926
CARDINALITY Operator . 928
EMPTY Operator . 929
MULTISET Operator . 929
MULTISET EXCEPT Operator . 930
MULTISET INTERSECT Operator . 930
MULTISET UNION Operator . 931
SET Operator . 932
SUBMULTISET OF Operator . 933

Number Functions . 933
CEIL Function . 933
FLOOR Function . 934
MOD Function . 934
POWER Function . 936
REMAINDER Function . 937
ROUND Function . 938

Error Reporting Functions . 938
SQLCODE Function . 938
SQLERRM Function . 939

Miscellaneous Functions . 940
BFILENAME Function . 941
COALESCE Function . 943
DECODE Function . 944
DUMP Function . 945
EMPTY_BLOB Function . 945
EMPTY_CLOB Function . 948
GREATEST Function . 949
LEAST Function . 951
NANVL Function . 953
NULLIF Function . 953
NVL Function . 954
SYS_CONTEXT Function . 954
TABLE Function . 958
TREAT Function . 960
USERENV Function . 961
VSIZE Function . 963

Summary . 963

 D PL/SQL Built-in Packages and Types . 965
Oracle Database 11g and 12c New Packages . 966
Examples of Package Use . 974

DBMS_APPLICATION_INFO Example . 974
DBMS_COMPARISON . 979
DBMS_CRYPTO . 986
DBMS_FGA . 990
Case Study: Query Tool . 991

00-FM.indd 16 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM /

Contents xvii

Supporting Scripts . 997
Summary . 997

 E Regular Expression Primer . 999
Regular Expression Introduction . 1000

Character Classes . 1000
Collation Classes . 1003
Metacharacters . 1004
Metasequences . 1006
Literals . 1007

Regular Expression Implementation . 1007
REGEXP_COUNT Function . 1007
REGEXP_INSTR Function . 1011
REGEXP_LIKE Function . 1013
REGEXP_REPLACE Function . 1014
REGEXP_SUBSTR Function . 1015

Supporting Scripts . 1017
Summary . 1017

 F Wrapping PL/SQL Code Primer . 1019
Limitations of Wrapping PL/SQL . 1020

Limitations of the PL/SQL wrap Utility . 1021
Limitations of the DBMS_DDL.WRAP Function . 1021

Using the wrap Command-Line Utility . 1021
Using the DBMS_DDL Command-Line Utility . 1021

WRAP Function . 1022
CREATE_WRAPPED Procedure . 1026

Summary . 1028

 G PL/SQL Hierarchical Profiler Primer . 1029
Configuring the Schema . 1030
Collecting Profiler Data . 1032
Understanding Profiler Data . 1035

Reading the Raw Output . 1035
Defining the PL/SQL Profiler Tables . 1037
Querying the Analyzed Data . 1039

Using the plshprof Command-Line Utility . 1040
Supporting Scripts . 1043
Summary . 1043

 H PL/SQL Reserved Words and Keywords . 1045
Summary . 1053

 I Mastery Check Answers . 1055
Chapter 1 . 1056
Chapter 2 . 1058
Chapter 3 . 1060

00-FM.indd 17 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / xviii

xviii Oracle Database 12c PL/SQL Programming

Chapter 4 . 1063
Chapter 5 . 1065
Chapter 6 . 1067
Chapter 7 . 1069
Chapter 8 . 1071
Chapter 9 . 1074
Chapter 10 . 1076
Chapter 11 . 1078
Chapter 12 . 1080
Chapter 13 . 1082

 Glossary . 1085

 Index . 1101

00-FM.indd 18 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / xix

Acknowledgments

Many thanks go to Paul Carlstroem, Amanda Russell, Harry Popli, and the production
team that made this book a possibility. There are many unsung heroes and heroines
in the production department because they’re behind the scenes. The production

department typesets, proofreads, and gives their all to make books real, and while I don’t
know all their names, they deserve acknowledgment for their meticulous work.

Special thanks goes to Bill McManus, the copy editor. He gave an awesome effort to
keep the book consistent, well written, and well organized! Special thanks for moral and
project support to Paul Carlstroem and Amanda Russell because they were critical to my
success, especially as the project went beyond a year. Thanks to Sheila Cepero, who manages
the Oracle Publishers Program, for her help with the Oracle Database 12c beta testing cycle,
and to Lynn Snyder, who managed the Oracle Database 12c program.

Thanks to John Harper who contributed elements of Appendix A and wrote Appendix D.
John also acted as a second technical editor for the rest of the book, and his great eye for
detail certainly contributed to the quality of the book.

Thanks to Pablo Ribaldi for his contributions to Appendix A on data governance. As the
Information Governance Manager, he led the LDS Church’s Information Communication
Services team that won the Data Governance Best Practice Award from DebTech International
LLC.

Thanks to the many students and lab tutors who took an interest in this project, like Craig
Christensen, Jeremy Heiner, Matthew Mason, Alan Pynes, and Jordan Smith. Also, thanks to
Kent Jackson for reading elements of the book and providing suggestions for improvements,
and to Steve Rigby, my department chair, for his support in the project.

xix

00-FM.indd 19 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / xx

00-FM.indd 20 12/17/13 4:07 PM

This page has been intentionally left blank

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / xxi

Introduction

This book shows you how to use the PL/SQL programming language. It is full of
examples and techniques that can help you build robust database-centric applications.
Appendix A shows you the basics of what you should know as an Applications DBA

or developer, like starting and stopping the Oracle database and listener, using SQL*Plus as
the command-line interface, SQL Developer as the free cross-platform GUI interface, and
techniques for SQL tuning. Appendixes B, C, and D show you how to write SQL, use SQL
built-in functions, and use PL/SQL built-in packages. The remaining appendixes show you
how to use regular expression functions, obfuscate your PL/SQL code through wrapping it,
use the hierarchical profiler for PL/SQL, and discover reserved and keywords.

As an author, the Introduction typically is either the last thing you write or the first thing
you write. Unlike my strategy for the previous edition, this time I drafted the introduction
before writing anything else, and that helped me to make sure I stayed true to a planned
course. As indicated in my Acknowledgments page, the production staff also helps clear up
what I write, and their talent is critical to bringing a quality book into print.

The introduction covers the following:

 ■ The “Book Outline” section summarizes each chapter in a sentence or two, and
should be worth a quick look to give you an overview of how this book is structured.

 ■ The “Lexicon” section gives you the rationale for variable naming conventions in
the book and provides recommended time-saving techniques you can use when
debugging your code.

 ■ The “Data Model and Source Code to Download” section describes the basis
for the examples and tells you where to find the code that creates and seeds the
sample video store database.

xxi

00-FM.indd 21 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / xxii

xxii Oracle Database 12c PL/SQL Programming

Book Outline
The book has three parts: “PL/SQL Fundamentals,” “PL/SQL Programming,” and “Appendixes and
Glossary.” In the first two parts of the book, each major section of each chapter ends with a
“Review Section” that lists the key points presented in that section. Also, each of the chapters in
the first two parts concludes with a “Mastery Check,” containing ten true-or-false questions and
five multiple-choice questions to help you ensure that you understand the material covered in the
chapter. The answers are provided in Appendix I.

The third part, “Appendixes and Glossary,” contains primers on Oracle Database 12c, SQL,
SQL built-in functions, PL/SQL built-in packages, regular expressions, wrapping PL/SQL code,
the PL/SQL hierarchical profiler, and reserved word and keywords. As mentioned, Appendix I
provides the answers to the “Mastery Check” sections. A glossary follows the last appendix.

Part I: PL/SQL Fundamentals
 ■ Chapter 1, “Oracle PL/SQL Development Overview,” explains the history and

background of PL/SQL and describes the Oracle development architecture. The history
and background section explains how SQL is the primary interface, and how PL/SQL
extends the behavior of SQL with a built-in imperative programming language, enables
the implementation of object-relational features, and allows DBAs and developers to
exploit the power of the Oracle 12c Database. The Oracle development architecture
section covers how the SQL interface works as an interactive and call command-line
interface (CLI), and how two-tier and n-tier models work with the Oracle Database 12c
database.

 ■ Chapter 2, “New Features,” introduces the Oracle Database 12c SQL and PL/SQL new
features. This chapter assumes you have a background in the Oracle Database 11g features.
The new SQL features cover invisible and identity columns, expanded length of the
VARCHAR2 data type, and enhanced outer join operations. The new PL/SQL features
cover invoker rights result cache functions, white listing PL/SQL callers, new error stack
management features, embedding functions in the SQL WITH clause, and using local
PL/SQL data types in embedded SQL statements.

 ■ Chapter 3, “PL/SQL Basics,” explains and provides examples of basic features of the
PL/SQL programming languages. This chapter covers PL/SQL block structures, behaviors
of variables in blocks, basic scalar and composite data types, control structures, exceptions,
bulk operations, functions, procedures, packages, transaction scopes, and database
triggers. You will find examples of all basic elements of PL/SQL syntax in Chapter 3. It’s
also the best place to start if you would need a review or introduction to the basics of
how you write PL/SQL programs.

 ■ Chapter 4, “Language Fundamentals,” covers lexical units (delimiters, identifiers, literals,
and comments) and variable and data types. In Chapter 4, you learn the basic building
blocks of PL/SQL program units. You also learn what data types are available and how
you declare variables of these data types. The subsequent chapters assume you know what
data types are available and how to declare them in anonymous and named PL/SQL blocks,
which makes it an important chapter to read or pursue before digging into the core
features of the PL/SQL language.

00-FM.indd 22 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM /

Introduction xxiii

 ■ Chapter 5, “Control Structures,” describes the conditional statements, iterative statements,
cursor structures, and bulk statements. This chapter takes a complete look at IF statements
and loops. Oracle implements the IF statement or CASE statement to manage conditional
logic, and simple, FOR, and WHILE loops to manage iterative statements. The discussion
of loops qualifies guard and sentinel values, and safeguards for dynamic sentinel values.
This chapter covers how you manage cursors in loops and how you manage bulk processing
DML statements.

 ■ Chapter 6, “Collections,” shows how you can work with SQL varray and table collections,
as well as PL/SQL associative arrays (previously known as PL/SQL tables or index-by
tables). This chapter’s discussion of varray and table collections explains how you
can work with both Attribute Data Types (ADTs) and user-defined types (UDT). It also
describes the differences between how to use and work with ADT and UDT variables.
This chapter also covers how to work with PL/SQL-only associative arrays that use scalar
data types or composite data types, which may be record types or object types. This
chapter also qualifies the functions and procedures of the Oracle Collection API, and
provides examples of using these functions and procedures.

 ■ Chapter 7, “Error Management,” explains how you use exceptions in PL/SQL. This chapter
covers exception type and scope, exception management built-in functions, user-defined
exceptions, and exception stack functions. This chapter shows you how to find and solve
the typical errors that can occur when writing PL/SQL programs. This chapter also shows
you how to write exception handlers that manage unexpected runtime exceptions. You
also learn how to manage exception stacks.

Part II: PL/SQL Programming
 ■ Chapter 8, “Functions and Procedures,” explains the architecture of PL/SQL functions and

procedures, transaction scope, function options and implementations, and procedure
implementations. The architecture section covers how pass-by-value and pass-by-reference
functions and procedures work, including how to white list stand-alone functions and
procedures in the Oracle Database 12c. This chapter also covers SQL positional, named,
mixed, and exclusionary call notation. It also describes the various ways you can define
functions, like deterministic, parallel-enabled, pipelined, and result cache functions. It
shows you how to object table functions that return collections of user-defined types.
This chapter also covers how you write recursive and autonomous functions.

 ■ Chapter 9, “Packages,” explores how you can work with and use packages. This chapter
covers package architecture, specifications, and bodies. It also compares definer rights
and invoker rights mechanics, and describes how the database catalog manages the status
and validity of package specifications and bodies. This chapter reviews the concepts of
how to write forward-referencing stubs and how to overload functions and procedures.
It also shows you how to white list package specifications.

 ■ Chapter 10, “Large Objects,” shows you how to work with the BLOB, CLOB, and NCLOB
internally managed data types and the BFILE externally managed data type. This chapter
shows you how to create and work with character and binary large object that are internally
managed, and how to work with externally managed binary files.

00-FM.indd 23 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / xxiv

xxiv Oracle Database 12c PL/SQL Programming

 ■ Chapter 11, “Object Types,” covers how you work with object types. This chapter shows
you how to declare, implement, and white list object types, as well as how to implement
getters, setters, and object comparison functions. After covering those basics, this chapter
covers inheritance and polymorphism before implementing object type collections.

 ■ Chapter 12, “Triggers,” provides an introduction to database triggers and then shows you how
to understand and implement various types of triggers, including DDL, DML, compound,
instead-of, and system and database event triggers. It also introduces trigger restrictions.

 ■ Chapter 13, “Dynamic SQL” explains the basics of dynamic SQL statements. This chapter
covers Native Dynamic SQL (NDS) and the dbms_sql package. All four methods of
dynamic SQL statements are covered, such as static DDL and DML statements, dynamic
DML statements, dynamic SELECT statements with static SELECT-lists, and dynamic
SELECT statements with dynamic SELECT-lists.

Part III: Appendixes and Glossary
 ■ Appendix A, “Oracle Database Primer,” explains the Oracle Database 12c architecture,

how to start and stop the Oracle Database 12c server and the Oracle listener, Multiversion
Concurrency Control, definer rights and invoker rights, SQL interactive and batch processing,
database administration, SQL tuning, and SQL tracing.

 ■ Appendix B, “SQL Primer,” describes how to use SQL in Oracle Database 12c. This appendix
covers SQL data types, DDL statements, DML statements, TCL statements, SELECT
statements, and collection SET statements. This appendix also shows you how to unnest
queries and how to work with persistent object types.

 ■ Appendix C, “SQL Built-in Functions,” provides code complete samples that show you
how to use key SQL built-in functions of Oracle Database 12c. This appendix covers
character functions, data type conversion functions, datetime functions, collection
management functions, collection SET operators, number functions, error handling
functions, and miscellaneous functions.

 ■ Appendix D, “PL/SQL Built-in Packages and Types,” explains how to use SQL the Oracle
Database 12c. This appendix provides an introduction to new PL/SQL built-in packages
and provides some examples of key packages.

 ■ Appendix E, “Regular Expression Primer,” describes how to use regular expressions in
SQL and PL/SQL.

 ■ Appendix F, “Wrapping PL/SQL Code Primer,” shows you how to use the
create_wrapped or wrap procedures of the dbms_ddl package.

 ■ Appendix G, “PL/SQL Hierarchical Profiler Primer,” describes how to use the PL/SQL
Hierarchical Profiler. This chapter shows you how to configure the schema, collect profile
data, understand profiler output, and use the plshprof command-line utility.

 ■ Appendix H, “PL/SQL Reserved Words and Keywords,” identifies which reserved words
and keywords exist in Oracle Database 12c.

 ■ Appendix I, “Mastery Check Answers,” provides the answers to all the “Mastery Check”
sections of the chapters.

 ■ The Glossary provides definitions of the key concepts identified in the book.

00-FM.indd 24 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM /

Introduction xxv

Lexicon
There are many ways to write programs, and they generally differ between programming languages.
SQL and PL/SQL code share that commonality: they are different languages and require different
approaches. The three subsections cover, respectively, SQL lexicon, PL/SQL stored programs, and
other conventions in syntax.

SQL Lexicon
My recommendation on SQL statements is that you align your keywords on the left. That means
placing SELECT list commas and WHERE clause logical AND [NOT] or OR [NOT] syntax on
the left, because it allows you to sight read your code for errors. That recommendation is easy to
follow, but my recommendations on how to write join syntax are more complex, because you
may write joins that use ANSI SQL-89 or ANSI SQL-92. Whereas ANSI SQL-89 lets you organize
tables as comma-delimited lists, ANSI SQL-92 has you specify the type of join using keywords.

These are my suggestions on join syntax:

 ■ Always use table aliases, because they ensure you won’t run into an ambiguous column
error when the SELECT list can return two or more columns with the same name. This
can happen when you join tables that share the same column name. It’s also a good
practice to use aliases when you write a query from a single table, because you may
subsequently add another table through a join. Appendix B covers the SELECT statement
and syntax that supports this recommendation.

 ■ When using ANSI SQL-89 and comma-delimited tables, place each table on its own line
and the separating columns on the left, like SELECT list columns. This lets you sight read
your programs. This doesn’t apply to multiple-table UPDATE and DELETE statements
found in Appendix B, and you should refer to those chapters for examples.

 ■ When using ANSI SQL-92, you put the join conditions inside the FROM clause by using
either the ON subclause or the USING subclause. Two common approaches seem to work
best for most developers inside the FROM clause with the ON or USING subclause. In
small (two or at maximum three) table joins, place the ON or USING subclause after the
join on the same line. In large joins (three or more), place the ON or USING subclause
on the line below the joining statement. When joins involve multiple columns, left-align
logical AND [NOT] or OR [NOT] syntax to allow you to sight read your code. This is the
same recommendation as I made for the WHERE clause at the beginning of the section,
and it really works well generally.

 ■ ANSI SQL-92 lets you use fully descriptive keywords or use only required keywords. While
most of us would like to type the least amount of words possible, ultimately, our code
goes to support staff, and its clarity can help avoid frivolous bug reports. Therefore, consider
using INNER JOIN instead of JOIN, LEFT OUTER JOIN or RIGHT OUTER JOIN
instead of LEFT JOIN and RIGHT JOIN, and FULL OUTER JOIN instead of FULL
JOIN. I’ve shortened syntax in the book solely because the page-width constraints put a
70-character limit on code lines (or require shrinking the font, which make it less readable).

Now that I’ve written that, let me share my experience at not following syntax advice. The
advice was given to me by my instructor at IBM’s Santa Teresa Lab (now IBM’s Silicon Valley Lab)
when he taught me how to write SQL (actually SQL/DS [Structured Query Language/Data System])

00-FM.indd 25 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / xxvi

xxvi Oracle Database 12c PL/SQL Programming

in 1985. He told me to put the commas on the left and save myself hours of hunting for missing
commas. I ignored the advice and put them on the right, at the end of the line, for a couple of
months before realizing he was right. He repeated this maxim to me often that week: “Good
programming follows simple principles.”

At school now, I emphasize this advice term after term. Some students accept it and use it,
and some don’t. Those students who don’t accept it struggle with the syntax throughout the course
because they’re always trying to find that missing comma or component in their SQL statement.
SQL is not an easy thing to learn because it requires creating a spatial map of data, which isn’t a
skill all developers possess immediately. Sometimes it takes quite a while to sort through seeing
the relationships between data in a relational database. It becomes easier with practice, provided
you strive to maintain the clarity of your statements, the consistencies of your approach, and
consistent choice of using portable SQL syntax.

PL/SQL Stored Programs
PL/SQL is a fully fledged programming language. It allows you to write programs stored in the
database that manage collections of SQL statements as a complete transaction.

Variable naming conventions can be controversial in some organizations, because many
developers believe variables should be semantically meaningful. The argument against naming
conventions is that the conventions, such as prefixes, decrease code readability. This controversy
is simply a conflict of ideas. Both sides have merit, and there are always situations in which
choosing one practice over the other is logical. From my perspective, the key is finding balance
between what adds stability to the company or corporate enterprise while providing meaningful
variable names.

A Word on Tools
This book focuses on writing SQL at the command line, because that’s how it’ll work inside
your C++, C#, Java, or PHP programs, but CASE (Computer-Aided Software Engineering)
tools are nice. They help you discover syntax and possibilities, provided you don’t use them
as a crutch.

The best developers aren’t those business users who know how to talk a great game, use
all the catchwords properly, and market themselves. The best developers are folks who learn
how to solve business problems by understanding which technology truly provides the best
solution.

Those who apply good engineering skills aren’t members of an exclusive club when they
lock themselves into only using what a CASE tool provides them. That’s true because CASE
tools generally only solve the general problems through a drag-and-drop interface. Those
folks who advocate NoSQL solutions are typically those who never understood how to use a
database or how databases help meet critical day-to-day transactional business needs.

In short, use a tool to learn; don’t become a slave to it. Always ask why something works
and how it might work better. If you do, you’ll find that CASE tools are a blessing for getting
your job done, not a potentially career-limiting curse (as many have found over the past
few years).

00-FM.indd 26 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM /

Introduction xxvii

Prefix Example Description

cv cv_input_var Represents cursor parameter variables. These are pass-
by-value input parameters to cursors in PL/SQL stored
programs.

lv lv_target_var Represents local variables defined inside PL/SQL stored
programs.

pv pv_exchange_var Represents parameters to PL/SQL stored functions and
procedures. They’re not exclusively input parameters
because PL/SQL supports input and output parameters in
both stored functions and procedures.

sv sv_global_var Represents session variables. They act as global variables
for the duration of a client connection to the database.
Oracle lets you share the values in these variables between
anonymous blocks by using a colon before the variable
name (:sv_global_var) inside the block. Also known
as bind variables.

TABLE 1 . PL/SQL Variable Prefixes

Here in the book, I’ve tried to be consistent and use prefixes. In some places, I’ve opted for
semantic clarity in variable names (such as the Oracle session or bind variable :whom in Chapter 2).
I believe that using prefixes increases readability in your code, and I suggest using the prefixes in
Table 1.

Some advanced variable data types, known as composite variables, require both prefixes and
suffixes. The suffix identifies the type of composite variable. These requirements are unique to the
Oracle database. Table 2 qualifies my recommended suffixes (with a lead-in underscore) for
Oracle composite data types. Table 2 shows you long and short name versions for the suffixes.

Using suffixes for composite data types is a generally accepted practice because they are
UDTs. However, it isn’t a rule or requirement in the PL/SQL programming language.

PL/SQL is a strongly typed language with declaration, execution, and exception blocks. Blocked
programs use keywords to start and end program units, as opposed to the use of curly braces in
C++, C#, Java, and PHP. As found in the GeSHi (Generic Syntax Highlighter) libraries, PL/SQL
block keywords are in uppercase letters, and I’ve adopted that convention throughout the book.

Other Conventions
Sometimes code blocks need clarity. Line numbers are provided throughout the PL/SQL and SQL
examples for Oracle because they’re a display feature of the SQL*Plus environment.

The text conventions for the book cover highlighting, italicizing, and separating syntax. They
are qualified in Table 3.

Hopefully, these conventions make reading the book easier. You’ll also find that sidebars appear
in gray-shaded boxes throughout the book.

00-FM.indd 27 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / xxviii

xxviii Oracle Database 12c PL/SQL Programming

Suffix Description

Long Short
_ATABLE
_AARRAY

_ATAB
_AA

_ATABLE, _AARRAY, _ATAB, and _AA are used to describe
associative arrays in PL/SQL. My preference is the _ATABLE
or _ATAB suffix because the other suffixes aren’t intuitively
obvious and require documentation in your code.

_CURSOR _CUR
_C

_CURSOR, _CUR, and _C are used to describe variables based
on a cursor structure defined in a local declaration block
or a package specification in PL/SQL. My preference is the
_CURSOR or _C suffix.

_EXCEPTION _EXCEPT
_EX
_E

_EXCEPTION, _EXCEPT, _EX, and _E are used to describe
user-defined exceptions in PL/SQL. My preference is the
_EXCEPTION or _E suffix.

_OBJECT _OBJ
_O

_OBJECT, _OBJ, and _O are used to describe user-defined
types (UDTs) in both SQL and PL/SQL. Object types can
act like PL/SQL RECORD data types, which are record data
structures. They differ because they’re schema-level SQL UDTs
and not exclusively PL/SQL UDTs. Object types can also be
instantiable objects such as C++, C#, and Java classes. My
preference is the _OBJECT or _O suffix.

_NTABLE
_TABLE

_NTAB
_TAB

_NTABLE, _TABLE, _NTAB, and _TAB are used to describe
nested tables, which are collection types in SQL and PL/SQL.
They act like lists because they have no upward limit on how
many elements can be in the collection. My preference is the
_TABLE or _TAB suffix because a nested table is the collection
most like a list in other programming languages.

_RECORD _REC
_R

_RECORD, _REC, and _R are used to describe UDTs
exclusively in PL/SQL. They are a PL/SQL implementation
of a record data structure. They can be elements of PL/SQL
collections but not of SQL collections. My preference is the
_RECORD or _R suffix because they’re fully descriptive or
shorthand, but many developers opt for _REC.

_TYPE _T _TYPE and _T are used to describe UDTs, like subtypes of normal
scalar data types described in Chapter 4. Either suffix works for
me, but _TYPE seems more frequent in code repositories.

_VARRAY _VARR
_VA

_VARRAY, _VARR, and _VA are used to describe the VARRAY
(my mnemonic for this Oracle data type is virtual array). The
VARRAY collection is the collection most like a standard array
in programming languages, because it has a maximum size
and must always have sequential index values. It can be used
to define SQL and PL/SQL collections. My preference is the
_VARRAY or _VA suffix because _VARR too closely resembles
generic variable shorthand.

TABLE 2 . PL/SQL Variable Suffixes

00-FM.indd 28 12/17/13 4:07 PM

Introduction xxix

Data Model and Source Code to Download
The data model is a small video store. The source code to create and seed the data model for Oracle
is found on the publisher’s web site for the book:

www.OraclePressBooks.com

Figure 1 shows the basic, or core, tables used in the example programs.
One table in the model may require some explanation, and that’s the common_lookup table.

The common_lookup table is a table of tables, as shown in Figure 2.
A set of attributes (columns) that uniquely identify rows is the natural key. It consists of the

table and column names plus the type. Types are uppercase strings joined by underscores that
make querying these lookup sets easier. The common_lookup_meaning column provides the
information that you’d provide to an end user making a choice in a drop-down list box.

The primary key of the common_lookup table is a surrogate key column, common_lookup_id
(following the practice of using the table name and an _id suffix for primary key column names).
A copy of this value is stored in the table and column, such as item and item_type. With this
type of design, you can change the display value of XBOX to Xbox in a single location, and all
code modules and table values would be unchanged. It’s a powerful modeling device because it
prevents placing components like gender, race, or yes/no answers in web forms (embedded options),
and it reduces management costs of your application after deployment.

Let’s examine an approach to leveraging common lookup tables in a web-based application.
The explanation starts with data stored in a join between two tables—the member and contact

Convention Meaning

Boldface Focuses attention on specific lines of code in sample programs.

Italics Focuses attention on new words or concepts.
Monospaced All code blocks are monospaced.
UPPERCASE
COURIER

Denotes keywords used in SQL and PL/SQL, and SQL built-in function names.

lowercase
courier

Denotes the names of user-defined tables, views, columns, functions,
procedures, packages, and types.

[] Designates optional syntax and appears in the prototypes.
{} Groups lists of options, which are separated by a single pipe symbol (|).
| Indicates a logical OR operator between option lists.
... Indicates that content repeats or was removed for space conservation.

TABLE 3. Text Conventions

D
ow

nloaded by [H
acettepe U

niversity 85.240.126.137] at [05/04/16]. C
opyright ©

 M
cG

raw
-H

ill G
lobal E

ducation H
oldings, L

L
C

. N
ot to be redistributed or m

odified in any w
ay w

ithout perm
ission.

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / xxx

xxx Oracle Database 12c PL/SQL Programming

FIGURE 1 . Video Store entity-relationship diagram (ERD)

00-FM.indd 30 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM /

Introduction xxxi

tables. The internal lookup uses the customer’s name (the natural key) from the contact table to
find the membership account information in the member table.

SELECT m.account_number
, m.member_type -- A fk to common_lookup table.
, m.credit_card_number
, m.credit_card_type -- A fk to common_lookup table.
, c.first_name
, c.middle_name
, c.last_name
, c.contact_type -- A fk to common_lookup table.
FROM member m INNER JOIN contact c
ON m.member_id = c.member_id
WHERE c.first_name = 'Harry'
AND c.middle_name = 'James'
AND c.last_name = 'Potter';

The preceding query returns the following display when you run it through the dbms_sql
Method 4 code example from Chapter 13, which displays column names on the left and column
values on the right. You should note that the member_type, credit_card_type, and

FIGURE 2 . The common_lookup table (table of tables)

00-FM.indd 31 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / xxxii

xxxii Oracle Database 12c PL/SQL Programming

contact_type columns hold foreign key values based on the common_lookup_id surrogate
key column.

You have the option of using these values to connect the data through a join or through function
calls to the common_lookup table. The common_lookup table contains values that are frequently
displayed in application software forms.

The following join connects all three foreign keys to three separate rows in the
common_lookup table:

SELECT m.account_number
, cl1.common_lookup_meaning -- Customer friendly display.
, m.credit_card_number
, cl2.common_lookup_meaning -- Customer friendly display.
, c.first_name
, c.middle_name
, c.last_name
, cl3.common_lookup_meaning -- Customer friendly display.
FROM member m INNER JOIN contact c
ON m.member_id = c.member_id JOIN common_lookup cl1
ON cl1.common_lookup_id = m.member_type JOIN common_lookup cl2
ON cl2.common_lookup_id = m.credit_card_type JOIN common_lookup cl3
ON cl3.common_lookup_id = c.contact_type
WHERE c.first_name = 'Harry'
AND c.middle_name = 'James'
AND c.last_name = 'Potter';

The preceding join yields the following meaningful business information:

The data returned from any query is symmetrical, which means all columns return the same
number of rows. The results of the preceding query are the business results from three lookup
activities, and they return the previously chosen values by a business user. However, the results
are not what you’d want to display in a web form that presents the ability to change values,
such as the member, credit card, or contact types. The reason they’re not the correct values to
display is that you need the currently selected values and the list of alternative values that an end
user can choose when working in an application software form (as shown in Figure 3). Queries
don’t deliver that capability because result sets are limited to symmetrical data, like that shown
from the last query.

00-FM.indd 32 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM /

Introduction xxxiii

You need to get the current and possible values by using the foreign key as a parameter to
a function call, and in this example you actually need to make a call by using the table name,
column name, and current value. In an HTML web form, the function would return a set of
HTML option tags to embed within an HTML select tag. The currently selected value from
the lookups would be the selected HTML option tag, and the other possible values would
be the unselected HTML option tags. This approach would return an asymmetrical result set
like the following:

Taking this type of approach to commonly referenced values lets your application code
leverage reusable modules more readily. Naturally, this type of function would be more ideally
suited to a PL/SQL result cache function in an Oracle Database 12c application.

FIGURE 3 . Web form selectivity fields

00-FM.indd 33 12/17/13 4:07 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1 / FM / xxxiv

00-FM.indd 34 12/17/13 4:07 PM

This page has been intentionally left blank

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

PART
 I

Oracle PL/SQL

01-ch01.indd 1 12/17/13 2:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1
Blind folio: 2

01-ch01.indd 2 12/17/13 2:49 PM

This page has been intentionally left blank

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

CHAPTER
1

Oracle PL/SQL
Development Overview

01-ch01.indd 3 12/17/13 2:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

4 Oracle Database 12c PL/SQL Programming

This chapter introduces you to Oracle PL/SQL development. Understanding the how, what,
and why of a programming language provides a strong foundation for learning how to use
the programming language effectively to solve problems.

This chapter covers the following:

 ■ PL/SQL’s history and background

 ■ Oracle development architecture

The development examples in this book are presented using the SQL*Plus tool because it’s
the lowest common denominator when it comes to Oracle development. Although development
tools such as Dell’s Toad and Oracle SQL Developer are great in many ways, they also have a few
weaknesses. Their greatness lies in simplifying tasks and disclosing metadata that otherwise might be
hidden for months or years. Their weaknesses are more subtle. Tools provide opportunities to solve
problems without requiring that you understand either the problem or the solution. Occasionally,
this may lead you to choose a suggested solution that is suboptimal or incorrect. Relying on tools
also stymies the learning process for new developers. While SQL*Plus is also a tool, it’s the
foundational tool upon which all other integrated development environments (IDEs) are based.
A solid understanding of Oracle basics and SQL*Plus lets you use IDE tools more effectively.

PL/SQL’s History and Background
This is the short version of how Oracle Corporation came to exist in its present form. In the 1970s,
Larry Ellison recognized a business opportunity in the idea of relational database management
systems (RDBMSs). Along with a few friends, Ellison formed the company Software Development
Laboratories (SDL) in 1977. A few years later, the founders changed the company name to
Relational Software, Inc. (RSI), and subsequently changed it first to Oracle Systems Corporation
and finally to Oracle Corporation. Through a combination of its own internal development and
the acquisition of multiple companies over the past three and a half decades, Oracle, as it is
commonly called, has captured the majority of the RDBMS market.

The concept of an RDBMS is complex. More or less, the idea is to (a) store information about
how data is stored or structured, (b) store the data, and (c) access and manage both the structure
and data through a common language. Structured Query Language (SQL) is that language
(pronounced “sequel” in this book).

Oracle innovated beyond the original specification of SQL and created its own SQL dialect,
Procedural Language/Structured Query Language (PL/SQL). While many of the new features of
PL/SQL were adopted by the ANSI 92 SQL standard, some remain proprietary to Oracle Database.
Those proprietary features give Oracle a competitive edge. Unlike some companies, Oracle isn’t
content to simply be the leader. It maintains its lead and competitive edge because it continues to
innovate. Likewise, Oracle currently sets the industry standard for relational and object-relational
databases.

Oracle created PL/SQL in the late 1980s, recognizing the need for a procedural extension to
SQL. PL/SQL was and remains an innovative imperative language that supports both event-driven
and object-oriented programming. Perhaps the most important aspect of PL/SQL is that you can
call SQL statements from inside it, and call PL/SQL from SQL. People still shy away from PL/SQL
because they want to remain database agnostic, which is a fancy way to say they want SQL
solutions that are easily portable to other platforms. Although major competitors have added
stored procedures to their competing database products, they’ve failed to deliver the same power
and capability of PL/SQL. The single exception is IBM, which simply implemented PL/SQL very

01-ch01.indd 4 12/17/13 2:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 1: Oracle PL/SQL Development Overview 5

similarly to how it works in Oracle Database. Unfortunately for IBM, the collections of Oracle SQL
and PL/SQL built-ins and proprietary SQL extensions leave Oracle in the RDBMS technology lead.

In the late 1990s, Oracle saw the need for an object-relational extension to SQL. In response,
it introduced object types in the Oracle 8 database and transformed the Oracle database server. It
went from a relational database management system (RDBMS) to an object-relational database
management system (ORDBMS). Oracle continued to improve how object types work in the
Oracle 8i, 9i, 10g, 11g, and 12c releases. PL/SQL is a natural gateway to both creating and using
these object types. Clearly, PL/SQL enabled the deployment and evolution of object-relational
technologies in the Oracle database.

NOTE
The term object-relational model is interchangeable with the term
extended-relational model, but Oracle prefers the former term over the
latter.

Oracle also recognized, in 1998, the importance of implementing a Java Virtual Machine
(JVM) inside the database. Oracle introduced a JVM in Oracle 9i Database. Oracle made
improvements in the implementation of the JVM in Oracle Database 10g, 11g, and 12c. PL/SQL
interfaces are used to access internal Java libraries that run in the JVM and to access external
libraries in C-callable languages. The full functionality of an ORDBMS is possible because of the
powerful combination of PL/SQL and an embedded JVM. In fact, PL/SQL has made possible the
object-relational model we know as the Oracle database.

Figure 1-1 shows a timeline that covers the evolution of PL/SQL in the Oracle database.
Interestingly, Oracle has provided 12 major feature upgrades during the 28-year history of the
language. You’ll note that Pascal is all but dead and gone, and Ada has had only four upgrades in
the past 30+ years. The only language other than PL/SQL showing such feature investment is Java,
which Oracle now owns.

From my years of experience with the product and other databases, I conclude that Oracle
made the right call by adding PL/SQL to the Oracle database. PL/SQL is an extremely valuable and
powerful tool for leveraging the database server. The ability to exploit the Oracle Database 12c
server is critical to developing dynamic and effective database-centric applications.

Review Section
This section has presented the following details about the history and background of Oracle
database:

 ■ Oracle evolved from Relational Software, Inc. (RSI), which evolved from Software
Development Laboratories (SDL).

 ■ The SQL language is the interface to the Oracle Database 12c database engine, and
Oracle extensions provide a competitive advantage.

 ■ The PL/SQL language extends the behavior of SQL and has enabled the evolution of
object-relational technologies.

 ■ PL/SQL wraps access to embedded Java libraries.

 ■ PL/SQL makes possible the implementation of an object-relational Oracle database.

 ■ PL/SQL enables developers to exploit the Oracle Database 12c server.

01-ch01.indd 5 12/17/13 2:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

6 Oracle Database 12c PL/SQL Programming

Oracle Development Architecture
The architecture of a database has many levels. At the core of Oracle Database 12c is SQL. SQL
is the interface to the Oracle Database 12c database engine, analogous to the steering wheel,
brakes, and dashboard of a car. Analogous to the car engine is the server software, which includes
an “engine” that stores and processes data, a “transmission” that governs transactions, and an
enhanced “odometer” that logs what the system does to files. The server software also includes
support programs that manage the system’s content integrity, which are analogous to tires, body
components, seat cushions, and bumpers. You can find much more about the Oracle Database
12c architecture in Appendix A.

Good mechanics must be aware of all the components that make up the vehicle. Likewise,
database administrators (DBAs) must be aware of the many components related to an Oracle
database system. The DBA is the primary mechanic who works with the engine, with the database

FIGURE 1-1. PL/SQL language timeline

1970 1975 1980 1985 1990 1995 2000 2005

Pascal CDC

Pascal ICS

ADA

Pascal
Multiple
Systems

ADA ISO

PL/SQL 1.0
(Forms Only)

PL/SQL 2.1
Types, Subtypes,

Dynamic SQL
(Oracle 7.1)

PL/SQL 2.2
Wrap, Jobs,

Cursor Variables
(Oracle 7.2)

PL/SQL 2.0
Triggers, Stored

Programs
(Oracle 7)

PL/SQL 8.0
SQL Collections,

LOBs, Adv. Queues
(Oracle 8)

ADA 95 ADA 2006

2013

PL/SQL 11
Continue statement,

Result Cache
(Oracle 11g)

PL/SQL 1.1
DB + Forms
(Oracle 6)

PL/SQL 2.3
PL/SQL Records

(Oracle 7.3)

PL/SQL 8.1
NDS,

Bulk Processing
(Oracle 8i)

PL/SQL 12
Accessible by,

Fetch First
(Oracle 11g)

PL/SQL 9.0
XML, Unicode,

CASE Statements
(Oracle 9i)

PL/SQL 10
Set Operators,

Regular Expression
(Oracle 10g)

01-ch01.indd 6 12/17/13 2:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 1: Oracle PL/SQL Development Overview 7

developer getting involved from time to time. The rest of the time, the database developer drives
the car, which means they focus mostly on the data and working with SQL.

Just as a mechanic maintains and tunes a car’s engine to optimize its performance and
longevity, a DBA works with the numerous details of the database engine to get the most value
from an Oracle database. Many of the details related to RDBMS management don’t involve
developers. That’s because developers focus on interacting with the data, much like how a racecar
driver who reports performance problems as they arise. While developers do worry about
performance, they often defer resolution of performance problems to DBAs. Those developers
who don’t take the work to the mechanic (DBA) all the time often cross the line between the DBA
and developer roles. By crossing that line, developers often learn new diagnostic skills. Developers
who frequently cross that line between DBA and developer roles often become known as
application DBAs.

Driving a car requires skill handling the steering wheel, accelerator, and brakes, and driving
the “Oracle car” requires skill with SQL statements. While some SQL statements let you build
database instances (cars), like a factory, others let you maintain, repair, and tune the database.
Still other SQL statements let you interact with data, allowing you to insert, update, delete, and
query database data. SQL statements that let you interact with data are sometimes called CRUD
functions, representing create, read, update, and delete (check Appendix B for more details).

Developers who drive the Oracle car often work on small to medium-sized projects, and
they’re only exposed to the necessary tables, views, and stored programs that support a business
application. Application developers like this only work with a small subset of the SQL interface,
similar to how drivers of real cars focus on the steering wheel, accelerator, brakes, and fuel gauge.

The following section explains how DBAs can use PL/SQL to maintain and tune the engine
and how developers can use PL/SQL to optimize performance. While the details of how you
maintain and tune the engine are interesting on their own, this book is targeted at showing you
how to use SQL and PL/SQL to solve database-centric application programming problems.

NOTE
Appendix A describes the database environment, the database
components, and the primary interface points—the SQL*Plus
command-line interface (CLI) and the Oracle SQL Developer graphical
user interface (GUI). Appendix B describes Oracle’s implementation
of SQL, which is the most complete in the industry.

Before I explain how to drive the “Oracle car,” I need to give you a quick tour of the engine
that runs the car. First, you need to understand some terminology if you’re new to the Oracle
database. Second, the same SQL that manufactures the database lets you “drive” the database.
Likewise, SQL actually runs beneath the wizards that Oracle provides.

The Database
An Oracle database is composed of a series of files, a set of processes, and a single database
catalog. You create a database by using a tool, such as the Oracle Database Configuration Assistant
(whose executable name is dbca in all operating systems). The Database Configuration Assistant
is one of the programs that you install on the server tier when you install the Oracle product.
Collectively, these programs are called a relational database management system (RDBMS). The
Database Configuration Assistant is a wizard that simplifies how you create an Oracle database.

01-ch01.indd 7 12/17/13 2:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

8 Oracle Database 12c PL/SQL Programming

When you use a wizard to create a database, it creates the necessary files, processes, and
database catalog. The database catalog is a set of tables that knows everything about the structures
and algorithms of the database. You probably have heard the database catalog or dictionary called
metadata, or data about data. Metadata is nothing more than a bunch of tables that define what
you can store, manipulate, and access in a database. An Oracle database is also known as a
database instance. More or less, the RDBMS creates databases like a factory creates cars. Oracle
Database 12c can create more than one database instance on any server, provided the server has
enough memory and disk space. With Oracle Database 12c’s multitenant architecture, you also
have the ability to create container databases (CDBs) and pluggable databases (PDBs).

The easiest analogy for an RDBMS would be a word-processing program, such as Microsoft
Word, Corel WordPerfect, or Apple Pages. After installing one of these programs on your computer,
it becomes a factory that lets you produce documents. Another name that might fit these programs
is document management system (DMS), but they’re not quite that capable. In short, they provide
a user interface (UI) that lets you create and edit documents. This UI is like the steering wheel,
accelerator, brakes, and dashboard that enable you to drive a car, but the dashboard probably
promotes the UI to a graphical user interface (GUI).

Oracle also provides you with a UI, known as SQL*Plus. Oracle actually originally called its
SQL*Plus command-line interface the Advanced Friendly Interface (AFI), as still evidenced by the
default temporary file buffer, afiedt.buf. As an experienced user, I can testify that it isn’t that
advanced by today’s standards, nor is it that friendly. At least that’s true until you try the CLIs of
MySQL and SQL Server. After using either, you’d probably conclude, as I have, that SQL*Plus is
both advanced and friendly by comparison.

The CLI is the basic UI, but most users adopt GUI tools, such as Dell’s Toad (expensive) or
Oracle SQL Developer (free). (Appendix A provides guidance on installing, configuring, and
working with SQL*Plus and SQL Developer.) Neither the SQL*Plus CLI nor the SQL Developer
GUI is difficult to use once you understand the basics of how connections work (also covered in

Multitenant Architecture
Oracle Database 12c introduces the multitenant architecture, which is like an apartment
complex for Oracle Database instances. While apartment complexes can be located in a
single building or in multiple buildings, they generally have one location that manages the
complex. Very large apartment complexes may have a centralized management office and
local management offices in each of the buildings.

Oracle’s multitentant architecture isn’t too different from a large, multiple-building
apartment complex with a centralized management office. The container database (CDB) is
the centralized management office, and pluggable databases (PDBs) are the apartment
buildings with local management offices.

Like an apartment complex’s centralized management office, the CDB holds the master
sys and system schemas. Individual PDBs hold an ADMIN user that enjoys sysdba
privileges for the PDB, like the sys schema does in the CDB. PDBs also hold a system
schema that works discretely with an individual PDB. The local PDB ADMIN user’s sys and
system schemas are like the local building manager in a very large apartment complex.
Appendix A describes how you configure a PDB.

01-ch01.indd 8 12/17/13 2:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 1: Oracle PL/SQL Development Overview 9

Appendix A). You need to understand how to use at least one of these tools to operate the Oracle
database more effectively.

The command line is an essential tool when you write production code. Production code
must be rerunnable, which means you can run the command when it has already been run
before. To make production code rerunnable, you package together a set of related SQL and/or
PL/SQL commands that you previously typed into a console interactively, and then put them
into a file. The file, also known as a script file, could, for instance, drop a table before trying to
re-create it. Dropping the table before re-creating it differently avoids an ORA-00955 error, which
tells you that you’re trying to reuse a name already stored in the data catalog.

You run the script file from the command line, or from another script that calls scripts, which is
why I’ll show you how to use the command line in the “Two-Tier Model” section later in the chapter.

The PL/SQL Language
The PL/SQL language is a robust tool with many options. PL/SQL lets you write code once
and deploy it in the database nearest the data. PL/SQL can simplify application development,
optimize execution, and improve resource utilization in the database. PL/SQL isn’t a replacement
for SQL, which is a set-based declarative language that lets you interact with data and the
database. As mentioned, PL/SQL is a powerful imperative language with both event-driven and
object-oriented features.

Is PL/SQL Programming a Black Art?
Early on, PL/SQL 1.0 was little more than a reporting tool. Now the CASE statement in SQL
delivers most of that original functionality. In the mid-1990s, developers described PL/SQL
2.x programming as a “black art.” This label was appropriate then: there was little written
about the language, and the availability of code samples on the Web was limited because
the Web didn’t really exist as you know it today.

Today, there are still some who see PL/SQL as a black art. They also are passionate about
writing database-neutral code in Java or other languages. This is politically correct speak for
avoiding PL/SQL solutions notwithstanding their advantages. Why is Oracle PL/SQL still
considered a black art to these people when there are so many PL/SQL books published
today?

Perhaps the reason is the cursors, but the cursors exist in any program that connects
through the Oracle Call Interface (OCI) or Java Database Connectivity (JDBC). If not cursors,
perhaps it’s the syntax, user-defined types, or nuances of functions and procedures. Are
those really that much different from their equivalents in other programming languages? If
you answer “no” to this question, you’ve been initiated into the world of PL/SQL. If you
answer “yes” or think there’s some other magic to the language, you haven’t been initiated.

How do you become initiated? The cute answer is to read this book. The real answer is
to disambiguate the Oracle jargon that shrouds the PL/SQL language. For example, a
variable is always a variable of some type, and a function or procedure is always a
subroutine that manages formal parameters by reference or by value and the subroutine
may or may not return a result as a right operand. These types of simple rules hold true for
every component in the PL/SQL language.

01-ch01.indd 9 12/17/13 2:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

10 Oracle Database 12c PL/SQL Programming

The language is a case-insensitive programming language, like SQL. This has led to numerous
formatting best practice directions. Rather than repeat those arguments for one style or another, it
seems best to recommend that you find a style consistent with your organization’s standards and
consistently apply it. The PL/SQL code in this book uses all uppercase letters for command words
and all lowercase letters for variables, column names, and stored program calls.

PL/SQL was developed by modeling concepts of structured programming, static data typing,
modularity, exception management, and parallel (concurrent) processing found in the Ada
programming language. The Ada programming language, developed for the United States
Department of Defense, was designed to support military real-time and safety-critical embedded
systems, such as those in airplanes and missiles. The Ada programming language borrowed
significant syntax from the Pascal programming language, including the assignment and
comparison operators and the single-quote delimiters.

These choices also enabled the direct inclusion of SQL statements in PL/SQL code blocks.
They were important because SQL adopted the same Pascal operators, string delimiters, and
declarative scalar data types. Both Pascal and Ada have declarative scalar data types. Declarative
data types do not change at runtime and are known as strong data types. Strong data types are
critical to tightly integrating the Oracle SQL and PL/SQL languages. PL/SQL supports dynamic
data types by mapping them at runtime against types defined in the Oracle Database 12c database
catalog. Matching operators and string delimiters means simplified parsing because SQL statements
are natively embedded in PL/SQL programming units.

NOTE
Primitives in the Java programming language describe scalar variables,
which hold only one thing at a time.

The original PL/SQL development team made these choices carefully. The Oracle database
has been rewarded over the years because of those choices. One choice that stands out as an
awesome decision is letting you link PL/SQL variables to the database catalog or cursor. This is a
form of runtime type inheritance, and is best implemented when you inherit from a cursor rather
than from a table or column.

You use the %TYPE and %ROWTYPE pseudo types to inherit from the strongly typed variables
defined in the database catalog. Oracle calls this type of inheritance anchoring, and you can read
a complete treatment in the “Attribute and Table Anchoring” section of Chapter 3.

Anchoring PL/SQL variables to database catalog objects is an effective form of structural
coupling. It can minimize the number of changes you need to make to your PL/SQL programs.
At least, it limits how often you recode when a table’s column changes size. However, structural
coupling like this is expensive because it causes context switches inside the database server.

Oracle also made another strategic decision when it limited the number of SQL base types
and allowed users to subtype base types in the database catalog, enabling them to create a
multiple-hierarchy object tree. This type of object tree can continue to grow and mature over
time. These types of changes increase the object-oriented features of the Oracle database.

The PL/SQL runtime engine exists as a resource inside the SQL*Plus environment. The
SQL*Plus environment has both an interactive mode and a callable server mode. Every time you
connect to the Oracle Database 12c database, the database creates a new session. Calls from the
server’s CLI or a remote client’s CLI may open an interactive session, while calls from external
programs open a server mode session. In either type of session, you can run SQL or PL/SQL
statements from the SQL*Plus environment. PL/SQL program units can then run SQL statements

01-ch01.indd 10 12/17/13 2:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 1: Oracle PL/SQL Development Overview 11

or external procedures, as shown in Figure 1-2. SQL statements may also call PL/SQL stored
functions or procedures. SQL statements interact directly with the actual data.

Calls directly to PL/SQL can be made through the Oracle Call Interface (OCI) or Java Database
Connectivity (JDBC). This lets you leverage PL/SQL directly in your database applications. This
is important because it lets you manage transaction scope in your stored PL/SQL program units.
This tremendously simplifies the myriad tasks often placed in the data abstraction layer of
applications.

PL/SQL also supports building SQL statements at runtime. Runtime SQL statements are
dynamic SQL. You can use two approaches for dynamic SQL: one is Native Dynamic SQL (NDS),
and the other is the DBMS_SQL package. Chapter 13 demonstrates dynamic SQL and covers both
NDS and the DBMS_SQL package.

FIGURE 1-2. Database processing architecture

Read
External
Input

Write
External
Output

Buffer

SQL*Plus
Environment

Data

Input

PL/SQL
Engine

Read
External
Input

Write
External
Output

SQL Statement
Engine

External
Procedures

Database Session

DQL

DML

Output

Interactive Interactive

Call Response

File URL

OCI JDBC

File URL

OCI JDBC

01-ch01.indd 11 12/17/13 2:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

12 Oracle Database 12c PL/SQL Programming

You now have a high-level view of the PL/SQL language. Chapter 3 provides an overview of
PL/SQL block structures and programming basics.

The Oracle Processing Architecture
Figure 1-2 shows the Oracle processing architecture, or how you “operate the car.” Notice that all
input goes in through the SQL*Plus environment and all results or notifications return through the
same environment. That means you’re interfacing with the SQL*Plus CLI when you’re working in
the SQL Developer GUI, or through an external programming language such as PHP or Java. The
only difference between external programming languages and PL/SQL is that you lose access to
the interactive features of SQL*Plus when working through external calls in PHP or Java. You
access the call mode of SQL*Plus when you call it through the Open Database Connectivity
(ODBC) interface or JDBC interface.

As you can see in Figure 1-2, PL/SQL serves as the interface between the database and
internally deployed Java libraries, file I/O (input/output) operations, and external procedures. SQL
is the only point of access to the physical data, and as such it serves as an “automatic transmission”
to the many processes that keep the Oracle Database 12c database running smoothly.

As covered in Appendix B, the SQL statement engine processes all types of SQL statements,
which includes the following:

 ■ Data Definition Language (DDL) statements CREATE, ALTER, DROP, RENAME,
TRUNCATE, and COMMENT. They allow you to create, alter, drop, rename, truncate, and
comment tables and other objects.

 ■ Data Manipulation Language (DML) statements SELECT, INSERT, UPDATE, DELETE,
and MERGE. They let you query, insert, change, and merge data in the database and
remove data from the database.

 ■ Data Control Language (DCL) statements GRANT and REVOKE. They let you grant and
revoke privileges and groups of privileges (known as roles).

 ■ Transaction Control Language (TCL) statements COMMIT, ROLLBACK, and
SAVEPOINT. They let you control when to make data permanent or undo temporary
changes. They enable you to control all-or-nothing behavior that’s ACID compliant (check
Appendix A for the details).

A SQL statement can call a named PL/SQL program unit, and a PL/SQL block can call a SQL
statement. A named PL/SQL program unit is a function or procedure stored in the database
catalog. A PL/SQL call to a SQL statement can only include SQL data types and named PL/SQL
program units stored in the database catalog. That means it can’t call a locally defined function
inside a SQL statement. Procedures can’t be called inside a SQL statement directly; they must be
contained inside a stored function. The reason that you can’t call a local function inside a SQL
statement is that the SQL engine doesn’t have access to a local function.

A complete book would be required to cover all the features in the Oracle SQL implementation,
but Appendix B certainly exposes the majority of core features that any reader will use to develop
applications or administer a database. SQL is like the automatic transmission to all the complex
engine parts that run the Oracle database. Beyond an introduction to SQL, Appendix C covers SQL
built-in functions and Appendix D covers PL/SQL built-in packages.

01-ch01.indd 12 12/17/13 2:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 1: Oracle PL/SQL Development Overview 13

The next two sections discuss the connection mechanism for Oracle databases. The basics of
the two-tier computing model are described first, followed by a discussion of the more complex
three-tier model, which is really an n-tier model. Understanding these models is essential to
understanding how you can use SQL or PL/SQL.

Two-Tier Model
All databases adopt a two-tier model: the engine and the interface. The server is the database
engine and a database listener. A listener implements the object-oriented analysis and design
observer pattern. The observer pattern is mainly used to implement distributed event-handling
systems. Oracle’s listener is a program that listens for incoming requests on an ephemeral (or
short-lived) port, and forwards them to a SQL*Plus session. The client is the interface that lets you
issue SQL commands and, in Oracle, lets you call PL/SQL blocks.

Listener
TCP/IP

Client Network Server

A typical installation of the Oracle database installs both the client and the server on the
database server. That’s because the mechanic (or DBA) who maintains the engine uses the same
interface to manage many of the parts. Other server-side utilities let the DBA manage part
replacement when the server is shut down. (Similar to how you’d replace parts in an engine,
you’d shut off the engine before taking it apart to replace something.)

Our focus in this book is the interface to the running engine. We use the database server copy
of the client software when we drive the database from the local server. Sometimes we want to
drive the database remotely from a laptop. We have several ways to accomplish that process. One
is to install a copy of the Oracle Client software on a remote machine. Another is to use a tool,
such as SQL Developer, to connect across the network.

N-Tier Model
All databases support a three-tier model, because it’s really just a middleware solution. As you
can see in Figure 1-3, the middle tier of a three-tier model may have many moving parts, and they
work like tiers. That’s why the industry adopted the n-tier model over the original three-tier model.
An n-tier model more aptly describes what’s actually happening in web-based applications. The
middleware

 ■ Can have a multithreaded JServlet, Apache module, or general software appliance

 ■ Can have a metric server layer to balance load across multiple devices

 ■ Creates a pool of connections to the Oracle database and shares the connections with
requests made by other clients

Typically in an n-tier model, the client-to-middleware communication doesn’t enjoy a state-
aware connection (see Figure 1-3). In fact, it’s often stateless through the HTTP/HTTPS protocols.

01-ch01.indd 13 12/17/13 2:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

14 Oracle Database 12c PL/SQL Programming

This shift in communication semantics means changes are automatic and permanent when
they occur. If you submit a data change via an INSERT, UPDATE, or DELETE statement across
HTTP/HTTPS and receive acknowledgement of success, that change is permanent. This is known
as an optimistic processing model. It alone is a reason for stored procedures that manage
transactions across multiple tables in any database.

The exception to an optimistic process occurs when the middleware maintains a lock on the
data and manages your transaction scope for you. This type of implementation is done for you by
default in Oracle Enterprise Manager (OEM) or Oracle Application Express (APEX). Describing the
mechanics of how this works would require a chapter of its own. Suffice it to say, this is a possible
architecture for your internally developed applications.

Browser

R
ea

ds

HTTP/HTTPS
Listener

Apache
Daemon

Starts

Start
Apache

St
ar

ts

Locally
Stored

Programs

Redirects to appropriate
Apache Module

TCP

Database
Server

Start
DBMS

Apache
Modules

mod_perl

mod_php

mod_python

Temp File
Cache

Writes

Local File
Storage

Moves

Moves from security
quarantine area

Access

TCP/TCPS

Internet

HTTP/HTTPS

FIGURE 1-3. N-tier computing model

Review Section
This section has described the following points about Oracle database architecture:

 ■ SQL is the interface that lets you manage, maintain, and use the Oracle Database 12c
database engine.

 ■ Oracle provides a SQL*Plus CLI and several GUIs that all interact with SQL and PL/SQL.

01-ch01.indd 14 12/17/13 2:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 1: Oracle PL/SQL Development Overview 15

Summary
This chapter has provided a tour of the Oracle development environment for client- and server-
side PL/SQL development. In conjunction with Appendixes A and B, you should be positioned to
understand, work with, and experiment with the examples in the subsequent chapters.

Mastery Check
The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix I for answers to
these questions.

True or False:

1. ___Relational Software, Inc. became Oracle Corporation.

2. ___Relational databases store information about how data is stored.

3. ___Relational databases store data.

4. ___SQL is an imperative language that lets you work in the Oracle database.

5. ___The relational database model evolved from the object-relational database model.

6. ___PL/SQL is the procedural extension of SQL.

7. ___PL/SQL is an imperative language that is both event-driven and object-oriented.

8. ___The Oracle database relies on an external Java Virtual Machine to run stored Java
libraries.

9. ___A two-tier model works between a browser and a database server.

10. ___A three-tier model is a specialized form of an n-tier model.

Multiple Choice:

11. Which of the following describes the roles of the Oracle listener? (Multiple answers possible)

A. Listen for incoming client requests

B. Send outgoing requests to client software

C. Forward requests to the PL/SQL engine

D. Forward requests to a SQL*Plus session

E. Forward requests to the SQL engine

 ■ The SQL language is the “automatic transmission” to the data and many processes that
keep the Oracle Database 12c database running smoothly. SQL replaces imperative
languages as the interface to relational data and RDBMS management.

 ■ The two-tier model represents how SQL works with the data, with the SQL*Plus CLI or
SQL GUI acting as the client and the database engine acting as the server.

 ■ The n-tier model represents how web-based applications engage the data through a
middle tier, which can be three or more tiers in depth.

01-ch01.indd 15 12/17/13 2:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

16 Oracle Database 12c PL/SQL Programming

12. Which of the following converts a relational model to an object-relational model?
(Multiple answers possible)

A. A data catalog

B. A set of tables

C. An object data type

D. An imperative language that lets you build native object types

E. A JVM inside the database

13. SQL*Plus provides which of the following? (Multiple answers possible)

A. An interactive mode

B. A call mode

C. A server mode

D. A client mode

E. All of the above

14. Which of the following is a capability of PL/SQL?

A. Call SQL

B. Implement object types

C. Wrap C-callable programs

D. Wrap Java programs

E. All of the above

15. Which of the following are types of SQL statements? (Multiple answers possible)

A. Data Definition Language (DDL) statements

B. Data Manipulation Language (DML) statements

C. Data Control Language (DCL) statements

D. Create, replace, update, and delete (CRUD) statements

E. Transaction Control Language (TCL) statements

01-ch01.indd 16 12/17/13 2:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

CHAPTER
2

New Features

02-ch02.indd 17 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

18 Oracle Database 12c PL/SQL Programming

This chapter covers the new SQL and PL/SQL features that directly affect how you write and
manage Oracle PL/SQL programs. At the time of writing, I can’t guarantee that an additional
new feature or two won’t get added late in this release cycle or in the next release cycle,

so check the Oracle Database New Features Guide for the latest updates.

Coverage of the new features in this chapter is divided into the two languages:

 ■ New SQL features

 ■ New PL/SQL features

Some of the features lend themselves to multiple-page descriptions with examples, while others
require only a brief introduction because they are described elsewhere in the book—in which case
you are referred to the chapter in which the feature is covered. If you’re new to PL/SQL, you may
want to skip directly to Chapter 3 to read about PL/SQL basics and then return to this chapter.

New SQL Features
Oracle offers a number of new features in Oracle Database 12c. The SQL syntax changes are
fairly numerous, so we’ll concentrate here on the changes that have an impact of functionality.

 ■ Oracle Database 12c enables you to use virtual directories in the LIBRARY path for
external procedures.

 ■ Flashback technology improves with the introduction of valid-time (VT) dimensions.

 ■ The functionality of Oracle’s ANSI 92 join syntax grew in Oracle Database 12c. You can
now perform a LEFT OUTER JOIN against two or more tables on the left side of the join.

 ■ Default column values can now hold references to the .nextval and .currval
pseudocolumns, which is a neat feature.

 ■ Oracle Database 12c introduces identity columns that maintain auto-incrementing
sequences for surrogate keys.

 ■ Oracle Database 12c adds the ON NULL clause to default values, which closes the door
to explicit overrides with a null in the list of values.

 ■ Oracle Database 12c increases the size of VARCHAR2, NVARCHAR2, and RAW data types,
at least when you set a database parameter correctly.

 ■ Like Microsoft SQL Server, Oracle Database 12c enables you to pass the results of
queries directly to external programs.

 ■ Oracle Database 12c provides native SQL support for query row limits and offsets.

 ■ Oracle Database 12c adds a new driver as a drop-in replacement for the MySQL 5.5
client library.

 ■ SQL has gained CROSS APPLY, OUTER APPLY, and LATERAL syntax for when you
work with nested tables.

 ■ You can now create views with either definer rights—the old way and current default—
or with invoker rights. The only difference is the syntax: the definer rights model uses
BEQUEATH DEFINER and the invoker rights model uses BEQUEATH INVOKER.

02-ch02.indd 18 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 2: New Features 19

Data Catalog DIRECTORY Qualifies a LIBRARY Object
LIBRARY objects are repositories for external libraries. External libraries are written in C or a
C-callable programming language. They require you to put the physical files in a directory and
then specify the name of that directory in the listener.ora file and the CREATE LIBRARY
statement.

Oracle Database 12c adds the capability to replace a physical directory with a virtual
directory. The following syntax shows you how to create a library with a physical directory:

SQL> CREATE OR REPLACE LIBRARY demo IS
 2 '<oracle_home_directory>/<custom_library>/<file_name>.<file_ext>';
 3 /

You can create a LIBRARY object by using this new syntax against a virtual directory:

SQL> CREATE OR REPLACE LIBRARY demo IS '<library_name.so>' IN
 2 virtual_directory_name;

The second argument is a virtual directory. You can learn how to create virtual directories in
the “Virtual Directories” section of Appendix B. That process remains unchanged with the Oracle
Database 12c release.

Define Tables with Valid-Time (VT) Support
A valid-time (VT) support dimension is now available in Oracle Database 12c. Valid time differs
from transaction time (TT). VT maps the effective date of a business event, such as a hiring,
promotion, or termination. TT maps to the physical point at which a row is inserted or updated.

Oracle Database 11g introduced Flashback Data Archive, which uses TT. Flashback lets you
look back in time to see query trends, report differences, and audit trails. These are flashback
dimensions because they segment data by time intervals.

Oracle Database 12c introduces a VT support dimension by formalizing two approaches in
table definitions. One defines periods with explicit column assignments. The other defines periods
with implicit columns. The new SQL phrase for VT is PERIOD FOR, as qualified in the CREATE
TABLE examples presented in the following subsections.

It’s important to note that VT rather than TT drives flashback operations. You use VT to manage
your Information Lifecycle Management (ILM) process.

Table with Explicit VT Columns
Let’s examine an example rental table. It has both check_out_date and return_date
columns. Prior to Oracle Database 12c, these columns were managed by your application
programming interface (API). They contain important business logic for how a video store, like
Redbox, bills customers. The VT feature can now identify these critical columns explicitly, like this:

SQL> CREATE TABLE rental
 2 (rental_id NUMBER GENERATED ALWAYS AS IDENTITY
 3 , customer_id NUMBER CONSTRAINT nn_rental_01 NOT NULL
 4 , check_out_date DATE CONSTRAINT nn_rental_02 NOT NULL
 5 , return_date DATE
 6 , created_by NUMBER CONSTRAINT nn_rental_03 NOT NULL
 7 , creation_date DATE CONSTRAINT nn_rental_04 NOT NULL
 8 , last_updated_by NUMBER CONSTRAINT nn_rental_05 NOT NULL

02-ch02.indd 19 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

20 Oracle Database 12c PL/SQL Programming

 9 , last_update_date DATE CONSTRAINT nn_rental_06 NOT NULL
 10 , PERIOD FOR rental_event (check_out_date, return_date)
 11 , CONSTRAINT pk_rental PRIMARY KEY(rental_id)
 12 , CONSTRAINT fk_rental_01 FOREIGN KEY(customer_id)
 13 REFERENCES contact(contact_id)
 14 , CONSTRAINT fk_rental_02 FOREIGN KEY(created_by)
 15 REFERENCES system_user(system_user_id)
 16 , CONSTRAINT fk_rental_03 FOREIGN KEY(last_updated_by)
 17 REFERENCES system_user(system_user_id));

Lines 4 and 5 hold the business logic VT columns. Line 10 explicitly assigns an identifier to
the period matching the business rule. This enables flashback queries against the period.

An example query with VT logic is

SQL> SELECT *
 2 rental AS OF PERIOD FOR rental_event
 3 TO_TIMESTAMP('04-AUG-2013 12:00:00 AM');

You also have options to use the AS OF field against VT intervals when you’re using the
dbms_flashback_archive package. I recommend the explicit VT column approach.

Table with Implicit VT Columns
Options are always available when Oracle introduces features. VT columns aren’t an exception.
You can define a table with implicit columns by removing any reference to columns in the table.
In our preceding rental table example, that would mean changing line 10, like this:

 10 , PERIOD FOR rental_event

Line 10 omits the columns from the CREATE TABLE statement.

Enhanced Oracle Native LEFT OUTER JOIN Syntax
The Oracle Database 12c database now supports LEFT OUTER JOIN syntax, which enables
you to have two or more tables on the left side of the join. Prior to the new release, you were
limited to a single table on the left side of a join. Any attempt to use two tables in Oracle
Database 11g release raised an ORA-01417 error.

The benefits are this new feature include the following:

 ■ Merging joins on the left side of the join allows more reordering, which also improves
possible execution plans.

 ■ Supporting multiple views simplifies the effort of developers writing outer join operations.

The downside of the enhanced Oracle native LEFT OUTER JOIN statement is that it’s not
portable. The upside is that you get more effective outer join operations.

Default Values for Columns Based on Sequences
Oracle Database 12c provides the capability to associate sequences directly with tables. There are
two alternatives. One lets you create a sequence and directly map it to a column of a table. The
other lets you leverage identity columns (another new feature). While the latter approach doesn’t
benefit well from default independent sequence values, the former does.

02-ch02.indd 20 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 2: New Features 21

Let’s examine an example customer table, which, to keep it simple, has only two columns.
The first column is a surrogate key column, and it holds a sequence value. Sequence values are
unrelated to the data of any table, and should have a one-to-one mapping to the table’s natural
key. Natural keys are one or more (generally more) not-null columns that uniquely identify each
row in table. The customer_name column is our natural key in the example. While it’s clearly
unlikely that a single customer_name column could ever be a legitimate natural key, it simplifies
our example and lets us focus on the default column values.

Before we create the table, we need to create the sequence for this example. That’s a departure
from what we’ve done historically in the Oracle database, but this is our brave new world of
Oracle Database 12c. We create a generic sequence that starts with the number 1 like

SQL> CREATE SEQUENCE customer_s;

The sequence needs to be created first because we reference it when we create the table with
a default column value:

SQL> CREATE TABLE customer
 2 (customer_id NUMBER DEFAULT customer_s.nextval
 3 , customer_name VARCHAR2(20));

Since we want to demonstrate how to manage primary and foreign key values in the scope of a
transaction, we need to create another sequence and table. The example creates the preference_s
sequence and preference table.

Rather than separate it, like we did before, the code is combined:

SQL> CREATE SEQUENCE preference_s;
SQL> CREATE TABLE preference
 2 (preference_id NUMBER DEFAULT preference_s.nextval
 3 , customer_id NUMBER DEFAULT customer_s.currval
 4 , preference_name VARCHAR2(20));

The DEFAULT sequence values eliminate the need to write ON INSERT triggers. They also
avoid requiring us to explicitly reference the .nextval and .currval pseudocolumns in
sequenced INSERT statements. However, it’s critical to understand that the dependency between
.nextval and .currval hasn’t changed. You must call .nextval for a sequence before you
call .currval for the same sequence in a session.

NOTE
I recommend caution when deciding whether to adopt this
technique, because of the dependency between the two sequence
pseudocolumns.

We can now insert rows into both tables by using override signatures. Override signatures are
lists of all mandatory and desired optional columns that we want to insert into a table. The inserts
into these two tables should ensure that the customer_id columns hold values that match. That
way, they support equijoins between the customer and preference tables.

SQL> INSERT INTO customer (customer_name) VALUES ('Mr. Scott');
SQL> INSERT INTO preference (preference_name) VALUES ('Romulan Ale');

02-ch02.indd 21 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

22 Oracle Database 12c PL/SQL Programming

Having inserted both rows without any explicit surrogate key values, let’s check to see if
Oracle Database 12c got it right. Using a simple query joining the result, like

SQL> SELECT *
 2 FROM customer c INNER JOIN preference p USING(customer_id);

should return

CUSTOMER_ID CUSTOMER_NAME PREFERENCE_ID PREFERENCE_NAME
----------- ------------- ------------- --------------------
 1 Mr. Scott 1 Romulan Ale

The results show that this approach works. The upcoming “Identity Columns” section shows
how to use those columns.

Default Values for Explicit Null Insertion
Oracle Database has long allowed you to enter default values for any column. Although you
could override that behavior, it required you to explicitly provide a null value during an INSERT
statement. Oracle Database 12c now lets you assign a default value when you opt to provide an
explicit null value:

SQL> CREATE TABLE essay
 2 (essay_name VARCHAR2(30) DEFAULT essay_s.nextval
 3 , essayist VARCHAR2(30)
 4 , published DATE DEFAULT TRUNC(SYSDATE)
 5 , text CLOB
 6 , CONSTRAINT essay_pk
 7 PRIMARY KEY (essay_name, essayist, published));

Line 4 guarantees that any attempt to exclude a published date results in the insertion of
the current date. As qualified in Appendix C on SQL built-in functions, the TRUNC function shaves
off the hours and minutes of any date-time data type. All DATE data types are date-time stamps in
an Oracle database.

The following INSERT statement adds a row to the essay table. It works the same way in
Oracle Database 11g as it does in Oracle Database 12c. It inserts the current date minus the
hours, minutes, and seconds into the published column. It does so because the published
column isn’t in the list of columns in the override signature.

INSERT INTO essay
(essay_name
, essayist
, text)
VALUES
('Why Would I Want to be Superman'
,'21-SEP-2011'
,'At one point or another, everyone has wanted to be someone ...');

If you add the published column to the override signature, then you can insert an explicit
null value. That explicit null value overrides the standard default value. Prior to Oracle Database 12c,

02-ch02.indd 22 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 2: New Features 23

there was no way to prevent that overriding value. Oracle Database 12c provides the ON NULL
phrase to enable you to prevent an explicit null from being inserted in the column.

You change the value by making this change to line 4 of the CREATE TABLE statement:

 4 , published DATE DEFAULT ON NULL TRUNC(SYSDATE)

The ON NULL phrase ensures that you can’t insert a null value into the published column.
This type of change eliminates the need for a database trigger, which would prevent the insertion
of a null value in an Oracle Database 11g database.

Identity Columns
The database community at large (competitors) has maligned Oracle because they didn’t have
identity columns. An identity column supports automatic numbering of rows. This type of column
typically holds a surrogate key, which is an artificial numbering sequence.

Oracle Database 12c delivers an identity operator. Perhaps the better news is that Oracle
Database 12c provides options for how you generate identity values. The basic identity column
typically uses id as its label, and Oracle supports that convention unless you change the column
name.

TIP
Using the table name with the _id suffix rather than the id suffix as
the identity column name is a better practice.

The following creates a table with two columns, an identity column and a text column:

SQL> CREATE TABLE identity
 2 (id NUMBER GENERATED ALWAYS AS IDENTITY
 3 , text VARCHAR2(10));

The sample table allows us to exclude the id column from an INSERT statement. If we only
had one column, we’d have to provide a value for the id column. It’s simpler to write an override
signature, which is a form of named notation. An override signature adds a column-list between
the table name and VALUES or subquery clauses.

The present identity table example is as barebones as it gets because the default identity
behavior is ALWAYS, which means you can’t manually enter an identity value in the id column
and, since there are no other columns in the table, you can’t enter a row. You can only insert rows
into a table with an identity column when the table has two or more columns in it, like we’ve
done in the example.

The correct way to work with an INSERT statement excludes the id identity column from the
column-list, like this:

SQL> INSERT INTO identity (text) VALUES ('One');

Why did Oracle choose ALWAYS as the default? The Oracle documentation doesn’t explain,
but let me venture a guess: If you use BY DEFAULT and enter a number higher than the current
generated sequence value, you can duplicate a column value without a primary key or unique
constraint and cause an insert into the table to fail when it has a primary key or unique constraint.

02-ch02.indd 23 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

24 Oracle Database 12c PL/SQL Programming

Appendix B has an “Identity Columns” section that describes how to work with identity columns.
The short version is that you will become familiar with the RETURNING INTO clause of an INSERT
statement, because the identity column’s sequence is a system-generated sequence that you can’t
readily access. You can check the “Mapping Identity Columns to Sequences” sidebar in Appendix
B for the details.

Identity columns change how we can work in the Oracle database. At least, they change how
we can work when we’re not supporting legacy code, such as the Oracle E-Business Suite’s code
base. Oracle Database 12c’s identity approach should mean we stop using sequence.nextval
and sequence.currval. That model let us manage the surrogate primary and foreign key values
in the scope of a transaction.

Identity columns require that we use the RETURNING INTO clause of the INSERT statement.
It lets us capture the last sequence value from an INSERT statement in a local variable. Then, we
can reuse the local variable and assign it as the foreign key to a dependent table. Naturally, this
assumes that we’re managing the insert to these tables in a transaction unit within a PL/SQL block.

Increased Size Limits of String and Raw Types
The maximum size of VARCHAR2, NVARCHAR2, and RAW data types is now configurable in SQL.
You can let it remain 4,000 bytes when the max_string_size parameter is set to STANDARD.
Alternatively, you can set the max_string_size parameter to EXTENDED and the maximum
size becomes 32,767 bytes.

The positive aspect of this increased size limit should be clear to developers upgrading from
Oracle Database 11g. There you could have a PL/SQL VARCHAR2, NVARCHAR2, or RAW that was
32,767 bytes, but you couldn’t store it in a column of the same data type. Now you can do that.

Pass Results from SQL Statements to External Programs
Prior to Oracle Database 12c, you had to return a SELECT statement into a SQL or PL/SQL data
type. That meant you had more steps to get to embedded queries in your PL/SQL programs.
External programs had to access the results by using a matching scalar or composite data type.
The composite data types were typically SQL tables, PL/SQL system reference cursors, or SQL
result sets from pipelined table functions.

Oracle Database 12c provides you with a new return_results procedure in the dbms_
sql package. This section contains an example that shows you how to use this procedure and
package.

The functionality mirrors Microsoft’s Shared Source Common Language Infrastructure (CLI).
According to a March 2002 article by David Stutz, “The Microsoft Shared Source CLI Implementation,”
posted on the Microsoft Developer Network (MSDN), “Microsoft has built the Shared Source CLI
so that researchers, students, professors, and other interested developers can teach, learn, and
experiment with advanced computer language infrastructure.” The same article indicates that
Microsoft licenses the Shared Source CLI Implementation to anyone who agrees to modify its CLI
code for noncommercial purposes only. However, in 2009, Microsoft added C# and CLI to the list
of specifications that the Community Promise applies to. That should mean (though I’m not an
attorney) that anyone could safely implement it without fearing a patent lawsuit from Microsoft.

Wikipedia has a nice article on CLI at this URL:

http://en.wikipedia.org/wiki/Common_Language_Infrastructure

02-ch02.indd 24 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 2: New Features 25

While Oracle’s documentation doesn’t cover any licensing issue, it appears Oracle must rely
on the Community Promise or have resolved any issue with using it. You can parameterize a
function in CLI, like this example:

CREATE FUNCTION mydb.getConquistador
(@nationality AS VARCHAR(30))
RETURNS TABLE
RETURN SELECT * FROM mydb.conquistador WHERE nationality = @nationality;

The Shared Source CLI function passes a reference to a result set as the return value of a
function. Oracle’s approach differs. Oracle uses the pass-by-reference get_next_result
and return_results procedures from the dbms_sql package. The specification for the
get_next_result and return_results procedures are covered in Table 2-1.

The following is an anonymous block program that shows you how to return an implicit
cursor result:

SQL> COLUMN item_title FORMAT A30
SQL> COLUMN item_subtitle FORMAT A40
SQL> DECLARE
 2 /* Declare a cursor. */
 3 lv_cursor SYS_REFCURSOR;
 4 BEGIN
 5 /* Open a static cursor. */
 6 OPEN lv_cursor FOR
 7 SELECT i.item_title

Procedure Description
get_next_result The get_next_result procedure has two parameters. The first parameter

is an IN mode pass-by-value parameter, and it is a reference to a dbms_sql
cursor reference. The second parameter is an overloaded OUT mode
pass-by-reference parameter. It retrieves either a single PL/SQL system
reference cursor or a reference to a PL/SQL system reference cursor. You are
disallowed from referring explicitly to the OUT mode rc parameter. It has
the following prototypes:
GET_NEXT_RESULT(c, rc)
GET_NEXT_RESULT(c, rc)

return_results The return_results procedure has two parameters. The first parameter
is an IN OUT mode pass-by-reference overloaded parameter. The rc
parameter is either a single or collection of PL/SQL system reference cursors
or a reference to a single or collection of PL/SQL system reference cursors.
The second parameter is a Boolean pass-by-value parameter with a default
TRUE value. It has the following prototypes:
RETURN_RESULTS(rc, to_client [DEFAULT TRUE])
RETURN_RESULTS(rc, to_client [DEFAULT TRUE])

TABLE 2-1. Procedures of the dbms_sql Package that Pass Implicit Result Sets

02-ch02.indd 25 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

26 Oracle Database 12c PL/SQL Programming

 8 , i.item_subtitle
 9 FROM item i
 10 WHERE REGEXP_LIKE(i.item_title,'^Star.*');
 11
 12 /* Call the dbms_sql.return_result procedure. */
 13 dbms_sql.return_result(lv_cursor);
 14 END;
 15 /

Line 3 declares a PL/SQL system reference cursor. Lines 6 through 10 open a static query into
the local PL/SQL system reference cursor. Line 13 takes the local PL/SQL system reference cursor
and returns it a client scope.

The anonymous block prints the following because the results of the cursor are passed back to
the calling scope by reference implicitly:

ITEM_TITLE ITEM_SUBTITLE
------------------------------ ----------------------
Star Wars I Phantom Menace
Star Wars II Attack of the Clones
Star Wars III Revenge of the Sith

You actually return two or more result sets when the anonymous block holds two or more local
system reference cursors and you have made two or more calls to the return_results procedure
of the dbms_sql package. The get_next_result procedure returns a single result set.

New external library functions have been added to work with implicit result sets (IRSs). For
example, the OCI8 2.0 library added the oci_get_implicit_resultset() function call.
You can use it with all of the oci_fecth_* functions.

This presents interesting alternatives to the use of system reference cursors and either pipelined
table or object table functions. Again, for newbies, Oracle Database 10g forward lets you create
object table functions, and use the TABLE function to return scalar and composite collections
from the Oracle database as a relational result set.

Native SQL Support for Query Row Limits and Offsets
Prior to Oracle Database 12c, you could only limit the number of rows returned by using a less-
than row number (ROWNUM) operation. That changes with the new FETCH FIRST and OFFSET
clauses. Oracle Database 12c now gives you an expanded set of options to perform a top-n query.

You limit the query to one row with the following:

SQL> SELECT i.item_title
 2 FROM item i
 3 FETCH FIRST 1 ROWS ONLY;

Line 3 shows how the FETCH FIRST clause works to return a single row. The funniest thing,
if “funny” is the right word, is that you must use the plural ROWS ONLY keywords.

As you might imagine you return the first five rows by changing line 3 to this:

 3 FETCH FIRST 5 ROWS ONLY;

Let’s say you didn’t know how many rows would be returned, and you didn’t want to limit the
number to 20, 50, 100, or 500 (the most common breaking points). Oracle has also provided you

02-ch02.indd 26 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 2: New Features 27

with syntax to return a portion of the total rows. That’s accomplished by adding the PERCENT
keyword to the FETCH FIRST clause, like this replacement to line 3:

 3 FETCH FIRST 20 PERCENT ROWS ONLY;

Oracle Database 12c also enables you to skip rows before reading a limited set of records.
It’s a top-n query from someplace in the midst of the return set. The syntax is for a modified line 3:

 3 OFFSET 20 ROWS FETCH FIRST 20 ROWS ONLY;

The minimum valid OFFSET value is 0. That’s important to know when you parameterize a
top-n query.

You can parameterize the statement by using bind variables, like this:

 3 OFFSET :bv_offset ROWS FETCH FIRST :bv_rows ROWS ONLY;

You should always use the OFFSET clause when you want to parameterize a top-n query
because it lets you write a single statement for two purposes. One lets you read from the beginning
of the record set when you provide a zero OFFSET value to the statement. The other lets you read
from any point other than the beginning of the set. You only read to the end of actual rows when
the :bv_rows value exceeds the remaining records.

It’s also possible to use the FETCH FIRST and OFFSET clauses inside PL/SQL blocks as
implicit. You can use them in a SELECT-INTO statement or as the definition of a static cursor.
You can also use bind variables inside an anonymous PL/SQL block.

The following shows how to use a SELECT-INTO query:

SQL> DECLARE
 2 /* Declare a local variable. */
 3 lv_item_title VARCHAR2(60);
 4 BEGIN
 5 /* Select the variable into a local variable. */
 6 SELECT i.item_title
 7 INTO lv_item_title
 8 FROM item i
 9 FETCH FIRST 1 ROWS ONLY;
 10 dbms_output.put_line('['||lv_item_title||']');
 11 END;
 12 /

Line 9 fetches only the first row from the query. It’s also possible to include the OFFSET
clause on line 9, like

 9 OFFSET 5 ROWS FETCH FIRST 1 ROWS ONLY;

As mentioned, you can embed bind variables inside an anonymous PL/SQL block. You would
use the following, provided the value of :bv_size is 1:

 9 OFFSET :bv_offset ROWS FETCH FIRST :bv_size ROWS ONLY;

The limitation of 1 on the value of the :bv_rows variable exists because a SELECT-INTO
statement can only return one row. If the :bv_rows value was greater than 1, you’d return an
ORA-01422 exception, which tells you that the row returns too many rows.

02-ch02.indd 27 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

28 Oracle Database 12c PL/SQL Programming

You can eliminate the risk of too many rows being returned by embedding a dynamic query
in an external program. You can do this by using Open Database Connectivity (ODBC) or Java
Database Connectivity (JDBC) libraries.

The following demonstrates the technique of a dynamic top-n query in PHP:

15 // Declare a SQL statement.
16 $sql = "SELECT i.item_title "
17 . "FROM item i "
18 . "OFFSET :bv_offset ROWS FETCH FIRST :bv_rows ROWS ONLY";
19
20 // Prepare the statement and bind the two strings.
21 $stmt = oci_parse($c,$sql);
22
23 // Bind local variables into PHP statement.
24 oci_bind_by_name($stmt, ":bv_offset", $offset);
25 oci_bind_by_name($stmt, ":bv_rows", $rows);
26
27 // Execute the PL/SQL statement.
28 if (oci_execute($stmt)) {

The next example shows an offset top-n query in a static cursor:

SQL> DECLARE
 2 /* Declare a local variable. */
 3 lv_item_title VARCHAR2(60);
 4 /* Declare a static cursor. */
 5 CURSOR c IS
 6 SELECT i.item_title
 7 FROM item i
 8 OFFSET 10 ROWS FETCH FIRST 1 ROWS ONLY;
 9 BEGIN
 10 /* Open, fetch, print, and close the cursor. */
 11 OPEN c;
 12 FETCH c INTO lv_item_title;
 13 dbms_output.put_line('['||lv_item_title||']');
 14 CLOSE c;
 15 END;
 16 /

Line 8 uses literal values to set the OFFSET value and number of rows returned. You can’t
substitute variables for the literal values—at least, you can’t substitute them in the production
version of Oracle Database 12c Release 1.

Here’s an attempt to use a dynamic cursor:

SQL> DECLARE
 2 /* Declare a local variable. */
 3 lv_item_title VARCHAR2(60);
 4 /* Declare a static cursor. */
 5 CURSOR c
 6 (cv_offset NUMBER
 7 , cv_size NUMBER) IS
 8 SELECT i.item_title

02-ch02.indd 28 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 2: New Features 29

 9 FROM item i
 10 OFFSET cv_offset ROWS FETCH FIRST cv_size ROWS ONLY;
 11 BEGIN
 12 NULL;
 13 END;
 14 /

Line 10 sets the top-n query limits with the cv_offset and cv_size cursor parameters.
Line 12 prevents a parsing error by providing a statement within the execution block. The block
fails to parse, raises an exception, and disconnects from the active session with this error stack:

ERROR:
ORA-03114: not connected to ORACLE

DECLARE
*
ERROR at line 1:
ORA-03113: end-of-file on communication channel
Process ID: 4148
Session ID: 31 Serial number: 3187

This type of exception is an unhandled exception. They don’t exist very often for long. This
type of error gives me the impression that it’ll be fixed in due course by Oracle. Although, it’s
possible that it could be simply documented as a limitation. At any rate, it should be resolved by
the time this book publishes.

Oracle Database Driver for MySQL Applications
Oracle Database 12c provides a database driver for MySQL applications. It is a drop-in replacement
for the MySQL 5.5 client library. It enables applications and tools built on languages that leverage
the MySQL C API, like PHP, Ruby, Perl, and Python. The benefit is that users can reuse their
MySQL applications against both MySQL and Oracle databases. This improves cross portability
of these scripting language solutions.

SQL CROSS APPLY, OUTER APPLY, and LATERAL
The APPLY SQL syntax lets you invoke a table-valued function for each row returned by a query’s
outer table expression. The join treats the table-valued function as the right operand and the outer
table expression as the left operand. The join evaluates each row from the right for each row on
the left, and the results are combined for the final result set.

There are two variations of this type of operation. The CROSS APPLY performs a variation of
an inner join. It returns rows from the table or set of tables on the left side of the CROSS APPLY
operation with rows that match on the left side that are found to match a WHERE clause inside the
inline view on the right.

This is an example that implements a CROSS APPLY join:

SQL> SELECT i.item_title
 2 FROM item i CROSS APPLY
 3 (SELECT *
 4 FROM rental_item ri
 5 WHERE i.item_id = ri.item_id
 6 OFFSET 0 ROWS FETCH FIRST 1 ROWS ONLY);

02-ch02.indd 29 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

30 Oracle Database 12c PL/SQL Programming

The OUTER APPLY is a variation of a left join operation. The OUTER APPLY works to create
an outer join between a table or set of joined tables and an inline view. The inline view must
contain a WHERE clause that resolves the relationship between the result set on the left and the
inline view on the right. All rows from the table on the left side of the join are returned with
matching results from the collection or null values.

This is an example that implements an OUTER APPLY join:

SQL> SELECT i.item_title
 2 FROM item i OUTER APPLY
 3 (SELECT *
 4 FROM rental_item ri
 5 WHERE i.item_id = ri.item_id
 6 OFFSET 0 ROWS FETCH FIRST 1 ROWS ONLY);

The LATERAL clause designates a subquery as a lateral inline view. You can specify the tables
that appear to the left of the lateral inline view within the FROM clause of a query. You encounter
some restrictions when you use a lateral inline view, such as:

 ■ You can’t use the PIVOT clause, UNPIVOT clause, or table reference clause.

 ■ You can’t use a left correlation when a lateral inline view contains a query partition
clause and appears on the right side of a join clause.

 ■ You can’t use a left correlation to the first table in a right outer join or full outer join
within a lateral view.

The LATERAL clause, part of the ANSI SQL standard, extends Oracle’s inline view syntax.
While the following query could easily be rewritten as an INNER JOIN, it demonstrates the
limitation fixed by Oracle Database 12c’s LATERAL clause:

SQL> SELECT *
 2 FROM contact c CROSS JOIN
 3 (SELECT *
 4 FROM member m
 5 WHERE c.member_id = m.member_id);

The previous query attempts to write an inline view that contains a correlated subquery. It
generates the following error message:

 WHERE c.member_id = m.member_id)
 *
ERROR at line 5:
ORA-00904: "C"."MEMBER_ID": invalid identifier

The error means that it can’t find the contact table’s alias c. The inline view can’t find the
table’s alias because it’s unavailable until after the FROM clause is completely parsed. That’s why
Oracle raises the invalid identifier error (check Chapter 4 for details on identifiers if they’re new to
you). This same type of error can occur with the CROSS APPLY or OUTER APPLY join operations.

The LATERAL clause lets an inline view resolve tables on the left side of a CROSS JOIN
operation. It does this by parsing everything before the LATERAL keyword separately. Separating
the parsing operation into two pieces lets an inline view on the right side of the LATERAL

02-ch02.indd 30 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 2: New Features 31

keyword resolve the identifier. That means an inline view can now include correlated behaviors,
as shown here:

SQL> SELECT *
 2 FROM contact c CROSS JOIN
 3 LATERAL(SELECT *
 4 FROM member m
 5 WHERE c.member_id = m.member_id);

The LATERAL keyword on line 3 lets the subquery find any table on the left side of the
CROSS JOIN operation. It doesn’t work when the unresolved identifier is on the right because
the order of operation for lateral operations is left to right.

Bequeath CURRENT_USER Views
Prior to Oracle Database 12c, views always behaved like definer rights units. The definer rights
privilege is the default for functions, procedures, packages, and types. While not required because
it’s the default, you would use the AUTHID DEFINER clause when defining stored program units.

Oracle Database 12c adds the ability to define the behavior privileges of views. The default
behavior is BEQUEATH DEFINER, and it acts like AUTHID DEFINER for stored program units.
You override the default privileges by creating views with the BEQUEATH CURRENT user privilege.

Review Section
This section has described the following points about Oracle Database 12c new SQL features:

 ■ Oracle Database 12c goes beyond simply referring to environment variables in
LIBRARY path statements, and lets you use a virtual DIRECTORY.

 ■ Oracle Database 12c lets you define explicit and implicit valid-time (VT) dimensions
to improve flashback controls for the DBA.

 ■ Oracle Database 12c expands the role of the LEFT OUTER JOIN to include multiple
tables on the left side of the join.

 ■ Oracle Database 12c introduces the CROSS APPLY, OUTER APPLY, and LATERAL
syntax for working with nested tables.

 ■ Oracle Database 12c supports default columns that can hold the .nextval and
.currval pseudocolumns for named sequences.

 ■ Oracle Database 12c introduces identity columns that maintain auto-incrementing
sequences for surrogate keys.

 ■ Oracle Database 12c adds the ON NULL clause to default values, which eliminates
manual overrides with explicit null values when inserting or updating tables.

 ■ Oracle Database 12c lets you set a parameter to increase the length of VARCHAR2,
NVARCHAR2, and RAW data types to 32,767 bytes, which is equivalent to their size in
PL/SQL.

 ■ Oracle Database 12c enables definer or invoker rights models for views through the
BEQUEATH keyword.

02-ch02.indd 31 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

32 Oracle Database 12c PL/SQL Programming

New PL/SQL Features
PL/SQL gains a number of new features in Oracle Database 12c:

 ■ It lets you cache invoker rights functions.

 ■ A key new enhancement lets you white list callers to stored functions, procedures, packages,
and types.

 ■ It provides native support for binding PL/SQL package and Boolean data types as
parameters. It also provides native client API support for PL/SQL data types.

 ■ It adds the utl_call_stack package.

 ■ It adds a new expand_sql_text procedure to the dbms_utility package.

 ■ The parse procedure has a new formal schema to resolve unqualified object names.

 ■ You can now add PL/SQL functions in a SQL WITH clause.

 ■ It’s now possible to define local PL/SQL types and use them in embedded SQL statements.

 ■ Oracle Data Provider for .NET (ODP.NET) can now bind REF CURSOR parameters for
stored procedures.

The following sections cover each of these new PL/SQL features in turn.

Caching of Invoker Rights Functions
Oracle Database 12c lets you cache the results of invoker rights functions. It supports this capability
by adding the current user identity to the cached results. By so doing, it stores different results
from a single invoker rights program. That means you can cache deterministic invoker rights
functions, which are those that rely on values in the CURRENT_USER database.

The introduction of invoker rights functions changes how you can approach problems. It lets
you achieve improved throughput with invoker rights functions in a distributed environment, like
pluggable databases.

Ability to White List PL/SQL Program Unit Callers
Oracle Database 12c enables you maintain a white list of users who have permission to call your
function, procedure, package, or object type. White listing a user authorizes that user to call a
stored routine. It supplements your security options. A user granted privileges to execute a stored
routine in a schema must also be on the authorized user list.

Oracle Database 12c documentation introduces a new way of describing stored routines. It
uses the generic unit_kind to describe functions, procedures, packages, and object types. The
ACCESSIBLE BY clause is the key to white listing stored programs when you create or replace
them.

The Oracle documentation provides this type of prototype:

[ACCESSIBLE BY (unit_kind [schema.]unit_name
[, unit_kind [schema.]unit_name]
[,...]])]

02-ch02.indd 32 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 2: New Features 33

It’s direct and short, but an expanded prototype might provide better clarity, because the keyword
for the unit_kind must precede the stored program’s name:

[ACCESSIBLE BY
([{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]unit_name)
[,[{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]unit_name)]
[,...]]]

The following short example shows how to write a white-listing function. It white lists functions,
procedures, packages, and types to provide a complete description.

SQL> CREATE OR REPLACE FUNCTION library
 2 (pv_message VARCHAR2) RETURN VARCHAR2
 3 ACCESSIBLE BY
 4 (FUNCTION video.gateway
 5 , PROCEDURE video.backdoor
 6 , PACKAGE video.api
 7 , TYPE video.hobbit) IS
 8 lv_message VARCHAR2(20) := 'Hello ';
 9 BEGIN
 10 lv_message := lv_message || pv_message || '!';
 11 RETURN lv_message;
 12 END;
 13 /

Lines 3 through 7 declare the white list of authorized callers. Any of these can call the library
function successfully, while no other function, procedure, package, or type can call it. An attempt
to create a new function that calls the white-listed function, like this,

SQL> CREATE OR REPLACE FUNCTION black_knight
 2 (pv_message VARCHAR2) RETURN VARCHAR2 IS
 3 BEGIN
 4 RETURN library(pv_message);
 5 END;
 6 /

raises a compilation error, which means you need to show the error stack:

SQL> show errors
Errors for FUNCTION BLACK_KNIGHT:
LINE/COL ERROR
-------- --
4/3 PL/SQL: Statement ignored
4/10 PLS-00904: insufficient privilege to access object LIBRARY

White listing callers is a prudent and long-overdue enhancement, one that no other database
currently implements.

02-ch02.indd 33 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

34 Oracle Database 12c PL/SQL Programming

Native Client API Support for PL/SQL Types
This feature enables the Oracle client APIs to describe and bind PL/SQL package types and Boolean
types. You use the OCI and JDBC APIs to bind these. You can also use any C-based applications to
bind and execute PL/SQL functions or procedures.

New PL/SQL Package UTL_CALL_STACK
Oracle Database 12c introduces the utl_call_stack package. It provides a number of features
that improve error stack handling. An error stack is the sequence of exceptions raised and passed
up the chain of a programming call. Chapter 6 covers what’s in the utl_call_stack package,
and how to use it.

DBMS_UTILITY Adds EXPAND_SQL_TEXT Subprogram
Oracle Database 12c adds an expand_sql_text procedure to the dbms_utility package.
The new procedure lets you expand a view that depends on other views into a single query. It’s
very useful when you want to see the complete picture of how the code works.

It appears that you should leverage the expand_sql_text procedure to discover how views
built on views resolve to tables. At least it’s the simplest solution available short of you manually
refactoring the code one view at a time. The problem with Oracle’s expand_sql_text function
is that it takes an inbound CLOB and returns an outbound CLOB, while views are stored in LONG
data type columns. Converting a LONG data type to a CLOB isn’t a trivial task. That’s why I wrote a
function to do it for you. You can find the long_to_clob function in Chapter 10.

Even with the long_to_clob function, effectively using the expand_sql_text procedure
requires some other steps, as shown in the following function:

SQL> CREATE OR REPLACE FUNCTION expand_view
 2 (pv_view_name VARCHAR2) RETURN CLOB IS
 3
 4 /* Declare containers for views. */
 5 lv_input_view CLOB;
 6 lv_output_view CLOB;
 7
 8 /* Declare a target variable, because of the limit of SELECT-INTO. */
 9 lv_long_view LONG;
 10
 11 /* Declare a dynamic cursor. */
 12 CURSOR c (cv_view_name VARCHAR2) IS
 13 SELECT text
 14 FROM user_views
 15 WHERE view_name = cv_view_name;
 16
 17 BEGIN
 18 /* Open, fetch, and close cursor to capture view text. */
 19 OPEN c(pv_view_name);
 20 FETCH c INTO lv_long_view;
 21 CLOSE c;
 22

02-ch02.indd 34 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 2: New Features 35

 23 /* Convert a LONG return type to a CLOB. */
 24 lv_input_view := long_to_clob(pv_view_name, LENGTH(lv_long_view));
 25
 26 /* Send in the view text and receive the complete text. */
 27 dbms_utility.expand_sql_text(lv_input_view, lv_output_view);
 28
 29 /* Return the output CLOB value. */
 30 RETURN lv_output_view;
 31 END;
 32 /

While it pains me to use LONG data types (true dinosaurs in the Oracle database), doing so is
necessary to show you how to use this cool feature. Line 9 declares a lv_long_view variable
that uses the LONG data type. Although the parameterized cursor is overkill, good practices should
be consistently reinforced. A SELECT-INTO statement can’t replace it because you can’t use a
SELECT-INTO statement with a LONG data type. The FETCH INTO clause does support the
assignment of a LONG data type, and that’s why we make that left-to-right assignment on line 20.

Next, we call our long_to_clob function with a view_name and the length of the view’s
text column. Although this is a double query to the catalog, because our long_to_clob
remakes the query, the double query is necessary to avoid a character-by-character assignment
from the LONG data type to a CLOB data type. Oracle doesn’t provide many options when
working with LONG data types. For example, the to_clob function doesn’t accept a LONG data
type as a call parameter.

Check the full details of the long_to_clob function in Chapter 10. The short version is that
it leverages the dbms_sql and dbms_lob packages to convert a LONG to a CLOB data type. You
can find more about the dbms_sql package in Chapter 13. Chapter 10 covers the dbms_lob
package and how you work with large objects.

Line 27 calls the expand_sql_text procedure, and line 30 returns the outbound CLOB
from the expand_sql_text procedure. The result of the function gives you a CLOB, which
contains the full query based on tables. Once you have it, you need to analyze its performance.

DBMS_SQL Adds a New Formal Schema
to the PARSE Procedure
The dbms_sql package adds a new formal schema to the parse procedure. The parse
procedure now resolves unqualified object names. This lets a definer rights program unit control
the name resolution of dynamic SQL statements that it runs. For example, it now lets you issue a
DROP TABLE statement from within a stored procedure when you use the dbms_sql.parse
procedure.

PL/SQL Functions in SQL WITH Clause
Oracle Database 12c introduces PL/SQL functions inside the WITH clause. The only catch comes
when you try to run them, because they have embedded semicolons. Let’s say you run the command
from inside SQL*Plus. You would first disable the default SQL terminator, a semicolon (;), with
this SQL*Plus command:

SET SQLTERMINATOR OFF

02-ch02.indd 35 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

36 Oracle Database 12c PL/SQL Programming

Then, you would create a local function in your WITH statement, like

SQL> COLUMN person FORMAT A18
SQL> WITH
 2 FUNCTION glue
 3 (pv_first_name VARCHAR2
 4 , pv_last_name VARCHAR2) RETURN VARCHAR2 IS
 5 lv_full_name VARCHAR2(100);
 6 BEGIN
 7 lv_full_name := pv_first_name || ' ' || pv_last_name;
 8 RETURN lv_full_name;
 9 END;
 10 SELECT glue(a.first_name,a.last_name) AS person
 11 FROM actor a
 12 /

The function on lines 2 through 9 simply concatenates two strings with a single-character
white space between them. The semicolons are treated as ordinary characters in the query since
the default SQL terminator is disabled. You should also note that the SQL statement is run by the
SQL*Plus forward slash and that the complete statement doesn’t have a terminating semicolon
on line 11.

In this simple example, the actor table contains two actors’ names (from the Iron Man movie
franchise), and the query returns

PERSON

Robert Downey
Gwyneth Paltrow

You will encounter some parsing difficulty running queries like this when you submit them
through tools like Oracle SQL Developer. The easiest fix to those problems is to wrap the query
in a view because a view eliminates the need to change the SQLTERMINATOR value at runtime.
This creates a view based on an embedded PL/SQL function within a WITH statement:

SQL> CREATE OR REPLACE VIEW actor_v AS
 2 WITH
 3 FUNCTION glue
 4 (pv_first_name VARCHAR2
 5 , pv_last_name VARCHAR2) RETURN VARCHAR2 IS
 6 BEGIN
 7 RETURN pv_first_name || ' ' || pv_last_name;
 8 END;
 9 SELECT glue(a.first_name,a.last_name) AS person
 10 FROM actor a
 11 /

As you know, a view is nothing more than a stored query. The actor_v view shrinks the
glue function by two lines. It removes the declaration of lv_full_name, and replaces the
assignment of the concatenated values with a direct return of the result on line 7.

02-ch02.indd 36 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 2: New Features 37

If you want to run ordinary SQL commands with the default semicolon, you should reenable
the default SQL terminator:

SET SQLTERMINATOR ON

The obvious benefit of the WITH clause is that it runs once and can be used multiple times in
the scope of the query. Likewise, you can embed functions that have a local scope to a single query.
Why use a WITH clause when you can use the global temporary table? Tom Kyte has answered
that question in his Ask Tom column (http://asktom.oracle.com), explaining more or less that the
optimizer can merge a WITH clause with the rest of the statement, while a global temporary table can’t.

PL/SQL-Specific Data Types Allowed in SQL
The ability to pass Oracle-specific PL/SQL data types is a great feature in Oracle Database 12c.
There is one trick to making it work: you have to declare the local variable inside the stored
program and then use the local variable in an embedded SQL statement.

Let’s demonstrate this feature with a PL/SQL collection and both a named PL/SQL block and
an unnamed PL/SQL block. Demonstrating how it works is a five-step process. A sixth step shows
you how to fail, which should save you time and explain why pipelined table functions are still
needed in Oracle Database 12c.

The first step creates a bodiless type_defs package. A bodiless package has only type and
cursor definitions in a package specification. You set up a bodiless package when you want to
share types and cursors among other program units.

The following package specification creates only a single PL/SQL-only associative array,
which is a sparsely indexed collection:

SQL> CREATE OR REPLACE PACKAGE type_defs IS
 2 TYPE plsql_table IS TABLE OF VARCHAR2(20)
 3 INDEX BY BINARY_INTEGER;
 4 END type_defs;
 5 /

The second step creates a honeymooner table with an identity column and a person
column. The person column matches the scalar data type of the associative array, and we’ll use
the data from the table to populate the PL/SQL associative array.

The definition of the table is

SQL> CREATE TABLE honeymooner
 2 (honeymooner_id NUMBER GENERATED ALWAYS AS IDENTITY
 3 , person VARCHAR2(20));

The third step inserts four rows into the honeymooner table:

SQL> INSERT INTO honeymooner (person) VALUES ('Ralph Kramden');
SQL> INSERT INTO honeymooner (person) VALUES ('Alice Kramden');
SQL> INSERT INTO honeymooner (person) VALUES ('Edward Norton');
SQL> INSERT INTO honeymooner (person) VALUES ('Thelma Norton');

The first three steps create a bodiless plsql_table package, create a honeymooner table,
and seed the honeymooner table with four rows. The fourth step creates an implicit_convert

02-ch02.indd 37 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

38 Oracle Database 12c PL/SQL Programming

function that reads the four rows from the table and puts them into a PL/SQL associative array.
It then returns the PL/SQL associative array, as shown here:

SQL> CREATE OR REPLACE FUNCTION implicit_convert
 2 RETURN type_defs.plsql_table IS
 3 lv_index NUMBER := 1; -- Counter variable.
 4 lv_list TYPE_DEFS.PLSQL_TABLE; -- Collection variable.
 5 CURSOR c IS SELECT person FROM honeymooners;
 6 BEGIN
 7 FOR i IN c LOOP
 8 lv_list(lv_index) := i.person;
 9 lv_index := lv_index + 1;
 10 END LOOP;
 11 RETURN lv_list; -- Return locally scope PL/SQL collection.
 12 END;
 13 /

Line 2 defines the RETURN type as a PL/SQL associative array. Line 4 declares a local variable
of the same PL/SQL associative array as the return type. The loop populates the local variable,
and line 11 returns the local variable as a PL/SQL associative array.

The fifth step implements an anonymous block that calls the implicit_convert function.
Inside the execution block, the local PL/SQL associative array is passed to a SQL statement,
which reads it successfully with the TABLE function.

The unnamed block follows:

SQL> DECLARE
 2 list TYPE_DEFS.PLSQL_TABLE;
 3 BEGIN
 4 list := implicit_convert;
 5 FOR i IN (SELECT column_value
 6 FROM TABLE(list)) LOOP
 7 dbms_output.put_line(i.column_value);
 8 END LOOP;
 9 END;
 10 /

Line 2 declares a variable by using the plsql_table type from the type_defs package.
Line 4 calls the implicit_convert function and assigns the returned PL/SQL associative array
to the local variable. Lines 5 and 6 hold a SELECT statement that uses the locally declared PL/SQL
variable inside the TABLE function.

Prior to Oracle Database 12c, the TABLE function can only translate a varray or table collection
into a SQL result set. The TABLE function can now translate a local PL/SQL associative array
variable in a SQL scope.

The program fails when you comment out the assignment to the local variable on line 4, and
replace the local variable with a call to the implicit_convert function on line 6. The changes
follow:

 4 --list := implicit_convert;
 5 FOR i IN (SELECT column_value
 6 FROM TABLE(implicit_convert)) LOOP

02-ch02.indd 38 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 2: New Features 39

These changes raise the following error stack:

 FROM TABLE(implicit_convert)) LOOP
 *
ERROR at line 6:
ORA-06550: line 6, column 28:
PLS-00382: expression is of wrong type
ORA-06550: line 6, column 22:
PL/SQL: ORA-22905: cannot access rows from a non-nested table item
ORA-06550: line 5, column 13:
PL/SQL: SQL Statement ignored
ORA-06550: line 7, column 26:
PLS-00364: loop index variable 'I' use is invalid
ORA-06550: line 7, column 5:
PL/SQL: Statement ignored

There’s good news about this type of failure. You can convert the PL/SQL associative array by
wrapping it in a pipelined table function. Yes, pipelined table functions still have a key purpose in
our PL/SQL world. Let’s say you want to eliminate the bodiless package in which you’ve defined
the PL/SQL associative array. To do so, you would refactor the code into an anonymous block
unit, like

SQL> DECLARE
 2 TYPE local_table IS TABLE OF VARCHAR2(20)
 3 INDEX BY BINARY_INTEGER;
 4 lv_index NUMBER := 1; -- Counter variable.
 5 lv_list LOCAL_TABLE; -- Local PL/SQL collection.
 6 CURSOR c IS SELECT person FROM honeymooners;
 7 BEGIN
 8 FOR i IN c LOOP
 9 lv_list(lv_index) := i.person;
 10 lv_index := lv_index + 1;
 11 END LOOP;
 12 FOR i IN (SELECT column_value
 13 FROM TABLE(lv_list)) LOOP
 14 dbms_output.put_line(i.column_value);
 15 END LOOP;
 16 END;
 17 /

This block unit fails, but not for the same reason that trying to process the associative array as
a return value from a PL/SQL function fails, although the error stack might lead you to conclude
they fail for the same reason. This one fails because the PL/SQL type isn’t defined in the database
catalog, and Oracle Database has no way to look it up. That means Oracle Database doesn’t
know what it’s translating to an equivalent SQL data type.

Although Oracle doesn’t explain how it performs magic like this conversion, I can venture a
guess. Right or wrong, my guess is that Oracle maps the implicit PL/SQL collection to an explicit
SQL table collection. If that’s too technical for you at this early point in the book, don’t be concerned.
Chapter 6 explains these composite data types (collections) in great depth.

In short, you can assign a local PL/SQL variable to a local SQL context. You can’t, at present,
assign a non-local PL/SQL associative array result from a function.

02-ch02.indd 39 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

40 Oracle Database 12c PL/SQL Programming

Implicit REF CURSOR Parameter Binding
Oracle Data Provider for .NET (ODP.NET) can now bind REF CURSOR parameters for stored
procedures without binding them explicitly. ODP.NET accomplishes this when you provide metadata
as part of the .NET configuration files.

Review Section
This section has described the following points about Oracle Database 12c new PL/SQL features:

 ■ Oracle Database 12c enables you to cache results from invoker rights functions.

 ■ Oracle Database 12c lets you white list the callers of stored functions, procedures,
packages, and object types.

 ■ Oracle Database 12c provides native client API support for PL/SQL data types.

 ■ Oracle Database 12c provides new error stack management through the utl_call_
stack package.

 ■ Oracle Database 12c lets you expand the full text of views that depend on views with
the new expand_sql_text procedure in the dbms_utility package.

 ■ The dbms_sql package adds a new formal schema, which lets it resolve unqualified
object names.

 ■ Oracle Database 12c supports embedding PL/SQL functions inside SQL WITH clause
statements.

 ■ Oracle Database 12c adds the ability to use local PL/SQL data types in local SQL
statements.

 ■ Oracle Database 12c supports implicit binding of the PL/SQL REF CURSOR data type
in ODP.NET.

Supporting Scripts
This section describes programs placed on the McGraw-Hill Professional website to support the book.

 ■ The dynamic_topnquery.php program contains the fully functional example
excerpted in this chapter.

 ■ The white_list.sql program contains all functions, procedures, packages, and types
to support the white-listing examples for this chapter.

 ■ The expanding_view.sql program contains the functions necessary to convert
a LONG to a CLOB and successfully call the dbms_utility.expand_sql_text
procedure shown in this chapter.

02-ch02.indd 40 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 2: New Features 41

Summary
This chapter has given you insight into new features unique to Oracle Database 12c databases.
Throughout the book, you’ll also be given insights into the differences between the current and
older versions of the Oracle Database and Oracle Database 12c.

Mastery Check
The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix I for answers to
these questions.

True or False:

1. ___Valid-time (VT) indicates the point at which transactions commit.

2. ___It is possible to define a default column that uses the .nextval pseudocolumn for a
sequence.

3. ___It is possible to define a default column that uses the .currval pseudocolumn for a
sequence.

4. ___The .currval pseudocolumn no longer has a dependency on a preceding
.nextval pseudocolumn call in a session.

5. ___Oracle Database 12c doesn’t provide a means to prevent the entry of an explicit null
in an INSERT statement, which means you can still override a DEFAULT column value.

6. ___Identity columns let you automatically number the values of a surrogate key column.

7. ___VARCHAR2, NVARCHAR2, and RAW data types are now always 32,767 bytes in the
Oracle Database 12c database.

8. ___A PL/SQL function can return a PL/SQL associative array directly into a SQL statement
with the changes introduced in Oracle Database 12c.

9. ___Oracle Database 12c now supports top-n query results without an offset value.

10. ___You can embed a PL/SQL function inside a query’s WITH clause and call it from
external programs.

Multiple Choice:

11. Which of the following keywords work when you define a view? (Multiple answers possible)

A. The AUTHID DEFINER keywords

B. The BEQUEATH INVOKER keywords

C. The AUTHID CURRENT_USER keywords

D. The BEQUEATH DEFINER keywords

E. All of the above

02-ch02.indd 41 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

42 Oracle Database 12c PL/SQL Programming

12. Which of the following are correct about caching invoker rights functions? (Multiple
answers possible)

A. A different result set exists for each invoker.

B. The same result set exists for each invoker.

C. A cached invoker rights function must be deterministic.

D. A cached invoker rights function may be non-deterministic.

E. All of the above.

13. Which of the following support expanding the SQL text of LONG columns into CLOB
columns when working with the CDB_, DBA_, ALL_, and USER_VIEWS in the Oracle
Database 12c database? (Multiple answers possible)

A. You can use the to_lob built-in function to convert LONG data types to CLOB data
types.

B. You can use the to_clob built-in function to convert LONG data types to CLOB data
types.

C. You can use the dbms_sql package to convert LONG data types to VARCHAR2 data
types.

D. You can use the length built-in function to discover the size of a LONG data type.

E. You can use the dbms_lob package to create a temporary CLOB data type.

14. Which of the following is true about which PL/SQL data types you can access in an
embedded SQL statement? (Multiple answers possible)

A. The PL/SQL data type must be declared in a package.

B. The SQL statement needs to be embedded in the PL/SQL block where the type is
defined.

C. The PL/SQL data type must be locally defined.

D. The PL/SQL data type may be a return from a PL/SQL function.

E. All of the above.

15. Which of the following lets you access a surrogate primary key from an identity column
for use in a subsequent INSERT statement as a foreign key value?

A. RETURN INTO

B. RETURNING INTO

C. .nextval

D. .currval

E. None of the above

02-ch02.indd 42 12/16/13 5:27 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

CHAPTER
3

PL/SQL Basics

03-ch03.indd 43 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

44 Oracle Database 12c PL/SQL Programming

To learn how to program with PL/SQL in Oracle Database 12c, you first need to understand
the basic language components of PL/SQL. This chapter introduces you to those components.
Subsequent chapters develop details of the components and explain why the PL/SQL

language is a robust tool with many options.

As an introduction to PL/SQL basics, this chapter introduces and discusses

 ■ Block structure

 ■ Behavior of variables in blocks

 ■ Basic scalar and composite data types

 ■ Control structures

 ■ Exceptions

 ■ Bulk operations

 ■ Functions, procedures, and packages

 ■ Transaction scope

 ■ Database triggers

PL/SQL is a case-insensitive programming language, like SQL. That means programmers can
choose their own conventions to apply when writing code. No standard approach exists. Most
programmers choose to differentiate language components by using various combinations of
uppercase, lowercase, title case, or mixed case.

Block Structure
PL/SQL was developed by modeling concepts of structured programming, static data typing,
modularity, and exception management. It extends the ADA programming language. ADA
extended the Pascal programming language, including the assignment and comparison operators
and single-quote string delimiters.

Unlike many other modern programming languages that use curly braces ({}) to define
programming blocks, PL/SQL uses keywords to define program blocks. The basic prototype for
both anonymous and named block PL/SQL programs is shown in Figure 3-1. An anonymous
block has limited use and no prior definition in the data catalog. Named programs are stored in
the database catalog and they are the reusable subroutines of the database.

Execution Block
As shown in the Figure 3-1 prototype, PL/SQL requires only the execution section for an anonymous
block program. The execution section starts with a BEGIN keyword and stops at the beginning of
the optional exception block or the END keyword. A semicolon ends the anonymous PL/SQL
block and the forward slash executes the block.

PL/SQL Standard Usage for this Book
The PL/SQL code in this book uses all uppercase letters for command words and all lowercase
letters for variables, column names, and stored program calls.

03-ch03.indd 44 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 45

Declaration sections can contain variable definitions and declarations, user-defined PL/SQL
type definitions, cursor definitions, reference cursor definitions, local function or local procedure
definitions. Execution sections can contain variable assignments, object initializations, conditional
structures, iterative structures, nested anonymous PL/SQL blocks, or calls to local or stored named
PL/SQL blocks. Exception sections can contain error handling phrases that can use all of the same
items as the execution section. All statements end with a semicolon regardless of which block you
put them in.

Basic Block Structure
The simplest PL/SQL block does nothing. You must have a minimum of one statement inside any
execution block, even if it’s a NULL statement. As mentioned, the forward slash executes an
anonymous PL/SQL block. The following illustrates the most basic anonymous block program,
which does absolutely nothing other than run without an error:

SQL> BEGIN
 2 NULL;
 3 END;
 4 /

FIGURE 3-1. Anonymous block structure

Exception
Block

Declaration
Block

Exception
Block

Execution
Block

Declaration
Block

Execution
Block

03-ch03.indd 45 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

46 Oracle Database 12c PL/SQL Programming

A block without an execution statement raises an exception because PL/SQL doesn’t support
an empty block. For example, this unnamed block fails:

SQL> BEGIN
 2 END;
 3 /

It raises the following exception:

END;
*
ERROR at line 2:
ORA-06550: line 2, column 1:
PLS-00103: Encountered the symbol "END" when expecting one of the following:
(begin case declare exit for goto if loop mod null pragma
raise return select update while with <an identifier>
<a double-quoted delimited-identifier> <a bind variable> <<
continue close current delete fetch lock insert open rollback
savepoint set sql execute commit forall merge pipe purge

The asterisk (*) underneath the END keyword indicates that the block ending with the END
keyword is empty or malformed. It’s a parsing error and occurs before the PL/SQL block can run.

NOTE
Every PL/SQL block must contain something, at least a NULL
statement, or it will fail runtime compilation, also known as parsing.

You must enable the SQL*Plus SERVEROUTPUT environment variable to print content to the
console. The SERVEROUTPUT environment variable can take a physical size or the UNLIMITED
keyword, but it’s recommended that you use the UNLIMITED keyword.

Let’s say you put the following in a hello_world.sql script file:

SQL> SET SERVEROUTPUT ON SIZE UNLIMITED
SQL> BEGIN
 2 dbms_output.put_line('Hello World.');
 3 END;
 4 /

The SQL*Plus SERVEROUTPUT environment variable opens an output buffer, and the dbms_
output.put_line function prints a line of output. All declarations, statements, and blocks are
terminated by a semicolon.

You run anonymous blocks by calling them from Oracle SQL*Plus. The @ symbol in Oracle
SQL*Plus loads and executes a script file. The default file extension is .sql, but you can override
it with another extension. This means you can call a filename without its .sql extension.
(If these processes are new to you, Appendix A provides a SQL*Plus and SQL Developer tutorial
that explains them.)

Then, you call the program from the current working directory where you entered the
SQL*Plus environment:

@hello_world.sql

03-ch03.indd 46 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 47

It would print this message to console:

Hello World.

You can enter single- or multiple-line comments in PL/SQL. Use two dashes to enter a
single-line comment:

-- This is a single-line comment.

Use the /* and */ delimiters to enter a multiple-line comment:

/* This is a multiple-line comment.
 Style and indentation should follow your company standards. */

PL/SQL supports two types of programs: anonymous (or unnamed) block programs and named
block programs. Both types of programs have declaration, execution, and exception handling
blocks. Anonymous blocks support batch scripting, which is a collection of SQL statements and
anonymous PL/SQL blocks that are run as a program unit. Named blocks are stored programming
units that act similarly to shared libraries in other programming languages.

You can use anonymous block programs in scripts or nested inside other named program
units. They have scope only in the context of the program unit or script where you put them. You
can’t call anonymous blocks by name from other blocks because, as the term anonymous
indicates, anonymous blocks don’t have names. All variables are passed to these local blocks by
reference, except substitution variables. Substitution variables are typically numeric or string
literals, and as such they don’t have memory allocation as do variables. You can pass substitution
variables to anonymous blocks only when calling them from the SQL*Plus environment.

Figure 3-1 shows you the basic flow of anonymous block programs.
An anonymous block with a substitution variable would look like this:

SQL> BEGIN
 2 dbms_output.put_line('['||'&input'||']');
 3 END;
 4 /

The ampersand (&) is the default value for the SQL*Plus DEFINE environment variable. It
signifies that whatever follows is the name of a substitution variable unless you disable it in
SQL*Plus. That means SQL*Plus displays the following when you run the dynamic anonymous
block:

Enter value for input:

The anonymous block prints the following when you enter a “Hello Linux World.” text string:

[Hello Linux World.]

Inside the call to the dbms_output.put_line function, piped concatenation glues the
closed brackets together with the input text string. Note that the input value can have intervening
white space without wrapping the text in quotes.

Whatever you type at the SQL*Plus prompt becomes the value of the &input substitution
variable. Substitution variables are assumed to be numeric, and you must enclose string substitution

03-ch03.indd 47 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

48 Oracle Database 12c PL/SQL Programming

values with single quotes. You see the following exception when you forget to provide the single
quotes and enter “Goodbye”:

 dbms_output.put_line('['||Goodbye||']');
 *
ERROR at line 2:
ORA-06550: line 2, column 29:
PLS-00201: identifier 'GOODBYE' must be declared
ORA-06550: line 2, column 3:
PL/SQL: Statement ignored

The PLS-00201 error isn’t too meaningful unless you know what an identifier is in your
program. The error means the case-insensitive string GOODBYE isn’t an identifier. Chapter 4 covers
identifiers in depth, but for now you simply need to know that they’re reserved words, predefined
identifiers, quoted identifiers, user-defined variables, subroutines, or user-defined types.

Oracle also lets you use session (or bind) variables, which are similar to substitution variables
in anonymous PL/SQL blocks. Session variables differ from substitution variables because they
have a memory scope in the context of any connection or database session.

You declare a bind variable in a SQL*Plus session like this:

VARIABLE bind_variable VARCHAR2(20)

The assignment operator in PL/SQL is a colon plus an equal sign (:=). PL/SQL string literals
are delimited by single quotes. (Date, numeric, and string literals are covered in Chapter 4.) You
assign a value to a bind (or session) variable inside a PL/SQL block by placing a colon before the
bind variable name, like this:

SQL> BEGIN
 2 :bind_variable := 'Hello Krypton.';
 3 dbms_output.put_line('['||:bind_variable||']');
 4 END;
 5 /

Line 2 assigns a “Hello Krypton.” text string to the session-level bind variable, and line 3
prints it. After assigning a value to the :bind_variable session variable, you can query it by
prefacing the session variable’s name with a colon:

SELECT :bind_variable FROM dual;

You can declare a bind variable in the session, assign values in PL/SQL blocks, and then
access the bind variable in SQL statements or other PL/SQL blocks. You can find more details on
using session variables in the Appendix A section “Setting a Session Variable Inside PL/SQL.”

Declaration Block
The optional declaration block starts with the DECLARE keyword and ends with the BEGIN
keyword for anonymous blocks. The declaration block starts with the name of a subroutine, such
as a function or procedure, its lists of formal parameters, and a return type (for a function). Unlike
functions, procedures don’t return a value; instead, procedures mimic functions or methods that
return a void data type in C, C++, C#, and Java. You can find more information on subroutines
later in this chapter, in the “Functions, Procedures, and Packages” section.

03-ch03.indd 48 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 49

The following anonymous block declares an lv_input local variable in the declaration
section and assigns the value of the :bind_variable to that local variable. That means you
need to run the prior program first to set the bind variable before you run the next program.

SQL> DECLARE
 2 lv_input VARCHAR2(30);
 3 BEGIN
 4 lv_input := :bind_variable;
 5 dbms_output.put_line('['||lv_input||']');
 6 END;
 7 /

Line 2 defines the local lv_input variable as a variable-length string. Line 4 assigns the
previously initialized :bind_variable to the local lv_input variable, and then it prints the
local variable’s value on line 5.

Exception Block
The last block to introduce is the optional exception block. Exception blocks manage raised
runtime errors, and a generic exception handler manages any raised error. You use a WHEN block
to catch an error, and you use a WHEN OTHERS block to catch any error raised in the program
unit.

The following program demonstrates how an exception block manages an error, such as when
an identifier isn’t previously declared:

SQL> BEGIN
 2 dbms_output.put_line('['||&input||']');
 3 EXCEPTION
 4 WHEN OTHERS THEN
 5 dbms_output.put_line(SQLERRM);
 6 END;
 7 /

Line 2 places the &input substitution variable in a piped concatenation string without
delimiting single quotes (or apostrophes). Even with the exception block, the program still raises
an error, because the error is a parsing problem and the exception block only captures runtime
exceptions. The only way to fix the problem is to replace &input with '&input' between the
concatenation pipes.

Review Section
This section has described the following points about block structures:

 ■ PL/SQL has one mandatory block, the execution block. Instead of being enclosed in
curly braces, as required in other modern programming languages, the execution block
starts with a BEGIN keyword and ends with an EXCEPTION keyword.

 ■ There are two optional blocks—the declaration block and the exception block.

(continued)

03-ch03.indd 49 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

50 Oracle Database 12c PL/SQL Programming

The next section discusses variable scope and assignments. It takes the preceding small
example to a new level and shows you how to manage runtime errors.

Behavior of Variables in Blocks
PL/SQL also supports scalar and composite variables. Scalar variables hold only one thing, while
composite variables hold more than one thing.

This section covers the scope and behavior of variables in anonymous blocks, nested
anonymous blocks, local named blocks, and stored named blocks.

Anonymous Blocks
Variable names begin with letters and can contain alphabetical characters, ordinal numbers (0 to
9), and the $, _, and # symbols. Variables have local scope only, which means they’re available
only in the scope of a given PL/SQL block. The exceptions to that rule are nested anonymous
blocks. Nested anonymous blocks operate inside the defining block. This lets them access variables
from the containing block. Unfortunately, you can’t access variables from the containing block
when you’ve declared variables that share the same name in both the containing and nested
anonymous block. Two example anonymous blocks are provided a bit later in the “Nested
Anonymous Blocks” section, and those two examples demonstrate the concepts of variable
scope in PL/SQL programs.

 ■ The declaration block starts with a DECLARE keyword in an anonymous block
and with the subroutine signature in a named block (shown later in this chapter’s
“Functions, Procedures, and Packages” section) and ends with a BEGIN keyword.

 ■ The exception block starts with an EXCEPTION keyword and ends with an END keyword.

 ■ PL/SQL supports single- and multiple-line comments, which are assumed to be numeric
unless enclosed in single quotes.

 ■ Anonymous blocks support substitution variables, and substitution variables are assumed
to be numeric unless enclosed in single quotes.

 ■ Anonymous blocks support session-level bind variables, which have a data type after
they’re defined in SQL*Plus (see Appendix A for a primer on SQL*Plus).

Scalar and Composite Variables
Scalar variables hold only one thing at a time and are frequently labeled as primitives; these
include numbers, strings, and timestamps. Oracle timestamps are dates precise to one
thousandth of a second. You can also define compound variables, alternatively labeled
composite variables. There’s not much difference in the words, but Oracle Database 12c
documentation uses the term composite variables. So, this book uses “composite variables”
to describe arrays, structures, and objects. Composite variables are variables built from
primitives in a programming language.

03-ch03.indd 50 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 51

Declaring a number variable without explicitly assigning the variable causes the initial value
to be null. That’s because the declaration block does two things:

 ■ Defines the variable by giving it a name and data type

 ■ Assigns an implicit null value to the variable

As a strongly typed programming language, PL/SQL assigns a null value implicitly to any
variable that you haven’t assigned a value to. All variables must be defined in the language,
which means you declare them by giving them a name and type and by assigning them a value.

The following prototype of an anonymous block shows that you can assign a value later in the
execution block:

SQL> DECLARE
 2 lv_sample NUMBER;
 3 BEGIN
 4 dbms_output.put_line('Value is ['||lv_sample||']');
 5 END;
 6 /

This would print the string literal information with nothing between the square brackets. Note
on line 4 that a locally declared variable no longer requires delimiting single quotes because it
has a declared data type. The output from the program is

Value is []

You can define a variable with something other than a null value by explicitly assigning a
value. The declaration block lets you assign default values by using an assignment operator or the
DEFAULT reserved word (which are interchangeable) after the data type. Alternatively, you can
declare the variable with a null value and assign a new value in the execution block.

The following shows a prototype:

DECLARE
 lv_sample [CONSTANT] NUMBER [:= | DEFAULT] 1;
BEGIN
 ...
END;
/

You don’t need to assign values in the declaration block, and typically you would only do so
when they’re constants or act like constants. Variables act like constants when you do two things:

 ■ Declare the variable with a static value in the declaration block

 ■ Opt not to reassign a value in the execution block or the exception block

Assigning an unchanging (or constant) value to a variable is known as a static assignment.
Static assignments aren’t as common as dynamic assignments, in which values are assigned at
runtime and can change during execution.

As a critical note, you should never assign dynamic values in a declaration block, because
any errors that occur as the result of the assignment won’t be caught by the local exception block.

03-ch03.indd 51 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

52 Oracle Database 12c PL/SQL Programming

The local exception block handles runtime exceptions only in the execution and exception
blocks, not in the declaration block.

Let’s look at a quick example of a badly designed dynamic assignment. It uses our now
familiar '&input' (quote delimited) substitution variable run in SQL*Plus:

SQL> DECLARE
 2 lv_input VARCHAR2(10) := '&input';
 3 BEGIN
 4 dbms_output.put_line('['||lv_input||']');
 5 EXCEPTION
 6 WHEN OTHERS THEN
 7 dbms_output.put_line(SQLERRM);
 8 END;
 9 /

When prompted for the input value, we enter a value that is too large for our variable-length
string data type:

Enter value for input: James Tiberius Kirk

The program passes the parsing phase because we enclosed the substitution variable in
delimiting single quotes. It displays the substitution of our entered value for the substitution variable:

old 2: lv_input VARCHAR2(10) := '&input';
new 2: lv_input VARCHAR2(10) := 'James Tiberius Kirk';

Then, it throws a runtime error back to the calling scope:

DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character string buffer too small
ORA-06512: at line 2

This error means that our exception handler was ignored. That’s because assignments in a
declaration block aren’t managed as runtime errors. Moving the dynamic assignment from line 2
of the previous declaration block to line 4 of the following execution block puts the assignment
into the program’s runtime scope. That simple change enables our exception handler to catch and
handle the error.

SQL> DECLARE
 2 lv_input VARCHAR2(10);
 3 BEGIN
 4 lv_input := '&input';
 5 dbms_output.put_line('['||lv_input||']');
 6 EXCEPTION
 7 WHEN OTHERS THEN
 8 dbms_output.put_line(SQLERRM);
 9 END;
 10 /

03-ch03.indd 52 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 53

The Assignment Model and Language
All programming languages assign values to variables. They typically assign a value to a
variable on the left. That’s why we’ve positioned the truck on the left and the cargo being
loaded from the right. The truck is our variable, or a location in memory. The cargo or
freight is the value we assign to the variable. The assignment process loads the freight into
the truck, or assigns the value to the variable.

Variable
Value1

The prototype for generic assignment in any programming language is

left_operand assignment_operator right_operand statement_terminator

This assigns the right operand to the left operand. You implement it in PL/SQL as follows:

left_operand := right_operand;

The left operand must always be a variable. The right operand can be a value, a variable,
or a function. Functions must return a variable when they’re right operands. This is convenient
in PL/SQL because all functions return values. That’s the treat. The trick is that only functions
returning a SQL data type can be called in SQL statements. Functions returning a PL/SQL data
type only work inside PL/SQL blocks.

Right-to-left assignment is possible with the SELECT-INTO statement. The prototype
for it is

SELECT [literal_value | column_value]
INTO local_variable
FROM [table_name | pseudo_table_name]
WHERE comparison_statements;

(continued)

Entering the full name of Captain Kirk (from Star Trek’s fictional universe) now raises our
handled exception rather than the full error stack (Chapter 7 covers error stacks):

ORA-06502: PL/SQL: numeric or value error: character string buffer too small

The SQLERRM function returns only the assignment error, not the complete stack of errors
that aborted execution to the calling scope. Chapter 7 and Appendix C explain the SQLERRM
function. What you should learn here is that you should never make dynamic assignments a
declaration block! This rule also applies to the declaration block of stored functions and procedures.
Dynamic assignments in declaration blocks are harder to manage because every calling program
must anticipate and manage their outcomes.

03-ch03.indd 53 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

54 Oracle Database 12c PL/SQL Programming

The following assigns a string literal to a local variable:

SQL> VARIABLE sv_reader VARCHAR2(20)
SQL> SELECT 'Hello reader.' AS "Output"
 2 INTO :sv_reader
 3 FROM dual;

It prints

Output

Hello reader.

While the right-to-left assignment differs from the routine, it does present you with a
valuable option. It’s most frequently used when returning a single scalar value or set of
columns in a single row from a SQL cursor. A SQL cursor is a PL/SQL structure that lets you
access the result of a query row by row or as a bulk operation.

Dynamic assignments also have other behaviors that we need to manage in our programs.
For example, suppose you attempt to assign a real number of 4.67 to a variable with a NUMBER
data type, like this:

SQL> DECLARE
 2 lv_input INTEGER;
 3 BEGIN
 4 lv_input := 4.67;
 5 dbms_output.put_line('['||lv_input||']');
 6 EXCEPTION
 7 WHEN OTHERS THEN
 8 dbms_output.put_line('['||SQLERRM||']');
 9 END;
 10 /

It doesn’t trigger an exception even though the value is equivalent to a DOUBLE, FLOAT, or
NUMBER data type while the assignment target (left operand) variable’s data type is an INTEGER.
The program simply prints

Value is [5]

This happens because Oracle Database 12c and its predecessors implicitly cast the value
between the two data types. The assignment on line 4 inherits the data type of the target variable
on the left of the assignment, and because integers don’t have decimals, the assignment rounds
the value up. This process is known as casting, and the value suffers a loss of precision when you
cast from a decimal number to an integer. Oracle Database 12c would round down if we were to
rewrite the program and assign a value of 4.49.

Oracle Database 12c performs many implicit casting operations. They fail to follow the
common rule of programming: implicitly cast only when there is no loss of precision. This means
you can assign a complex number like 4.67 to an integer and lose the .67 portion of the number.

03-ch03.indd 54 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 55

Likewise, Oracle Database 12c offers a series of functions to let you explicitly cast when there is
greater risk of losing precision. You should choose carefully when you explicitly downcast
variables. Appendix C covers explicit casting functions.

There are also several product-specific data types. They support various Oracle Database 12c
products. You can find these data types in the Oracle Database PL/SQL Packages and Types Reference.

The assignment operator is not the lone operator in the PL/SQL programming language. Chapter 4
covers all the comparison, concatenation, logical, and mathematical operators. In short, you use

 ■ The equal sign (=) to check for matching values

 ■ The standard greater than symbol or less than symbol with or without an equal sign (>,
>=, <, or <=) as a comparison operator to check for inequalities

 ■ The negation (<>, !=, ~=, or ^=) comparison operators to check for nonmatching values

You define CURSOR statements in the declaration section. CURSOR statements let you bring
data from tables and views into your PL/SQL programs. A CURSOR statement can have zero or
many formal parameters. CURSOR parameters are pass-by-value, or IN-only mode only variables.
Chapter 5 covers CURSOR statements.

In addition to anonymous block programs, you can also have the following:

 ■ Nested anonymous block programs in the execution section of anonymous blocks

 ■ Local named block programs in the declaration section, which in turn can contain
anonymous and nested blocks of its own

 ■ Calls to stored named block programs

The following subsections examine each one of these in turn.

Nested Anonymous Blocks
Nested anonymous blocks act like the blocks in the example in the preceding section. That’s
because any program that contains an anonymous block program assumes the SQL*Plus
environment’s role for a stand-alone anonymous block PL/SQL program.

Here’s an example of an anonymous block with a nested anonymous block:

SQL> DECLARE
 2 -- Declare local variable.
 3 lv_input VARCHAR2(30) DEFAULT 'OUTER';
 4 BEGIN
 5 -- Print the value before the inner block.
 6 dbms_output.put_line('Outer block ['||lv_input||']');
 7
 8 -- Nested block.
 9 BEGIN
 10 -- Print the value before the assignment.
 11 dbms_output.put_line('Inner block ['||lv_input||']');
 12
 13 -- Assign new value to variable.
 14 lv_input := 'INNER';
 15
 16 -- Print the value after the assignment.

03-ch03.indd 55 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

56 Oracle Database 12c PL/SQL Programming

 17 dbms_output.put_line('Inner block ['||lv_input||']');
 18 END;
 19
 20 -- Print the value after the nested block.
 21 dbms_output.put_line('Outer block ['||lv_input||']');
 22 EXCEPTION
 23 WHEN OTHERS THEN
 24 dbms_output.put_line('Exception ['||SQLERRM||']');
 25 END;
 26 /

Line 3 declares the lv_input variable with an initial value of “Set in the outer block.” The
scope of the variable is the outer block of the anonymous block, which means you can assign it
new values in the outer or inner blocks. Line 14 in the inner block assigns to the lv_input
variable a new value, “Set in the inner block.” The program prints the lv_input variable’s
original value before the inner block assignment:

Outer block [OUTER]
Inner block [OUTER]

And it prints the altered value after the inner block assignment:

Inner block [INNER]
Outer block [INNER]

This illustrates that nested anonymous blocks have read and write privileges to variables
defined in the outer scope. The lv_outer variable keeps the value assigned inside the nested
block because there’s really only one variable, and its scope is set in the outer block. There is an
exception to this variable scope rule for anonymous blocks, and it only occurs when you define
two variables that share the same name in both the outer and inner blocks.

The next example renames the lv_input variable to lv_outer and creates a new lv_
active variable in the outer and nested inner scopes. I chose lv_active for the variable name
because there are actually two lv_active variables when this program runs. One lv_active
variable is accessible only from the outer block or any nested blocks, while the other lv_active
variable is accessible only from the inner block.

SQL> DECLARE
 2 -- Declare local variable.
 3 lv_outer VARCHAR2(30) DEFAULT 'OUTER';
 4 lv_active VARCHAR2(30) DEFAULT 'OUTER';
 5 BEGIN
 6 -- Print the value before the inner block.
 7 dbms_output.put_line('Outer ['||lv_outer||']['||lv_active||']');
 8
 9 -- Nested block.
 10 DECLARE
 11 -- Declare local variable.
 12 lv_active VARCHAR2(30) DEFAULT 'INNER';
 13
 14 BEGIN
 15 -- Print the value before the assignment.

03-ch03.indd 56 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 57

 16 dbms_output.put_line('Inner ['||lv_outer||']['||lv_active||']');
 17
 18 -- Assign new value to variable.
 19 lv_outer := 'INNER';
 20
 21 -- Print the value after the assignment.
 22 dbms_output.put_line('Inner ['||lv_outer||']['||lv_active||']');
 23 END;
 24
 25 -- Print the value after the nested block.
 26 dbms_output.put_line('Outer ['||lv_outer||']['||lv_active||']');
 27 EXCEPTION
 28 WHEN OTHERS THEN
 29 dbms_output.put_line('Exception '||SQLERRM||']');
 30 END;
 31 /

Lines 3 and 4 declare lv_outer and lv_active variables in the outer block with an OUTER
string value as their default values. Line 12 declares an lv_active variable for the inner block
with an INNER string value. Line 19 assigns the INNER string value to the lv_outer variable.

The program prints the following:

Outer [OUTER][OUTER]
Inner [OUTER][INNER]
Inner [INNER][INNER]
Outer [INNER][OUTER]

The program prints the initial values of the lv_outer and lv_active variables before
entering the anonymous nested block. Next, the program prints the variable values after the
nested block’s declaration section. Notice that only the lv_active value has changed because
its scope uses the value from the declaration block of the nested anonymous block. After the
assignment of INNER to the lv_outer variable, both lv_outer and lv_active hold the
INNER string value. The lv_active variable changes back to OUTER after exiting the nested
anonymous block because it now refers to the outer anonymous block program.

This section has shown you how variable scope works with nested anonymous block
programs. While the example uses an anonymous block program as the outer program unit, the
logic and access are the same when you embed nested anonymous blocks in stored subroutines,
such as functions, procedures, packages, or object types.

Local Named Blocks
You have a choice between two named block programs (subroutines)—functions and procedures.
Functions return a value and are typically used as the right operand in right-to-left variable
assignments. Procedures are functions that don’t return a value, which would be equivalent to a
method in Java that returns a void data type.

Local functions and procedures are only useful in the scope of the program unit where they’re
embedded. You can implement local functions and procedures in the declaration section of an
anonymous block or named block. It’s also possible to implement local functions in the member
functions and procedures of object types. This is done when you implement the object type in
what’s known as an object body, as described in Chapter 11.

03-ch03.indd 57 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

58 Oracle Database 12c PL/SQL Programming

The following sample program has a local procedure inside an anonymous or unnamed PL/
SQL block. It transforms the logic of the nested block program presented in the preceding section
into a procedure and lets you explore variable scope for local procedures. The sample program
uses the lv_outer and lv_active variables in the same role as they were used in the previous
section. It does make an unavoidable forward reference to function and procedure basics, which
are covered later in this chapter.

 SQL> DECLARE
 2 -- Declare local variable.
 3 lv_outer VARCHAR2(30) DEFAULT 'OUTER';
 4 lv_active VARCHAR2(30) DEFAULT 'OUTER';
 5 -- A local procedure without any formal parameters.
 6 PROCEDURE local_named IS
 7 -- Declare local variable.
 8 lv_active VARCHAR2(30) DEFAULT 'INNER';
 9 BEGIN
 10 -- Print the value before the assignment.
 11 dbms_output.put_line(
 12 'Inner ['||lv_outer||']['||lv_active||']');
 13
 14 -- Assign new value to variable.
 15 lv_local := 'INNER';
 16
 17 -- Print the value after the assignment.
 18 dbms_output.put_line(
 19 'Inner ['||lv_outer||']['||lv_active||']');
 20 END local_named;
 21
 22 BEGIN
 23 -- Print the value before the inner block.
 24 dbms_output.put_line(
 25 'Outer '||lv_outer||']['||lv_active||']');
 26
 27 -- Call to the locally declared named procedure.
 28 local_named;
 29
 30 -- Print the value after the nested block.
 31 dbms_output.put_line(
 32 'Outer ['||lv_outer||']['||lv_active||']');
 33 EXCEPTION
 34 WHEN OTHERS THEN
 35 dbms_output.put_line('Exception ['||SQLERRM||']');
 36 END;
 37 /

Lines 6 through 20 contain the locally defined local_named procedure. The local_named
procedure has no formal parameters and simply implements the same logic found in the earlier
nested block. It prints the lv_outer and lv_active variable values before and after an
assignment to the lv_outer variable. Note that the local procedure doesn’t declare an lv_
outer variable, which means the assignment is to the lv_outer variable defined in the calling
scope, or the outer anonymous block program.

03-ch03.indd 58 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 59

Line 27 calls the local procedure, and you get the following output when you run the program:

Outer [OUTER][OUTER]
Inner [OUTER][INNER]
Inner [INNER][INNER]
Outer [INNER][OUTER]

As you can see, you get the same output as when you ran the nested block in the previous
section. That’s true because local functions and procedures have access to variables declared in
the calling block where they’re defined.

The difference between a local procedure and a nested block may appear to be small, but
defining a local procedure lets you call the logic multiple times in the same program from a single
code base. This approach of putting code logic into a named program is often labeled modularity,
and it typically improves the clarity of your programming code.

The problem with nested named blocks, however, is that they’re not published blocks. This
means that one function or procedure may call another before it’s defined. This type of design
problem is known as a scope error, and it raises a compile-time PLS-00313 exception.

Scope errors typically occur because PL/SQL is a single-run parse operation, meaning that the
compiler reads through the source once, from top to bottom. That means any identifiers, such as
function and procedure names, must be defined before they’re called or they’ll raise a runtime error.

The following code generates a compile-time PLS-00313 error because the jack procedure
refers to the hector function before its defined:

SQL> DECLARE
 2 PROCEDURE jack IS
 3 BEGIN
 4 dbms_output.put_line(hector||' World!');
 5 END jack;
 6 FUNCTION hector RETURN VARCHAR2 IS
 7 BEGIN
 8 RETURN 'Hello';
 9 END hector;
 10 BEGIN
 11 jack;
 12 END;
 13 /

Lines 2 through 5 define a local procedure, jack. Inside procedure jack is a call on line 4 to the
function hector. The function isn’t defined at this point in the anonymous block, and it raises an
out-of-scope error:

 dbms_output.put_line(hector||' World!');
 *
ERROR at line 4:
ORA-06550: line 4, column 26:
PLS-00313: 'B' not declared in this scope
ORA-06550: line 4, column 5:
PL/SQL: Statement ignored

As mentioned, this is a compile-time error because all anonymous block programs are
parsed before they’re executed, and parsing is a compile-time process. Parsing is a process that

03-ch03.indd 59 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

60 Oracle Database 12c PL/SQL Programming

recognizes identifiers. Identifiers are reserved words, predefined identifiers, quoted identifiers,
user-defined variables, subroutines, or UDTs. Named blocks are also identifiers.

Function hector isn’t recognized as an identifier because PL/SQL reads identifiers into
memory from top to bottom only once. Under a single-pass parser, function hector isn’t defined
before it’s called in procedure jack. You can fix this by adding forward references. A forward
reference to a function or procedure requires only the signature of the function or procedure,
rather than its signature and implementation. A forward reference is equivalent to the concept of
an interface in Java. These prototypes are stubs in PL/SQL. Stubs put the name of the future
subroutine into the namespace (list of identifiers) so that the compiler accepts the identifier name
before parsing its implementation.

The following example provides forward references for all local functions and procedures.
I recommend that you always provide these stubs in your programs when you implement local
scope named blocks.

SQL> DECLARE
 2 PROCEDURE jack;
 3 FUNCTION hector RETURN VARCHAR2;
 4 PROCEDURE jack IS
 5 BEGIN
 6 dbms_output.put_line(b||' World!');
 7 END jack;
 8 FUNCTION hector RETURN VARCHAR2 IS
 9 BEGIN
 10 RETURN 'Hello';
 11 END hector;
 12 BEGIN
 13 jack;
 14 END;
 15 /

Lines 2 and 3 provide the stubs to procedure jack and function hector, respectively, and the
modified program parses correctly because it’s able to resolve all symbols from the top to the
bottom of the anonymous block in one pass.

NOTE
Please remember that, while nested named blocks are very useful,
they also require you to implement stubs when they cross reference
one another.

The biggest risk of locally named PL/SQL blocks is that they replace schema-level named
functions and procedures when they shouldn’t. The rule of thumb on whether or not a subroutine
should be local is simple: there is virtually no chance that other modules will require the behavior
provided by the local subroutine.

Stored Named Blocks
Stored named blocks are subroutines, like functions and procedures, and are often called schema-
level functions or procedures. Stored functions return a value and are typically used as the right
operand in right-to-left variable assignment; stored procedures are functions that don’t return a

03-ch03.indd 60 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 61

value. You define a function or procedure in the database by compiling it as a schema object,
which makes it a stand-alone component.

Unlike the local procedure in the anonymous block in the previous section, a stored
procedure has access only to parameter values passed to it at call time. Any attempt to embed a
variable not declared in scope, like the lv_outer variable, causes a compilation failure. You
must declare a local lv_outer variable inside the function, which has the same impact on
scope as declaring a local variable in a nested block.

The following example shows how to define a stand-alone stored procedure. This schema-
level version of the local_named procedure implements the same logic as the embedded
version of the procedure introduced in the previous section. (Stored procedures are covered in
depth in the “Functions, Procedures, and Packages” section later in this chapter.)

SQL> CREATE OR REPLACE PROCEDURE local_named IS
 2 -- Declare local variable.
 3 lv_active VARCHAR2(30) DEFAULT 'INNER';
 4 lv_outer VARCHAR2(30) DEFAULT ' ';
 5 BEGIN
 6 -- Print the value before the assignment.
 7 dbms_output.put_line(
 8 'Inner ['||lv_outer||']['||lv_active||']');
 9
 10 -- Assign new value to variable.
 11 lv_outer := 'INNER';
 12
 13 -- Print the value after the assignment.
 14 dbms_output.put_line(
 15 'Inner ['||lv_outer||']['||lv_active||']');
 16 END local_named;
 17 /

Line 4 declares a local lv_outer variable as a five-character string of white spaces. Line 11
assigns a new value to the local lv_outer variable and replaces the string of white spaces.

You can find more on how to create and replace syntax for stored programs in the “Executing
a Named Block Program” section of Appendix A. You should note the local definition of the
lv_outer variable on line 4. The following anonymous block calls the stored procedure because
there’s no competing local procedure of the same name:

SQL> DECLARE
 2 -- Declare local variable.
 3 lv_outer VARCHAR2(30) DEFAULT 'OUTER';
 4 lv_active VARCHAR2(30) DEFAULT 'OUTER';
 5
 6 BEGIN
 7 -- Print the value before the inner block.
 8 dbms_output.put_line('Outer ['||lv_outer||']['||lv_active||']');
 9
 10 -- Call to the locally declared named procedure.
 11 local_named;
 12
 13 -- Print the value after the nested block.

03-ch03.indd 61 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

62 Oracle Database 12c PL/SQL Programming

 14 dbms_output.put_line('Outer ['||lv_outer||']['||lv_active||']');
 15 EXCEPTION
 16 WHEN OTHERS THEN
 17 dbms_output.put_line('Exception ['||SQLERRM||']');
 18 END;
 19 /

Line 11 calls the local_named stored procedure and prints the following:

Outer [OUTER][OUTER]
Inner [][INNER]
Inner [INNER][INNER]
Outer [OUTER][OUTER]

The first line prints the values from the anonymous block. The second line prints the local
variable values before the assignment of the INNER string. The third line prints the local
procedure’s variable values after the assignment. The last line prints the original values from the
anonymous block.

By adding parameters to the procedure, you can pass the values from the external scope to
the procedure’s inner scope or you can pass a reference from the external scope to the
procedure’s inner scope and return the changed values to the calling outer scope. That’s covered
in the “Functions, Procedures, and Packages” section later in this chapter.

You have now reviewed how to assign values to variables and how variable scopes work in
anonymous and named blocks. The next section explains some basics about string, date, and
number scalar data types and composite data types.

Review Section
This section has described the following points about variables, assignments, and scopes:

 ■ Variable names begin with letters and can contain alphabetical characters, ordinal
numbers (0 to 9), and the $, _, and # symbols.

 ■ Variables are available in the anonymous or named blocks where they’re declared, and
in nested anonymous and named blocks defined inside those containing blocks.

 ■ A variable name is unique in an anonymous or named block, and a variable name in a
nested anonymous or named block overrides access to a duplicate variable name in an
outer block that contains the definition of the anonymous or named block.

 ■ A variable name in a schema-level subroutine (either a function or procedure named
block) must be defined inside the named block’s declaration block.

 ■ Schema-level subroutines can’t access calling scope blocks because they are
independently defined blocks.

 ■ Oracle uses a single-pass parsing process for PL/SQL blocks, which means you should
use forward-referencing stubs for local functions and procedures.

03-ch03.indd 62 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 63

Basic Scalar and Composite Data Types
This section introduces the basics about the three most common scalar data types, attribute and table
anchoring, and four generic composite data types. The common scalar data types are characters,
dates, and numbers. Composite data types include SQL UDTs, PL/SQL record types, collections of
SQL data types, and collections of PL/SQL data types. Scalar data types hold only one thing, while
composite data types hold more than one thing, such as a structure or collection of data.

NOTE
You can find complete coverage of PL/SQL fundamentals and scalar
data types in Chapter 4. PL/SQL also uses SQL data types, which are
covered in Appendix B.

The next subsection introduces string, date, and number data types as the basic scalar data
types, laying a foundation for the subsequent coverage of composite data types. Together they
support the subsequent major sections on control structures, exceptions, bulk operations,
functions, procedures, packages, transaction scope, and database triggers.

Scalar Data Types
As mentioned, Chapter 4 provides complete coverage of PL/SQL data types. The purpose of this
section is to introduce you to basic scalar data types. How you qualify scalar data types is often a
byproduct of what you’ve done in your career but it should be clarified in this section.

More or less, a scalar data type contains one and only one thing, where a “thing” is a single
element. The most common way of describing an element asks us to look at it like a number or
character, and consider it a primitive data type. Adopting that standard of a primitive type, we
would consider a string to be a composite data type because it is ultimately an array of characters.
However, that’s not the way we view things in a database, and several modern programming
languages support that view. For example, Java, C#, and PL/SQL view strings as scalar data types,
and they allow strings to be words, sentences, paragraphs, chapters, and books.

The following subsections introduce the three basic and most commonly managed data types,
which are strings, dates, and numbers. As mentioned, Chapter 4 contains more complete
coverage of these types.

Strings
Strings come in two principal varieties in the Oracle 12c database: fixed-length strings and
dynamically sized strings. You create a fixed-length string by assigning it a size based on the
number of bytes or characters. When you measure size by characters, which is the recommended
approach, the number of bytes is determined by the character set. By the way, the default
character set is established when you create a database instance (see Appendix A for more details
on database instances).

Fixed-length strings use the CHAR and Unicode NCHAR data types, while dynamically sized
strings use the VARCHAR2 (or alias VARCHAR) and Unicode NVARCHAR2 data types. As a rule,
you use the VARCHAR2 and NVARCHAR2 data types for most strings because you don’t want to
allocate unnecessary space for fixed length strings.

03-ch03.indd 63 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

64 Oracle Database 12c PL/SQL Programming

This sample program shows you the assignment and subsequent space allocation for both
fixed-length and dynamically sized data types:

SQL> DECLARE
 2 lv_fixed CHAR(40) := 'Something not quite long.';
 3 lv_variable VARCHAR2(40) := 'Something not quite long.';
 4 BEGIN
 5 dbms_output.put_line('Fixed Length ['||LENGTH(lv_fixed)||']');
 6 dbms_output.put_line('Varying Length ['||LENGTH(lv_variable)||']');
 7 END;
 8 /

It prints the space allocation sizes:

Fixed Length [40]
Varying Length [25]

Strings are useful as primitive data types. Note, however, that the storage space required for
fixed-length strings generally exceeds the storage space required for variable-length strings. That
typically means variable-length strings are better solutions for most problems, other than strings
beyond 32 kilobytes in length. Very large strings should be stored in a CLOB data type rather than
in a LONG data type.

Dates
Dates are always complex in programming languages. The DATE data type is the base type for
dates, times, and intervals.

Oracle has two default date masks, and both support implicit casting to DATE data types. One
default date mask is a two-digit day, three-character month, two-digit year (DD-MON-RR) format,
and the other is a two-digit day, three-character month, four-digit year (DD-MON-YYYY) format. Any
other string literal requires an overriding format mask with the TO_DATE built-in SQL function.

The next example shows you how to assign variables with implicit and explicit casting from
conforming and nonconforming strings. Nonconforming strings rely on format masks and SQL
built-ins, which you can find more information about in Appendix C.

SQL> DECLARE
 2 lv_date_1 DATE := '28-APR-75';
 3 lv_date_2 DATE := '29-APR-1975';
 4 lv_date_3 DATE := TO_DATE('19750430','YYYYMMDD');
 5 BEGIN
 6 dbms_output.put_line('Implicit ['||lv_date_1||']');
 7 dbms_output.put_line('Implicit ['||lv_date_2||']');
 8 dbms_output.put_line('Explicit ['||lv_date_3||']');
 9 END;
 10 /

It prints the following:

Implicit [28-APR-75]
Implicit [29-APR-75]
Explicit [30-APR-75]

When you want to see the four-digit year, use the TO_CHAR built-in function with the appropriate
format mask. You can also perform date math, as explained in Appendix B.

03-ch03.indd 64 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 65

Numbers
Numbers are straightforward in PL/SQL. You assign integer and complex numbers in the same way
to all but the new IEEE 754-format data types. Chapter 4 covers how to use the IEEE-754 format
numbers.

The basic number data type is NUMBER. You can define a variable either as an unconstrained
NUMBER data type or as a constrained NUMBER data type by qualifying the precision or scale.
Precision constraints prevent the assignment of larger precision numbers to target variables.
Scale limitations shave off part of the decimal value but allow assignment while you lose part of
the remaining value.

You can assign an unconstrained NUMBER data type to a constrained NUMBER data type as
follows:

SQL> DECLARE
 2 lv_number1 NUMBER;
 3 lv_number2 NUMBER(4,2) := 99.99;
 4 BEGIN
 5 lv_number1 := lv_number2;
 6 dbms_output.put_line(lv_number1);
 7 END;
 8 /

This prints the following when you’ve enabled the SERVEROUTPUT environment variable:

99.99

The value assigned to lv_number2 is unchanged because its data type is unconstrained. You
can find much more information on numbers in Chapter 4.

Attribute and Table Anchoring
Oracle Database 12c and prior versions of the database support attribute and table anchoring.
Attribute anchoring lets you anchor the data type in a program to a column in a table. Table
anchoring lets you anchor a composite variable, like a RECORD type, to a table or cursor structure.

 ■ %TYPE Anchors a variable to a column in a table or cursor

 ■ %ROWTYPE Anchors a composite variable to a table or cursor structure

As an example of attribute anchoring, the following shows how you would declare an
lv_dwarf_name variable anchored to the name column of the dwarf table:

 3 lv_dwarf_name dwarf.name%TYPE := 'Bofur';

Anchoring couples the local variable to a schema-level table. It is handy when only the size
of a variable-length string changes or only the precision and scale of a numeric data type change.
It’s a potential failure point when the base data type can change over time, such as from number
to date or from date to string.

The %ROWTYPE attribute offers three possibilities for anchoring composite data types. One
option lets you assign the record structure of a table as a data type of a variable. The other options
lets you assign the record structure of a cursor or system cursor variable as a data type of a variable.

03-ch03.indd 65 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

66 Oracle Database 12c PL/SQL Programming

As an example of table anchoring, you would declare an lv_dwarf variable of the dwarf
table structure with a statement like this:

 3 lv_dwarf_record dwarf%ROWTYPE;

The same syntax works to anchor the lv_dwarf_record variable to a dwarf table, a
dwarf_cursor cursor, or dwarf_cursor system reference cursor variable. Alternatively, you
can create a dwarf_table associative array collection (covered in the next section) of the
dwarf table’s structure with the following syntax:

 3 TYPE dwarf_table IS TABLE OF DWARF%ROWTYPE
 4 INDEX BY PLS_INTEGER;

Where possible, you should use a %ROWTYPE anchor with a local cursor. I recommend that
because changes to a cursor in the same block typically drives like changes to the program’s other
components. Anchoring to tables can present problems because a table’s structure may evolve
differently from the program relying on anchored structures. Table anchoring also creates context
switches in your code, which you could find by tracing performance. You can check in the “SQL
Tracing” section of Appendix A for instructions on tracing performance.

Oracle Database12c introduces another factor when deciding whether or not to anchor to
tables. The record structure of an anchored type contains only visible columns. That means you
must anchor to explicit cursors when you want to access visible and invisible columns. Clearly,
it’s a choice you need to make when designing the program.

Visible and Invisible Column Anchoring
Oracle Database 12c supports both visible and invisible columns, but now when you use
an asterisk (*) to select all columns, you get all visible columns only. You must write an
explicit SELECT list to get both visible and invisible columns. Please read the “Invisible
Columns” section in Appendix B if the concept is new to you.

A quick example shows this best. Let’s create a table (adopting J. R. R. Tolkien’s lingo):

SQL> CREATE TABLE dwarves
 2 (dwarves_id NUMBER GENERATED AS IDENTITY
 3 , name VARCHAR2(20)
 4 , allegiance VARCHAR2(20) INVISIBLE);

Line 2 creates an identity column. An identity column automatically auto increments
surrogate key values from an indirect sequence value. (Check the “Identity Columns”
section in Appendix B for information about how you can best use identity columns.) Line 4
marks the allegiance column as invisible. Therefore, you won’t see the allegiance
column when you describe the table or select columns with an asterisk (*).

As an example, a program that works with table anchoring when all columns are visible,
like this

SQL> DECLARE
 2 /* Anchor to a table with an invisible column. */
 3 dwarf dwarves%ROWTYPE;

03-ch03.indd 66 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 67

 4 BEGIN
 5 /* Select all columns into a local variable. */
 6 SELECT * INTO dwarf FROM dwarves FETCH FIRST 1 ROWS ONLY;
 7
 8 /* Print the invisible column. */
 9 dbms_output.put_line(
 10 '['||dwarf.name||']['||dwarf.allegiance||']');
 11 END;
 12 /

fails with this (shortened) error message:

 '['||dwarf.name||']['||dwarf.allegiance||']');
 *
ERROR at line 10:
ORA-06550: line 10, column 34:
PLS-00302: component 'ALLEGIANCE' must be declared

The new top-n query syntax on line 6 guarantees that the SELECT-INTO only returns
a single row. Refactoring the program by adding an explicit cursor and a SELECT list that
enumerates all columns makes the program successful:

SQL> DECLARE
 2 /* Create a cursor to unhide an invisible column. */
 3 CURSOR dwarf_cursor IS
 4 SELECT dwarves_id
 5 , name
 6 , allegiance
 7 FROM dwarves;
 8
 9 /* Anchor to a table with an invisible column. */
 10 dwarf dwarf_cursor%ROWTYPE;
 11 BEGIN
 12 /* Select all columns into a local variable. */
 13 SELECT dwarves_id, name, allegiance INTO dwarf
 14 FROM dwarves FETCH FIRST 1 ROWS ONLY;
 15
 16 /* Print the invisible column. */
 17 dbms_output.put_line(
 18 '['||dwarf.name||']['||dwarf.allegiance||']');
 19 END;
 20 /

Basically, anchoring record structures to tables in Oracle Database 12c is great if you
only want to work with the visible columns, but it’s bad if you want to work with all
columns. Also, the asterisk now maps to the list of visible columns only, not to the list of all
columns (visible and invisible).

03-ch03.indd 67 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

68 Oracle Database 12c PL/SQL Programming

Although anchoring variables and data types to other structures in the Oracle Database 12c
database has benefits, it also has costs. Programs that anchor variables and types to other
structures make context switches. These context switches read the referenced data types and
apply them to the anchored variables and data types. Context switches present a hidden resource
cost to any program that uses anchoring.

Composite Data Types
Composite data types differ from scalar data types because they hold copies of more than one thing.
Composite data types can hold a structure of data, which is more or less like a row of data.
Alternatively, composite data types can hold collections of data. Beginning with Oracle Database
9i Release 2, the following types of composite data types are available:

 ■ SQL UDT This can hold a data structure. Two implementations are possible: an object
type only implementation, which supports a SQL-level record structure, and both an
object type and body implementation, which supports a class instance.

 ■ PL/SQL record type This can hold a structure of data, like its SQL UDT cousin. You can
implement it by anchoring the data type of elements to columns in tables and views, or
you can explicitly define it. You should consider explicit declarations, because nesting
these types doesn’t work well. An explicitly declared record type is much easier for
developers to understand than types that anchor to tables with nested data types.

 ■ SQL collection This can hold a list of any scalar SQL data type. SQL collections of
scalar variables are Attribute Data Types (ADTs) and have different behaviors than
collections of UDTs. You have two possibilities with SQL collections: A varray behaves
virtually like a standard array in any procedure or object-oriented programming
language. It has a fixed number of elements in the list when you define it as a UDT. The
other possibility, a nested table, behaves like a list in standard programming languages. It
doesn’t have a fixed number of elements at definition and can scale to meet your runtime
needs within your PGA memory constraints.

 ■ PL/SQL collection This can hold a list of any scalar SQL data type or record type, and it
can also hold a list of any PL/SQL record type. Unlike with the other collections, you’re
not limited to a numeric index value. You can also use a string as the index value. This
is aptly named for that duality of character as an associative array. Many experienced
programmers still call this a PL/SQL table, as established in the Oracle 8 Database
documentation.

The next four subsections describe the various composite data types of Oracle databases from
Oracle 9i Database forward. As a historical note, associative arrays became available in Oracle 7,
and included collections of record structures in the terminal Oracle 7.3 release. Generic tables
and varray data types were introduced in Oracle 8 Database.

SQL UDT
A SQL UDT is an object type. Like packages, object types have a specification and a body. The
specification is the type and includes a list of attributes (or fields) and methods. Methods can be
static or instance functions or procedures, or they can be specialized constructor functions.
Constructor functions let you instantiate an object following the instructions in the constructor
function logic. Chapter 11 and Appendix B contain much more detail about object types.

03-ch03.indd 68 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 69

Object types publish the blueprint of the object to the schema and guarantee what the object
body will implement. You can define an object type to be final, but more often than not you will
define them as not final so that others can extend their behaviors by subclassing them. Most
objects are instantiable, because there isn’t much call for objects with only static methods—you
can accomplish that with a package.

The following is a sample hobbit object type; it includes a default (no parameter)
constructor, an override constructor, and instance methods.

SQL> CREATE OR REPLACE TYPE hobbit IS OBJECT
 2 (name VARCHAR2(20)
 3 , CONSTRUCTOR FUNCTION hobbit RETURN SELF AS RESULT
 4 , CONSTRUCTOR FUNCTION hobbit
 5 (name VARCHAR2) RETURN SELF AS RESULT
 6 , MEMBER FUNCTION get_name RETURN VARCHAR2
 7 , MEMBER FUNCTION set_name (name VARCHAR2)
 8 RETURN hobbit
 9 , MEMBER FUNCTION to_string RETURN VARCHAR2)
 10 INSTANTIABLE NOT FINAL;
 11 /

Line 2 publishes the one name attribute of the hobbit object type. Line 3 publishes the
default (no parameter) constructor. Lines 4 and 5 publish the override constructor that takes a
single parameter, and lines 6 and 7 publish instance methods.

It’s possible to use object types as parameters and return types in PL/SQL programs, and as
column data types or as object tables in the database. Appendix B contains details on the nature
of object columns and tables, and how Oracle supports type evolution to allow you to change
objects with dependencies.

Object types become more useful after you implement them. The implementation of the
object occurs when you define the object body. It’s important to ensure that any formal parameters
in constructor functions match the name and data type of attributes in the object type (failure to
adhere to this rule raises a PLS-00307 error at compile time).

The following implements the object type:

SQL> CREATE OR REPLACE TYPE BODY hobbit IS
 2 /* Default (no parameter) constructor. */
 3 CONSTRUCTOR FUNCTION hobbit RETURN SELF AS RESULT IS
 4 lv_hobbit HOBBIT := hobbit('Sam Gamgee');
 5 BEGIN
 6 self := lv_hobbit;
 7 RETURN;
 8 END hobbit;
 9 /* Override signature. */
 10 CONSTRUCTOR FUNCTION hobbit
 11 (name VARCHAR2) RETURN self AS RESULT IS
 12 BEGIN
 13 self.name := name;
 14 RETURN;
 15 END hobbit;
 16 /* Getter for the single attribute of the object type. */
 17 MEMBER FUNCTION get_name RETURN VARCHAR2 IS
 18 BEGIN

03-ch03.indd 69 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

70 Oracle Database 12c PL/SQL Programming

 19 RETURN self.name;
 20 END get_name;
 21 /* Setter for a new copy of the object type. */
 22 MEMBER FUNCTION set_name (name VARCHAR2)
 23 RETURN hobbit IS
 24 lv_hobbit HOBBIT;
 25 BEGIN
 26 lv_hobbit := hobbit(name);
 27 RETURN lv_hobbit;
 28 END set_name;
 29 /* Prints a salutation of the object type's attribute. */
 30 MEMBER FUNCTION to_string RETURN VARCHAR2 IS
 31 BEGIN
 32 RETURN 'Hello '||self.name||'!';
 33 END to_string;
 34
 35 END;
 36 /

Lines 3 through 8 define the default (or no parameter) constructor for the hobbit object.
Note on line 4 how a local instance of the hobbit object is created and assigned to a local
variable. Line 6 then assigns the local instance of the hobbit object (the lv_hobbit variable)
to self, which is the Oracle equivalent of this in Java and means the object instance. That’s
why the return statement of constructor functions differs from the return statement of other
functions. Constructor functions return instances of the object, not a local variable or literal value.

You may have noticed that the default constructor calls the override constructor with a default
“Sam Gamgee” string when creating the local hobbit object instance. The override constructor
allows the user to provide the name for the object instance, like the set_name function (a setter
method, which sets attributes of the object instance) that returns a new instance of the hobbit
object. The hobbit object type also has a get_name function (or a getter method, which gets
the value of attributes of the object instance). Lastly, the hobbit class provides a to_string
method that prints the value of the object instance with a salutation.

You can now call the object like so with the default constructor and print a salutation to the
object instance’s hobbit:

SQL> COLUMN salutation FORMAT A20
SQL> SELECT hobbit().to_string() AS "Salutation"
 2 FROM dual;

The SELECT list contains a call to the overriding constructor function of the hobbit object
type, and it passes the object instance to the to_string instance method, which prints the
default salutation. This is called chaining component calls and is made possible by the component
selector (or period) that lets you call any method of the object instance.

It prints

Salutation

Hello Sam Gamgee!

03-ch03.indd 70 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 71

Changing the constructor is done by providing a name, like this:

SQL> SELECT hobbit('Bilbo Baggins').to_string() AS "Salutation"
 2 FROM dual;

The preceding code produces the same outcome as calling the set_name function:

SQL> SELECT hobbit().set_name('Bilbo Baggins').to_string() AS "Salutation"
 2 FROM dual;

Both print the following:

Salutation

Hello Bilbo Baggins!

After implementing object bodies, you can store objects in tables or pass objects from one
named PL/SQL program unit to another (that includes from one object to another object).
Chapter 11 goes into more depth on using objects in the Oracle database.

PL/SQL Record Type
A PL/SQL record type is a record data structure, which means it is a row of data across two or
more fields of data. The following program creates a PL/SQL record type, assigns values to it, and
prints the output:

SQL> DECLARE
 2 -- Declare a local user-defined record structure.
 3 TYPE title_record IS RECORD
 4 (title VARCHAR2(60)
 5 , subtitle VARCHAR2(60));
 6
 7 -- Declare a variable that uses the record structure.
 8 lv_title_record TITLE_RECORD;
 9 BEGIN
 10 -- Assign values to the record structure.
 11 lv_title_record.title := 'Star Trek';
 12 lv_title_record.subtitle := 'Into Darkness';
 13 -- Print the elements of the structure.
 14 dbms_output.put_line('['||lv_title_record.title||']'||
 15 '['||lv_title_record.subtitle||']');
 16 END;
 17 /

Lines 3 through 5 define the PL/SQL record structure, and line 8 declares a variable using the
PL/SQL locally scoped title_record record type. Lines 11 and 12 support field-level
assignments, and lines 14 and 15 print the now populated fields of the string.

Record structures are useful when you write PL/SQL-only solutions, but object types are more
useful and portable. You must assign values to any PL/SQL structure at the field level because,
unlike Oracle object types, PL/SQL structures don’t support constructors.

03-ch03.indd 71 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

72 Oracle Database 12c PL/SQL Programming

SQL Collection
SQL collections can exist for scalar data types or SQL UDT elements. Oracle calls SQL
collections of scalar columns Attribute Data Types (ADTs). While there are some differences
between how ADTs and UDTs are used in the Oracle Call Interface (OCI), the distinct names
appears to disambiguate collections of native data types from collections of UDTs.

Creating these collections differs slightly because you don’t need to create a UDT for ADT
collections. The two subsections that follow examine how you create and work with ADT
collections and UDT collections in SQL, respectively, but you should keep in mind that both of
these data types also can be PL/SQL collections. The sole difference between SQL and PL/SQL
collections is where you can use and construct them.

SQL collections may be tables (or lists) of values or varrays (or arrays in traditional programming
languages). Tables have no upward limit on the number of elements in the collection, which is why
they act like lists. Varrays have a maximum number of elements set when you define their types.

NOTE
Table collections are also called nested tables when they’re embedded
inside database tables.

You must construct tables and varrays by calling the type name, or default constructor, with a
list of members. New members are added at the end of either type of collection in the same way.
You add new members to a collection by using a two-step process that extends space and assigns
a value to an indexed location. Varrays only allow you to extend space within their limit (that’s
their maximum number of members), and you receive an out-of-bounds error when you attempt
to add more than the maximum number of members.

Chapter 6 contains a full treatment of collections, including a review of the application
programming interface (API) that supports them. At this point, you need to understand that
collections are final types, which means you can’t subclass them (you can find more information
on subclassing UDTs in Chapter 11). This introduces you to the basics to support subsequent
discussions of collections.

ADT Collections An ADT collection in SQL requires that you define a collection of a SQL base
data type, such as a string data type. Not to confuse matters, but the syntax is the same as when
you create any object type collection in the database.

Presenting the basic similarities and differences between table collections and varray collections
seems to be the best approach when introducing ADT collections, so the following examples show
how to create each type of ADT collection. If you need more details on the syntax in these examples,
Appendix B covers nested tables and varrays in tables and the SQL syntax for creating them.

The syntax for our sample ADT table is

SQL> CREATE OR REPLACE
 2 TYPE string_table IS TABLE OF VARCHAR2(30);
 3 /

CREATE OR REPLACE on line 1 is standard Oracle SQL syntax to create or replace an object
of the same name and type. Line 2 defines the ADT of variable-length strings up to 30 characters
in length, and is the same as what you would embed in a PL/SQL block. Line 3 uses the SQL
forward slash (/) to run or execute the SQL statement.

03-ch03.indd 72 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 73

The syntax for our sample ADT varray is

SQL> CREATE OR REPLACE
 2 TYPE string_varray IS VARRAY(3) OF VARCHAR2(30);
 3 /

The parenthetical number sets the limit or maximum number of members in the varray. After
creating a schema-level type, you can describe its definition like this:

SQL> DESCRIBE collection_varray
 collection_varray VARRAY(3) OF VARCHAR2(30)

The next program shows how to declare a SQL collection in an anonymous block program:

SSQL> DECLARE
 2 -- Declare and initialize a collection of grains.
 3 lv_string_list STRING_TABLE := string_table('Corn','Wheat');
 4 BEGIN
 5 -- Print the first item in the array.
 6 FOR i IN 1..2 LOOP
 7 dbms_output.put_line('['||i||']['||lv_string_list(i)||']');
 8 END LOOP;
 9 END;
 10 /

Line 3 declares lv_string_list as an instance of the SQL string_table collection. It
does so by defining the variable with a name and data type and initializing the collection with
two values. You initialize a collection by using the type name and by providing a list of the base
element of the collection, which is a string. An initialization with a fixed list of values creates a
static collection, but you can add members to it because a list has no upward bound.

NOTE
As line 3 shows, a common and recommended convention is to
display the data type in uppercase and the constructor call to the type
in lowercase.

The range for loop (described in detail in the “Iterative Structures” section later in this chapter)
reads through the first two, and only, members of the collection. The for loop uses a range of 1 to 2,
inclusive, and uses the index value (i) to keep its place as it iterates across the collection.

The string_varray SQL collection type is interchangeable in this sample program, and
only one change to the program is required for you to use it. Change line 3 to the following:

 3 lv_string_list STRING_VARRAY := string_varray('Corn','Wheat');

In both cases, the program would print

[1][Corn]
[2][Wheat]

You have the option of allocating space with the EXTEND keyword (part of the Oracle
Collections API covered in Chapter 6). After allocating space to the collection, you may add

03-ch03.indd 73 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

74 Oracle Database 12c PL/SQL Programming

elements to either of these ADT collections. While the string_table data type has no limit to
the space or number of elements you can add, the string_varray variable has a limit of three
elements.

The next example creates two collections. One is an ADT table of strings with four members,
and the other is an ADT varray of strings without initial members. The program reads through the
list of members in the ADT table collection and attempts to dynamically, row by row, initialize the
ADT varray collection. The program fails while trying to authorize space for the fourth member of
the table ADT collection because the ADT varray is limited to three members.

The program code is

SQL> DECLARE
 2 -- Declare and initialize a collection of grains.
 3 lv_string_table STRING_TABLE :=
 4 string_table('Corn','Wheat','Rye','Barley');
 5 lv_string_varray STRING_VARRAY := string_varray();
 6 BEGIN
 7 -- Print the first item in the array.
 8 FOR i IN 1..lv_string_table.COUNT LOOP
 9 lv_string_varray.EXTEND;
 10 lv_string_varray(i) := lv_string_table(i);
 11 END LOOP;
 12 END;
 13 /

Lines 3 and 4 declare the ADT table collection. Line 5 declares the ADT varray collection as
an empty collection. Failure to initialize the collection with a call to the collection type causes an
uninitialized error like this:

DECLARE
*
ERROR at line 1:
ORA-06531: Reference to uninitialized collection
ORA-06512: at line 9

The error isn’t raised by the definition but rather by the first call to the uninitialized collection,
which occurs on line 9. It is a clear best practice to initialize all collections at their definition
because, unlike all other variables in the Oracle Database 12c product, collections don’t have a
natural null state.

Line 8 sets the upper limit of the range for loop at the number of members in the lv_
string_table variable by calling the COUNT function. The COUNT function is part of the Oracle
Collections API, and in this case it returns a value of four.

The first three members of the lv_string_table collection are assigned successfully to the
lv_string_varray collection, but the attempt to extend space for a fourth member raises the
following exception:

DECLARE
*
ERROR at line 1:
ORA-06532: Subscript outside of limit
ORA-06512: at line 9

03-ch03.indd 74 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 75

These examples have covered the basics of using ADT table and varray collections. As a rule,
the table collections are easier to work with and generally the preferred solution in most situations.

UDT Collections A UDT collection in SQL requires that you define a collection of a SQL UDT,
like the hobbit type from earlier in this chapter. After defining the base UDT, you can create a
SQL table collection of the hobbit type like this:

SQL> CREATE OR REPLACE
 2 TYPE hobbit_table IS TABLE OF HOBBIT;
 3 /

Having created the hobbit_table UDT collection, let’s define a program that uses it. The
following program creates an instance of the collection in the declaration block with two hobbit
member values, and then it adds two more member values in the execution block:

SQL> DECLARE
 2 -- Declare and initialize a collection of grains.
 3 lv_string_table STRING_TABLE :=
 4 string_table('Drogo Baggins','Frodo Baggins');
 5 lv_hobbit_table HOBBIT_TABLE := hobbit_table(
 6 hobbit('Bungo Baggins')
 7 , hobbit('Bilbo Baggins'));
 8 BEGIN
 9 -- Assign the members from one collection to the other.
 10 FOR i IN 1..lv_string_table.COUNT LOOP
 11 lv_hobbit_table.EXTEND;
 12 lv_hobbit_table(lv_hobbit_table.COUNT) :=
 13 hobbit(lv_string_table(i));
 14 END LOOP;
 15
 16 -- Print the members of the hobbit table.
 17 FOR i IN 1..lv_hobbit_table.COUNT LOOP
 18 dbms_output.put_line(
 19 lv_hobbit_table(i).to_string());
 20 END LOOP;
 21 END;
 22 /

There are three key things to point out in the preceding example:

 ■ The declaration of lv_hobbit_table on lines 5 through 7 includes an initialization of
a hobbit_table with comma-delimited instances of hobbit types. This differs from
simply listing scalar values like strings, dates, and numbers, and it is a major difference
between ADT and UDT collections.

 ■ The assignment of new values on lines 12 and 13 sets the assignment target’s index value
to the last space allocation, and the assignment is an instance of the hobbit type. Note
that the index value (i) for the value from the lv_string_table is inside ordinary
parentheses.

 ■ Line 19 prints the ith element of the lv_hobbit_table and uses the native to_
string function to print the object type’s contents.

03-ch03.indd 75 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

76 Oracle Database 12c PL/SQL Programming

The prior example shows how to work with collections of instantiable UDTs, but not how to
work with the attributes of object types. A function that returns a collection is also called an
object table function. You use the TABLE function to access members of any collection returned
by an object table function.

The following function creates and returns a collection of the hobbit type structures:

SQL> CREATE OR REPLACE FUNCTION get_hobbits
 2 RETURN HOBBIT_TABLE IS
 3 -- Declare a collection of hobbits.
 4 lv_hobbit_table HOBBIT_TABLE := hobbit_table(
 5 hobbit('Bungo Baggins')
 6 , hobbit('Bilbo Baggins')
 7 , hobbit('Drogo Baggins')
 8 , hobbit('Frodo Baggins'));
 9 BEGIN
 10 RETURN lv_hobbit_table;
 11 END;
 12 /

Lines 4 through 8 create a collection of hobbit object instances. Line 10 returns a hobbit_
table collection of hobbit instances. You can query the collection by putting the function
return value inside a TABLE function, like this:

SQL> COLUMN hobbit_name FORMAT A14
SQL> SELECT name AS hobbit_name
 2 FROM TABLE(get_hobbits())
 3 ORDER BY 1;

The TABLE function on line 2 takes the result of the get_hobbits function and converts the
attribute list of nested hobbit object instances to an ordinary column result set. The preceding
query prints

HOBBIT_NAME

Bilbo Baggins
Bungo Baggins
Drogo Baggins
Frodo Baggins

This section has shown you that composite variables are tremendously valuable assets in the
PL/SQL and SQL programming environment. They let you define complex logic in named blocks
that you can then simply query in C#, Java, PHP, or other external programs. You should take
advantage of composite variables where possible.

PL/SQL Collection
This section shows you how to implement the fourth and final composite data type, a PL/SQL-
only solution. This is not the most flexible or extensible solution because you have to wrap it in a
pipelined function (covered later in this chapter and in Chapter 8) to use it in SQL. The best
solution, covered in the previous section, returns a SQL ADT or UDT collection with an object
structure and doesn’t require wrapping.

03-ch03.indd 76 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 77

ADT Collections The following example follows general practice and shows you how to
handle a collection of numbers. You have the option to define a collection of any standard or
user-defined scalar PL/SQL data type, such as DATE, INTEGER, VARCHAR2, and so forth. Like a
couple of the examples in the previous section, “SQL Collection,” this program uses a for loop
(described in depth in the “Iterative Structures” section later in this chapter), and it prints the
members of an initialized PL/SQL collection.

SQL> DECLARE
 2 -- Declare a collection data type of numbers.
 3 TYPE number_table IS TABLE OF NUMBER;
 4
 5 -- Declare a variable of the collection data types.
 6 lv_collection NUMBER_TABLE := number_type(1,2,3);
 7 BEGIN
 8 -- Loop through the collection and print values.
 9 FOR i IN 1..lv_collection.COUNT LOOP
 10 dbms_output.put_line(lv_collection(i));
 11 END LOOP;
 12 END;
 13 /

Line 3 defines a collection data type, and line 6 declares a variable of the local collection
data type and initializes it with three elements. The name of the data type is also the name of the
constructor, and the comma-delimited elements comprise the list of values in the collection. Line
9 defines a range for loop that navigates from 1 to the count of the three items in the lv_
collection variable. Like previous examples, you should note that the for loop on lines 9
through 11 uses i as an iterator and as an index value for navigating the elements of the
collection. Index elements are enclosed in ordinary parentheses rather than in square brackets,
which is standard in other programming languages.

You can also implement a PL/SQL varray by changing the declaration on line 3, as follows:

 3 TYPE number_varray IS VARRAY(3) OF NUMBER;

The same rules that apply for interchangeability of tables and varrays also apply to
interchangeability of SQL and PL/SQL environments. The only difference between the SQL and
PL/SQL environments is how you declare them. They are schema objects in SQL and local data
types in PL/SQL.

Associative Arrays of Scalar Variables When implementing a PL/SQL-only solution, you also
have the option to use associative arrays of scalar variables, which are the older style of PL/SQL
collections. Associative arrays only work inside a PL/SQL scope, and you must use pipelined table
functions to convert them for use in a SQL scope. You also can’t initialize associative arrays,
because you must assign values one at a time to them.

Associative arrays present advantages and disadvantages, but for our introductory discussion,
we’ll focus on one of the advantages, which is that associative arrays work well as name-value
pairs when the index values are strings. Since associative arrays don’t require a constructor call or
allocation of physical space before assigning values, some developers find that solving collection-
related problems is simpler in associative arrays.

03-ch03.indd 77 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

78 Oracle Database 12c PL/SQL Programming

Let’s convert the SQL ADT example (from the previous section) that raised an uninitialized
collection error to a PL/SQL scope associative array indexed by numbers. You declare an
associative array by appending either the INDEX BY BINARY_INTEGER data type clause or
INDEX BY VARCHAR2 data type clause to the type definition of a table or varray.

The following demonstrates a simple associative array:

SQL> DECLARE
 2 -- Declare a collection data type of numbers.
 3 TYPE numbers IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 4
 5 -- Declare a variable of the collection data types.
 6 lv_collection NUMBERS;
 7 BEGIN
 8 -- Assign a value to the collection.
 9 lv_collection(0) := 1;
 10 END;
 11 /

Line 3 appends the INDEX BY BINARY_INTEGER clause to the definition of the collection
type and makes it an associative array collection indexed by integers. Line 9 assigns 1 to the 0
index value, but you can actually use any integer value as the index value of an associative array.

You can redefine this sample program as a name-value pair associative array by changing the
definition on line 3 to

 3 TYPE numbers IS TABLE OF NUMBER INDEX BY VARCHAR2(10);

The index value now requires a string rather than a number, and the assignment of a value on
line 9 would change to

 9 lv_collection('One') := 1;

These examples show you how to declare an associative array indexed by an integer or string.
Chapter 6 provides examples that demonstrate when business logic may fit this type of solution.

UDT Collections In addition to creating collections of scalar variables, you can create
collections of two types of data structures: the PL/SQL record type and the SQL object type. PL/
SQL collections of record types are exclusive to a PL/SQL processing context, which means you
can’t use them in a query as shown previously with the SQL UDT collection. There are also limits
on how you can use SQL object type collections when they’re defined inside PL/SQL package
specifications, local anonymous blocks, or named blocks—functions or procedures.

The next example implements the hobbit_table SQL collection inside the declaration
block, which makes it a PL/SQL scoped UDT collection. Defining the hobbit_table SQL
collection inside an anonymous or named block effectively overrides access to a like-named
schema-level SQL UDT collection.

Here’s the code to implement a SQL UDT inside an anonymous PL/SQL block:

SQL> DECLARE
 2 -- Declare a local collection of hobbits.
 3 TYPE hobbit_table IS TABLE OF HOBBIT;
 4

03-ch03.indd 78 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 79

 5 -- Declare and initialize a collection of grains.
 6 lv_string_table STRING_TABLE :=
 7 string_table('Drogo Baggins','Frodo Baggins');
 8 lv_hobbit_table HOBBIT_TABLE := hobbit_table(
 9 hobbit('Bungo Baggins')
 10 , hobbit('Bilbo Baggins'));
 11 BEGIN
 12 -- Print the first item in the array.
 13 FOR i IN 1..lv_string_table.COUNT LOOP
 14 lv_hobbit_table.EXTEND;
 15 lv_hobbit_table(lv_hobbit_table.COUNT) :=
 16 hobbit(lv_string_table(i));
 17 END LOOP;
 18 -- Print the members of the hobbit table.
 19 FOR i IN 1..lv_hobbit_table.COUNT LOOP
 20 dbms_output.put_line(
 21 lv_hobbit_table(i).to_string());
 22 END LOOP;
 23 END;
 24 /

Line 3 holds the local declaration of the hobbit_table SQL UDT. All subsequent
references use the locally defined type. Line 16 takes the value from lv_string_table ADT
collection, and uses it as a call parameter to the hobbit constructor function. Then, the instance
of a new hobbit is assigned as a new element in the lv_hobbit_table collection.

Realistically, the only time you would define a SQL UDT inside a PL/SQL block is when
you’re converting an associative array to a SQL ADT or UDT, and that only happens inside a
pipelined table function. You take this path when you’re converting legacy associative arrays
returned by PL/SQL functions, an example of which is provided in the “Wrapping Legacy
Associative Arrays” section of Chapter 6.

Associative Arrays of Composite Variables Like the associative arrays of scalar variables, you
can create associative arrays of PL/SQL record types, as shown in the following example. Such
collections are limited to use inside PL/SQL programs.

SQL> DECLARE
 2 -- Declare a local user-defined record structure.
 3 TYPE dwarf_record IS RECORD
 4 (dwarf_name VARCHAR2(20)
 5 , dwarf_home VARCHAR2(20));
 6
 7 -- Declare a local collection of hobbits.
 8 TYPE dwarf_table IS TABLE OF DWARF_RECORD
 9 INDEX BY PLS_INTEGER;
 10
 11 -- Declare and initialize a collection of grains.
 12 list DWARF_TABLE;
 13 BEGIN
 14 -- Add two elements to the associative array.

03-ch03.indd 79 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

80 Oracle Database 12c PL/SQL Programming

 15 list(1).dwarf_name := 'Gloin';
 16 list(1).dwarf_home := 'Durin''s Folk';
 17 list(2).dwarf_name := 'Gimli';
 18 list(2).dwarf_home := 'Durin''s Folk';
 19
 20 -- Print the first item in the array.
 21 FOR i IN 1..list.COUNT LOOP
 22 dbms_output.put_line(
 23 '['||list(i).dwarf_name||']'||
 24 '['||list(i).dwarf_home||']');
 25 END LOOP;
 26 END;
 27 /

Line 8 declares a dwarf_table associative array of the previous declaration of the dwarf_
record on lines 3 through 5. You can tell it’s a PL/SQL-only associative array because the
declaration includes the INDEX BY PLS_INTEGER clause on line 9. As mentioned, an
associative array doesn’t require a constructor call, but it does require you to make direct
assignments to rows of the base composite type or member of the base composite type.

If you have a dwarf table that mirrors the dwarf_record declaration, it’s possible to anchor
the local variable to a schema-level table. The syntax for that is

 3 TYPE dwarf_table IS TABLE OF DWARF%ROWTYPE
 4 INDEX BY PLS_INTEGER;

Coupling an associative array’s base data type to a table poses a risk. The risk is that you must
remember to synchronize any changes in both the subroutine and table.

Review Section
This section has described the following points about variables, assignments, and scopes:

 ■ A scalar variable holds only one thing, such as a number, string, or date.

 ■ A composite variable holds two or more things, such as a record structure or a collection.

 ■ You can anchor a column with the %TYPE attribute and anchor a record structure with
the %ROWTYPE attribute.

 ■ SQL and PL/SQL support tables and varrays as collections of scalar variables data types,
and these collections are Attribute Data Types (ADTs).

 ■ SQL and PL/SQL support tables and varrays as collections of composite variables data
types, and these collections are lists or arrays of schema-level user-defined types (UDTs).

 ■ PL/SQL supports associative arrays as collections of scalar variables data types, and
these collections are associative arrays of scalar data types.

 ■ PL/SQL supports associative arrays as collections of composite variables data types,
and these collections are associative arrays of record structure data types.

03-ch03.indd 80 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 81

Control Structures
Control structures do either of two things: they check a logical condition and branch program
execution (in which case they are called conditional structures), or they iterate over a condition
until it is met or they are instructed to exit (in which case they are called iterative structures). The
“Conditional Structures” subsection covers if, elsif, else, and case statements. The “Iterative
Structures” subsection covers looping with for, while, and simple loop structures.

Conditional Structures
As just mentioned, conditional structures check logical conditions and branch program execution.
The if, elsif, else, and case statements are conditional structures.

If, Elsif, and Else Statements
The if and elsif statements work on a concept of Boolean logic. A Boolean variable or an
expression, such as a comparison of values, is the only criterion for an if or elsif statement. While
this seems simple, it really isn’t, because truth or untruth has a third case in an Oracle database: a
Boolean variable or expression can be true, false, or null. This is called three-valued logic.

You can manage three-valued logic by using the NVL built-in function. It allows you to impose
an embedded check for a null and return the opposite of the logical condition you attempted to
validate.

The following example illustrates checking for truth of a Boolean and truth of an expression,
ultimately printing the message that neither condition is true:

SQL> DECLARE
 2 lv_boolean BOOLEAN;
 3 lv_number NUMBER;
 4 BEGIN
 5 IF NVL(lv_boolean,FALSE) THEN
 6 dbms_output.put_line('Prints when the variable is true.');
 7 ELSIF NVL((lv_number < 10),FALSE) THEN
 8 dbms_output.put_line('Prints when the expression is true.');
 9 ELSE
 10 dbms_output.put_line('Prints when variables are null values.');
 11 END IF;
 12 END;
 13 /

Three-Valued Logic
Three-valued logic means basically that if you find something is true when you look for
truth, it is true. By the same token, when you check whether something is false and it is,
then it is false. The opposite case isn’t proved. That means when something isn’t true, you
can’t assume it is false, and vice versa.

The third case is that if something isn’t true, it can be false or null. Likewise, if something
isn’t false, it can be true or null. Something is null when a Boolean variable is defined but
not declared or when an expression compares something against another variable that is null.

03-ch03.indd 81 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

82 Oracle Database 12c PL/SQL Programming

This prints

Prints because both variables are null values.

This always prints the else statement because the variables are only defined, not declared. PL/SQL
undeclared variables are always null values.

The NVL built-in function lets you create programs that guarantee behavior, which is most
likely one of the critical things you should do as a developer. The guarantee becomes possible
because you’re changing the rules and making natural three-valued logic behave as two-valued
logic. Sometimes, that’s not possible, but oddly enough, when it isn’t possible, there’s a use case
that will compel you to provide code for the null condition.

CASE Statement
The CASE statement appears very similar to a switch structure in many programming languages,
but it doesn’t perform in the same way because it doesn’t support fall-through. Fall-through is the
behavior of finding the first true case and then performing all remaining cases. The case statement
in PL/SQL performs like an if-elsif-else statement.

There are two types of CASE statements: the simple case and the searched case. You can use a
CHAR, NCHAR, or VARCHAR2 data type in simple case statements, and you can use any Boolean
expression in searched case statements.

The following program shows how to write a simple case statement. The selector variable
(lv_selector) is a VARCHAR2 variable assigned a value through a substitution variable.

SQL> DECLARE
 2 lv_selector VARCHAR2(20);
 3 BEGIN
 4 lv_selector := '&input';
 5 CASE lv_selector
 6 WHEN 'Apple' THEN
 7 dbms_output.put_line('Is it a red delicious apple?');
 8 WHEN 'Orange' THEN
 9 dbms_output.put_line('Is it a navel orange?');
 10 ELSE
 11 dbms_output.put_line('It''s a ['||lv_selector||']?');
 12 END CASE;
 13 END;
 14 /

The WHEN clauses validate their values against the CASE selector on line 5. When one WHEN
clause matches the selector, the program runs the instructions in that WHEN clause and exits the
CASE block. The break statement found in languages such as C, C++, C#, and Java is implicitly
present.

TIP
The CASE statement in PL/SQL differs from the CASE statement in
SQL, because the former ends with END CASE, not simply END. Don’t
try the SQL syntax in PL/SQL, because it will raise an exception.

03-ch03.indd 82 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 83

A searched case statement works differently from a simple case statement because it doesn’t
limit itself to an equality match of values. You can use a searched case statement to validate
whether a number is in a range or in a set. The selector for a searched case statement is implicitly
true and can be excluded unless you want to check for untruth. You provide a false selector value
on line 2 if the WHEN clauses validate against a false condition, like this:

 2 CASE FALSE

The following program validates against truth:

SQL> BEGIN
 2 CASE
 3 WHEN (1 <> 1) THEN
 4 dbms_output.put_line('Impossible!');
 5 WHEN (3 > 2) THEN
 6 dbms_output.put_line('A valid range comparison.');
 7 ELSE
 8 dbms_output.put_line('Never reached.');
 9 END CASE;
 10 END;
 11 /

The range validation on line 5 is met, and it prints this:

A valid range comparison.

Unlike the if and elsif statements, you don’t need to reduce the natural three-valued logic to
two-valued logic. If a searched case statement’s WHEN clause isn’t met, the program continues
until one is met or the else statement is reached.

Iterative Structures
Iterative structures are blocks that let you repeat a statement or a set of statements. These structures
come in two varieties: a guard-on-entry loop and a guard-on-exit loop. Figure 3-2 shows the
execution logic for these two types of loops.

FIGURE 3-2. Iterative statement logic flows

Condition

Condition

Iterative Step

Guard Entry Loop Guard Exit Loop

Iterative Step

03-ch03.indd 83 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

84 Oracle Database 12c PL/SQL Programming

Three loop structures in PL/SQL let you implement iteration: the for, while, and simple loop
structures. You can use them either with or without a cursor. A cursor is a PL/SQL structure that
lets you access the result of a query row by row or as a bulk operation.

For Loop Statements
You can implement the for loop as a range loop or as a cursor loop. A range loop moves through
a set of sequential numbers, but you need to know the beginning and ending values. It is a guard-
on-exit looping structure. You can navigate through a for loop forward or backward by using an
ascending integer range. Here’s an example:

SQL> BEGIN
 2 FOR i IN 0..9 LOOP
 3 dbms_output.put_line('['||i||']['||TO_CHAR(i+1)||']');
 4 END LOOP;
 5 END;
 6 /

The value of the iterator, i, is equal to the numbers in the inclusive range values. The iterator
has a PLS_INTEGER data type. The preceding program prints this:

[0][1]
[1][2]
[2][3]
 ...
[8][9]
[9][10]

Range for loops typically start with 1 and move to a higher number, but you can use 0 (zero)
as the low value in the range. Using 0 as a starting point is rare, because arrays and cursors use
1-based numbering. The example shows you how to do it, but you shouldn’t do it.

The next range for loop moves through the sequence from the highest number to the lowest
number, and it uses a 1-based number model. Notice that the only evidence of decrementing
behavior is the REVERSE reserved word.

SQL> BEGIN
 2 FOR i IN REVERSE 1..9 LOOP
 3 dbms_output.put_line('['||i||']['||TO_CHAR(i+1)||']');
 4 END LOOP;
 5 END;
 6 /

Cursor for loops work with data sets returned by queries. Two static patterns are possible in
addition to an implicit dynamic cursor and a parameterized dynamic cursor. The first example
shows you how to write a static cursor without a declaration block. You should write this type of
code only when you’re doing a quick test program or stand-alone script.

SQL> BEGIN
 2 FOR i IN (SELECT item_title FROM item) LOOP
 3 dbms_output.put_line(i.item_title);

03-ch03.indd 84 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 85

 4 END LOOP;
 5 END;
 6 /

Line 2 contains the static cursor inside parentheses. At runtime, the query becomes an implicit
cursor. Implicit cursors like these should always be static queries. You should put queries into
formal cursors and then call them in the execution block, like this:

SQL> DECLARE
 2 CURSOR c IS
 3 SELECT item_title FROM item;
 4 BEGIN
 5 FOR i IN c LOOP
 6 dbms_output.put_line(i.item_title);
 7 END LOOP;
 8 END;
 9 /

The program declares a formal static cursor on lines 2 and 3. The for loop implicitly opens
and fetches records from the cursor on line 5. This type or program is more readable than the
preceding example. It is also adaptable if your requirements evolve from a static cursor to a
dynamic cursor. Whether or not you define cursors with formal parameters, you can include
variables in a formal cursor declaration.

The following example shows you how to implement a cursor with a formal parameter. The
alternative would be to switch the cursor parameter with a substitution variable on line 6.

SQL> DECLARE
 2 lv_search_string VARCHAR2(60);
 3 CURSOR c (cv_search VARCHAR2) IS
 4 SELECT item_title
 5 FROM item
 6 WHERE REGEXP_LIKE(item_title,'^'||cv_search||'*+');
 7 BEGIN
 8 FOR i IN c ('&input') LOOP
 9 dbms_output.put_line(i.item_title);
 10 END LOOP;
 11 END;
 12 /

The lines of interest are 3, 6, and 8. Line 3 declares the formal parameter for a dynamic cursor.
Line 6 shows the use of the formal parameter in the cursor. Line 8 shows the actual parameter
calling the cursor. The actual parameter is a substitution variable because the anonymous block
becomes dynamic when you call it. Substitution variable and formal parameters are very similar
because they’re placeholders for values that arrive when you call your program. You can replace
the formal parameter on line 6 with a substitution variable, but that’s a very poor coding practice.
As a rule, you should always define formal parameters for dynamic cursors.

This concludes the basics of a for loop. A twist on the for loop involves the WHERE CURRENT
OF clause, which is discussed next.

03-ch03.indd 85 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

86 Oracle Database 12c PL/SQL Programming

WHERE CURRENT OF Clause In my opinion, “a big to-do about nothing” is an appropriate
description of the WHERE CURRENT OF clause because bulk operations are generally the better
solution. However, for completeness, it’s important to show a few examples, so I’ve included two.

The first example shows you how to lock a row with the cursor and then update the same
table in a for loop:

SQL> DECLARE
 2 CURSOR c IS
 3 SELECT * FROM item
 4 WHERE item_id BETWEEN 1031 AND 1040
 5 FOR UPDATE;
 6 BEGIN
 7 FOR I IN c LOOP
 8 UPDATE item SET last_updated_by = 3
 9 WHERE CURRENT OF c;
 10 END LOOP;
 11 END;
 12 /

Line 5 locks the rows with the FOR UPDATE clause. Line 9 correlates the update to a row returned
by the cursor.

The next example demonstrates how to use the WHERE CURRENT OF clause in a bulk operation.
(Bulk operations are covered in depth later in this chapter.)

SQL> DECLARE
 2 TYPE update_record IS RECORD
 3 (last_updated_by NUMBER
 4 , last_update_date DATE);
 5 TYPE update_table IS TABLE OF UPDATE_RECORD;
 6 updates UPDATE_TABLE;
 7 CURSOR c IS
 8 SELECT last_updated_by, last_update_date
 9 FROM item
 10 WHERE item_id BETWEEN 1031 AND 1040
 11 FOR UPDATE;
 12 BEGIN
 13 OPEN c;
 14 LOOP
 15 FETCH c BULK COLLECT INTO updates LIMIT 5;
 16 EXIT WHEN updates.COUNT = 0;
 17 FORALL i IN updates.FIRST..updates.LAST
 18 UPDATE item
 19 SET last_updated_by = updates(i).last_updated_by
 20 , last_update_date = updates(i).last_update_date
 21 WHERE CURRENT OF c;
 22 END;
 23 /

03-ch03.indd 86 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 87

The EXIT statement on line 16 works when the BULK COLLECT clause fails to fetch any rows.
Like the row-by-row example shown previously, the FOR UPDATE clause (on line 11) locks the
rows. The WHERE CURRENT OF clause on line 21 correlates the update to the rows returned by
the bulk-collected cursor.

Now that I’ve shown you how to use the WHERE CURRENT OF clause in a bulk operation,
you might wonder why you would want to. After all, the same thing can be accomplished by a
correlated UPDATE statement, like this:

SQL> UPDATE item i1
 2 SET last_updated_by = 3
 3 , last_update_date = TRUNC(SYSDATE)
 4 WHERE EXISTS (SELECT NULL FROM item i2
 5 WHERE item_id BETWEEN 1031 AND 1040
 6 AND i1.ROWID = i2.ROWID);

In fact, Oracle’s documentation indicates that it recommends correlated UDPATE and DELETE
statements over the use of the WHERE CURRENT OF clause. I also recommend native SQL
solutions when they’re available.

The range and cursor for loops are powerful iterative structures. Their beauty lies in their
simplicity, and their curse lies in their implicit opening and closing of cursor resources. You
should use these structures when access to the data is straightforward and row-by-row auditing
isn’t required. When you need to perform row-by-row auditing, you should use a while or simple
loop because they give you more control.

While Loop Statements
A while loop is a guard-on-entry loop: you need to manage both the entry and exit criteria of a
while loop. Unlike the for loop, with the while loop you don’t need an index value because you
can use other criteria to control the entry and exit criteria. If you use an index, the Oracle
Database 11g CONTINUE statement can make control more complex, because it allows you to
abort an iteration and return to the top of the loop:

SQL> DECLARE
 2 lv_counter NUMBER := 1;
 3 BEGIN
 4 WHILE (lv_counter < 5) LOOP
 5 dbms_output.put('Index at top ['||lv_counter||']');
 6 IF lv_counter >= 1 THEN
 7 IF MOD(lv_counter,2) = 0 THEN
 8 dbms_output.new_line();
 9 lv_counter := lv_counter + 1;
 10 CONTINUE;
 11 END IF;
 12 dbms_output.put_line('['||lv_counter||']');
 13 END IF;
 14 lv_counter := lv_counter + 1;
 15 END LOOP;
 16 END;
 17 /

03-ch03.indd 87 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

88 Oracle Database 12c PL/SQL Programming

This prints the following:

Index at top [1][1]
Index at top [2]
Index at top [3][3]
Index at top [4]

Only odd-numbered counter values make it to the bottom of the loop, as illustrated by the
second printing of the counter value. That’s because the CONTINUE statement prints a line return
and returns control to the top of the loop. If you replace the CONTINUE statement on line 10 with
an EXIT statement, you will leave the loop rather than skip one iteration through the loop.

You could also do the same thing with the GOTO statement and label. You enclose labels inside
guillemets (a French word pronounced geeuh meys), also known as double angle brackets. They’re
available in releases prior to Oracle Database 11g, and it pains me to tell you about them because
they’re only needed when you implement a GOTO statement. As a rule, GOTO statements aren’t
good programming solutions. If you must use a GOTO statement, here’s an example:

SQL> DECLARE
 2 lv_counter NUMBER := 1;
 3 BEGIN
 4 WHILE (lv_counter < 5) LOOP
 5 dbms_output.put('Index at top ['||lv_counter||']');
 6 IF lv_counter >= 1 THEN
 7 IF MOD(lv_counter,2) = 0 THEN
 8 dbms_output.new_line();
 9 GOTO skippy;
 10 END IF;
 11 dbms_output.put_line('['||lv_counter||']');
 12 END IF;
 13 << skippy >>
 14 lv_counter := lv_counter + 1;
 15 END LOOP;
 16 END;
 17 /

The GOTO statement on line 9 skips to the incrementing instruction for the control variable on
line 13. It is actually a bit cleaner than the CONTINUE statement shown earlier.

The GOTO statement should be avoided whenever possible, however. The CONTINUE
statement should be used minimally and carefully. The while loop is powerful but can be tricky if
you’re not careful when using a CONTINUE statement. A poorly coded while loop that contains a
CONTINUE statement can cause an infinite loop.

Simple Loop Statements
The simple loop statement is anything but simple. You use it when you want to control everything
that surrounds access to an explicit cursor. Some of these controls are provided through four built-
in cursor attributes:

 ■ %FOUND Returns TRUE only when a Data Manipulation Language (DML) statement has
changed a row

 ■ %ISOPEN Always returns FALSE for any implicit cursor

03-ch03.indd 88 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 89

 ■ %NOTFOUND Returns TRUE when a DML statement fails to change a row

 ■ %ROWCOUNT Returns the number of rows changed by a DML statement or the number
of rows returned by a SELECT INTO statement

These attributes work with cursors or ordinary SQL statements. You access ordinary SQL
statements by referring to SQL instead of a cursor name. A SELECT-INTO, INSERT, UPDATE, or
DELETE statement is found when it processes rows, and is not found when it doesn’t. For
example, the following anonymous block uses cursor attributes to manage printing log statements
to the console:

SQL> BEGIN
 2 UPDATE system_user
 3 SET last_update_date = SYSDATE;
 4 IF SQL%FOUND THEN
 5 dbms_output.put_line('Updated ['||SQL%ROWCOUNT||']');
 6 ELSE
 7 dbms_output.put_line('Nothing updated!');
 8 END IF;
 9 END;
 10 /

SQL%FOUND on line 4 checks whether a SQL statement was processed. As you may have
surmised, SQL isn’t just an acronym in Oracle PL/SQL; it is a reserved word that links to an
anonymous cursor. If SQL%FOUND returns TRUE, then line 5 prints the number of rows updated in
the table.

A typical simple loop opens a cursor, fetches rows from a cursor, processes rows from a
cursor, and closes a cursor. The following program demonstrates those steps and illustrates an
anchored data type:

SQL> DECLARE
 2 lv_id item.item_id%TYPE; -- This is an anchored type.
 3 lv_title VARCHAR2(60);
 4 CURSOR c IS
 5 SELECT item_id, item_title
 6 FROM item;
 7 BEGIN
 8 OPEN c;
 9 LOOP
 10 FETCH c INTO lv_id, lv_title;
 11 EXIT WHEN c%NOTFOUND;
 12 dbms_output.put_line('Title ['||lv_title||']');
 13 END LOOP;
 14 CLOSE c;
 15 END;
 16 /

This program defines the lv_id variable by anchoring the data type to the definition of the
item_id column in the item table. Anchoring ensures that when the definition of the table
changes, you don’t have to change your program because the anchored data type adjusts
automatically. The second lv_title variable is explicitly assigned a data type, and any change

03-ch03.indd 89 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

90 Oracle Database 12c PL/SQL Programming

to the table would require a change to the assigned data type. The first statement after you start a
simple loop fetches a row of data, and the second, line 11, checks to make sure a row was
fetched. Line 11 also exits the loop when no record is found, which is typically after all rows have
been read or no rows were found.

You can extend the preceding model by creating a user-defined record structure and returning
the row into a single record structure. Record structures are composite variables. The following
example uses a %ROWTYPE pseudo column to anchor a catalog table definition to a local
variable:

SQL> DECLARE
 2 lv_item_record item%ROWTYPE; -- This is an anchored type.
 3 CURSOR c IS
 4 SELECT *
 5 FROM item;
 6 BEGIN
 7 OPEN c;
 8 LOOP
 9 FETCH c INTO lv_item_record;
 10 EXIT WHEN c%NOTFOUND;
 11 dbms_output.put_line('Title ['||lv_item_record.item_title||']');
 12 END LOOP;
 13 CLOSE c;
 14 END;
 15 /

On line 11, the lv_item_record.item_title statement returns the value of a field in the
row of data. The dot between the local variable and the column name is the component selector.
You actually read this reference from right to left. It means the item_title field is selected from
the lv_item_record component, which is a local variable.

You could also create a record type explicitly. You would do this when you want only a subset
of the columns in a table and you don’t want to create a view. A local record set variable would
be like the following:

TYPE item_record IS RECORD
(id NUMBER
, title VARCHAR2(60));

The best approach simply lets you anchor a local variable to the SELECT list returned by a
cursor, which is a natural record structure. You could rewrite the program like this:

SQL> DECLARE
 2 CURSOR c IS
 3 SELECT *
 4 FROM item;
 5 lv_item_record c%ROWTYPE;
 6 BEGIN
 7 OPEN c;
 8 LOOP
 9 FETCH c INTO lv_item_record;
 10 EXIT WHEN c%NOTFOUND;

03-ch03.indd 90 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 91

 11 dbms_output.put_line('Title ['||lv_item_record.item_title||']');
 12 END LOOP;
 13 CLOSE c;
 14 END;
 15 /

Line 5 declares a variable that anchors itself to the definition of a cursor. If you change the cursor,
the variable automatically adjusts. This is the most flexible and least coupled way to anchor a
variable in PL/SQL. It’s also worth mentioning that declaring a variable after a cursor is supported
in Oracle Database but not in MySQL.

You’ll encounter some glitches down the road with local types like these because they’re
limited exclusively to a PL/SQL context. The “Composite Data Types” section earlier in this
chapter shows the better alternative.

This section has demonstrated how you can use implicit and explicit looping structures. It has
also introduced you to the management of the CURSOR statement in the execution section of PL/
SQL programs.

Review Section
This section has described the following points about conditional and iterative statements:

 ■ PL/SQL supports three-valued logic, which means you must proactively manage potential
null states.

 ■ PL/SQL supports the if, elsif, and else conditional logic.

 ■ PL/SQL supports simple and searched case statements, and they perform like if, elsif,
and else blocks because they don’t support fall-through like the C, C++, C#, and Java
programming languages.

 ■ PL/SQL supports a for loop, which can navigate forward or backward through the data
set.

 ■ PL/SQL supports a while loop, which can navigate forward through logic based on a
condition.

 ■ PL/SQL supports a simple loop, which gives you the most control over the iteration
steps and provides features to branch execution on whether or not a condition variable
value is set.

 ■ The EXIT statement lets you exit a loop or block.

 ■ The FOR UPDATE and WHERE CURRENT OF clauses synchronize behaviors when
locking rows, but you should almost always use a correlated UPDATE statement.

 ■ PL/SQL supports a CONTINUE statement, which lets you skip over an execution
through a loop, and the GOTO statement and labels for branching with the GOTO
statement.

 ■ PL/SQL supports four cursor attributes: %FOUND, %NOTFOUND, %ISOPEN, and
%ROWCOUNT.

03-ch03.indd 91 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

92 Oracle Database 12c PL/SQL Programming

Exceptions
PL/SQL provides an optional block for exception handling, as covered earlier in this chapter. The
exception block manages any exceptions that occur while running the execution block. Errors
raised in the declaration block are thrown to and managed by the calling scope program. Oracle
provides two built-in exception management functions, described next.

 ■ SQLCODE returns a negative number that maps to the Oracle predefined exceptions, but
one special case, the NO_DATA_FOUND exception, returns 100.

 ■ SQLERRM is overloaded and provides the following behaviors: returns the actual error as
a negative integer, returns a user-defined exception when the number is positive or not
found in the predefined Oracle exception list, and returns the actual number parameter
as a negative integer with the Oracle-defined message.

The simplest exception handler uses the Oracle keyword OTHERS and catches all raised
exceptions from the execution block:

SQL> DECLARE
 2 lv_letter VARCHAR2(1);
 3 lv_phrase VARCHAR2(2) := 'AB';
 4 BEGIN
 5 lv_letter := lv_phrase;
 6 EXCEPTION
 7 WHEN OTHERS THEN
 8 dbms_output.put_line('Error: '||CHR(10)||SQLERRM);
 9 END;
 10 /

The assignment of a two-character string to a single-character string on line 5 raises (throws) an
exception, which is caught by the exception handler and printed to console:

Error:
ORA-06502: PL/SQL: numeric or value error: character string buffer too small

Oracle also provides a set of predefined exceptions in the STANDARD package. Table 7-2 in
Chapter 7 lists and describes these exceptions. Standard error names can replace the OTHERS
keyword. The VALUE_ERROR keyword could do so on line 7, as shown:

 7 WHEN VALUE_ERROR THEN

This would catch the ORA-06502 error but not any other exception, which means we would now
need two error handlers: one for the specific “numeric or value error” and another for everything
else, more or less a “catch all” handler. The new exception block would look like this:

 6 EXCEPTION
 7 WHEN VALUE_ERROR THEN -- Specific error handler.
 8 dbms_output.put_line('Error: '||CHR(10)||SQLERRM);
 9 WHEN OTHERS THEN -- General error handler.
 10 dbms_output.put_line('Error: '||CHR(10)||SQLERRM);
 11 END;
 12 /

03-ch03.indd 92 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 93

Many developers use the OTHERS keyword as a catch-all handler, but good coding practices
recommend using specific exception handlers. You should always place the specific exception
handler before the OTHERS handler.

PL/SQL also enables us to define user-defined exceptions and write dynamic exceptions. The
next two subsections discuss how.

User-Defined Exceptions
You can declare user-defined exceptions in either of two ways: declare an EXCEPTION variable only
or declare an EXCEPTION variable and EXCEPTION_INIT compiler directive. The EXCEPTION
variable by itself lets you catch a user-defined exception with an OTHERS exception handler and if
statement. The if statement checks for the user-defined exception number (oddly enough, 1 is that
number). The combination of an EXCEPTION variable and EXCEPTION_INIT compiler directive
lets you create a customer exception handler. As you’ll see shortly, the EXCEPTION_INIT compiler
directive maps an exception handler name to a known Oracle error code.

SQL> DECLARE
 2 lv_error EXCEPTION;
 3 BEGIN
 4 RAISE lv_error;
 5 dbms_output.put_line('Can''t get here.');
 6 EXCEPTION
 7 WHEN OTHERS THEN
 8 IF SQLCODE = 1 THEN
 9 dbms_output.put_line('This is ['||SQLERRM||']');
 10 END IF;
 11 END;
 12 /

The example declares a user-defined exception of lv_error on line 2 and raises it as an
exception on line 4. The generic OTHERS exception traps the error on line 7, and the if statement
checks for a user-defined exception on line 8.

The program raises the exception and prints:

This is [User-Defined Exception]

A two-step declaration process lets you declare an exception and map it to a number. The first
step declares the variable and the second step maps the variable to a PRAGMA, EXCEPTION_
INIT precompiler instruction:

SQL> DECLARE
 2 lv_sys_context VARCHAR2(20);
 3 lv_error EXCEPTION;
 4 PRAGMA EXCEPTION_INIT(lv_error,-2003);
 5 BEGIN
 6 lv_sys_context := SYS_CONTEXT('USERENV','PROXY_PUSHER');
 7 RAISE lv_error;
 8 dbms_output.put_line('Can''t get here.');
 9 EXCEPTION
 10 WHEN lv_error THEN

03-ch03.indd 93 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

94 Oracle Database 12c PL/SQL Programming

 11 dbms_output.put_line('This is ['||SQLERRM||']');
 12 END;
 13 /

Line 3 declares the local exception variable and line 4 maps the Oracle error code to the
user-defined exception. Line 6 throws an error because it provides an invalid PROXY_PUSHER
string as an actual parameter to the SYS_CONTEXT function. Line 10 shows the user-defined
exception handler that catches the raised exception. The exception block is only capable of
managing an ORA-02003 exception because there’s no catchall OTHERS exception handler.

The preceding test program raises an exception and prints

This is [ORA-02003: invalid USERENV parameter]

ORA-02003 is a real error code found in the SYS.STANDARD package. You can read the
specification of that package to find a complete list of standard errors.

Dynamic User-Defined Exceptions
Dynamic user-defined exceptions let you raise a customized exception by assigning a number in
the range of –20,000 to –20,999. The RAISE_APPLICATION_ERROR function provides this
ability in PL/SQL. The prototype is

RAISE_APPLICATION_ERROR(error_number, error_message [, keep_errors])

The following program shows how to raise a dynamic user-defined exception:

SQL> DECLARE
 2 lv_error EXCEPTION;
 3 PRAGMA EXCEPTION_INIT(lv_error,-20001);
 4 BEGIN
 5 RAISE_APPLICATION_ERROR(-20001,'A less original message.');
 6 EXCEPTION
 7 WHEN lv_error THEN
 8 dbms_output.put_line('['||SQLERRM||']');
 9 END;
 10 /

Line 2 declares the exception variable and line 3 maps the error to a value in the range of
available values. Line 5 throws the exception and line 7 catches the error.

TIP
There are critical errors and noncritical errors in any database-centric
application. Critical errors should raise a failure message to the
application and customer, while noncritical errors should be recorded
and addressed later by support staff. Database triggers are the best
place to put programming logic for noncritical errors.

Oracle Database 12c also provides a stack trace management function in the DMBS_
UTILITY package: the FORMAT_ERROR_BACKTRACE function. Handling errors is important, of
course, and much more can be said about managing them in exception blocks. Consult Chapter 7
for more information on PL/SQL exception handling.

03-ch03.indd 94 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 95

Bulk Operations
Oracle Database 10g and subsequent releases (that is, all supported releases at the time of
writing) provide bulk processing capabilities. These capabilities differ somewhat from the
structures presented thus far in the chapter, but they follow the general look and feel. Where
possible, bulk processing should be the default in your batch processing and high-volume
processing of data.

The following program shows you how to select groups of rows into array structures. You do
this with the BULK COLLECT clause. I’ve chosen a limit of 20 rows simply to make it simple with
the sample data. Real-world solutions can be hundreds or thousands of records at a time, but I’d
recommend limiting this to a range of 250 to 500 rows.

SQL> DECLARE
 2 TYPE title_record IS RECORD
 3 (title VARCHAR2(60)
 4 , subtitle VARCHAR2(60));
 5 TYPE title_collection IS TABLE OF TITLE_RECORD;
 6 lv_title_collection TITLE_COLLECTION;
 7 CURSOR c IS
 8 SELECT item_title, item_subtitle
 9 FROM item;
 10 BEGIN
 11 OPEN c;
 12 LOOP
 13 FETCH c BULK COLLECT INTO lv_title_collection LIMIT 20;
 14 EXIT WHEN lv_title_collection.COUNT = 0;
 15 FOR i IN 1..lv_title_collection.COUNT LOOP
 16 dbms_output.put_line('['||lv_title_collection(i).title||']');
 17 END LOOP;
 18 END LOOP;
 19 CLOSE c;
 20 END;
 21 /

Review Section
This section has described the following points about exception handling:

 ■ Oracle Database 12c provides two custom built-in functions, SQLCODE and SQLERRM.

 ■ Oracle supports predefined exceptions in the STANDARD package and a generic
exception handler—OTHERS.

 ■ PL/SQL supports user-defined exceptions, which throw a positive 1 as an error value
unless you use the precompiler PRAGMA EXCEPTION_INIT to set a numeric
exception value.

 ■ PL/SQL supports dynamic user-defined exceptions by calling the RAISE_APPLICATION_
ERROR function, which allows you to define an error message.

03-ch03.indd 95 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

96 Oracle Database 12c PL/SQL Programming

This program is more complex than earlier examples and uses a table collection. After creating
a record structure, you create another local collection data type. You then create a variable of the
collection type. Line 13 bulk collects the collection of a record structure into a single variable. The
range for loop on lines 15 through 17 reads the collection and prints only one column value from
each record.

After you’ve selected the data, you should be able to insert or update target tables in the same
bulk processing units. You can do so with the FORALL statement. The following lets you perform a
bulk update:

SQL> DECLARE
 2 TYPE title_record IS RECORD
 3 (id NUMBER
 4 , title VARCHAR2(60)
 5 , subtitle VARCHAR2(60));
 6 TYPE title_collection IS TABLE OF TITLE_RECORD;
 7 lv_title_collection TITLE_COLLECTION;
 8 CURSOR c IS
 9 SELECT item_id, item_title, item_subtitle
 10 FROM item;
 11 BEGIN
 12 OPEN c;
 13 LOOP
 14 FETCH c BULK COLLECT INTO lv_title_collection LIMIT 20;
 15 EXIT WHEN lv_title_collection.COUNT = 0;
 16 FORALL i IN lv_title_collection.FIRST..lv_title_collection.LAST
 17 UPDATE item_temp
 18 SET item_title = lv_title_collection(i).title
 19 , item_subtitle = lv_title_collection(i).subtitle
 20 WHERE item_id = lv_title_collection(i).id;
 21 END LOOP;
 22 END;
 23 /

The FORALL statement on lines 16 through 20 updates 20 rows at a time, but it could easily
update more. Bulk processing reduces the context switches in the database and improves online
transaction processing application throughput.

Review Section
This section has described the following points about bulk operations:

 ■ The BULK COLLECT INTO clause lets you perform a bulk collect, and it provides
you with the LIMIT clause to set the maximum size of rows processed through bulk
operations.

 ■ The FORALL statement lets you process a group of rows by managing a collection
assignment.

03-ch03.indd 96 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 97

Functions, Procedures, and Packages
PL/SQL stored programming units are typically functions, procedures, packages, and triggers. You
can also store object types, but that discussion is reserved for Chapter 11.

Oracle maintains a unique list of stored object names for tables, views, sequences, stored
programs, and types. This list is known as a namespace. Functions, procedures, packages, and
object types are in this namespace. Another namespace stores triggers.

Stored functions, procedures, and packages provide a way to hide implementation details in a
program unit. They also let you wrap the implementation from prying eyes on the server tier.

You can group functions and procedures into two types of subroutines based on their formal
parameter lists. The first type is a pass-by-value program unit, which is where all the parameters
use an IN-only mode of operation. The second type of subroutine is a pass-by-reference program
unit, which has one or more parameters that use IN OUT or OUT-only mode of operation.

A pass-by-value function or procedure takes inputs, or formal parameters, and returns an
output. The formal parameter values are sent into the function, and something completely
different is returned to the calling scope. It’s like putting ingredients in a bowl and mixing them
up to make a cake batter. Once you mix the ingredients into the batter, extracting them
individually from the batter is impossible. The cake batter is like the return value from a function.

A pass-by-reference function or procedure takes inputs that can be references to existing
variables or values. The contents of IN OUT or OUT-only variables can change inside a
subroutine, which means the contents of pass-by-reference functions or procedures can change.

Pass-by-reference functions and procedures are more coupled with the calling program unit
than are pass-by-value functions and procedures. That’s because they hold references to formal
parameters declared in the external calling scope.

Oracle Database 12c adds layering with functions, procedures, and packages by letting you
now white list which subroutine can call them. You do that with the ACCESSIBLE BY clause,
which takes one or more functions, procedures, packages, or object types.

Functions
Stored functions are convenient structures because you can call them directly from SQL
statements or PL/SQL programs. All stored functions must return a value. You can also use them as
right operands because they return a value. Functions are defined in local declaration blocks or
the database. You frequently implement them inside stored packages.

The prototype for a stored function is

CREATE OR REPLACE [{EDITIONABLE | NONEDITIONABLE}]
[schema.] FUNCTION function_name
(parameter [IN][OUT] [NOCOPY] {sql_data_type | plsql_data_type}
[,parameter [IN][OUT] [NOCOPY] {sql_data_type | plsql_data_type}]
[, ...])
RETURN {sql_data_type | plsql_data_type}
[ACCESSIBLE BY
([{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]unit_name)
[,[{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]unit_name)]
[,...]]])
[AUTHID [DEFINER | CURRENT_USER]]
[DETERMINISTIC | PARALLEL_ENABLED]
[PIPELINED]

03-ch03.indd 97 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

98 Oracle Database 12c PL/SQL Programming

[RESULT_CACHE [RELIES ON table_name]] IS
 declaration_statements;
BEGIN
 execution_statements
 RETURN variable;
[EXCEPTION]
 exception_handling_statements
END [function_name];
/

Functions can be used as right operands in PL/SQL assignments. You can also call them
directly from SQL statements provided they return a SQL data type. Procedures cannot be right
operands. Nor can you call them from SQL statements.

Oracle Database 12c lets you limit which other program units can call a function, using the
new ACCESSIBLE BY clause. You can also define functions with access rights to the same
schema or to the calling schema, using the AUTHID value. Choosing the default DEFINER
authorized identifier runs the program in the same schema where you defined the function.
Choosing the CURRENT authorized identifier runs the program unit in the calling schema.

You can query a function that returns a SQL data type by using the following prototype from
the pseudo table DUAL:

SELECT some_function[(actual_parameter [, ...])]
FROM dual;

You are no longer limited to passing actual parameters by positional order in SQL statements.
This means that you can use PL/SQL named notation in SQL. The “Calling Subroutines” section of
Chapter 8 covers how named, positional, and mixed notation work.

The following is a prototype for the same query of a PL/SQL function from the pseudo table DUAL:

SELECT some_function[(formal_parameter => actual_parameter)]
FROM dual;

Named positional calls work best when default values exist for other parameters. There isn’t
much purpose in calling only some of the parameters when the call would fail. Formal parameters
are optional parameters. Named positional calls work best with functions or procedures that have
optional parameters.

You can also use the CALL statement to capture a return value from a function into a bind
variable. The prototype for the CALL statement follows:

SQL> CALL some_function[(actual_parameter [, ...])]
 2 INTO some_session_bind_variable;

The following is a small sample case that concatenates two strings into one:

SQL> CREATE OR REPLACE FUNCTION join_strings
 2 (string1 VARCHAR2
 3 , string2 VARCHAR2) RETURN VARCHAR2 IS
 4 BEGIN
 5 RETURN string1 ||' '|| string2||'.';
 6 END;
 7 /

03-ch03.indd 98 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 99

You can now query the function from SQL:

SQL> SELECT join_strings('Hello','World') FROM dual;

Likewise, you can define a session-level bind variable and then use the CALL statement to put
a variable into a session-level bind variable:

SQL> VARIABLE session_var VARCHAR2(30)
SQL> CALL join_strings('Hello','World') INTO :session_var;

The CALL statement uses an INTO clause when working with stored functions. You dispense
with the INTO clause when working with stored procedures.

If you select the bind variable from the pseudo table DUAL, like this:

SQL> SELECT :session_var FROM dual;

you’ll see:

Hello World.

Functions offer a great deal of power to database developers. They are callable in both SQL
statements and PL/SQL blocks.

Procedures
As mentioned in the previous section, procedures cannot be right operands. Nor can you use
them in SQL statements. You move data into and out of PL/SQL stored procedures through their
formal parameter list. Like stored functions, you can also define local named block programs in
the declaration section of procedures.

The prototype for a stored procedure is

CREATE OR REPLACE [{EDITIONABLE | NONEDITIONABLE}]
[schema.] PROCEDURE procedure_name
(parameter [IN][OUT] [NOCOPY] {sql_data_type | plsql_data_type}
[,parameter [IN][OUT] [NOCOPY] {sql_data_type | plsql_data_type}]
[, ...])
[ACCESSIBLE BY
([{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]unit_name)
[,[{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]unit_name)]
[,...]]])
 [AUTHID DEFINER | CURRENT_USER] IS
 declaration_statements
BEGIN
 execution_statements;
[EXCEPTION]
 exception_handling_statements
END procedure_name;
/

You can define procedures with or without formal parameters. Formal parameters in procedures
can be either pass-by-value or pass-by-reference variables in stored procedures. Pass-by-reference
variables have both an IN mode and an OUT mode. Like functions, when you don’t provide a
parameter mode, the procedure creation assumes you want the mode to be a pass-by-value variable.

03-ch03.indd 99 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

100 Oracle Database 12c PL/SQL Programming

The new ACCESSIBLE BY clause is also available to procedures, and you can define
procedures with access rights to the same schema or to the calling schema with the AUTHID
value. The AUTHID value works the same way for procedures as it does for functions.

The following implements a stored procedure that encloses a string in square brackets:

SQL> CREATE OR REPLACE PROCEDURE format_string
 2 (string_in IN OUT VARCHAR2) IS
 3 BEGIN
 4 string_in := '['||string_in||']';
 5 END;
 6 /

You can also use the CALL statement to call and pass variables into and out of a procedure.
Like the earlier function example, this example uses the CALL statement and bind variable:

SQL> VARIABLE session_var VARCHAR2(30)
SQL> CALL join_strings('Hello','World') INTO :session_var;
SQL> CALL format_string(:session_var);

You should note that the CALL statement does not use an INTO clause when passing a
variable into and out of a stored procedure. This differs from how it works with stored functions.

You also can use the EXECUTE statement with stored procedures. The following works exactly
like the CALL statement:

SQL> EXECUTE format_string(:session_var);

When you select the bind variable from the pseudo table DUAL:

SQL> SELECT :session_var FROM dual;

you’ll see:

[Hello World.]

Procedures offer you the ability to use pass-by-value or pass-by-reference formal parameters.
As you’ll see in Chapter 8, stored procedures let you exchange values with external applications.

Packages
Package development starts with planning which shared data types and cursors should be
bundled with which functions and procedures. Shared data types let you exchange information
using the specifications of scalar, record structure, and collection data types that a package can
require. Shared cursors, on the other hand, present the possibility that a query might be reused
many times and would be more effectively designed and deployed in one location—in the
package specification.

When you deploy packages with shared cursors, you must guarantee their integrity by using
the following compiler directive:

PRAGMA SERIALLY_REUSABLE;

If you fail to remember this fact, a shared cursor might be read by one program starting at the
beginning and read by another program somewhere between the first and last rows. That means

03-ch03.indd 100 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 101

shared cursors run the risk of being read inconsistently, which is the worst type of error you can
introduce to PL/SQL. The simple rule is this: when you deploy shared cursors, the package must
be serially reusable (always fresh to anyone that calls it).

NOTE
Packages that contain shared cursors must be defined as serially
reusable code artifacts in the database.

Variables and cursors are declared exactly as they are in other PL/SQL blocks. Functions and
procedures are like schema-level objects with one exception: you no longer can use Data
Definition Language (DDL) commands to work with them individually. All DDL commands apply
to the package specification or body. Likewise, all function and procedure definitions in the
package specification must be implemented in the package body the same way—that means
names, parameter lists (including default values) for procedures and names, and return types for
functions.

Here’s the prototype for a package specification:

CREATE [OR REPLACE] [{EDITIONABLE | NONEDITIONABLE}]
[schema.] package_name
[ACCESSIBLE BY
([{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]unit_name)
[,[{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]unit_name)]
[,...]]]) {IS | AS}
[TYPE type_name IS
 {RECORD (column_list) | VARRAY(n) | TABLE [INDEX BY data_type]}]
[variable_name data_type {DEFAULT | :=} value; [...]]
[CURSOR cursor_name
 (parameter data_type [, parameter data_type [, ...]) IS
 SELECT statement; [...]]
[TYPE reference_cursor IS REF CURSOR
 [RETURN {catalog_row | cursor_row | record_structure}] [...]]
[user_exception EXCEPTION; [...]]
[PRAGMA SERIALLY_REUSABLE;]
[FUNCTION public_prototype;] [...]
[PROCEURE public_prototype;] [...]
END [package_name];
/

The new ACCESSIBLE BY clause lets you designate which functions, procedures, packages,
and object types can call the package. This effectively lets you white list callers of any package
structures, types, functions, and procedures.

You can implement a package specification with only data types, variables, cursors, and
exceptions, or you can also add functions and procedures. You don’t need to define a package
body when a package specification has no functions or procedures because there’s nothing to
implement in the package body. Packages without implementations are called bodiless packages.
You must provide an implementation of any function or procedure definition from a package
specification in the package body.

03-ch03.indd 101 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

102 Oracle Database 12c PL/SQL Programming

The data types supported in packages are scalar and PL/SQL composite data types; that means
you can’t define an object type. You would raise the following compile-time error if you were to
attempt to put an object type in a package specification or body:

PLS-00540: object not supported in this context.

TIP
You cannot implement a user-defined object type in a package.

The sample overloading package shows you how to define a serially reusable package. It’s
done by including a SERIALLY_REUSABLE compiler directive in both the package specification
and the body. A serially reusable package guarantees all callers of a package function a fresh copy
of any shared cursors. The downside of a serially reusable function is that it isn’t callable from
SELECT statements.

The overloading package also shows you how to define an overloaded function. It creates
a package-level salutation function that takes two or three parameters. Notice that in the package
specification, only the function definitions exist, as shown:

SQL> CREATE OR REPLACE PACKAGE overloading IS
 2
 3 -- Force fresh copy of shared cursor.
 4 PRAGMA SERIALLY_REUSABLE;
 5
 6 -- Define a default salutation.
 7 FUNCTION salutation
 8 (pv_long_phrase VARCHAR2 DEFAULT 'Hello'
 9 , pv_name VARCHAR2) RETURN VARCHAR2;
 10
 11 -- Define an overloaded salutation.
 12 FUNCTION salutation
 13 (pv_long_phrase VARCHAR2 DEFAULT 'Hello'
 14 , pv_name VARCHAR2
 15 , pv_language VARCHAR2) RETURN VARCHAR2;
 16 END;
 17 /

Line 4 contains the precompiler instruction that makes this package serially reusable. Lines 8
and 13 contain a parameter with a default value; that same default value must occur for the
parameters in the package body. The only difference that can exist between the definition in the
package specification and the definition in the package body is that the DEFAULT keyword may
be interchanged with a colon and equal sign set (:=).

After creating the package specification with functions or procedures, you need to create a
package body. The following example creates a package body that has a shared cursor and two
overloaded functions. The functions both use the shared cursor, and these functions are the only
ones that can use the shared cursor. That’s because the cursor is declared in the package body
rather than in the specification.

03-ch03.indd 102 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 103

The example depends on this table:

SQL> CREATE TABLE salutation_translation
 2 (short_salutation VARCHAR2(4)
 3 , long_salutation VARCHAR2(12)
 4 , phrase_language VARCHAR2(12));

You would seed it with the following values:

SQL> INSERT INTO salutation_translation VALUES ('Hi','HELLO','ENGLISH');
SQL> INSERT INTO salutation_translation VALUES ('Bye','GOODBYE','ENGLISH');
SQL> INSERT INTO salutation_translation VALUES ('Ciao','SALUTE','ITALIAN');
SQL> INSERT INTO salutation_translation VALUES ('Ciao','ADDIO','ITALIAN');

A package body prototype differs from the package body because you can implement local
functions and procedures in it. The local functions and procedures can be called only from the
published functions or procedures that were defined in the package specification. Here’s a
package body prototype:

CREATE [OR REPLACE] package_name BODY {IS | AS}
[TYPE type_name IS
 {RECORD (column_list) | VARRAY(n) | TABLE [INDEX BY data_type]}]
[variable_name data_type {DEFAULT | :=} value; [...]]
[CURSOR cursor_name
 (parameter data_type [, parameter data_type [, ...]) IS
 SELECT statement; [...]]
[TYPE reference_cursor IS REF CURSOR
 [RETURN {catalog_row | cursor_row | record_structure}] [...]]
[PRAGMA SERIALLY_REUSABLE;]
[FUNCTION local_implementation;] [...]
[PROCEURE local_implementation;] [...]
[FUNCTION published_body;] [...]
[PROCEDURE published_body;] [...]
END [package_name];
/

Here’s the implementation of the package body:

SQL> CREATE OR REPLACE PACKAGE BODY overloading IS
 2
 3 -- Force fresh copy of shared cursor.
 4 PRAGMA SERIALLY_REUSABLE;
 5 -- Shared cursor.
 6 CURSOR c
 7 (cv_long_phrase VARCHAR2
 8 , cv_language VARCHAR2) IS
 9 SELECT short_salutation
 10 , long_salutation
 11 FROM salutation_translation
 12 WHERE long_salutation = UPPER(cv_long_phrase)
 13 AND phrase_language = UPPER(cv_language);
 14

03-ch03.indd 103 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

104 Oracle Database 12c PL/SQL Programming

 15 -- Declare a default salutation.
 16 FUNCTION salutation
 17 (pv_long_phrase VARCHAR2 DEFAULT 'Hello'
 18 , pv_name VARCHAR2) RETURN VARCHAR2 IS
 19
 20 -- Local variables.
 21 lv_short_salutation VARCHAR2(4) := '';
 22 lv_language VARCHAR2(10) DEFAULT 'ENGLISH';
 23
 24 BEGIN
 25 -- Read shared cursor and return concatenated result.
 26 FOR i IN c(pv_long_phrase, lv_language) LOOP
 27 lv_short_salutation := i.short_salutation;
 28 END LOOP;
 29 RETURN lv_short_salutation || ' ' || pv_name || '!';
 30 END;
 31
 32 -- Define an overloaded salutation.
 33 FUNCTION salutation
 34 (pv_long_phrase VARCHAR2 DEFAULT 'Hello'
 35 , pv_name VARCHAR2
 36 , pv_language VARCHAR2) RETURN VARCHAR2 IS
 37
 38 -- Local variable.
 39 lv_short_salutation VARCHAR2(4) := '';
 40
 41 BEGIN
 42 -- Read shared cursor and return concatenated result.
 43 FOR i IN c(pv_long_phrase, pv_language) LOOP
 44 lv_short_salutation := i.short_salutation;
 45 END LOOP;
 46 RETURN lv_short_salutation || ' ' || pv_name || '!';
 47 END;
 48 END;
 49 /

You can test either of these inside a PL/SQL block or by calling it with the CALL statement at
the SQL*Plus prompt. It requires a SQL*Plus scope variable to use the CALL statement, as covered
in the “SQL*Plus Command-line Interface” section of Appendix A. The following declares the
variable and calls the function result into the :message bind variable:

SQL> VARIABLE message VARCHAR2(30)
SQL> CALL overloading.salutation('Hello','Ringo') INTO :message;

You can query the result now and see “Hello Ringo!” or you can call the overloaded
salutation with three parameters like this:

SQL> CALL overloading.salutation('Addio','Lennon','Italian')
 2 INTO :message;

03-ch03.indd 104 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 105

A query like this

SQL> SELECT :message AS "Goodbye Message" FROM dual;

yields this:

Message

Ciao Lennon!

When you make a package serially reusable, it becomes unavailable in the context of a
SELECT statement. By way of example, this query

SQL> SELECT overloading.salutation('Addio','Lennon','Italian') AS "Message"
 2 FROM dual;

raises this error:

SELECT overloading.salutation('Addio','Lennon','Italian') AS "Message"
 *
ERROR at line 1:
ORA-06534: Cannot access Serially Reusable package "STUDENT.OVERLOADING"
ORA-06512: at line 1

It is possible to query functions from packages when they’re not serially reusable, and the
general rule for most commercial packages is that they’re not serially reusable. The only time you
need to define a package as serially reusable is when it has a shared cursor. Moving the shared
cursor into each of the functions would eliminate the need to make this package serially reusable.

Packages are extremely effective for bundling your code into related modules, and this is
something you should generally opt for in application design. Now you know how to implement
packages.

Review Section
This section has described the following points about packages:

 ■ Functions are local and stand-alone named blocks that return a value and can be used
as right operands in assignments.

 ■ Procedures are local and stand-alone named blocks that don’t return a value, which
means procedures must be called by anonymous blocks, functions, or procedures.

 ■ Functions and procedures are pass-by-value program units when all their parameters
use the default IN-only mode of operation.

 ■ Functions and procedures are pass-by-reference program units when one or more of
their formal parameters use an IN OUT or OUT-only mode of operation.

 ■ Packages hold related functions, procedures, and data types; they also support
overloading of functions and procedures.

 ■ Bodiless packages support data type and shared cursor definitions.

03-ch03.indd 105 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

106 Oracle Database 12c PL/SQL Programming

Transaction Scope
Transaction scope is a thread of execution—session. You establish a session when you connect to
the Oracle Database 12c database. The session lets you set environment variables, such as
SERVEROUTPUT, which lets you print from your PL/SQL programs. What you do during your
session is visible only to you until you commit any changes to the database. After committing the
changes, other sessions can see the changes you’ve made.

During a session, you can run one or more PL/SQL programs. They execute serially, or in
sequence. The first program can alter the data or environment before the second runs, the second
program can alter the data or environment before the third runs, and so on. This is true because
your session is the main transaction. All activities depend on potentially all the prior activities.
You can commit work, which makes all changes permanent, or reject work, which repudiates all
or some changes.

PL/SQL program units provide ACID-compliant transactions across more than a single table.
As discussed in the “Multiversion Concurrency Control” section of Appendix A, all INSERT,
UPDATE, MERGE, and DELETE statements are ACID-compliant. ACID-compliant means an
activity is atomic, consistent, isolated, and durable. Oracle’s MVCC design guarantees this
behavior, and you can read more about it in Appendix A.

The power to control the session rests with the following three commands, which are Transaction
Control Language (TCL) commands:

 ■ The COMMIT statement commits all DML changes made from the beginning of the session
or since the last ROLLBACK statement.

 ■ The SAVEPOINT statement divides two epochs. An epoch is defined by the transactions
between two relative points of time. A SAVEPOINT delimits two epochs.

 ■ The ROLLBACK statement undoes all changes from now to an epoch or named SAVEPOINT,
or now to the beginning of a SQL*Plus session.

These commands enable you to control what happens in your session and program routines.
The beginning of a session is both the beginning of an epoch and an implicit SAVEPOINT
statement. Likewise, the ending of a session is the ending of an epoch and an implicit COMMIT
statement.

How you manage transaction scope differs between a single transaction scope and multiple
transaction scopes. You create multiple transaction scopes when a function or procedure is
designated as an autonomous stored program unit.

Single Transaction Scope
A common business problem involves guaranteeing the sequential behavior of two or more DML
statements. The idea is that either they all must succeed or they all must fail, and partial success is
not an option. TCL commands let you guarantee the behavior of sequential activities in a single
transaction scope.

The following program uses TCL commands to guarantee that both INSERT statements
succeed or fail:

SQL> BEGIN
 2 -- Set savepoint.
 3 SAVEPOINT all_or_nothing;
 4

03-ch03.indd 106 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 107

 5 -- First insert.
 6 INSERT INTO member
 7 VALUES
 8 (member_s1.nextval -- Surrogate primary key
 ...
 16 , SYSDATE);
 17
 18 -- Second insert.
 19 INSERT INTO contact
 20 VALUES
 21 (contact_s1.nextval -- Surrogate primary key
 22 , member_s1.currval -- Surrogate foreign key
 ...
 30 , SYSDATE);
 30
 31 -- Commit records.
 32 COMMIT;
 33
 34 EXCEPTION
 35 -- Rollback to savepoint and raise exception.
 36 WHEN others THEN
 37 ROLLBACK TO all_or_nothing;
 38 dbms_output.put_line(SQLERRM);
 39 END;
 40 /

The entire transaction fails when either the INSERT statement on line 6 or 19 fails because
the transaction is an all or nothing affair. The COMMIT statement on line 32 runs only when both
INSERT statements succeed. Any failure raises an exception, and any work that did succeed is
undone by the ROLLBACK statement on line 37.

Multiple Transaction Scopes
Some business problems require that programs work independently. Independent programs run
in discrete transaction scopes. When you call an autonomous program unit, it runs in another
transaction scope.

You can build autonomous programs with the AUTONOMOUS_TRANSACTION precompiler
instruction or compiler directive. A precompiler instruction is called a PRAGMA and it sets a
specific behavior, such as independent transaction scope. Only the following types of programs
can be designated as autonomous routines:

 ■ Top-level (not nested) anonymous blocks

 ■ Local, stand-alone, and package subroutines—functions and procedures

 ■ Methods of SQL object type

 ■ Database triggers

The beginning transaction scope is known as the main routine. It calls an autonomous routine,
which then spawns its own transaction scope. A failure in the main routine after calling an
autonomous program can only roll back changes made in the main transaction scope. The

03-ch03.indd 107 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

108 Oracle Database 12c PL/SQL Programming

Database Triggers
Database triggers are specialized stored programs that are triggered by events in the database.
They run between when you issue an INSERT, UPDATE, MERGE, or DELETE statement and
commit the change from the SQL DML statement. They use an anonymous block structure, and
they’re stored inside columns that use the LONG data type. The mechanics of passing variables
between the SQL DML statement and anonymous block are complex and left for full discussion in
Chapter 12.

An SQL statement followed by a COMMIT statement is called a transaction process, or a
two-phase commit (2PC) protocol. ACID-compliant transactions use a 2PC to manage one SQL
statement or collections of SQL statements. In a 2PC model, the INSERT, UPDATE, MERGE, or
a DELETE DML statement starts the process and submits changes. These DML statements can also
act as events that fire database triggers assigned to the table being changed.

As a result of triggers working between the first and second phase of a two-phase commit
(2PC) protocol, you cannot use the following TCL statements in triggers: SAVEPOINT, ROLLBACK,
or COMMIT. You can define four types of triggers in the Oracle Database 11g family of products:

 ■ DDL triggers These triggers fire when you create, alter, rename, or drop objects in a
database schema. They are useful to monitor poor programming practices, such as when
programs create and drop temporary tables rather than use Oracle collections effectively
in memory. Temporary tables can fragment disk space and, over time, degrade the
database performance.

Review Section
This section has described the following points about transaction scope:

 ■ Oracle Database is always in transaction mode, which differs from other databases
such as MySQL.

 ■ Transaction scope ensures that either all or nothing happens when inserting, updating,
or deleting data from two or more tables.

 ■ You should always set a SAVEPOINT before attempting to insert, update, or delete data
from two or more tables.

 ■ You should always roll back transactions when one part of a multiple-part transaction
fails to ensure ACID-compliant transaction (see Appendix A for a more complete
description of ACID compliance).

autonomous transaction scope can succeed or fail independently of the main routine. However,
the main routine can also fail when an exception is raised in an autonomous transaction.

Multiple transaction scope programs are complex. You should be sure the benefits outweigh
the risk when using multiple transaction scope solutions.

03-ch03.indd 108 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 3: PL/SQL Basics 109

 ■ DML or row-level triggers These triggers fire when you insert, update, or delete data
from a table. You can use these types of triggers to audit, check, save, and replace values
before they are changed. Automatic numbering of pseudo-numeric primary keys is
frequently done by using a DML trigger.

 ■ INSTEAD OF triggers These triggers enable you to stop performance of a DML
statement and redirect the DML statement. INSTEAD OF triggers are often used
to manage how you write to views that disable a direct write because they’re not
updateable views. The INSTEAD OF triggers apply business rules, and directly insert,
update, or delete rows in appropriate tables related to these updateable views.

 ■ System or database event triggers These triggers fire when a system activity occurs
in the database, like the logon and logoff event triggers described in Chapter 12. These
triggers enable you to track system events and map them to users.

All four trigger types are covered in depth in Chapter 12. No review section is necessary here
because it would simply repeat the preceding list.

Summary
This chapter has reviewed the PL/SQL basics and explained how to jump-start your PL/SQL skills.
The coverage should serve to whet your appetite for more exploration of PL/SQL.

Mastery Check
The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix I for answers to
these questions.

True or False:

1. ___A basic block in PL/SQL must have at least a null statement to compile.

2. ___The elsif statement lets you branch execution in an if statement.

3. ___The DECLARE block is where you put all variable, cursor, and local function and
procedure implementations.

4. ___An EXCEPTION block is where you put handling for errors raised in the declaration
block of the same anonymous or named program unit.

5. ___The colon and equal sign set (:=) is the only assignment operator in PL/SQL.

6. ___You need to provide forward-referencing stubs for local functions or procedures to
avoid a procedure or function “not declared in this scope” error.

7. ___Oracle supports both simple and searched case statements.

8. ___Oracle supports SQL and PL/SQL collections as parameter and return value data types.

9. ___Packages let you define overloaded functions and procedures.

10. ___Database triggers run between the first phase of a DML statement and the COMMIT
statement.

03-ch03.indd 109 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

110 Oracle Database 12c PL/SQL Programming

Multiple Choice:

11. Which parameter modes are supported in Oracle PL/SQL? (Multiple answers possible)

A. IN

B. INOUT

C. OUT

D. IN OUT

E. All of the above

12. Which of the following are valid loop structures in PL/SQL? (Multiple answers possible)

A. A simple loop

B. A FOR loop

C. A WHILE loop

D. An UNTIL loop

E. All of the above

13. A simple case statement works with which of the following data types? (Multiple answers
possible)

A. A TEXT data type

B. A VARCHAR2 data type

C. A NCHAR data type

D. A CHAR data type

E. A DATE data type

14. Which of the following isn’t a keyword in PL/SQL?

A. RECORD

B. REVERSE

C. CURSOR

D. LIMIT

E. STRUCTURE

15. Which of the following isn’t a cursor attribute?

A. %FOUND

B. %ISOPEN

C. %TYPE

D. %NOTFOUND

E. %ROWCOUNT

03-ch03.indd 110 12/16/13 5:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

CHAPTER
4

Language Fundamentals

04-ch04.indd 111 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

112 Oracle Database 12c PL/SQL Programming

This chapter builds on the discussion of PL/SQL architecture in Chapter 1 and PL/SQL
basics in Chapter 3. It explains scalar and composite variables and how you assign values
to these variable types.

The chapter is divided into two sections:

 ■ Lexical units

 ■ Variable and data types

Lexical units are the bricks and mortar that let you build programs. The next two sections
cover these fundamentals.

Lexical Units
Lexical units are the building blocks in programming languages. They enable you to build PL/SQL
programs. You develop lexical units by combining valid characters and symbols. Lexical units can
be delimiters, identifiers, literals, or comments. Delimiters act like the mortar because they provide
semantic elements like operators and string literal delimiters. Identifiers are bricks because they
include reserved words and keywords as well as both subroutine and variable names. Literals are
a convenient way for you to introduce string and numeric constants into your programs. Comments
aren’t bricks or mortar, but they’re important because they help you (or some other future developer)
see what you’re doing.

Delimiters
Lexical delimiters are symbols or symbol sets. They can act as delimiters or provide other functions
in programming languages. Other functions provided by lexical delimiters are assignment,
association, concatenation, comparison, math, and statement controls.

The most common example of a delimiter is the character string delimiter. In PL/SQL, you
delimit string literals by using a set of single quotes (' '). Table 4-1 covers the full set of delimiters
and provides some examples of how to use delimiters in the language. The examples include
coding techniques and concepts explained in more detail later in this book.

Symbol Type Description
:= Assignment The assignment operator is a colon immediately followed by an equal

sign. It is the only assignment operator in the language. You assign a
right operand to a left operand, like
a := b + c;
This adds the numbers in variables b and c and then assigns the
result to variable a. The addition occurs before the assignment due to
operator precedence, which is covered later in this chapter.

TABLE 4-1. PL/SQL Delimiters

04-ch04.indd 112 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 113

Symbol Type Description
: Association The host variable indicator precedes a valid identifier name and

designates that identifier as a session variable. Session variables
are also known as bind variables. You use SQL*Plus to define a
session variable. Only the CHAR, CLOB, NCHAR, NCLOB, NUMBER,
NVARCHAR2, REFCURSOR, and VARCHAR2 data types are available
for session variables.
You can define a session variable by using a prototype, like
VARIABLE variable_name data type_name
This implements the prototype by creating a session-level variable-
length string:
SQL> VARIABLE my_string VARCHAR2(30)
Then, you can assign a value using an anonymous block PL/SQL
program, like
BEGIN
 :my_string := 'A string literal.';
END;
/
You can then query the result from the DUAL pseudo table:
SELECT :my_string FROM dual;
Alternatively, you can reuse the variable in another PL/SQL block
program because the variable enjoys a session-level scope. A
subsequent anonymous block program in a script could then print the
value in the session variable:
BEGIN
 dbms_output.put_line(:my_string);
END;
/
This is a flexible way to exchange variables between multiple
statements and PL/SQL blocks in a single script file.

& Association The substitution indicator lets you pass actual parameters into
anonymous block PL/SQL programs. You should never assign
substitution variables inside declaration blocks because assignment
errors don’t raise an error that you can catch in your exception block.
You should make substitution variable assignments in the execution
block. The following demonstrates the assignment of a string
substitution variable to a local variable in an execution block:
a := '&string_in';

(continued)

TABLE 4-1. PL/SQL Delimiters

04-ch04.indd 113 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

114 Oracle Database 12c PL/SQL Programming

Symbol Type Description
% Association The attribute indicator lets you link a database catalog column, row,

or cursor attribute. You are anchoring a variable data type when you
link a variable to a catalog object, like a table or column. While
Chapter 3 introduces type anchoring, the section “Cursor Structures”
in Chapter 5 examines how to anchor variables to database catalog
items with this operator. This chapter’s “System Reference Cursor”
section shows how to create strongly typed system reference cursors
by anchoring them to tables.

=> Association The association operator is a combination of an equal sign and a
greater-than symbol. It is used in name notation function and procedure
calls. Chapter 8 covers how you use the association operator.

. Association The component selector is a period, and it glues references together;
for example, a schema and a table, a package and a function, or an
object and a member method. Component selectors are also used to
link cursors and cursor attributes (columns). The following are some
prototype examples:
schema_name.table_name
package_name.function_name
object_name.member_method_name
cursor_name.cursor_attr
object_name.nested_object_name.object_attr
These are referenced in subsequent chapters throughout this book.

@ Association The remote access indicator lets you access a remote database
through database links.

|| Concatenation The concatenation operator is formed by combining two
perpendicular vertical lines. You use it to glue strings together, as
shown:
a := 'Glued'||' '||'together. ';

= Comparison The equal sign is the comparison operator. It tests for equality of value
and implicitly does type conversion where possible (see Figure 4-2 for
an implicit conversion chart). There is no identity comparison operator
because PL/SQL is a strongly typed language. PL/SQL comparison
operations are equivalent to identity comparisons because you can
only compare like typed values.

- Comparison The negation operator symbol is a minus sign. It changes a number
from its positive value to its negative value.

<>
!=
^=

Comparison There are three not-equal comparison operators. They all perform
exactly the same behaviors. You can use whichever suits your
organizational needs.

TABLE 4-1. PL/SQL Delimiters

04-ch04.indd 114 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 115

Symbol Type Description
> Comparison The greater-than operator is an inequality comparison operator. It

compares whether the left operand is greater than the right operand.
< Comparison The less-than operator is an inequality comparison operator. It

compares whether the left operand is less than the right operand.
>= Comparison The greater-than or equal comparison operator is an inequality

comparison operator. It compares whether the left operand is greater
than or equal to the right operand.

<= Comparison The less-than or equal comparison operator is an inequality
comparison operator. It compares whether the left operand is less than
or equal to the right operand.

IS
NULL

Comparison The IS NULL comparison operator checks whether the left operand
holds a null.

IS
EMPTY

Comparison The IS EMPTY comparison operator checks whether the left operand
holds any elements, and only applies when the left operand is a varray
or table collection data type.

IS
SET

Comparison The IS SET comparison operator checks whether the left operand
holds a set of elements, and only applies when the left operand is a
varray or table collection data type.

' Delimiter The character string delimiter is a single quote mark. It lets you define
a string literal value. You can assign a string literal to a variable as
follows:
a := 'A string literal.';
This creates a string literal from the set of characters between the
character string delimiters and assigns it to the variable a.

(
)

Delimiter The opening and closing expressions or list delimiters are an opening
parenthesis symbol and closing parenthesis symbol, respectively.
You can place a list of comma-delimited numeric or string literals, or
identifiers, inside a set of parentheses. You use parentheses to enclose
formal and actual parameters to subroutines or to produce lists for
comparative evaluations.

, Delimiter The item separator is a comma and delimits items in lists.
<<
>>

Delimiter The opening and closing guillemets are the opening and closing
delimiters, respectively, for labels in PL/SQL. Labels are any valid
identifiers in the programming language. Perl and PHP programmers
should know these don’t work as HERE document tags.

-- Delimiter Two adjoining dashes are a single comment operator. Everything
to the right of the single comment operator is treated as text and is
not parsed as part of a PL/SQL program. An example of a single-line
comment is
-- This is a single-line comment.

(continued)

TABLE 4-1. PL/SQL Delimiters

04-ch04.indd 115 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

116 Oracle Database 12c PL/SQL Programming

Symbol Type Description
/*
*/

Delimiter These are the opening and closing multiple-line comment delimiters,
respectively. A forward slash followed by an asterisk instructs the
parser to ignore as comment text everything until the closing multiple-
line comment delimiter. An asterisk followed by a forward slash
instructs the parser that the text comment is complete, and everything
after it should be parsed as part of the program unit. An example of a
multiple-line comment is
/* This is line one.
 This is line two. */
There are many suggestions on how to use multiple-line comments.
You should pick one way of doing it that suits your organization’s
purposes and stick with it.

" Delimiter The quoted identifier delimiter is a double quote. It lets you access
tables created in case-sensitive fashion from the database catalog. This
is required when you have created database catalog objects in case-
sensitive fashion. You can do this from Oracle Database 10g forward.
For example, you create a case-sensitive table or column by using
quoted identifier delimiters:
CREATE TABLE "Demo"
("Demo_ID" NUMBER
, demo_value VARCHAR2(10));
You insert a row by using the following quote-delimited syntax:
INSERT INTO "Demo1" VALUES
(1,'One Line ONLY.');
Like the SQL syntax, PL/SQL requires you to use the quoted identifier
delimiter to find the database catalog object, like
BEGIN
 FOR i IN (SELECT "Demo_ID", demo_value
 FROM "Demo") LOOP
 dbms_output.put_line(i."Demo_ID");
 dbms_output.put_line(i.demo_value);
 END LOOP;
END;
/
Beyond the quoted identifier in embedded SQL statements, you must
refer to any column names by using quote-delimited syntax. This is
done in the first output line, where the loop index (i) is followed
by the component selector (.) and then a quote-delimited identifier
("Demo_ID"). You should note that no quotes are required to access
the case-insensitive column. If you forget to enclose a case-sensitive
column name (identifier), your program returns a PLS-00302 error
that says the identifier is not declared.
You can also use the quoted identifier delimiter to build identifiers that
include reserved symbols, like an "X+Y" identifier.

TABLE 4-1. PL/SQL Delimiters

04-ch04.indd 116 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 117

Symbol Type Description

+ Math The addition operator lets you add left and right operands and returns
a result.

/ Math The division operator lets you divide a left operand by a right operand
and returns a result.

** Math The exponential operator raises a left operand to the power designated
by a right operand. The operator enjoys the highest precedence
for math operators in the language. As a result of that, a fractional
exponent must be enclosed in parentheses (also known as expression
or list delimiters) to designate order of operation. Without parentheses,
the left operand is raised to the power of the numerator and the result
is divided by the denominator of a fractional exponent.
You raise 3 to the third power and assign the result of 27 to variable a
by using the following syntax:
a := 3**3;
You raise 8 to the fractional power of 1/3 and assign the result of 2 to
variable a by using the following syntax:
a := 8**(1/3);
The parentheses ensures that the division operation occurs first.
Exponential operations take precedence on other mathematical
operations without parenthetical grouping. Please note that
exponential calculations are scientific computing and you should use
IEEE-754 data types.

* Math The multiplication operator lets you multiply a left operand by a right
operand and returns a result.

- Math The subtraction operator lets you subtract the right operand from the
left operand and returns a result.

; Statement The statement terminator is a semicolon. You must close any statement
or block unit in PL/SQL with a statement terminator. Oracle Database
12c introduces the ability to write functions within the WITH clause of
a query, and this new feature requires you to disable the semicolon (;)
while running a query with an embedded function. Chapter 2 and the
“In-line Views” section of Appendix B provide more on this behavior.

TABLE 4-1. PL/SQL Delimiters

04-ch04.indd 117 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

118 Oracle Database 12c PL/SQL Programming

Identifiers
Identifiers are words. They can be reserved words, keywords, predefined identifiers, quoted
identifiers, user-defined variables, subroutines, or user-defined types. Reserved words and
keywords change from Oracle Database point release to point release, and there’s no accurate
source for a complete list. You can find reserved words and keywords in Appendix H, built-in SQL
functions in Appendix C, and built-in PL/SQL functions in Appendix D.

Reserved Words and Keywords
Both reserved words and keywords are lexical units that provide basic tools for building programs.
For example, you use the NOT reserved word as a negation in comparison operations, and use the
NULL keyword to represent a null value or statement. You cannot use these words when defining
your own programs and data types.

Predefined Identifiers
Oracle Database 12c (and some recent releases prior to it) provides a STANDARD package, and it
globally grants access to the package through a public grant. The STANDARD package defines the
built-in functions found in Appendix C. It also contains the definitions for standard data types and
errors.

You should be careful to not override any predefined identifiers by creating user-defined
identifiers with the same names. This happens any time you define a variable that duplicates a
component from the STANDARD package, just as you can define a variable in a nested PL/SQL
block that overrides the containing block variable name.

Quoted Identifiers
Oracle Database 11g forward enables you to use quoted identifier delimiters to build identifiers
that would otherwise be disallowed because of symbol reuse. Quoted identifiers can include any
printable characters, including spaces. However, you cannot embed double quotes inside
identifiers. The maximum size of a quoted identifier is 30 characters.

You can also use quoted identifiers to leverage reserved words and keywords. Although this is
allowed, it is strongly discouraged by Oracle. For example, the following program creates a
quoted identifier “End,” which is a case-insensitive reserved word:

SQL> DECLARE
 2 "End" NUMBER := 1;
 3 BEGIN
 4 dbms_output.put_line('A quoted identifier End ['||"End"||']');
 5 END;
 6 /

Again, while this is possible, you should avoid it!

User-Defined Variables, Subroutines, and User-Defined Data Types
You create identifiers when you define program components. User-defined data types can be
defined in SQL as schema-level data types, or in PL/SQL blocks. User-defined identifiers must be
less than 30 characters and start with a letter; and they can include a $, #, or _. They cannot
contain punctuation, spaces, or hyphens.

Anonymous block identifiers are only accessible inside a block or nested block. When you
define identifiers in functions and procedures, they are accessible based on their implementation

04-ch04.indd 118 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 119

scope. You can access calling scope identifiers from within local functions and procedures but not
through schema-level functions and procedures. Package specifications let you define package-
level data types that are available in your schema. These package-level data types are also
available in other schemas when you grant execute privilege on them to other schemas. Package
bodies let you define local data types that are only available to functions and procedures defined
within the package body or implementation.

You reference package-level data types by using the component selector to connect the
package and data type names. Chapter 9 discusses PL/SQL packages in depth, while Chapter 2
provides a basic introduction.

Literals
A literal is an explicit character, string, number, or Boolean value. Literal values are not represented
by identifiers. String literals can also represent date or time literals.

Character Literals
Character literals are defined by enclosing any character in a set of single quotes. The literal
values are case sensitive, while the programming language is case insensitive. This mirrors the
behavior of SQL and data stored in the database as character or string data (the VARCHAR2 data
type is the most commonly used type).

You assign a character literal to a variable using the following syntax:

a := 'a';

String Literals
String literals are defined like character literals, using single quotes. String literals can contain any
number of characters up to the maximum value for the data type. You typically use the VARCHAR2
data type, or one of its subtypes.

You assign a string literal to a variable using the following syntax:

a := 'some string';

You can also assign a string literal with double quotes inside it by using the following syntax:

a := 'some "quoted" string';

The double quotes are treated as normal characters when embedded in single quotes.

Numeric Literals
Numeric literals are defined like numbers in most programming languages. The generic numeric
literal assignment is done by using the following syntax:

a := 2525;

You can assign a large number with the following exponent syntax:

n := 2525E8; -- This assigns 252,500,000,000 to the variable.

You may attempt to assign a number beyond the range of a data type. The numeric overflow or
underflow exception is raised when the number is outside the data type’s range.

04-ch04.indd 119 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

120 Oracle Database 12c PL/SQL Programming

You also can assign a float or a double by using the respective syntax:

d := 2.0d; -- This assigns a double of 2.
f := 2.0f; -- This assigns a float of 2

These assignments only work with their respective type. A d works with a BINARY_DOUBLE,
while an f works with a BINARY_FLOAT.

Boolean Literals
Boolean literals can be a Boolean variable or expression and can be true, false, or null. This three-
valued state of Boolean variables makes it possible that your program can incorrectly handle a not
true or not false condition any time the variable is null. Chapter 5 covers how to manage
conditional statements to secure expected results.

You can make any of the following assignments to a previously declared BOOLEAN variable:

b := TRUE; -- This assigns a true state.
b := FALSE; -- This assigns a false state.
b := NULL; -- This assigns a null or default state.

TIP
It is a good practice to assign an initial value of TRUE or FALSE to all
Boolean variables, which means you should always explicitly define
their initial state. You should also consider declaring Boolean columns
as not null constrained.

Date and Time Literals
Date literals have an implicit conversion from a string literal that maps to the default format mask.
The default format masks for dates are DD-MON-RR and DD-MON-YYYY, where DD represents a
two-digit day, MON represents a three-character month, RR represents a two-digit relative year,
and YYYY represents a four-digit absolute year. Relative years are calculated by counting 50 years
forward or backward from the current system clock. You assign a relative or absolute date as
follows to previously declared DATE data type variables:

relative_date := '01-JUN-07'; -- This assigns 01-JUN-2007.
absolute_date := '01-JUN-1907'; -- This assigns 01-JUN-1907.

Implicit assignment fails when you attempt other format masks, like MON-DD-YYYY. You can
explicitly assign date literals by using the TO_DATE or CAST functions. Only the Oracle
proprietary TO_DATE function lets you use apply a format mask other than the default. The syntax
variations for the TO_DATE function are

date_1 := TO_DATE('01-JUN-07'); -- Default format mask.
date_2 := TO_DATE('JUN-01-07','MON-DD-YY'); -- Override format mask.

The CAST function can use either of the default format masks discussed earlier in the section,
as shown:

date_1 := CAST('01-JUN-07' AS DATE); -- Relative format mask.
date_2 := CAST('01-JUN-2007' AS DATE); -- Absolute format mask.

04-ch04.indd 120 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 121

You can use the TO_CHAR(date_variable, 'MON-DD-YYYY') function to view the fully
qualified date. These behaviors in PL/SQL mirror the behaviors in Oracle SQL.

Comments
You can enter single- or multiple-line comments in PL/SQL. You use two dashes to enter a single-
line comment, and the /* and */ delimiters to enter a multiple-line comment. A single-line
comment is entered as follows:

-- This is a single-line comment.

A multiple-line comment is entered as follows:

/* This is a multiple-line comment.
 Style and indentation should follow your company standards. */

Planned comments are straightforward, but you can introduce errors when you comment out
code to test or debug your programs. The biggest problem occurs when you comment out all
executable statements from a code block. This will raise various parsing errors because every
coding block must have at a minimum one statement, as discussed in the “Block Structure”
section of Chapter 3.The other problem frequently introduced with single-line comments arises
from placing them before either a statement terminator (a semicolon) or an ending block
keyword. This also raises a parsing error when you try to run or compile the program unit.

NOTE
Compilation in PL/SQL programs can mean attempting to run an
anonymous block program or creating a stored program unit. In both
cases, you are parsing the program into PL/SQL p-code. PL/SQL runs
the p-code.

This section has presented the valid characters and symbols in the language. It has also
explained that delimiters, identifiers, literals, and comments are lexical units.

Review Section
This section has described the following points about character and lexical units:

 ■ Lexical units are the basic building blocks in programming languages, and they can be
delimiters, identifiers, literals, or comments.

 ■ You can develop lexical units by combining valid characters and symbols.

 ■ Lexical delimiters are symbols or symbol sets that identify string literals and provide
assignment, association, concatenation, comparison, math, and statement controls.

 ■ The STANDARD package provides predefined identifiers.

 ■ You can create user-defined identifies, such as data type and variable names, that don’t
conflict with keywords or reserved words.

 ■ You can create quoted identifiers by using double quotes to delimit words that may
duplicate keywords and reserved words.

 ■ You can create single- and multiple-line comments.

04-ch04.indd 121 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

122 Oracle Database 12c PL/SQL Programming

Variables and Data Types
PL/SQL is a blocked programming language. Program units can be named or unnamed blocks.
Unnamed blocks are known as anonymous blocks and are so labeled throughout the book.
Named blocks are functions, procedures, and packages with internal functions and procedures,
and objects types that include functions and procedures. As Chapter 11 explains, you can have
static or instance functions and procedures, and specialized constructor functions that let you
create instances of object types.

The PL/SQL coding style differs from that of the C, C++, and Java programming languages. For
example, curly braces do not delimit blocks in PL/SQL. The DECLARE keyword starts the
declaration section in anonymous block programs, and the function or procedure header,
specification, or signature (name, parameter list, and return type) starts the declaration section in
named block programs. The BEGIN keyword starts the execution block and ends the declaration
block. The EXCEPTION keyword starts the exception block. The exception block ends with the
END keyword, which also ends the program unit. While anonymous block programs are effective
in some situations, the more common practice is to develop reusable subroutines—functions,
procedures, packages, and object types.

You would typically use anonymous blocks when building scripts to seed data or perform
one-time processing activities. Script files are text files that have SQL statements and/or PL/SQL
anonymous blocks that perform a set of sequenced steps.

Anonymous blocks are also effective when you want to nest activity in another PL/SQL block’s
execution section. The basic anonymous block structure must contain an execution section. You
can also put optional declaration and exception sections in anonymous blocks. Figure 4-1
illustrates both anonymous block (left) and named block (right) prototypes.

The declaration block lets you declare data types, structures, variables, and named functions
and procedures. Declaring a variable means that you give it a name and a data type. You can also
define a variable by giving it a name, a data type, and a value. You both declare and assign a
value when defining a variable. While you can implement a named block in another program’s
declaration section, you can’t implement named blocks anywhere else in a PL/SQL program. Likewise,
anonymous blocks can only be implemented in another program’s execution and exception sections.
Chapter 3 provides examples of variable scope inside various anonymous and named blocks.

The following two subsections qualify the available PL/SQL data types and their basic use.

FIGURE 4-1. PL/SQL block structure

[DECLARE]

END;
/

BEGIN

[EXCEPTION]

declaration_statements

execution_statements

exception_statements

[HEADER]

END;
/

BEGIN

[EXCEPTION]

declaration_statements

execution_statements

exception_statements

04-ch04.indd 122 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 123

Variable Data Types
PL/SQL supports two principal variable data types: scalar variables and composite variables.
Scalar variables contain only one thing, such as a character, date, or number. Composite variables
are variables built from primitives or base types in a programming language. Composite variables
in Oracle Database are records (structures), arrays, lists, system reference cursors, and object
types. (System reference cursors are specialized or hybrid PL/SQL-only structures that act like
a list of record types and they are discussed in the “System Reference Cursor” section later in
this chapter.)

PL/SQL uses all Oracle SQL data types. PL/SQL also introduces a BOOLEAN data type and
several subtypes derived from the SQL data types. Subtypes inherit the behavior of a data type but
also typically have constrained behaviors. An unconstrained subtype doesn’t change a base type’s
behavior. Unconstrained subtypes are also called aliases. You can also call any base data type a
supertype, because it is the model for subtypes. Unconstrained subtypes are interchangeable with
their base types, while only qualified values can be assigned to constrained subtypes from base
types. You can extend these types by building your own subtypes, as you’ll see in the “CHAR and
CHARACTER Data Types” section later in this chapter.

Like other programming languages, PL/SQL lets you both define types and declare variables.
You label a data type and designate how to manage the data type in memory when you define a
type. You define a variable by both declaring the variable and assigning it a value. A variable
name is mapped to a known data type and then added to the program’s namespace as an
identifier when you declare a variable. In some programming languages, no value is assigned to a
declared variable. PL/SQL automatically assigns most declared variables a null value. This means
that variables are generally defined in the language.

You declare variables by assigning them a type or by anchoring their type to a database
catalog column. Anchoring a variable using the %TYPE attribute means that your program’s
variable size automatically adjusts as the size of the column’s data type changes. It also means
that the data type of your variable can change when the column’s data type changes.

While altering a table’s column from one data type to another works when there’s no data in
the table, it doesn’t always work when there’s data in the table. You only can change a populated
column’s data type when Oracle knows how to explicitly cast the values from the one data type
to the other data type. The lack of an implicit data type conversion means you need to export the
column values and manually convert them to the new data type.

Unfortunately, changing a column’s data type and converting the data is only the beginning of
a conversion process. It’s only a beginning because your program is structurally coupled to the
column’s data type. While it is possible that small changes in size of a string or number may not
break your program, it’s likely a large change in size might. Likewise, some logic, assignments,
and comparisons may fail when the base type changes. Take for example when you convert a
column with a string data type to a column with a date data type. There isn’t any implicit conversion
from a string to date or a string back to a date, and such a column change may alter logical
comparison conditions in your function or procedure. That’s why I’d recommend you only anchor
columns with the %TYPE when you can guarantee the column’s data type won’t change over time.

TIP
Altering the column data type does not raise an error but invalidates
any stored procedures that misuse the new variable type.

Implicit conversions are determined by the PL/SQL engine. Unlike some programming
languages, PL/SQL allows implicit conversions that result in loss of precision (or details). If you

04-ch04.indd 123 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

124 Oracle Database 12c PL/SQL Programming

assign a BINARY_FLOAT variable to a BINARY_INTEGER, any digits to the right of the decimal
place are discarded implicitly. Explicit conversions require you to convert the data, like calling
the TO_CHAR built-in function to display the timestamp of a DATE variable. A list of implicit
conversions is found in Figure 4-2.

There is one pseudo exception to the variable declaration rule. Weakly typed system
reference cursors are not defined until runtime. A weakly typed system reference cursor takes an
assigned cursor number and adopts the record structure of a row assigned to the cursor. A system
reference cursor returns a list of its record structure, and you can only assign it to a composite
variable. You can also anchor a strongly typed system reference cursor to a catalog table or view.
This works much like how you anchor variables to columns, which Chapter 3 covers.

Variable data types can be defined in SQL or PL/SQL. You can use SQL data types in both
SQL statements and PL/SQL statements. You can only use PL/SQL data types inside your PL/SQL
program units.

FIGURE 4-2. Implicit conversions

BINARY_DOUBLE

FROM

TO

BINARY_FLOAT

BINARY_INTEGER

BLOB

CHAR

CLOB

DATE

LONG

NCHAR

NCLOB

NUMBER

NVARCHAR2

PLS_INTEGER

RAW

UROWID

VARCHAR2

×
×

×

×

×
×
×

×

×

×

×

×

×
×
×

×

×
×

×

×

×
×
×

×

×

×
×
×

×
×
×
×
×
×
×
×
×
×
×

×

×
×

×

×

×

×
×

×

×

×

×

×
×
×
×
×
×

×

×
×
×

×
×
×
×

×
×

×
×
×
×

×

×
×

×
×

×
×
×

×

×

×

×

×
×
×

×
×
×
×
×
×
×

×

×
×

×
×
×

×

×

×

×

×
×

×
×

×

×

×

×

×
×
×

×
×
×
×
×
×
×
×
×
×
×

B
IN

A
R

Y
_I

N
TE

G
ER

B
IN

A
R

Y
_D

O
U

B
LE

B
IN

A
R

Y
_F

LO
A

T

C
LO

B

B
LO

B

C
H

A
R

N
C

H
A

R

D
A

TE

LO
N

G

N
V

A
R

C
H

A
R

2

N
C

LO
B

N
U

M
B

ER

PL
S_

IN
TE

G
ER

V
A

R
C

H
A

R
2

R
A

W

U
R

O
W

ID

04-ch04.indd 124 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 125

The PL/SQL Buffer and Outputting to the Console
As shown in earlier Figure 1-2 of Chapter 1, there is an output buffer between the SQL*Plus
and PL/SQL engines. You can open the buffer in SQL*Plus by enabling the SERVEROUTPUT
environment variable, like

SQL> SET SERVEROUTPUT ON SIZE 1000000

Once you enable this SQL*Plus environment variable, the output generated by the
PUT_LINE and NEW_LINE procedures of the DBMS_OUTPUT package will be displayed in
your SQL*Plus environment. It is possible that you may get more output than you expect the
first time you run a program after enabling the environment variable. This can happen when
you run a program in PL/SQL that enables the buffer from PL/SQL without enabling the
environment variable first.

TIP
SQL*Plus environment variable settings are lost when you
change schemas. Don’t forget to reset the SERVEROUTPUT
variable if you change schemas, because the output buffer is
effectively closed the minute you change schemas.

You enable the buffer in PL/SQL by using the following command:

dbms_output.enable(1000000);

The first write to the buffer after enabling the environment variable will flush all
contents to the SQL*Plus environment. You clear the prior contents by disabling any open
buffer before enabling it using the following two procedures sequentially:

dbms_output.disable;
dbms_output.enable(1000000);

The DISABLE procedure is recommended to ensure that you don’t capture some
undesired prior output when running your program. You output to the console using the
PUT_LINE procedure. The PUT_LINE procedure outputs a string and newline character to
the buffer. You use the NEW_LINE procedure to write a line return.

The following demonstrates how to output information from your PL/SQL program to
the SQL*Plus environment:

BEGIN
 dbms_output.put_line('Line one.');
 dbms_output.new_line;
 dbms_output.put_line('Line two.');
END;
/

This anonymous block program outputs

Line one.
Line two.

(continued)

04-ch04.indd 125 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

126 Oracle Database 12c PL/SQL Programming

This is the technique that you’ll use to get output to the console for debugging or to file
for reporting. You can also combine the SQL*Plus SPOOL command to split standard output
to both the console and a file (like the Unix tee command). This technique lets you generate
text files for reporting.

The first subsection covers scalar data types, the second large objects, the third composite data
types, and the fourth reference types. Items are organized for reference and flow. The scalar
data types are the primitives of the language and therefore the building blocks for the composite
data types. The next section covers these primitive building blocks.

Scalar Data Types
The primitives are grouped into alphabetical sections. Each section describes the data type,
demonstrates how to define and/or declare the type or variables of the type, and shows how
to assign values to it. Figure 4-3 qualifies the four major types of scalar variables and their
implementation base types and subtypes.

You use the following prototype for scalar data types inside the declaration block of your
programs:

variable_name data type [NOT NULL] [:= literal_value];

Some data types require that you provide a precision when defining a variable. The precision
defines the maximum size in bytes or characters for a data type. Similarly, NUMBER data types
require that you provide the scale. The scale defines the number of decimal places to the right of
the decimal point. These conventions mirror the conventions found in SQL for these data types.

Boolean
The BOOLEAN data type has three possible values: TRUE, FALSE, and NULL. This three-valued
state of Boolean variables makes it possible that your program can incorrectly handle a not true or
not false condition any time the variable is NULL. The “Three-valued logic” section of Chapter 3
and the “If-then-else statements” section of Chapter 5 cover how to manage conditional
statements to secure expected results.

The following is the prototype for declaring a BOOLEAN data type:

BOOLEAN [NOT NULL]

You can define Boolean variables by implicit null assignment or by explicit assignment of a
TRUE or FALSE value. The following syntax belongs in the declaration block:

var1 BOOLEAN; -- Implicitly assigned a null value.
var2 BOOLEAN NOT NULL := TRUE; -- Explicitly assigned a TRUE value.
var3 BOOLEAN NOT NULL := FALSE; -- Explicitly assigned a FALSE value.

You should always initialize Boolean variables explicitly in your program units. This practice
avoids unexpected behaviors in programs. Using the NOT NULL clause during declaration
guarantees Boolean variables are never null.

04-ch04.indd 126 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 127

FIGURE 4-3. Scalar types

INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECOND

TIMESTAMP

TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH LOCAL TIME ZONE

DATE

NATURAL

SIMPLE_INTEGER

POSITIVEN

POSITIVE

NATURALN

BINARY_INTEGER DOUBLE PRECISION

NUMERIC

DECIMAL

DEC

FLOAT

NUMBER
Character Data Types

INT

INTEGER

SMALLINTBINARY_DOUBLE

BINARY_FLOAT

IEEE-754

PLS_INTEGER

STRING

VARCHAR

VARCHAR2

LONG

LONG RAW

ROWID

UROWID

NCHAR

NVARCHAR2

CHARACTER

CHAR

BFILE

BLOB

CLOB

Large Object Data Types

Date, Time & Interval Data Types

Number Data Types

There is little need to subtype a BOOLEAN data type, but you can do it. The subtyping syntax is

SUBTYPE booked IS BOOLEAN;

04-ch04.indd 127 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

128 Oracle Database 12c PL/SQL Programming

This creates a subtype BOOKED that is an unconstrained BOOLEAN data type. You may find this
useful when you need a second name for a BOOLEAN data type, but generally subtyping a
Boolean is not very useful.

As shown in the earlier subsection “Boolean Literals,” you assign a literal value to a Boolean
variable inside the execution block by using the following syntax:

var := TRUE;

Unlike strings, the TRUE, FALSE, and NULL values are not delimited by single quotes. All
three words are PL/SQL reserved words.

Characters and Strings
Characters and strings work more like the String class in the Java programming language. Strings
are known as single-dimensional character arrays in the C and C++ programming languages.
Character data types store a fixed-length string. You size the string by stating the number of bytes
or characters allowed inside the string. Any attempt to store more than the maximum number of
bytes or characters throws an exception.

The following program illustrates the memory allocation differences between the CHAR and
VARCHAR2 data types:

DECLARE
 c CHAR(32767) := ' ';
 v VARCHAR2(32767) := ' ';
BEGIN
 dbms_output.put_line('c is ['||LENGTH(c)||']');
 dbms_output.put_line('v is ['||LENGTH(v)||']');
 v := v || ' ';
 dbms_output.put_line('v is ['||LENGTH(v)||']'); END;
/

The program defines two variables, prints their length (see the PL/SQL built-in functions in
Appendix D), and then concatenates another whitespace value to VARCHAR2 to demonstrate
memory allocation. Provided you have enabled the SQL*Plus buffer (setting SERVEROUTPUT on),
this will output the following to the console:

c is [32767]
v is [1]
v is [2]

The output shows that a CHAR variable sets the allocated memory size when defined. The
allocated memory can exceed what is required to manage the value in the variable. The output also
shows that the VARCHAR2 variable dynamically allocates only the required memory to host its value.

CHAR and CHARACTER Data Types The CHAR data type is a base data type for fixed-length
strings. You can size a CHAR data type up to 32,767 bytes in length, but its default length is 1 byte.
Unfortunately, a PL/SQL CHAR is larger than the 4,000-byte maximum allowed in a SQL CHAR
column when the MAX_STRING_SIZE parameter is set to STANDARD. Setting the MAX_STRING_
SIZE parameter to EXTENDED lets you store up to 32,767 bytes in SQL VARCHAR2 columns. You
can store character strings larger than 4,000 bytes inline in CLOB or LONG columns. Oracle
recommends that you use the CLOB data type because the LONG and LONG RAW data types are
only supported for backward-compatibility purposes.

04-ch04.indd 128 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 129

The following is the prototype for defining a CHAR data type:

CHAR[(maximum_size [BYTE | CHAR])] [NOT NULL]

The four ways to declare a variable using the CHAR data type and a default null value are

var1 CHAR; -- Implicitly sized at 1 byte.
var2 CHAR(1); -- Explicitly sized at 1 byte.
var3 CHAR(1 BYTE); -- Explicitly sized at 1 byte.
var4 CHAR(1 CHAR); -- Explicitly sized at 1 character.

When you use character space allocation, the maximum size changes depending on the
character set of your database. Some character sets use 2 or 3 bytes to store characters. You divide
32,767 by the number of bytes required per character, which means the maximum for a CHAR is
16,383 for a 2-byte character set and 10,922 for a 3-byte character set.

You can use the NOT NULL clause to ensure a value is assigned to a CHAR variable. The
general practice is to not restrict CHAR variables without some other compelling business rationale.

The CHARACTER data type is a subtype of the CHAR data type. The CHARACTER data type has
the same value range as its base type. It is effectively an alias data type and is formally known as
an unconstrained subtype. Assignment between variables of CHAR and CHARACTER data types
are implicitly converted when the assignment target has the same size.

The size for characters has two factors: the number of units allotted and the type of units
allotted. A string of three characters (derived from the character set) cannot fit in a string of three
bytes, and, more naturally, a string of three characters cannot fit in a string of two characters. Any
attempt to make that type of assignment raises an ORA-06502 error, which means a character
string buffer is too small to hold a value.

You can declare a CHAR subtype by using the following prototype:

 SUBTYPE subtype_name IS base_type[(maximum_size [BYTE | CHAR])] [NOT NULL];

The following example creates and uses a constrained subtype CODE:

DECLARE
 SUBTYPE code IS CHAR(1 CHAR);
 c CHAR(1 CHAR) := 'A';
 d CODE;
BEGIN
 d := c;
END;
/

Characters and strings cannot specify character ranges. They can only set the maximum size.
This differs from the subtyping behaviors of numbers because they can restrict ranges.

Globalization raises a host of issues with how you use variable-length strings. You should
consider using NCHAR data types when managing multiple character sets or Unicode.

LONG and LONG RAW Data Types The LONG and LONG RAW data types are provided only
for backward compatibility. You should use the CLOB or NCLOB data type where you would use
the LONG data type, and use the BLOB or BFILE data type instead of the LONG RAW data type.
The LONG data type stores character streams, and the LONG RAW data type stores binary streams.

04-ch04.indd 129 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

130 Oracle Database 12c PL/SQL Programming

The LONG and LONG RAW data types store variable-length character strings or binary streams
up to 32,760 bytes in your PL/SQL programs. This limitation is much smaller than the 2 gigabytes
that you can store in LONG or LONG RAW database columns. The LONG and LONG RAW data type
maximum size is actually smaller than the maximum for the CHAR, NCHAR, VARCHAR2, and
NVARCHAR2 data types, and it is dwarfed by the 8 to 128 terabytes of the LOB data types.

The following are the prototypes for declaring the LONG and LONG RAW data types:

LONG [NOT NULL]
LONG RAW [NOT NULL]

You can use the NOT NULL clause to ensure a value is assigned to LONG and LONG RAW
variables. The general practice is to not restrict these data types without some other compelling
business rationale.

The LONG and LONG RAW data types can be declared with a default null value as follows:

var1 LONG; -- Implicitly sized at 0 byte.
var2 LONG RAW; -- Implicitly sized at 0 byte.

You can define variables of these types and assign values by using the following syntax:

var1 LONG := 'CAR';
var2 LONG RAW := HEXTORAW('43'||'41'||'52'); -- CAR assigned in Hexadecimal.

While the LONG data type is easy to use, it is tiny by comparison to the CLOB and NCLOB data
types. The CHAR and VARCHAR2 data types also store 7 bytes more of character data than the
LONG data type.

TIP
You should consider using variable data types that map to your
column data types because over time it is simpler (cheaper) for
maintenance programmers to support. It is advisable that you migrate
CHAR and LONG column data types to VARCHAR2 and LOB data
types, respectively.

You should note that the HEXTORAW function is required to convert hexadecimal streams into
raw streams before assignment to LONG RAW data types. An attempt to assign an unconverted
character stream raises ORA-06502 as a hexadecimal-to-raw conversion error. Also, you should
note that the LONG RAW data stream is not interpreted by PL/SQL.

ROWID and UROWID Data Types The ROWID data type maps to the pseudo column ROWID
in any Oracle database table. You can convert it from a ROWID to an 18-character string by using
the ROWIDTOCHAR function, or back from a character string using the CHARTOROWID function.
Appendix C covers these two SQL built-in functions. An invalid conversion between a string and
a ROWID raises a SYS_INVALID_ROWID error.

NOTE
The ROWID data type is now only provided for backward
compatibility, and it is recommended that you use the universal rowid
(UROWID) data type.

04-ch04.indd 130 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 131

The UROWID data type is the universal rowid. It works with logical ROWID identifiers stored by
an indexed-organized table, whereas the ROWID data type doesn’t. You should use the UROWID
value for all Oracle ROWID management in PL/SQL programs, and when you are working with
non-Oracle ROWID values.

The following are the prototypes for declaring the ROWID and UROWID data types:

ROWID
UROWID

Implicit conversion works well for both ROWID and UROWID types. There is seldom any need
to use either the ROWIDTOCHAR or CHARTOROWID function.

VARCHAR2, STRING, and VARCHAR Data Types The VARCHAR2 data type is a base data
type for variable-length strings. Beyond that, with a few differences, it behaves more or less like
the CHAR data type, as described a bit earlier in the “CHAR and CHARACTER Data Types” section.
The content that overlaps is reiterated here for VARCHAR2 in case you are using this book as a
reference and haven’t already read the description of CHAR. You may notice that the physical size is
required for VARCHAR2 data types, whereas it is optional for the CHAR data type and its subtypes.

You can size a VARCHAR2 data type up to 32,767 bytes in length. Unfortunately, a PL/SQL
VARCHAR2 data type can be larger than the 4,000-byte maximum stored in a SQL VARCHAR2
column when the MAX_STRING_SIZE parameter is set to STANDARD. Setting the MAX_STRING_
SIZE parameter to EXTENDED lets you store up to 32,767 bytes in SQL VARCHAR2 columns. You
can also store character strings larger than 4,000 bytes in CLOB or LONG columns. Oracle
recommends that you use the CLOB data type because the LONG data type is only supported for
backward-compatibility purposes.

The following is the prototype for declaring a VARCHAR2 data type:

VARCHAR2(maximum_size [BYTE | CHAR]) [NOT NULL]

You can use the NOT NULL clause to ensure a value is assigned to a VARCHAR2 variable. The
general practice is to not restrict variable-length strings without some other compelling business
rationale. You should consider creating a subtype that enforces the constraint.

You may notice that the physical size is required for VARCHAR2 data types, whereas it is
optional for the CHAR data type and its subtypes. Physical size is required because the database
needs to know how much space to allocate for a variable using this data type. When you size a
VARCHAR2 variable, the PL/SQL engine only allocates enough space to manage the physical data
value. This typically optimizes your program runtime.

There are three ways to define a VARCHAR2 variable with a default null value:

var1 VARCHAR2(100); -- Explicitly sized at 100 bytes.
var2 VARCHAR2(100 BYTE); -- Explicitly sized at 100 bytes.
var3 VARCHAR2(100 CHAR); -- Explicitly sized at 100 characters.

When you use character space allocation, the maximum size changes, depending on the
character set of your database. Some character sets use 2 or 3 bytes to store characters. You divide
32,767 by the number of bytes required per character, which means the maximum for a
VARCHAR2 is 16,383 for a 2-byte character set and 10,922 for a 3-byte character set.

04-ch04.indd 131 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

132 Oracle Database 12c PL/SQL Programming

The STRING and VARCHAR data types are subtypes of the VARCHAR2 data type. They both
have the same value range as the VARCHAR2 base type. They are effectively aliases and are
formally known as unconstrained subtypes. Assignments between variables of these subtypes are
implicitly converted, provided the variables have the same size.

The size for strings has two factors: the number of units allotted and the type of units allotted.
A string of three characters (derived from the character set) cannot fit in a string of 3 bytes, and,
more naturally, a string of three characters cannot fit in a string of two characters. Any attempt to
make that type of assignment raises an ORA-06502 error, which means a character string buffer is
too small to hold a value.

You can declare a VARCHAR2 subtype by using the following prototype:

SUBTYPE subtype_name IS base_type(maximum_size [BYTE | CHAR]) [NOT NULL];

The following example creates a constrained subtype DB_STRING:

DECLARE
 SUBTYPE db_string IS VARCHAR2(4000 BYTE);
 c VARCHAR2(1 CHAR) := 'A';
 d DB_STRING;
BEGIN
 d := c;
END;
/

The example creates a subtype that cannot exceed the physical limit for a VARCHAR2 column. It
works uniformly regardless of the database character set. This can be useful when you want to
ensure compliance with physical database limits in PL/SQL code blocks.

Strings cannot specify character ranges the way that number subtypes can specify number
ranges. They can only set the maximum size, which can be overridden by declaring the subtype
with a new maximum size less than or equal to 32,767 bytes.

Globalization raises a host of issues with how you use variable-length strings. You should
consider using NVARCHAR2 data types when managing multiple character sets or Unicode.

Dates, Times, and Intervals
The DATE data type is the base type for dates, times, and intervals. There are two subtypes to
manage intervals and three subtypes to manage timestamps. The next three subsections cover
dates, intervals, and timestamps.

DATE Data Type The DATE data type in Oracle contains an actual timestamp of activity. The valid
range is any date from January 1, 4712 BCE (Before Common Era) to December 31, 9999 CE
(Common Era). The most common way to capture a timestamp is to assign the SYSDATE or
SYSTIMESTAMP built-in function. They both return fully qualified dates and contain all field elements
of a DATE variable or column. The field index for a DATE data type is presented in Table 4-2

The following is the prototype for declaring a DATE data type:

DATE [NOT NULL]

You can use the NOT NULL clause to ensure a value is assigned to a DATE variable. There are
many cases where you will want to restrict DATE variables. If you don’t restrict them, then you’ll
need to wrap them in NVL built-in functions to support logical comparisons.

04-ch04.indd 132 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 133

You can define a DATE variable with a default null or initialized value, as shown:

var1 DATE; -- Implicitly assigns a null value.
var2 DATE := SYSDATE; -- Explicitly assigns current server timestamp.
var3 DATE := SYSDATE + 1; -- Explicitly assigns tomorrow server timestamp.
var4 DATE := '29-FEB-08'; -- Explicitly assigns leap year day for 2008.

The TO_DATE function can also convert nonconforming date formats into valid DATE values.
Alternatively, the CAST function also works with the default format mask. The default format
masks for dates are DD-MON-RR and DD-MON-YYYY.

Use the TRUNC(date_variable) function call when you want to extract a date from a
timestamp. This is useful when you want to find all transactions that occurred on a particular day.
By default the TRUNC built-in function shaves off the time, making a date with 00 hours, 00
minutes, and 00 seconds. The following program demonstrates the concept:

DECLARE
 d DATE := SYSDATE;
BEGIN
 dbms_output.put_line(TO_CHAR(TRUNC(d),'DD-MON-YY HH24:MI:SS'));
END;
/

Running this script produces

12-JUL-13 00:00:00

Field Name Valid Range Valid Internal Values
YEAR –4712 to 9999 (excluding year 0) Any nonzero integer
MONTH 01 to 12 0 to 11
DAY 01 to 31 (limited by calendar rules) Any nonzero integer
HOUR 00 to 23 0 to 23
MINUTE 00 to 59 0 to 59
SECOND 00 to 59 0 to 59.9 (where tenths are

the fractional interval second)
TIMEZONE_HOUR –12 to 14 (range adjusts for daylight

saving time changes)
Not applicable

TIMEZONE_MINUTE 00 to 59 Not applicable
TIMEZONE_REGION Value in V$TIMEZONE_NAMES Not applicable
TIMEZONE_ABBR Value in V$TIMEZONE_NAMES Not applicable

TABLE 4-2. DATE Data Type Field Index

04-ch04.indd 133 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

134 Oracle Database 12c PL/SQL Programming

You can’t achieve the same thing by using the ROUND(date_variable,'key') function
call. The ROUND function takes an uppercase day, month, or year string instead of an integer as its
second parameter. It follows a general pattern of rounding down or rounding up. While it would
be great to say everything before noon rounds down to midnight of the current day, that’s not the
case. When you round with a day value, it can round down to today’s or yesterday’s morning or
round up to the morning of tomorrow or the day after tomorrow. The ROUND function works better
with a month value. The month value rounds down the first half of the month to the first day of
the current month, and rounds up the second half of the month to the first day of the next month.
Likewise, a year value rounds down the first half of the year to the first day of the current year,
rounds up the second half of the year to the first day of the next year.

Here’s a query to show the inconsistencies:

SQL> SELECT TO_CHAR(ROUND(SYSDATE,'DAY'),'DD-MON-YYYY HH24:MI') AS Day
 2 , TO_CHAR(ROUND(SYSDATE,'MONTH'),'DD-MON-YYYY HH24:MI') AS Month
 3 , TO_CHAR(ROUND(SYSDATE,'YEAR'),'DD-MON-YYYY HH24:MI') AS Year
 4 FROM dual;

It prints the following based on a SYSDATE value the evening of July 15, 2013:

DAY MONTH YEAR
------------------ ------------------ -----------------
14-JUL-2013 00:00 01-JUL-2013 00:00 01-JAN-2014 00:00

My caution is to avoid using the ROUND function to shave off elements of a date-time data type.
Use the TRUNC function instead, because its performance is simple and consistent.

The EXTRACT built-in function also lets you capture the numeric month, year, or day from
a DATE value. Appendix C lists other functions that let you manipulate DATE data types.

You can declare a DATE subtype by using the following prototype:

SUBTYPE subtype_name IS base_type [NOT NULL];

You should note that, as when using the character subtypes, you cannot set a date range.
Creating a DATE subtype that requires a value is possible. Using DATEN for a null required DATE
follows the convention used by the NATURALN and POSITVEN subtypes.

Interval Subtypes You have two DATE subtypes available that let you manage intervals:
INTERVAL DAY TO SECOND and INTERVAL YEAR TO MONTH. Their prototypes are

INTERVAL DAY[(leading_precision)] TO SECOND[(fractional_second_precision)]
INTERVAL YEAR[(precision)] TO MONTH

The default value for the day’s leading precision is 2, and the second’s fractional second precision
is 6. The default value for the year’s precision is 2.

You can define an INTERVAL DATE TO SECOND variable with a default null or initialized
value, as shown:

var1 INTERVAL DAY TO SECOND; -- Implicitly accept default precisions.
var2 INTERVAL DAY(3) TO SECOND; -- Explicitly set day precision.
var3 INTERVAL DAY(3) TO SECOND(9); -- Explicitly set day and second precision.

04-ch04.indd 134 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 135

You assign a variable value by using the following prototype for an INTERVAL DAY TO
SECOND data type, where D stands for day and HH:MI:SS stands for hours, minutes, and seconds,
respectively:

variable_name := 'D HH:MI:SS';

An actual assignment to the same type would look like

var1 := '5 08:21:20'; -- Implicit conversion from the string.

You can declare an INTERVAL YEAR TO MONTH variable with a default null or initialized
value, as shown:

var1 INTERVAL YEAR TO MONTH; -- Implicitly accept default precisions.
var2 INTERVAL YEAR(3) TO MONTH; -- Explicitly set year precision.

There are four assignments methods. The following program demonstrates an assignment to var2:

 DECLARE
 var2 INTERVAL YEAR(3) TO MONTH;
 BEGIN
 -- Shorthand for a 101 year and 3 month interval.
 var2 := '101-3';
 var2 := INTERVAL '101-3' YEAR TO MONTH;
 var2 := INTERVAL '101' YEAR;
 var2 := INTERVAL '3' MONTH;
END;
/

This would output the following values, respectively:

+101-03
+101-03
+101-00
+000-03

Arithmetic operations between the DATE data type and interval subtypes follow the rules in
Table 4-3. The classic operation is an interval calculation, like subtracting one timestamp from
another to get the number of days between dates.

The intervals simplify advanced comparisons but do require a bit of work to master. More
information on this SQL and PL/SQL data type is in the Oracle Database SQL Language Reference
and the Oracle Database Advanced Application Developer’s Guide.

TIMESTAMP Subtypes The TIMESTAMP subtypes extend the DATE base type by providing a
more precise time. You’ll get the same results if the TIMESTAMP variable is populated by calling
the SYSDATE built-in function. The SYSTIMESTAMP SQL built-in function provides a more
precise time for most platforms.

The following is the prototype for declaring a TIMESTAMP data type:

TIMESTAMP[(precision)] [NOT NULL]

04-ch04.indd 135 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

136 Oracle Database 12c PL/SQL Programming

You can use the NOT NULL clause to ensure a value is assigned to a TIMESTAMP variable.
There are many cases where you will want to restrict TIMESTAMP variables. If you don’t restrict
them, then you’ll need to wrap them in NVL built-in functions to support logical comparisons.

You can define a TIMESTAMP variable with a default null or initialized value, as shown:

var1 TIMESTAMP; -- Implicitly assigns a null value.
var2 TIMESTAMP := SYSTIMESTAMP; -- Explicitly assigns a value.
var3 TIMESTAMP(3); -- Explicitly sets precision for null value.
var4 TIMESTAMP(3) := SYSTIMESTAMP; -- Explicitly sets precision and value.

The following program demonstrates the difference between the DATE and TIMESTAMP data
types:

DECLARE
 d DATE := SYSTIMESTAMP;
 t TIMESTAMP(3) := SYSTIMESTAMP;
BEGIN
 dbms_output.put_line('DATE ['||d||']');
 dbms_output.put_line('TO_CHAR ['||TO_CHAR(d,'DD-MON-YY HH24:MI:SS')||']');
 dbms_output.put_line('TIMESTAMP ['||t||']');
END;
/

The anonymous block returns

DATE [31-JUL-07]
TO_CHAR [31-JUL-07 21:27:36]
TIMESTAMP [31-JUL-07 09.27.36.004 PM]

Operand 1 Type Operator Operand 2 Type Result Type

Timestamp + Interval Timestamp

Timestamp - Interval Timestamp

Interval + Timestamp Timestamp

Timestamp - Interval Interval

Interval + Interval Interval

Interval - Interval Interval

Interval * Numeric Interval

Numeric * Interval Interval

Interval / Numeric Interval

TABLE 4-3. Timestamp and Interval Arithmetic

04-ch04.indd 136 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 137

The other two TIMESTAMP subtypes demonstrate similar behaviors. Their prototypes are

TIMESTAMP[(precision)] WITH TIME ZONE
TIMESTAMP[(precision)] WITH LOCAL TIME ZONE

You can declare a TIMESTAMP WITH TIME ZONE variable with a default null or initialized
value, as shown:

var1 TIMESTAMP WITH LOCAL TIME ZONE;
var2 TIMESTAMP WITH LOCAL TIME ZONE := SYSTIMESTAMP;
var3 TIMESTAMP(3) WITH LOCAL TIME ZONE;
var4 TIMESTAMP(3) WITH LOCAL TIME ZONE := SYSTIMESTAMP;

The difference between these timestamps is that those with time zones append the time zone
to the timestamp. The TIME ZONE qualifier returns the standard time and an indicator of whether
the time zone is using daylight saving time. The LOCAL TIME ZONE qualifier returns the
difference between the local time and Greenwich Mean Time (GMT).

Unicode Characters and Strings
Unicode characters and strings exist to support globalization. Globalization is accomplished by
using character encoding that supports multiple character sets. AL16UTF16 and UTF8 encoding
are provided by the Oracle Database. AL16UTF16 encoding stores all characters in 2 physical
bytes, while UTF8 encoding stores all characters in 3 physical bytes.

The NCHAR data type is a Unicode equivalent to the CHAR data type, and the NVARCHAR2
data type is a Unicode equivalent to the VARCHAR2 data type. You should use these data types
when building applications that will support multiple character sets in the same database.

NCHAR Data Type The NCHAR data type is a base data type for fixed-length Unicode strings and
requires you to divide the maximum length of 32,767 by 2 or 3 depending on character set. The
NCHAR data type shares the generic behaviors of the CHAR data type covered earlier in this chapter.

Globalization of fixed-length Unicode strings is best suited to the NCHAR data type. You
should use these types when the database supports Unicode or may support it in the future.

NVARCHAR2 Data Type The NCHAR data type is a base data type for variable Unicode strings
and requires you to divide the maximum length of 32,767 by 2 or 3 depending on character set.
The NVARCHAR2 data type shares the generic behaviors of the VARCHAR2 data type covered
earlier in this chapter.

Globalization of variable-length strings is best suited to the NVARCHAR2 data type. You should
use these types when your database instance supports Unicode or may support it in the future.

Numbers
There are four principal number data types: BINARY_INTEGER, IEEE 754–format numbers
(BINARY_DOUBLE and BINARY_FLOAT), NUMBER, and PLS_INTEGER. The BINARY_INTEGER
and PLS_INTEGER data types are identical, and they both use the native operating system math
libraries. Oracle uses PLS_INTEGER to describe both BINARY_INTEGER and PLS_INTEGER as
interchangeable, and so does this book in subsequent chapters.

Both IEEE 754–format numbers provide single- and double-precision numbers to support
scientific computing. The NUMBER data type uses a custom library provided as part of Oracle
Database 11g forward. It can store very large fixed-point or floating-point numbers.

04-ch04.indd 137 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

138 Oracle Database 12c PL/SQL Programming

BINARY_INTEGER Data Type The BINARY_INTEGER data type is identical to PLS_INTEGER
and stores integer numbers from –2,147,483,648 to 2,147,483,647 as 32 bits or 4 bytes. Like the
PLS_INTEGER data type, it computes more efficiently within its number range and takes much
less space than a NUMBER data type in memory. Math operations using two BINARY_INTEGER
variables that yield a result outside of the data type range will raise an ORA-01426 numeric
overflow error.

The following is the prototype for declaring a BINARY_INTEGER data type:

BINARY_INTEGER

You can define a BINARY_INTEGER variable with a null value or initialize the value during
declaration. The syntax for both follows:

var1 BINARY_INTEGER;
var2 BINARY_INTEGER := 21;

The BINARY_INTEGER data type uses native math libraries, and as such, the declaration
statement does not allocate memory to store the variable until a value is assigned.

You can define a BINARY_INTEGER subtype by using the following prototype:

SUBTYPE subtype_name IS base_type [RANGE low_number..high_number] [NOT NULL];

There are several predefined subtypes of the BINARY_INTEGER data type. The NATURAL and
POSITIVE subtypes restrict their use to only positive integer values. The NATURALN and
POSITIVEN subtypes restrict null assignments. A PLS-00218 error is raised when you attempt to
declare a NATURALN or POSITIVEN subtype without initializing the value. They both enforce a
not-null constraint on the data type.

The newest subtype is the SIMPLE_INTEGER data type introduced in Oracle Database 11g.
It truncates overflow and suppresses the raising of any error related to overflow. The performance
of the SIMPLE_INTEGER data type is dependent on the value of the PLSQL_CODE_TYPE
database parameter. The performance is superior when PLSQL_CODE_TYPE is set to NATIVE
because arithmetic operations are performed with the operating system libraries and both
overflow and null value checking are disabled. Performance is slower when plsql_code_type
is set to INTERPRETED because it prevents overload and performs null value checking.

NOTE
Overloading behavior of base types and subtypes in PL/SQL packages
is typically disallowed, but the same name or positional formal
parameter can be overloaded by using PLS_INTEGER or BINARY_
INTEGER in one signature and SIMPLE_INTEGER in another.

You should also know that a casting operation from a PLS_INTEGER or BINARY_INTEGER
data type to a SIMPLE_INTEGER data type does no conversion unless the value is null. A
runtime error is thrown when casting a null value to a SIMPLE_INTEGER variable.

IEEE 754–Format Data Type IEEE 754–format single-precision and double-precision numbers
are provided to support scientific computing. They bring with them traditional overflow and
infinities problems as part of their definition and implementation. You should use these types of
variables for scientific problems, like cube roots and such.

04-ch04.indd 138 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 139

Both the SQL and PL/SQL environments define the BINARY_FLOAT_NAN and BINARY_
FLOAT_INFINITY constants. The PL/SQL environment also defines four other constants. All six
constants are listed along with their values in Table 4-4.

NOTE
Oracle Database 12c documentation does not list these constants in
the reserved word or keyword lists. They can be found by printing
them from a PL/SQL program or querying the v$reserved_words
table.

The following is the prototype for declaring IEEE 754–format data types:

BINARY_DOUBLE
BINARY_FLOAT

You can define variables of these types with null values or initialize them during declaration.
The syntax for both follows:

var1 BINARY_DOUBLE;
var2 BINARY_DOUBLE := 21d;
var3 BINARY_FLOAT;
var4 BINARY_FLOAT := 21f;

You must always use a d for numeric literals assigned to a BINARY_DOUBLE and an f for
numeric literals assigned to a BINARY_FLOAT. Oracle Database 12c overloads subroutines that
leverage the processing speed of these IEEE 754–format data types.

You can also define a BINARY_DOUBLE or BINARY_FLOAT subtype by using the following
prototype:

SUBTYPE subtype_name IS base_type [NOT NULL];

Constant Name Environment Value
BINARY_FLOAT_NAN SQL &

PL/SQL
It contains Nan, but comparison
operations treat it as a case-
insensitive string. NaN in scientific
notation means not a number.

BINARY_FLOAT_INFINITY SQL &
PL/SQL

It contains Inf, but comparison
operations treat it as a case-
insensitive string.

BINARY_FLOAT_MIN_NORMAL PL/SQL It contains 1.17549435E-038.
BINARY_FLOAT_MAX_NORMAL PL/SQL It contains 3.40282347E+038.
BINARY_FLOAT_MIN_SUBNORMAL PL/SQL It contains 1.40129846E-045.
BINARY_FLOAT_MAX_SUBNORMAL PL/SQL It contains 1.17549421E-038.

TABLE 4-4. IEEE 754–Format Data Type Constants

04-ch04.indd 139 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

140 Oracle Database 12c PL/SQL Programming

You should note that, unlike other number data types, these cannot be range constrained. The
only constraint that you can impose is that the subtypes disallow null value assignments.

NUMBER Data Type The NUMBER data type uses a custom library provided as part of Oracle
Database 12c. It can store numbers in the range of 1.0E-130 (1 times 10 raised to the negative
130th power) to 1.0E126 (1 times 10 raised to the 126th power). Oracle recommends using the
NUMBER data type only when the use or computation result falls in the range of possible values.
The NUMBER data type does not raise a NaN (not a number) or infinity error when a literal or
computational value is outside the data type range. These exceptions have the following outcomes:

 ■ A literal value below the minimum range value stores a zero in a NUMBER variable.

 ■ A literal value above the maximum range value raises a compilation error.

 ■ A computational outcome above the maximum range value raises a compilation error.

The NUMBER data type supports fixed-point and floating-point numbers. Fixed-point numbers
are defined by specifying the number of digits (known as the precision) and the number of digits
to the right of the decimal point (known as the scale). The decimal point is not physically stored in
the variable because it is calculated by the relationship between the precision and the scale.

The following is the prototype for declaring a fixed-point NUMBER data type:

NUMBER[(precision, [scale])] [NOT NULL]

Both precision and scale are optional values when you declare a NUMBER variable. The
NUMBER data type default size, number of digits, or precision is 38. You can declare a NUMBER
variable with only the precision, but you must specify the precision to define the scale.

You can declare fixed-point NUMBER variables with null values or initialize them during
declaration. The syntax for NUMBER data type declarations with null values is

var1 NUMBER; -- A null number with 38 digits.
var2 NUMBER(15); -- A null number with 15 digits.
var3 NUMBER(15,2); -- A null number with 15 digits and 2 decimals.

The syntax for NUMBER data type declarations with initialized values is

var1 NUMBER := 15; -- A number with 38 digits.
var2 NUMBER(15) := 15; -- A number with 15 digits.
var3 NUMBER(15,2) := 15.22; -- A number with 15 digits and 2 decimals.

You can also declare fixed-point numbers by using the DEC, DECIMAL, and NUMER subtypes.
Alternatively, you can declare integers using the INTEGER, INT, and SMALLINT subtypes. They
all have the same maximum precision of 38.

The following are prototypes for declaring the DOUBLE PRECISION and FLOAT subtypes of
the floating-point NUMBER data type:

DOUBLE PRECISION[(precision)]
FLOAT[(precision)]

Defining the precision of DOUBLE PRECISION or FLOAT variables is optional. You risk
losing the natural precision of a floating-point number when you constrain the precision. Both of
these variables have a default size, number of digits, or precision of 126. You can define the

04-ch04.indd 140 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 141

precision of a FLOAT variable, but not the scale. Any attempt to define the scale of either of these
subtypes raises a PLS-00510 error because they cannot have a fixed number of digits to the right
of the decimal point.

The syntax for DOUBLE PRECISION and FLOAT declarations with null values is

var1 DOUBLE PRECISION; -- A null number with 126 digits.
var2 FLOAT; -- A null number with 15 digits.
var3 DOUBLE PRECISION; -- A null number with 126 digits.
var4 FLOAT(15); -- A null number with 15 digits.

The syntax for DOUBLE PRECISION and FLOAT declarations with initialized values is

var1 DOUBLE PRECISION := 15; -- A number with 126 digits.
var2 FLOAT := 15; -- A number with 126 digits.
var3 DOUBLE PRECISION(15) := 15; -- A number with 15 digits.
var4 FLOAT(15) := 15; -- A number with 15 digits.

You also have the REAL subtype of NUMBER that stores floating-point numbers but only uses a
precision of 63 digits. The REAL subtype provides 18-digit precision to the right of the decimal
point.

PLS_INTEGER Data Type The PLS_INTEGER and BINARY_INTEGER data types are identical
and use operating system–specific arithmetic for calculations. They can store integer numbers
from –2,147,483,648 to 2,147,483,647 as 32 bits or 4 bytes. The PLS_INTEGER data type takes
much less space than a NUMBER data type to store in memory. It also computes more efficiently,
provided the numbers and result of the math operation are within its number range. You should
note that any math operation that yields a result outside of the range will raise an ORA-01426
numeric overflow error. The error is raised even when you assign the result of the mathematical
operation to a NUMBER data type.

The following is the prototype for defining a NVARCHAR2 data type:

PLS_INTEGER

You can declare a PLS_INTEGER variable with a null value or initialize the value during
declaration. The syntax for both follows:

var1 PLS_INTEGER; -- A null value requires no space.
var2 PLS_INTEGER := 11; -- An integer requires space for each character.

The PLS_INTEGER data type uses native math libraries, and as such, the declaration
statement doesn’t allocate memory to store the variable until a value is assigned. You can test this
by using the LENGTH built-in function.

You can declare a PLS_INTEGER subtype by using the following prototype:

SUBTYPE subtype_name IS base_type [RANGE low_number..high_number] [NOT NULL];

NOTE
Don’t confuse a PLS_INTEGER data type with an INTEGER data
type. The former uses operating system mathematics libraries, while
the latter is a subtype of the NUMBER base type.

04-ch04.indd 141 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

142 Oracle Database 12c PL/SQL Programming

Large Objects (LOBs)
Large objects (LOBs) provide you with four data types: BFILE, BLOB, CLOB, and NCLOB. BFILE
is a data type that points to an external file, which limits its maximum size to 4GB. BLOB, CLOB,
and NCLOB are internally managed types, and their maximum size is 8 to 128 terabytes,
depending on the db_block_size parameter value.

LOB columns contain a locator that points to where the actual data is stored. You must access
a LOB value in the scope of a transaction. You essentially use the locator as a route to read data
from or write data to the LOB column. Chapter 10 provides details of how you access LOB columns
and work with LOB data types, including the DBMS_LOB built-in package.

BFILE Data Type
The BFILE data type is a read-only data type except for setting the virtual directory and file name
for the external file. You use the built-in BFILENAME function to set locator information for a
BFILE column. Before you use the BFILENAME function, there are several setup steps. You must
create a physical directory on the server, store the file in the directory, create a virtual directory
that points to the physical directory, and grant read permissions on the directory to the schema
that owns the table or the stored program that accesses the BFILE column.

You retrieve the descriptor (the column name), alias (a virtual directory to the physical
directory location), and filename by using the FILEGETNAME procedure from the DBMS_LOB
package. The database session_max_open_files parameter sets the maximum number of
open BFILE columns. Chapter 10 shows these pieces fit together and provides you with some
stored program units to simplify the process.

The following is the prototype for declaring a BFILE data type:

BFILE

There is one way to define a BFILE variable, and it always contains a null reference by
default:

var1 BFILE; -- Declare a null reference to a BFILE.

A BFILE data type cannot be defined with a reference unless you write a wrapper to the
DBMS_LOB.FILEGETNAME procedure. Chapter 10 provides a wrapper function and explains the
limitations that require the wrapper function.

The LENGTH Built-in Function
The behavior of the LENGTH built-in function is consistent with what you’ll see writing C or
C++ programs. When a value is assigned, the LENGTH built-in function returns the number
of characters, not the number of bytes required for storage. You also have the LENGTHB,
LENGTHC, LENGTH2, and LENGTH4 built-in functions. This means that a PLS_INTEGER
data type with five or six numbers would appear to have a character length of 5 or 6,
respectively, but actually only takes 4 bytes of space in both cases. This result appears
linked to how the NUMBER data type works, where NUMBER column values are stored as C
single-dimensional character arrays. The LENGTH function appears to count the positions in
all number data types.

04-ch04.indd 142 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 143

BLOB Data Type
The BLOB data type is a read-write binary large data type. BLOB data types participate in
transactions and are recoverable. You can only read and write between BLOB variables and
database columns in a transaction scope. BLOB data types are objects and are treated differently
than scalar variables. They have three possible states: null, empty, and populated (not empty).
They require initialization by the empty_blob function to move from a null reference to an
empty state, or a direct hexadecimal assignment to become populated.

BLOBs can store binary files between 8 and 32 terabytes. Unfortunately, you can only access
BLOB columns by using the DBMS_LOB package to read and write values after the initial
assignment of a value.

PL/SQL lets you declare local BLOB variables in your anonymous and named blocks.
However, you must establish an active link between your program and the stored BLOB column
to insert, append, or read the column value. Generally, to avoid exhausting your system resources,
you’ll want to only read or store chunks of large BLOB values.

The following is the prototype for declaring a BLOB data type:

BLOB

There is one way to declare a BLOB variable with a default null reference:

var1 BLOB; -- Declare a null reference to a BLOB.

There are two ways to define an empty and populated BLOB variable:

var1 BLOB := empty_blob(); -- Declare an empty BLOB.
var2 BLOB := '43'||'41'||'52'; -- Declare a hexadecimal BLOB for CAR.

BLOB data types are especially useful when you want to store large image files, movies, or
other binary files. Their utility depends a great deal on how well you write the interface. Chapter 10
discusses ways to handle interactions between BLOB columns and PL/SQL variables.

CLOB Data Type
The CLOB data type is a read-write character large data type and it performs like a BLOB data type
for text strings. CLOBs have the same three possible states: null, empty, or populated (not empty).
CLOBs require initialization by the empty_clob() function rather than the empty_blob()
function to change from a null reference to an empty state.

Like the BLOB data type, there is one way to define a CLOB variable with a default null
reference:

var1 CLOB; -- Declare a null reference to a CLOB.

Other than the initializing function call, you define an empty CLOB variable and a populated
one like a BLOB data type:

var1 CLOB := empty_clob(); -- Declare an empty CLOB.
var2 CLOB := 'CAR'; -- Declare a CLOB for CAR.

CLOB data types are especially useful when you want to store large text files. Examples of
large text files are customer notes that support transactions, refunds, or other activities. Large text
elements are suited to reading and writing only small chunks at a time. Otherwise, you’ll exhaust

04-ch04.indd 143 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

144 Oracle Database 12c PL/SQL Programming

your system resources. Chapter 10 discusses ways to handle interactions between CLOB columns
and PL/SQL variables.

NCLOB Data Type
The NCLOB data type is a read-write Unicode character large data type. NCLOB data types perform
like CLOB data types with one exception— more space is allocated to them because they use the
Unicode character sets. All other rules are the same, including the empty_clob() function call
to initialize them.

Composite Data Types
There are three composite generalized data types: records, objects, and collections. Collections can
contain a scalar, record, or object data type, and can be implemented as SQL or PL/SQL data types.
The latter, once PL/SQL tables, are known as associative arrays from Oracle Database 10g forward.

The composite data types are as follows:

 ■ A record data type, also known as a structure, typically contains a collection of related
field elements like any row in a table. The code that declares the record data type is like
the code that defines a table’s structure. Moreover, a record has a structure like a table
but is limited to a single row.

 ■ An object data type, also known as a structure, typically contains a collection of related
field elements like any row in a table. The code that declares the object data type is
typically accompanied by an implementation in an object body, but an object data
type without a body acts like a SQL equivalent of a record data type. That means it also
defines a structure, like a single row table.

 ■ A collection may be a varray or nested table (Oracle uses the term nested table to
disambiguate the difference between a programming data type and a physical table) of
a scalar or composite data type. A collection of a scalar data type is an Attribute Data
Type (ADT), as qualified in Chapter 3, while a collection of a composite data type is a
user-defined type (UDT). Collections may use an object data type in a SQL context and
a record data type in a PL/SQL context.

 ■ A system reference cursor may return a collection of one to many columns. It is a PL/SQL-
only context data type. It has two types—weakly typed and strongly typed. A weakly typed
cursor inherits the type at runtime, whereas a strongly typed cursor specifies it at compile
time.

Chapter 3 covers composite data types well, so here we only review assignment methods for
the composite data types. Refer to Chapter 3 for basic code examples on records, objects, and
collections. After the review of assignment methods for records, objects, and collections, we cover
PL/SQL system reference cursors.

Nested Table or Table
The idea of nesting falls apart when the collection isn’t a persistent object type that defines
a column in a table. That’s why I chose to use table instead of nested table in most places in
this book.

04-ch04.indd 144 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 145

Records
Records are extremely useful when working with cursors and other exclusively PL/SQL solutions.
You can define a stored function that returns a record type, but that limits how you can use the
function. SQL can only access stored functions when they return SQL data types. The alternative
to returning a record type is to return a SQL object type.

The following declares a record with default values, initializes it with overriding values, and
prints the values:

SQL> DECLARE
 2 -- Declares a default record structure.
 3 TYPE muppet_record IS RECORD
 4 (salutation VARCHAR(20) DEFAULT 'Ms.'
 5 , name VARCHAR2(10) := 'Piggy');
 6 -- Declares a variable of the local record structure.
 7 muppet MUPPET_RECORD;
 8 BEGIN
 9 -- Assignments are by element or field only.
 10 muppet.salutation := 'Mr.';
 11 muppet.name := 'Kermit the frog';
 12 -- Print the record as a pipe concatenated string.
 13 dbms_output.put_line(muppet.salutation||' '||muppet.name);
 14 END;
 15 /

It prints

Mr. Kermit the frog

Lines 3 through 5 declare the local record type. Line 7 declares a variable of the local data
type, but actually defines it, because the record structure has default values—Ms. Piggy. Lines 10
and 11 demonstrate that you must assign values field by field. The exception to that rule comes
when you assign a cursor return that matches the record structure or the values of a matching
record structure. Line 13 shows that the variable name, component selector, and field name are
required to print the contents of a record.

Objects
Objects are typically more useful than records, which, from a point of view that leverages object
types, are becoming legacy code. That’s my view. It appears that Oracle may share my view
because it now maps object types to internal and external Java programs. Admittedly, using objects
takes more planning and skill upfront, but good design yields great rewards. After all, Oracle
Database 12c is an object relational database management system.

You can define a stored function that returns an object type and use it in SQL or PL/SQL contexts.
The following declares an object in SQL, which makes it a schema-level object:

SQL> CREATE OR REPLACE
 2 TYPE president_record IS OBJECT
 3 (salutation VARCHAR(20)
 4 , name VARCHAR2(10));
 5 /

04-ch04.indd 145 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

146 Oracle Database 12c PL/SQL Programming

The SQL statement creates a schema-level object type that you can use as a data type in
tables or your program units. True objects include an object body that qualifies the implementation
of the object type.

Note that the default values no longer exist. That’s because object types can’t have default
values, and an attempt to add them would raise the following compilation error:

LINE/COL ERROR
-------- ---
0/0 PL/SQL: Compilation unit analysis terminated
2/5 PLS-00363: expression 'SALUTATION' cannot be used as an
 assignment target

It prints

Mr. Kermit the frog

The following declares an object in SQL, which makes it a schema-level object:

SQL> DECLARE
 2 -- Declares a variable of the local record structure.
 3 president PRESIDENT_OBJECT := president_object('Mr.','Lincoln');
 4 BEGIN
 5 -- Print the record as a pipe concatenated string.
 6 dbms_output.put_line(president.salutation||' '||president.name);
 7 END;
 8 /

There’s no local declaration of the object type because it exists at the schema level. Line 3 does
contain something new, a specialized function call—an object constructor. Object constructors are
specialized functions that take a list of comma-delimited values and return instances of object
types. Failure to construct an object instance raises an uninitialized runtime exception. So, don’t
forget that instantiation with the constructor.

It prints by using the same approach as the record type:

Mr. Lincoln

Leveraging your introduction to functions from Chapter 3, let’s refactor the logic into a function
that returns an instance of the object president_object. It’s fairly straightforward as long as
you remember never to assign dynamic values in the declaration block.

Here’s the code:

SQL> CREATE OR REPLACE FUNCTION get_president
 2 (pv_salutation VARCHAR2 DEFAULT 'Mr.'
 3 , pv_name VARCHAR2) RETURN president_object IS
 4 -- Declare a variable of the schema-level object structure.
 5 president PRESIDENT_OBJECT := president_object(NULL,NULL);
 6 BEGIN
 7 -- Assign a value to pre-allocated space.
 8 president := president_object(pv_salutation,pv_name);
 9 -- Return the object instance.
 10 RETURN president;
 11 END;
 12 /

04-ch04.indd 146 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 147

Line 5 declares a local variable with a null element, which allocates space for a record. Line 8
assigns the values to the object instance, and line 10 returns the instantiated object with the
following query:

SQL> COLUMN president FORMAT A40
SQL> SELECT get_president(pv_name => 'Truman') AS president
 2 FROM dual;

The call to the get_president function returns a flattened object, which is the name of the
object type and the parenthetical list of values to construct an instance:

PRESIDENT(SALUTATION, NAME)

PRESIDENT_OBJECT('Mr.', 'Truman')

You can convert this to columns by referring to the “Migrate from Objects to a Relational
Table” section of Appendix B. Overall, this short section has shown that objects may be consumed
in SQL contexts.

Collections
Collections are arrays and lists. Arrays differ from lists in that they use a sequentially numbered
index, while lists use a nonsequential numeric or unique string index. Arrays are densely
populated lists because they have sequentially numbered indexes. While lists can have densely
populated numeric indexes, they can also be sparsely populated, meaning there are gaps in a
sequence or the indexes are not sequential.

Oracle supports three types of collections. Two are both SQL and PL/SQL data types, depending
on how you define them: varray and nested table (or table). The third collection type is a PL/SQL-only
data type, called an associative array. The associative array is also known as a PL/SQL table or an
index-by table. Refer to Chapter 3 for a full introduction to these three collection types. Flip to
Chapter 6 if you’re immediately curious about implementing collections.

System Reference Cursors
System reference cursors are pointers to result sets in query work areas. A query work area is a
memory region (known as a context area) in the Oracle Database 12c Program Global Area
(PGA). The query work area holds information on the query. You’ll find the rows returned by a
query, the number of rows processed by the query, and a pointer to the parsed query in the query
work area. The query work is discrete from the Oracle Shared Pool (see Appendix A).

NOTE
All cursors share the same behaviors whether they are defined as PL/
SQL reference cursor data types or ordinary cursors. In fact, every SQL
statement is a cursor processed and tracked in a PGA context area.

You use system reference cursors when you want to query data in one program and process it
in another, especially when the two programs are in different programming languages. You have
the option of implementing a system reference cursor in two ways: one is strongly typed and the
other is weakly typed. System reference cursors are a PL/SQL-only data type. You can define them
in anonymous or named blocks. They are most useful when you define them in package
specifications, because your programs can share them.

04-ch04.indd 147 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

148 Oracle Database 12c PL/SQL Programming

There is one prototype, but how you choose to implement the cursor defines whether it is
strongly or weakly typed. The prototype is

TYPE reference_cursor_name IS REF CURSOR
 [RETURN catalog_object_name%ROWTYPE];

You create a weakly typed system reference cursor by defining it without a return type. A
strongly typed system reference cursor has a defined return type. As a rule of thumb, you should
use strongly typed system reference cursors when you need to anchor a reference cursor to a
catalog object. Weakly typed system reference cursors are ideal when the query returns something
other than a catalog object. A generic weakly typed system reference cursor is already defined as
SYS_REFCURSOR, and it is available anywhere in your PL/SQL programming environment.

The prototype for a best-practice weakly typed system reference cursor is

TYPE best_weakly_typed IS REF CURSOR;

The prototype for a best-practice strongly typed system reference cursor is

TYPE best_strongly_typed IS REF CURSOR RETURN some_table%ROWTYPE;

The power of reference cursors becomes more significant when you use them inside stored
program units. You can also use reference cursors in anonymous block programs and assign them
to a SQL*Plus reference environment variable.

You define a SQL*Plus reference cursor environment variable by defining a variable and
pressing enter. SQL*Plus statements do not require a semicolon or forward slash to run. The
following creates a weakly typed SQL*Plus reference cursor:

SQL> VARIABLE sv_refcursor REFCURSOR

The following program defines and declares a reference cursor before explicitly opening it
and assigning its values to an external session-level variable:

SQL> DECLARE
 2 -- Declare a weakly typed reference cursor.
 3 TYPE weakly_typed IS REF CURSOR;
 4 -- Declare a local variable of the weakly typed reference cursor.
 5 lv_refcursor WEAKLY_TYPED;
 6 BEGIN
 7 -- Open the reference cursor.
 8 OPEN lv_refcursor FOR
 9 SELECT item_title
 10 , COUNT(*)
 11 FROM item
 12 HAVING (COUNT(*) > 2)
 13 GROUP BY item_title;
 14
 15 -- Assign the reference cursor to a SQL*Plus session variable.
 16 :sv_refcursor := lv_refcursor;
 17 END;
 18 /

04-ch04.indd 148 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 149

You can query the session-level variable to see the contents of the reference cursor with the
following:

SQL> SELECT :sv_refcursor
 2 FROM dual;

The query returns the following, provided you’ve run the seeding scripts found in the book’s
introduction:

:REFCUR

CURSOR STATEMENT : 1
CURSOR STATEMENT : 1
ITEM_TITLE COUNT(*)
-- ----------
Harry Potter and the Chamber of Secrets 3
Harry Potter: Goblet of Fire 3
Die Another Day 3
Pirates of the Caribbean 4
The Lord of the Rings - The Return of the King 3
 ...

10 rows selected.

The SYS_REFCURSOR generic system reference cursor can replace the locally defined
reference to a weakly typed cursor. You would make the change by remarking out lines 2 and 3
(to keep the rest of the line numbers intact) and making the following change on line 5:

 5 lv_refcursor SYS_REFCURSOR;

Chapter 8 demonstrates how to use a system reference cursor inside functions and procedures.
System reference cursors are extremely useful data types when you want to pass a query work area
pointer to an external program. You can pass to an external program by using the Oracle Call
Interface 8 (OCI8) libraries.

Review Section
This section has described the following points about variables and data types:

 ■ Anonymous blocks use the DECLARE keyword to start the declaration block, while
named blocks use the function or procedure header.

 ■ The BEGIN keyword starts the execution block and ends any declaration block.

 ■ The EXCEPTION keyword starts the exception block and the END keyword terminates
the program unit.

 ■ You can define data types in local anonymous (unnamed) or named blocks, as well as
in nested anonymous blocks.

(continued)

04-ch04.indd 149 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

150 Oracle Database 12c PL/SQL Programming

Summary
This chapter has explained delimiters; how you define, access, and assign values to variables; and
how you work with scalar and composite data types.

Mastery Check
The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix I for answers to
these questions.

True or False:

1. ___A declaration block begins with the function or procedure header, specification, or
signature in a named block.

2. ___An execution block can contain a local named block.

3. ___A declaration block can’t contain an anonymous block.

4. ___An identifier is a lexical unit.

5. ___The colon and equal sign set (:=) is the only assignment operator in PL/SQL.

6. ___The equal sign and greater than symbol set (=>) is an association operator.

7. ___PL/SQL lets you create subtypes of standard scalar variables.

8. ___A record data type is a SQL data type.

9. ___A system reference cursor is a PL/SQL-only data type.

10. ___The PL/SQL programming language supports arrays and lists as composite data types.

 ■ You can declare scalar and composite variables in the declaration block.

 ■ Scalar variables hold only one thing, such as a number, string, or date.

 ■ You can create subtypes of standard scalar variables in PL/SQL.

 ■ Composite variables hold two or more things, and they can be a record structure of
one row and many columns (fields), a collection, or a hybrid collection known as a
system reference cursor.

 ■ Some scalar variables implicitly cast while others require programmer intervention
with SQL built-in functions.

 ■ SQL composite variables work in both SQL and PL/SQL contexts, while PL/SQL
composite variables work only in the PL/SQL context.

04-ch04.indd 150 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 4: Language Fundamentals 151

Multiple Choice:

11. Lexical units are the basic building blocks in programming languages, and they can perform
which of the following? (Multiple answers possible)

A. A delimiter

B. An identifier

C. A literal

D. A comment

E. An anonymous block

12. Which of the following are valid symbol sets in PL/SQL? (Multiple answers possible)

A. A colon and equal sign set (:=) assignment operator

B. A guillemets or double angle bracket set (<< >>) as delimiters for labels

C. A less than symbol and greater than symbol set (<>) as a comparison operator

D. An exclamation mark and equal sign set (!=) as a comparison operator

E. A opening curly brace and closing curly brace symbol set ({}) as delimiters for an
anonymous block

13. Which of the following are valid scalar data types in PL/SQL? (Multiple answers possible)

A. A TEXT data type

B. A VARCHAR2 data type

C. A NCHAR data type

D. A CHAR data type

E. A DATE data type

14. Which of the following data types are best suited for scientific calculations in PL/SQL?
(Multiple answers possible)

A. A NUMBER data type

B. A PLS_INTEGER data type

C. A BINARY_DOUBLE data type

D. A BINARY_FLOAT data type

E. A BINARY_INTEGER data type

15. Which of the following are reasons for using a system reference cursor?

A. A system reference cursor mimics a table collection

B. An alternative when you want to query data in one program and use it in another

C. A PL/SQL-only solution with the results of composite data type

D. A SQL or PL/SQL solution with the results of a system reference cursor

E. None of the above

04-ch04.indd 151 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

04-ch04.indd 152 12/13/13 2:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

CHAPTER
5

Control Structures

05-ch05.indd 153 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

154 Oracle Database 12c PL/SQL Programming

This chapter examines the control structures in PL/SQL. Control structures let you make
conditional choices, repeat operations, and access data. The IF and CASE statements let
you branch program execution according to one or more conditions. Loop statements let

you repeat behavior until conditions are met. Cursors let you access data one row or one set of
rows at a time.

This chapter examines the various control structures in the following order:

 ■ Conditional statements

 ■ IF statements

 ■ CASE statements

 ■ Conditional compilation statements

 ■ Iterative statements

 ■ Simple loop statements

 ■ FOR loop statements

 ■ WHILE loop statements

 ■ Cursor structures

 ■ Implicit cursors

 ■ Explicit cursors

 ■ Bulk statements

 ■ BULK COLLECT INTO statements

 ■ FORALL statements

Conditional Statements
There are three types of conditional statements in programming languages: single-branching
statements, multiple-branching statements without fall-through, and multiple-branching statements
with fall-through. To fall through means to process all subsequent conditions after finding a matching
CASE statement. Single-branching statements are if-then-else statements. Multiple-branching
statements without fall-through are if-then-elsif-then-else statements, and with fall-through they are
CASE statements. Figure 5-1 demonstrates the logical flow of the first two conditional statements. The
third is not displayed because PL/SQL does not support fall-through, and PL/SQL implements
CASE statements like if-then-elsif-then-else statements.

05-ch05.indd 154 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 155

NOTE
PL/SQL uses the ELSIF reserved word in lieu of two separate
words—else if. This is a legacy from the Pascal and Ada programming
languages.

The “Condition” diamonds in Figure 5-1 are decision trees. Decision trees represent code
branching that happens because of comparison operations. Comparison operations are frequently
called comparison expressions or expressions because they return a true or false value. At least,
that’s true in a two-valued logic model, where true or false comparisons are straightforward.
Not true or not false comparisons are tricky when we change from a two-valued logic model to
a three-valued logic model. Three-valued logic occurs where an expression may return true, false,
or null. Null values are possible anytime a comparison value comes from a database, because
scalar data types hold a value or null.

A not true expression is true when the value is false or null in a three-valued logic model, and
a not false expression is met when the value is true or null. That’s because both a not true expression
and a not false expression are true when the condition isn’t met or a null makes it unsolvable.

PL/SQL supports lexical symbols, symbol sets, and identifiers as valid comparison operators.
Table 5-1 lists and defines symbol comparison operators. Table 5-1 expands the comparison
operator list by providing the comparison operators that are identifiers. Identifiers like these are
reserved words or keywords, as qualified in Chapter 4.

FIGURE 5-1. Branching statement logical flows

Single Branching Statement Multiple Branching Statement

Condition

Elsif Block

True Block

Elsif Block

Else Block

Condition

ConditionElse Block

True BlockCondition

05-ch05.indd 155 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

156 Oracle Database 12c PL/SQL Programming

Operator Description
AND The AND operator allows you to combine two comparisons into one. This

operator makes the combination statement true only when both individual
statements are true. You also use the AND operator with the BETWEEN operator to
glue the lower- and upper-range values.
BEGIN
 IF 1 = 1 AND 2 = 2 THEN
 dbms_output.put_line('True.');
 END IF;
END;
/
This returns the following output:
True.

BETWEEN The BETWEEN operator allows you to check whether a variable value is between
two values of the same data type. The BETWEEN operator is also an inclusive
operator. Inclusive means that a match may include either of the boundary
values, which can’t be null values. The BETWEEN operator also requires that the
lower value precede the upper value.
BEGIN
 IF 1 BETWEEN 1 AND 3 THEN
 dbms_output.put_line('In the range.');
 END IF;
END;
/
This returns the following output:
In the range.

IN
=ANY
=SOME

The IN operator allows you to check whether a variable value is in a set of
comma-delimited values and is often called a lookup value because it compares
a single scalar value against a list of values.
The =ANY and =SOME operators perform the same behavior as the IN operator.
The logic asks if the left operand is found in the set of the right operand, and the
logic is an either-or evaluation among a list of values that leverages short-circuit
evaluation, which stops checking when it finds one match.
BEGIN
 IF 1 IN (1,2,3) THEN
 dbms_output.put_line('In the set.');
 END IF;
END;
/
This returns the following output:
In the set.

TABLE 5-1. Comparison Operators

05-ch05.indd 156 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 157

Operator Description
IS EMPTY The IS EMPTY operator allows you to check whether a varray or table

collection variable is empty. Empty means that the collection was constructed
without any default elements. This means no space was allocated to the System
Global Area (SGA) for elements in the collection. When no element space is
allocated, the IS EMPTY comparison returns true, and it returns false when at
least one element is allocated space. You raise a PLS-00306 exception when
the collection has not been initialized through explicit construction. Chapters 3
and 6 explain how you construct collections.

Note that this only works with collections of scalar SQL data types. An IS
EMPTY comparison operator implicitly makes an IS A SET comparison at
the same time, and it’s probably more useful than the IS A SET comparison
operator for that reason.
DECLARE
 TYPE list IS TABLE OF INTEGER;
 a LIST := list();
BEGIN
 IF a IS EMPTY THEN
 dbms_output.put_line('"a" is empty.');
 END IF;
END;
/
This returns the following output:
"a" is empty.

IS NULL The IS NULL operator allows you to check whether a variable value is null. The
NVL built-in function can enable you to assign any Boolean or expression an
explicit true or false value.
DECLARE
 var BOOLEAN;
BEGIN
 IF var IS NULL THEN
 dbms_output.put_line('It is null.');
 END IF;
END;
/
This returns the following output:
It is null.

(continued)

TABLE 5-1. Comparison Operators

05-ch05.indd 157 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

158 Oracle Database 12c PL/SQL Programming

Operator Description
IS A SET The IS A SET operator allows you to check whether a variable is a varray

or table collection variable, provided an instance of the variable has been
constructed. It returns true when the variable data type is a varray or table
collection and the variable has been constructed. Constructed means that an
instance of the collection has been created with or without members. Chapter 11
contains more details on the concept of constructing object types.
The IS A SET comparison operator returns false when the variable data type is
an uninitialized (or unconstructed) varray or table collection. You raise a PLS-
00306 exception when you use the comparison operator against an associative
array. It’s important to note that this comparison operator only works with
collections of scalar base data types.
If you forget the “A” in the IS A SET operator and use IS SET, the program
would raise a malformed identifier PLS-00103 exception because that’s not a
valid comparison operator.
DECLARE
 TYPE list IS TABLE OF INTEGER;
 a LIST := list();
BEGIN
 IF a IS A SET THEN
 dbms_output.put_line('"a" is a set.');
 END IF;
END;
/
This returns the following output:
"a" is empty.

LIKE The LIKE operator allows you to check whether a variable value is part of
another value. The comparison can be made with the SQL lexical underscore
(_) for a single-character wildcard, or % for a multiple-character wildcard. The %
lexical value inside a string is not equivalent to its use as an anchoring attribute
indicator in PL/SQL.
BEGIN
 IF 'Str%' LIKE 'String' THEN
 dbms_output.put_line('Match');
 END IF;
END;
/
This returns the following output:
Match.

TABLE 5-1. Comparison Operators

05-ch05.indd 158 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 159

Operator Description
MEMBER OF The MEMBER OF is a logical comparison operator. It lets you find out whether an

element is a member of a collection. It only works with collections of scalar SQL
data types. It returns true when the element exits in a collection and returns false
when it doesn’t.
DECLARE
 TYPE list IS TABLE OF VARCHAR2(10);
 n VARCHAR2(10) := 'One';
 a LIST := list('One','Two','Three');
BEGIN
 IF n MEMBER OF a THEN
 dbms_output.put_line('"n" is a set.');
 END IF;
END;
/
When the left operand element is null, the operator returns false. This means that
you should always check for a value before using this comparison operator.
It prints the following when successful:
"n" is empty.

NOT NOT is a logical negation operator, and it allows you to check for the opposite of
a Boolean state of an expression, provided it isn’t null.
BEGIN
 IF NOT FALSE THEN
 dbms_output.put_line('True.');
 END IF;
END;
/
When the expression or value is null, the NOT operator changes nothing. There
is no opposite of null, and a logical negation of null is also a null. This returns the
following output because FALSE is a Boolean literal and TRUE is the only thing
not false when you exclude null values:
True.

OR The OR operator allows you to combine two comparisons into one. This operator
makes the combination statement true when one or the other statement is
true. PL/SQL uses short-circuit evaluation, which means it stops evaluating a
combination comparison when any one value is false.
BEGIN
 IF 1 = 1 OR 1 = 2 THEN
 dbms_output.put_line('True.');
 END IF;
END;
/
This returns the following output because of one of the two statements is true:
True.

(continued)

TABLE 5-1. Comparison Operators

05-ch05.indd 159 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

160 Oracle Database 12c PL/SQL Programming

Operator Description
SUBMULTISET The SUBMULTISET operator lets you check whether a varray or table collection

is a subset of a mirrored data type. It returns true if some to all elements in the
left set are found in the right set. Note that this operator does not check for a
proper subset, which is one item less than the full set or identity set.
DECLARE
 TYPE list IS TABLE OF INTEGER;
 a LIST := list(1,2,3);
 b LIST := list(1,2,3,4);
BEGIN
 IF a SUBMULTISET b THEN
 dbms_output.put_line('Valid subset.');
 END IF;
END;
/
This prints the following when successful:
Valid subset.

You also need to know the order of operation for comparison operators. Table 5-2 lists their
order of operation. You can override the order of operation by enclosing subordinate expressions
in parentheses. PL/SQL compares any expression inside parentheses as a whole result. PL/SQL
applies any remaining comparison operators in an expression by their order of operation.

TABLE 5-1. Comparison Operators

Order Operator Definition

1 ** Exponentiation

2 +, - Identity and negation

3 *, / Multiplication and division

4 +, -, || Addition, subtraction, and concatenation

5 =, <, >, <=, >=, <>, !=, ~=, ^=,
BETWEEN, IN, IS EMPTY, IS NULL,
IS A SET, LIKE, MEMBER OF, SUBMULTISET

Comparison

6 AND Conjunction

7 NOT Logical negation

8 OR Inclusion

TABLE 5-2. Order of Operations

05-ch05.indd 160 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 161

Single-branching expressions return a true, false, or null. Both false and null are not true when
you evaluate whether an expression is true. Likewise, both true and null are not false when you
evaluate an expression as false. A null expression is never true or false. Table 5-3 maps the possible
outcomes in a truth table.

Multiple-branching expressions require two-sided truth tables: one table for the conjunction
operator, AND, and another for the inclusion operator, OR. The conjunction operator creates
expressions where you resolve the combination of two expressions, where both are true. The
whole statement is not true when one is false or null. Table 5-4 maps the possible outcomes of
conjunctive truth—when X and Y expressions are true, false, or null.

Multiple-branching expressions also require a two-sided truth table to examine how the
inclusion operator works. Inclusion is where two things are true when one or the other is true,
but because of null expressions the whole statement can be true, false, or null. Table 5-5 maps
the possible outcomes of inclusive truth—when X or Y expressions are true, false, or null.

Inclusive logic performs what’s known as short-circuit evaluation, which is known as minimal
or McCarthy evaluation (after John McCarthy, a famous computer scientist). The beauty of short-
circuit evaluation is that it pares (or eliminates) the need to check other values. That’s because you
only need one true value for the entire statement to be true.

Tables 5-4 and 5-5 display results from asking whether the values are true. The results change
when you ask whether one or both of the values are false. True values become false values. False
values become true values. Unfortunately, null values remain false values. The truth tables should help
you plan how you will develop your branching logic in IF and CASE statements. The same logical
outcomes extend to three or more expressions, but they don’t render in two-dimensional tables.

This section has provided detail to support the following branching subsections, which examine
single-branching and multiple-branching statements that use IF statements, and multiple-branching
statements that use simple and searched CASE statements. The subsections are grouped by the IF
and CASE statements.

X and Y Y is True Y is False Y is Null

X is True True False False

X is False False False False

X is Null False False False

TABLE 5-4. Conjunctive Truth Table—X and Y Expressions are TRUE or FALSE, or NULL

X Value Expression Result Negation Expression Result

True X is True True X is not True False

False X is True False X is not True True

Null X is True Null X is not True True

TABLE 5-3. Single-Variable Truth Table

05-ch05.indd 161 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

162 Oracle Database 12c PL/SQL Programming

IF Statements
The IF statement supports single-branching and multiple-branching statements. IF statements are
blocks. They start with a beginning identifier, or reserved word, and end with an ending identifier
and a semicolon. All statement blocks require at least one statement, just as anonymous or named
blocks do.

IF statements evaluate a condition. The condition can be any comparison expression or set of
comparison expressions that evaluates to a logical true or false. You can compare two literals or
variables of the same type. The variables can actually have different data types, as long as they
implicitly or you explicitly convert one of the two types to match the other (see Figure 4-2 in
Chapter 4 for the implicit conversion chart). A Boolean variable can replace a comparison operation.
You also can compare the results of two function calls as you would two variables or a variable
and a single function call, provided the comparison returns a Boolean variable. The valid comparison
operators are presented in Table 4-1 and Table 5-1.

If-then-else Statements
The if-then-else statement is a single-branching statement. It evaluates a condition and then
runs the code immediately after the condition when the condition is met. The prototype for an
if-then-else statement is

 IF [NOT] [comparison_expression | boolean_value] [AND | OR]
 [comparison_expression | boolean_value] THEN
 true_execution_statements
 [ELSE
 unmet_condition_statements]
 END IF;

You use the optional NOT (the logical negation operator) to check for a false comparison result.
While there is only one [AND | OR] clause in the IF statement, there is no limit to how many
conditions you can evaluate. The ELSE block is optional. IF statements without an ELSE block
only execute code when a condition is met.

In its simplest form, the following is an if-then statement. It demonstrates an if-then statement
comparing two numeric literals:

SQL> BEGIN
 2 IF 1 = 1 THEN
 3 dbms_output.put_line('Condition met!');
 4 END IF;
 5 END;
 6 /

X or Y Y is True Y is False Y is Null

X is True True True True

X is False True False False

X is Null True False False

TABLE 5-5. Inclusive Truth Table—X or Y Expressions Are TRUE or FALSE, or NULL

05-ch05.indd 162 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 163

Note that parentheses around the comparison statement on line 2 aren’t required. This is a
convenience compared to some other programming languages that require them, such as JavaScript
and PHP. The equivalent logic using a Boolean variable instead of the comparison operation is

SQL> DECLARE
 2 lv_equal BOOLEAN NOT NULL := TRUE;
 3 BEGIN
 4 IF lv_equal THEN
 5 dbms_output.put_line('Condition met!');
 6 END IF;
 7 END;
 9 /

Line 4 uses a “lazy” comparison because it evaluates the variable as true. Some developers
think it’s unwise to use lazy comparisons in PL/SQL, but I disagree. A verbose (or wordy) comparison
would change line 4 to the following but not alter the outcome:

 4 IF lv_equal = TRUE THEN

When you evaluate a Boolean variable or expression that returns a null value, the IF statement
can’t be true and returns a false value. Fortunately, we declare the lv_equal variable on line 2
to disallow a null value and we assign a true value to the variable.

Function Calls as Expressions
When you call a function, you provide values or variables, and the function returns a result.
If the function returns a variable-length string, it is called a string expression because it
yields a string as a result. The result is like a string literal, which is covered in Chapter 4.
Alternatively, function definitions can return any other scalar variable data types, and they
become expressions that yield values of those data types.

The following example compares a single variable value and an expression return value
(or function call return value) on line 16:

SQL> DECLARE
 2 -- Declare a local variable.
 3 lv_thing_one VARCHAR2(5) := 'Three';
 4
 5 -- Declare a local function.
 6 FUNCTION ordinal (n NUMBER) RETURN VARCHAR2 IS
 7 /* Declare a local table collection type. */
 8 TYPE ordinal_type IS TABLE OF VARCHAR2(5);
 9 /* Declare and initialize collection variable. */
 10 lv_ordinal ORDINAL_TYPE :=
 11 ordinal_type('One','Two','Three','Four');
 12 BEGIN
 13 RETURN lv_ordinal(3);
 14 END;

(continued)

05-ch05.indd 163 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

164 Oracle Database 12c PL/SQL Programming

You should anticipate runtime behaviors such as receiving a variable or expression result that
may be a null value, and use the NVL built-in function where possible to resolve them. Doing so
avoids unexpected outcomes. The default behavior is fine, provided you want your program to
treat a null value as false.

Let’s assume treating the lv_equal variable as a pseudo constant isn’t acceptable because
the variable is dynamically assigned a value. That means you need to safeguard the behavior of
the if true comparison operation, and you would do that by using an NVL function call on line 4
like

 4 IF NVL(lv_equal,TRUE) THEN

The NVL function guarantees that the question answered is true when the lv_equal
variable’s value is null or false. Reversing the question, we would ask a negation question such as
if not false with the following syntax on line 4:

 4 IF NOT NVL(lv_equal,FALSE) THEN

In single-branching logic, this works well, but in multiple-branching logic, you may need to
enclose the lv_equal variable in multiple places. Coding solutions in multiple places is a bad
idea in any programming language.

You have a better solution when working with dynamic variables. Before you apply the
business logic, assign the lv_equal variable a default value when it arrives as a null value.
The following does that by setting the default value to true:

 4 IF NOT lv_logic = TRUE AND NOT lv_logic = FALSE THEN
 5 lv_logic := TRUE;
 6 END IF;

 15 BEGIN
 16 IF lv_thing_one = ordinal(3) THEN
 17 dbms_output.put_line('['||ordinal(3)||']');
 18 END IF;
 19 END;
 20 /

Comparisons work with literal values, variable values, and expression return values (or
function call return values). The lv_thing_one variable value and the expression value
returned from the ordinal function are found to be equal. The program prints the
following (provided the SQL*Plus SERVEROUTPUT environment variable is enabled):

Three

The return value of any function call is an expression or a runtime value that can be
compared against the content of a variable value, literal value, or another function call return
value. You can also pass a function call return value as a call parameter value to another
function or procedure.

05-ch05.indd 164 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 165

Line 4 checks two negation questions, if not true and if not false. The only time both of those
are true is when the variable’s value is null. Line 5 assigns true when the variable’s value is null,
and that guarantees that the comparative logic supporting the business logic resolves correctly.

Having enabled SERVEROUTPUT in SQL*Plus (check Appendix A for instructions), either of
these anonymous blocks resolves the comparison as true and prints the following:

Condition met!

Branching out, you can build an if-then-else statement like

SQL> BEGIN
 2 IF 1 = 2 THEN
 3 dbms_output.put_line('Condition met!');
 4 ELSE
 5 dbms_output.put_line('Condition not met!');
 6 END IF;
 7 END;
 8 /

The anonymous block resolves the comparison on line 2 as false and prints the ELSE block
statement:

Condition not met!

You can support variables for the literals in these examples or function calls that return matching
or convertible data types for comparison. A single function that returns a BOOLEAN data type also
works in lieu of the Boolean example.

If-then-elsif-then-else Statements
The if-then-elsif-then-else statement is a multiple-branching statement. It evaluates a series of
conditions and then runs the code immediately after the first successfully met condition. It exits
the block after processing the block and it ignores any subsequently successful evaluations.

The prototype for an if-then-elsif-then-else statement is

 IF [NOT] {comparison_expression | boolean_value} [[AND | OR]
 {comparison_expression | boolean_value}] [[AND | OR]
 ...] THEN
 true_if_execution_statements
[ELSIF [NOT] {comparison_expression | boolean_value} [[AND | OR]
 {comparison_expression | boolean_value}] [[AND | OR]
 ...] THEN
 true_elsif_execution_statements]
[ELSE
 all_unmet_condition_statements]
 END IF;

You use the optional NOT operator to check for false comparisons. While there are only two
[AND | OR] clauses in the foregoing prototype, the ellipses indicate there isn’t a limit on how
many conjunction or inclusive conditions you evaluate. While the ELSE block is optional, without
it a condition must be met or nothing is done in the conditional block. You should always include
an ELSE block even if it only performs a do-nothing statement, like a NULL;, because it tells
anybody who subsequently supports your code you considered the possibility.

05-ch05.indd 165 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

166 Oracle Database 12c PL/SQL Programming

The following demonstrates an if-then-elsif-then-else statement where the first two comparisons
are true and the third false:

SQL> DECLARE
 2 lv_equal BOOLEAN NOT NULL := TRUE;
 3 BEGIN
 4 IF 1 = 1 THEN
 5 dbms_output.put_line('Condition one met!');
 6 ELSIF lv_equal THEN
 7 dbms_output.put_line('Condition two met!');
 8 ELSIF 1 = 2 THEN
 9 dbms_output.put_line('Condition three met!');
 10 END IF;
 11 END;
 12 /

The anonymous block resolves the first comparison on line 4 as true and prints the following:

Condition one met!

As mentioned, the if-then-elsif-then-else statement exits after the first comparison is found to
be true. That’s why the second true comparison on line 6 isn’t processed. The default ELSE condition
runs only when none of the conditions are met.

CASE Statements
There are two types of CASE statements in PL/SQL. Both define a selector. A selector is a variable,
function, or expression that the CASE statement attempts to match in WHEN blocks. The selector
immediately follows the reserved word CASE. If you don’t provide a selector, PL/SQL adds a
Boolean true as the selector. You can use any PL/SQL data type as a selector except a BLOB,
BFILE, or composite type. Chapter 4 qualifies composite types as records, objects, collections,
and system reference cursors.

The generic CASE statement prototype is

CASE [{ TRUE | FALSE | selector_variable }]
 WHEN [criterion | expression] THEN
 criterion_statements
 [WHEN [criterion | expression] THEN
 criterion_statements]
 [WHEN [...] THEN
 ...]
 ELSE
 else_block_statements
END CASE;

Simple CASE statement selectors are variables that use or functions that return valid data types
other than Boolean types. Searched CASE statement selectors are Boolean variables or functions
that return a Boolean variable. The default selector is a Boolean true. A searched CASE statement
can omit the selector when seeking a true expression.

Like the IF statement, CASE statements have an ELSE clause. The ELSE clause works like it
does in the IF statement, but with one twist: you can’t omit the ELSE block or you will raise a

05-ch05.indd 166 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 167

CASE_NOT_FOUND or PLS-06592 error when the selector is not found. PL/SQL includes this
default ELSE condition when you fail to provide one and a runtime execution fails to match a
WHEN block.

CASE statements are blocks. They start with a beginning identifier, or reserved word, and end
with an ending identifier and a semicolon. All statement blocks require at least one statement, just
as anonymous or named blocks do. CASE statements require at least one statement in each WHEN
block and in the ELSE block.

Like the if-then-elsif-then-else statement, CASE statements evaluate WHEN blocks by sequentially
checking for a match against the selector. The first WHEN block that matches the selector runs and
exits the CASE block. There is no fall-through behavior available in PL/SQL. The ELSE block runs
only when no WHEN block matches the selector.

Simple CASE Statements
The simple CASE statement sets a selector that is any PL/SQL data type except a BLOB, BFILE, or
composite type. The prototype for a simple CASE statement ignores Boolean selector values and is

CASE selector_variable
 WHEN criterion THEN
 criterion_statements
 [WHEN criterion THEN
 criterion_statements
 [WHEN ... THEN
 ...]]
 ELSE
 all_unmet_condition_statements
END CASE;

Simple CASE statements require that you provide a selector. You can add many more WHEN
blocks than shown, but the more numerous the possibilities, the less effective the CASE statement
is as a solution. This is a manageable solution when you typically have ten or fewer choices.
Maintainability declines as the list of WHEN blocks grows.

The following example uses a NUMBER data type as the selector:

SQL> DECLARE
 2 lv_selector NUMBER := 0;
 3 BEGIN
 4 CASE lv_selector
 5 WHEN 0 THEN
 6 dbms_output.put_line('Case 0!');
 7 WHEN 1 THEN
 8 dbms_output.put_line('Case 1!');
 9 ELSE
 10 dbms_output.put_line('No match!');
 11 END CASE;
 12 END;
 13 /

The anonymous block resolves the first comparison as true because the lv_selector variable
contains a value of 0. It then prints

Case 0!

05-ch05.indd 167 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

168 Oracle Database 12c PL/SQL Programming

Therefore, the first WHEN block matches the selector value. The CASE statement ceases evaluation
and runs the matching WHEN block before exiting the statement. You can substitute other PL/SQL
data types for the selector value. The CHAR, NCHAR, and VARCHAR2 data types are some possible
choices.

Searched CASE Statements
The selector is implicitly set for a searched CASE statement unless you want to search for a false
condition. You must explicitly provide a false selector. Sometimes a searched CASE selector value
is dynamic based on some runtime logic. When that’s the case, you can substitute a function
returning a Boolean variable, provided you dynamically set the selector.

Naturally, this is a case where you must always take precautions to avoid a null value as the
selector. Since the searched CASE statement only uses a Boolean selector or comparison expression,
you should enclose it in an NVL call returning a true or false Boolean value.

The prototype for a simple CASE statement is

CASE [{ TRUE | FALSE | selector_variable}]
 WHEN {criterion | expression}
 [{AND | OR } {criterion | expression}
 [{AND | OR } ...]] THEN
 criterion1_statements
 [WHEN {criterion | expression}
 [{AND | OR } {criterion | expression}]
 [{AND | OR } ...] THEN]
 criterion_statements
 [WHEN { ... } THEN
 ...]
 ELSE
 block_statements;
END CASE;

Like the simple CASE statement, you can add many more WHEN blocks than shown, but the
more numerous the possibilities, the less effective this type of solution is. The following searched
CASE statement examines searched comparison expressions for truth:

SQL> BEGIN
 2 CASE
 3 WHEN 1 = 2 THEN
 4 dbms_output.put_line('Case [1 = 2]');
 5 WHEN 2 = 2 AND 'Something' = 'Something' THEN
 6 dbms_output.put_line('Case [2 = 2]');
 7 ELSE
 8 dbms_output.put_line('No match');
 9 END CASE;
 10 END;
 11 /

The single comparison on line 3 fails, while the second conjunctive (a formal and fancy word
for two or more comparisons) comparison on line 5 succeeds. It succeeds because it returns true

05-ch05.indd 168 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 169

for both comparison operations and returns true. A true result matches the selector’s default value
of true, which means the program enters that block and prints the result from line 6:

Case [2 = 2]

If the CASE statement searched for a false condition, the selector would match the first WHEN
block and print that 1 equals 2. You can also use a comparison expression as the selector.

Conditional Compilation Statements
Beginning with Oracle Database 10g Release 2, you can use conditional compilation. Conditional
compilation lets you include debugging logic or special-purpose logic that runs only when
session-level variables are set. The following command sets a PL/SQL compile-time variable
DEBUG equal to 1:

ALTER SESSION SET PLSQL_CCFLAGS = 'debug:1';

Note that the compile-time flag is case insensitive. You can also set compile-time variables to
true or false so they act like Boolean variables. When you want to set more than one conditional
compilation flag, you need to use the following syntax:

ALTER SESSION SET PLSQL_CCFLAGS = 'name1:value1 [, name(n+1):value(n+1)]';

The conditional compilation parameters are stored as name and value pairs in the PLSQL_
CCFLAG database parameter. The following program uses the $IF, $THEN, $ELSIF, $ELSE, and
$END reserved preprocessor control tokens to create a conditional compilation code block:

SQL> BEGIN
 2 NULL; -- This is required when the PLSQL_CCFLAGS value is unset.
 3 $IF $$DEBUG = 1 $THEN
 4 dbms_output.put_line('Debug Level 1 Enabled.');
 5 $ELSIF $$DEBUG = 2 $THEN
 6 dbms_output.put_line('Debug Level 2 Enabled.');
 7 $ELSE
 8 dbms_output.put_line('Debug Level other than 1 or 2 Enabled.');
 9 $END
 10 END;
 11 /

While lines 3 and 5 compare the $$DEBUG value against a numeric literal, this would also
work with dynamic variables, like an &input substitution variable (check the “Passing Parameters
to SQL*Plus Script Files” section in Appendix A for more coverage of substitution variables).
When you set PLSQL_CCFLAGS equal to 1, this prints

Debug Level 1 Enabled.

Conditional code blocks differ from normal if-then-else code blocks. Most notably, the $END
directive closes the block, instead of an END IF and semicolon. The $END directive ends a
conditional statement. An END IF closes an IF code block. The syntax rules require that closing
blocks end with a semicolon or statement terminator. Statement terminators are not conditional
lexical units, and their occurrence without a preceding code statement triggers a compile-time error.

05-ch05.indd 169 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

170 Oracle Database 12c PL/SQL Programming

The $$ symbol denotes a PL/SQL conditional compile-time variable. The ALTER SESSION
statement lets you set conditional compile-time variables. You set them in the PLSQL_CCFLAGS
session variable. You can set one or many variables in the PLSQL_CCFLAGS session variable. All
variables are constants until the session ends or they are replaced. You replace these variables by
reusing the ALTER SESSION statement. All previous conditional compile-time variables cease to
exist when you reset the PLSQL_CCFLAGS session variable.

The rules governing conditional compilation are set by the SQL parser. You cannot use conditional
compilation in SQL object types. This limitation also applies to varray and table collections.
Conditional compilation differs in functions and procedures. The behavior changes depending on
whether the function or procedure has a formal parameter list. You can use conditional compilation
after the opening parenthesis of a formal parameter list, like

SQL> CREATE OR REPLACE FUNCTION conditional_type
 2 (magic_number $IF $$DEBUG = 1 $THEN SIMPLE_NUMBER $ELSE NUMBER $END)
 3 RETURN NUMBER IS
 4 BEGIN
 5 RETURN magic_number;
 6 END;
 7 /

Alternatively, you can use conditional compilation after the AS or IS keyword in no-parameter
functions or procedures. Conditional compilation can also be used both inside the formal parameter
list and after the AS or IS in parameter functions or procedures.

Conditional compilation can only occur after the BEGIN keyword in triggers and anonymous
block program units. Please note that you cannot encapsulate a placeholder, or bind variable,
inside a conditional compilation block.

You also have predefined inquiry directives with conditional compilation:

 ■ $$PLSQL_UNIT Returns an empty string for an anonymous block and returns the
uppercase name of the function or procedure in a named block.

 ■ $$PLSQL_OWNER Returns the database user who owns the current program unit, and it
is a new predefined inquiry directive with Oracle Database 12c.

 ■ $$PLSQL_TYPE Returns the current program unit’s type, and it is also a new predefined
inquiry directive with Oracle Database 12c.

 ■ $$PLSQL_LINE Returns an integer for the current line number in the PL/SQL block.

You can test the $$PLSQL_UNIT directive in an anonymous block by comparing it against
an empty string or null value. The following shows how to use the $$PLSQL_UNIT directive in a
named block:

SQL> CREATE OR REPLACE PROCEDURE running_procedure IS
 2 BEGIN
 3 -- Show a predefined inquiry directive.
 4 IF $$PLSQL_UNIT IS NOT NULL THEN
 5 dbms_output.put_line(
 6 'This is line ['||$$PLSQL_LINE||'] of ['||$$PLSQL_UNIT||'].');
 7 END IF;
 8 END;
 9 /

05-ch05.indd 170 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 171

Line 4 checks for a not-null $$PLSQL_UNIT value and lines 5 and 6 print the $$PLSQL_LINE
and $PLSQL_UNIT directive values. You can run the procedure with the following command:

SQL> EXECUTE running_procedure;

It prints

This is line [6] of [RUNNING_PROCEDURE].

Take note that the call to the PUT_LINE function of the DBMS_OUTPUT package starts on line
5 but the $$PLSQL_LINE directive returns its line number even though it’s a call parameter to
the function call started on line 5.

The last element of conditional compilation is the predefined error directive, which is $ERROR.
It takes a single variable-length string, which must be a static string literal, and it’s terminated by
an $END reserved preprocessor control token, not by a semicolon. You raise an exception when
you terminate the string with a semicolon. Here’s an anonymous block to show you how to use it:

SQL> BEGIN
 2 NULL; -- This is required when the PLSQL_CCFLAGS value is unset.
 3 $ERROR 'Conditional User-defined Error' $END
 4 END;
 5 /

Line 3 throws an exception whether or not the PLSQL_CCFLAGS session variable is set, so use
it sparingly. Conditional compilation is best suited to named blocks and lets you turn on debugging
in your code without refactoring when a bug occurs in production.

Review Section
This section has described the following points about conditional compilation statements:

 ■ The PL/SQL language supports single-branching and multiple-branching statements
without fall-through, and multiple-branching statements use either the ELSIF or CASE
statement.

 ■ You can use conjunction (AND logic) or inclusion (OR logic) in conditional statements.

 ■ The PL/SQL language implements three-valued logic with the possibility of true, false,
and null.

 ■ The NVL statement lets you reduce three-valued logic problems to two-valued logic in
conditional statements.

 ■ You need to assign default values to dynamic variables when comparison values may
fail because they hold null values.

 ■ The PL/SQL language supports both simple and searched CASE statements.

 ■ Searched CASE statements use a default selector of true but can be configured to use
false as the selector value.

 ■ Conditional compilation supports any number of conditional compilation flags, like
the $$DEBUG example used in this chapter.

Conditional compilation also supports predefined inquiry directives, like $$PLSQL_LINE
and $$PLSQL_UNIT.

05-ch05.indd 171 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

172 Oracle Database 12c PL/SQL Programming

Iterative Statements
Iterative statements are blocks that let you repeat a statement or set of statements. There are two
types of iterative statements. A guard-on-entry loop guards entry into the loop before running
repeatable statements, and a guard-on-exit loop guards exit from the loop. Whether guarding
entry or exit, the value controlling the exit from the loop is generally called a sentinel value.

The sentinel value can be one or more comparison operations, or the value or values of Boolean
variables or expressions that are true or not. Please note that not means untrue—and does not mean
false—because databases use three-valued logic. If this raises a question in your mind, revisit the
three-valued logic discussion in the “If-then-else Statements” section earlier in the chapter.

A loop that only guards exit guarantees that its code block is always run once, and it is
commonly called a repeat-until or do-while loop. Figure 5-2 shows the execution logic for these
two iteration statement types.

The PL/SQL language supports simple loops, FOR loops, FORALL loops, and WHILE loops.
It does not formally support a repeat-until loop block. You can use the simple loop statement to
mimic the behavior of a repeat-until or do-while loop. WHILE loops work with arrays and lists,
but they are more commonly used with cursors in database programming. Cursors are SELECT
statements that are processed row by row or by batches of rows from the database. Cursor loops
are covered immediately after this introduction to iterative statements, in the “Cursor Structures”
section.

Simple Loop Statements
Simple loops are explicit block structures. A simple loop starts with the LOOP reserved word and
ends with the END LOOP reserved words. Simple loops require that you manage any loop index
value and their exit criteria. Typically, simple loops are used where easier solutions don’t quite fit.
Easier solutions are typically reserved for the popular FOR loop statement because it manages the
loop index and exit criteria for you.

FIGURE 5-2. Iterative statement logic flows

Condition

Condition

Iterative Step

Guard Entry Loop Guard Exit Loop

Iterative Step

05-ch05.indd 172 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 173

There are two prototypes for a simple loop, the difference being that one exits at the top of the
loop and the other exits at the end of the loop. Exits are critical in loops unless you want to write
an infinite loop, which isn’t too often. You exit loops through a credentials process, which is much
like presenting your ticket at a theater or concert, as explained shortly. Programs perform this task
by checking the results of comparative operations, or Boolean expressions or variables, like true
or false.

A guard-on-entry loop blocks entry to the loop unless one or more conditions are met (your
credentials are validated). To block entry to any loop, you must place conditional statements at
the top of the loop. The conditional statements are effectively the guard at your entrance gate.
The program’s entry guard checks whether the sentinel value allows entry.

Entry guards in programming do one of two things:

 ■ Let you run the operations inside the loop over and over, known as iteration, until you
fail to meet the entry criteria

 ■ Prevent you from running the operations inside the loop when you fail to have the proper
credentials for entry

Sometimes, programmers need to run the code inside the loop at least once before moving on
to the next part of their program. In that event, a guard-on-entry loop is a bad choice. You should
choose a guard-on-exit loop, which acts like a traditional repeat-until or do-while loop.

A guard-on-exit loop allows you to run the internal logic of the loop at least once. That’s like
admitting everybody into the theater with or without a ticket until all seats are taken and then
asking those without tickets to leave in order to make room for those with tickets. While the
theater analogy would most likely be a disaster, a program can apply this logic easily.

A guard-on-exit loop checks the results of comparative operations, or Boolean expressions or
variables, at the end of the repeating block of statements. The loop lets you run the logic again
while the condition or conditions are met, and you iterate through the loop until the condition
or conditions are no longer true. The logic that tests whether you can enter or leave is known as a
conditional EXIT statement. EXIT statements immediately stop code execution and branch you
out of the loop statement.

The following examples show techniques for guard-on-entry and guard-on-exit loops:

Guard-on-Entry Loop Guard-on-Exit Loop
LOOP
 [counter_management_statements]
 IF NOT entry_condition THEN
 EXIT;
 END IF;
 repeating_statements
END LOOP;

LOOP
 repeating_statements
 [counter_management_
statements]
 IF exit_condition THEN
 EXIT;
 END IF;
END LOOP;

PL/SQL simplifies writing an EXIT statement by providing the EXIT WHEN statement, which
eliminates the need to write an IF statement around the EXIT statement.

05-ch05.indd 173 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

174 Oracle Database 12c PL/SQL Programming

One of the neat features of PL/SQL is the conditional EXIT statement. A conditional EXIT
statement collapses the IF block into a single line of code. The following examples show
techniques for guard-on-entry and guard-on-exit loops with conditional EXIT statements:

Guard-on-Entry Loop Guard-on-Exit Loop
LOOP
 [counter_management_statements;]
 EXIT WHEN NOT entry_condition;
 repeating_statements;
END LOOP;

LOOP
 repeating_statements;
 [counter_management_
statements;]
 EXIT WHEN exit_condition;
END LOOP;

You should take careful note that the counter management logic for guard-on-entry loops
must precede the exit management logic. Some developers mistakenly think it belongs below the
repeating logic because that’s where it goes in a guard-on-exit loop. Any language, like PL/SQL,
that supports a GOTO or CONTINUE statement requires that the counter logic precede the exit
management logic in a loop. That’s because a CONTINUE statement stops an iteration through the
loop and restarts at top of the loop. A badly crafted GOTO and label combination also could do
the same thing. If the counter logic follows the repeating statements, it would be skipped anytime
the CONTINUE statement runs. Skipping the counter management logic can create an undesired
infinite loop.

While the preceding logic seems simple and direct, it often appears to get lost in the process
of writing code. That’s because databases aren’t two-valued logic models. They are three-valued
logic models, and that means you must manage the possibility of null values. Null values typically
occur when you’re writing dynamic loops rather than static ones. Dynamic loops require safeguarding
logic prior to loop entry, regardless of whether it’s a guard-on-entry loop or a guard-on-exit loop.

Static Simple Loops
Let’s examine anonymous block programs to demonstrate a guard-on-entry loop and a guard-on-
exit loop. Although, you should note that anonymous and named block programs use PL/SQL
simple loops. We can identify simple loops based on the starting and ending reserved words—
LOOP and END LOOP.

Guard-on-Entry Loops The loop’s entry guard compares the value of the lv_counter variable
and a numeric constant to see if one is greater than the other. While that condition is true, the
program continues to run the statements inside the loop.

The following program is the simplest approach to a guard-on-entry loop because it guarantees
both of the operands aren’t null values:

SQL> DECLARE
 2 lv_counter NUMBER := 1;
 3 BEGIN
 4 LOOP
 5 -- Increment-by-one logic.
 6 lv_counter := lv_counter + 1;
 7 -- Entry guard, with a sentinel value of 3.
 8 IF NOT lv_counter < 3 THEN
 9 EXIT;
 10 END IF;

05-ch05.indd 174 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 175

 11 -- Repeatable statements.
 12 dbms_output.put_line('Iteration ['||lv_counter||']');
 13 END LOOP;
 14 END;
 15 /

It prints the following because it guards re-entry (iteration) after running twice:

Iteration [1]
Iteration [2]

Line 2 declares an lv_counter variable with an initial value of 1. Most database collections
use 1-based numbering rather than 0-based numbering, which means we generally start with 1
when we iterate through data.

Line 6 is our index counter, and it’s the first thing that must happen in the loop. Line 8 is our
entry guard, and it’s the second thing that must happen in the loop. The entry guard bars entry to
all unqualified entrants. The index counter doesn’t need to precede the exit guard in this example
because the loops aren’t interrupted by a GOTO or CONTINUE statement. However, the index
counter must precede the exit guard when a CONTINUE statement interrupts the loop inside the
repeatable statements section. The best practice is to always position the index counter as the first
set of instructions at the top of a guard-on-entry loop.

The entry guard asks a negation question, if not less than 3?, because we want to exit when
that condition isn’t met. If we wrote the logic in an affirming statement, it would look like this:

 8 IF lv_counter < 3 THEN
 9 NULL; -- A do-nothing statement.
 10 ELSE
 11 EXIT;
 12 END IF;

Three lines of code became five lines of code because we move the EXIT to the ELSE block
and include a do-nothing NULL; statement in the IF block. The change also makes the code less
readable, and is typically more work than most developers would like to do. However, we can
make the entry guard simpler by adopting Oracle’s EXIT WHEN approach on line 8, as shown:

 7 -- Entry guard, with a sentinel value of 3.
 8 EXIT WHEN NOT lv_counter < 3;

The EXIT WHEN statement takes one line instead of three lines for an if-then statement or five
lines for an if-then-else block. With little effort our program becomes shorter and clearer without
changing the logic.

NOTE
Unlike C, C++, C#, and Java, the PL/SQL language doesn’t support
unary operators for index counter logic.

We’ve covered the basics of static sentinel values for guard-on-entry loops. Please remember
that guard-on-entry loops prevent you from running their internal logic once before checking the
sentinel value. Next, we look at static guard-on-exit loops.

05-ch05.indd 175 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

176 Oracle Database 12c PL/SQL Programming

Guard-on-Exit Loops Guard-on-exit loops let you run the code once before checking whether
you should run it again. They’re actually more common than guard-on-entry loops and appear as
repeat-until and do-while loops in other programming languages. Guard-on-exit loops are
popular because their repeatable statement logic is always run at least once (but never more than
the sentinel value allows), whereas a guard-on-entry loop prevents running the repeatable
statement logic until the sentinel value is met.

Hopefully, you’re sold on using the EXIT WHEN statement from the previous section. We use
only the EXIT WHEN statement as the exit condition in this section. That means we won’t repeat
the earlier demonstration of an if-then or if-then-else exit guard.

The following guard-on-exit loop uses the same basic components as the guard-on-entry loop
shown previously:

SQL> DECLARE
 2 lv_counter NUMBER := 1;
 3 BEGIN
 4 LOOP
 5 -- Run once for all and then for qualified iterations.
 6 dbms_output.put_line('Iteration ['||lv_counter||']');
 7 -- Increment-by-one logic at least once.
 8 lv_counter := lv_counter + 1;
 9 -- Exit guard, with a static sentinel value of 3.
 10 EXIT WHEN NOT lv_counter < 3;
 11 END LOOP;
 12 END;
 13 /

Like the entry guard example in the previous section, the lv_counter variable is initialized
before entering the loop to avoid problems with null values. The exit guard is the last statement in
the loop on line 10 and bars all disqualified entrants from rerunning the repeatable statements of
the loop when the value isn’t less than the sentinel value of 3.

Static guard values are simple, and the best place to begin understanding how sentinel values
work. Assuming you understand them, the next step is to master dynamic guard values.

Dynamic Simple Loops
A simple loop is dynamic when you can’t guarantee the loop index or sentinel value at compilation
time. Compilation occurs when we create or replace functions, procedures, package specifications
or bodies, and (evolve) object types or bodies.

Anytime the index value, sentinel value, or data set arrives dynamically at runtime, we must
take additional precautions to guarantee the integrity of our loops. That means adding a safeguard
at the top of the loop that converts any null values to valid not-null values.

A schema-level procedure can demonstrate dynamic behaviors for both ascending and
descending loops. Ascending loops can assume one thing when they traverse a SQL collection in
the Oracle database: that the first element has an index value of 1. Descending loops can assume
that their start position is the return value from applying the COUNT function from Oracle’s
Collection API against the collection (as covered in Chapter 6).

05-ch05.indd 176 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 177

We need to create a SQL collection before creating the procedure that demonstrates safeguards
for a guard-on-entry loop. The following creates an Attribute Data Type (ADT), or list of a scalar
data type, of 30 character strings (introduced in Chapter 3):

SQL> CREATE OR REPLACE
 2 TYPE elf_table IS TABLE OF VARCHAR2(30);
 3 /

The ascending procedure has three formal parameters: the pv_index parameter takes the
starting loop index value, the pv_sentinel parameter takes the limit value for the loop, and the
pv_elves parameter takes an instance of elves. Any of these formal parameters can receive
null values when you call the procedure, and safeguarding against potential null values is
important. Safeguards protect the integrity of the loop within the procedure and avoid runtime
errors.

The following procedure includes safeguard logic before the loop and implements a guard-
on-entry loop:

SQL> CREATE OR REPLACE PROCEDURE ascending
 2 (pv_index NUMBER
 3 , pv_sentinel NUMBER
 4 , pv_elves ELF_TABLE) IS
 5
 6 /* Declare local index and sentinel variables. */
 7 lv_counter NUMBER;
 8 lv_sentinel NUMBER;
 9
 10 /* Declare an empty list, which has a size of zero. */
 11 lv_elves ELF_TABLE := elf_table();
 12 BEGIN
 13 /* Assign the starting index value. */
 14 lv_counter := NVL(pv_index,1);
 15
 16 /* Check whether incoming list has elements. */
 17 IF pv_elves IS NOT EMPTY THEN
 18 /* Size the sentinel and assign the list to a local clone. */
 19 lv_sentinel := NVL(pv_sentinel,pv_elves.COUNT);
 20 lv_elves := pv_elves;
 21 ELSE
 22 /* Size the sentinel value. */
 23 lv_sentinel := 1;
 24 END IF;
 25
 26 /* Loop through the list of variables. */
 27 LOOP
 28 /* Increment the index counter. */
 29 lv_counter := lv_counter + 1;
 30
 31 /* Exit condition. */
 32 EXIT WHEN lv_counter > lv_sentinel;
 33

05-ch05.indd 177 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

178 Oracle Database 12c PL/SQL Programming

 34 /* Repeating statements. */
 35 IF lv_elves.COUNT > 0 THEN
 36 dbms_output.put_line(
 37 '['||lv_counter||']['||lv_elves(lv_counter)||']');
 38 END IF;
 39
 40 END LOOP;
 41 END;
 42 /

Line 14 safeguards the loop index counter by assigning a value of 1 when the call parameter
is a null value. Lines 17 through 24 safeguard the sentinel value and the local collection. Lines 35
through 38 print the members of the collection when the collection holds one or more members.
A call with all null values yields no output, but a call with a null index and sentinel value plus a
valid collection, like

EXECUTE ascending(null,null,elf_table('Celeborn','Galadriel','Legolas'));

yields the following values because the safeguard provides default values for the index counter
and sentinel values:

[1][Celeborn]
[2][Galadriel]
[3][Legolas]

You’ve now seen a real example of safeguarding the index, sentinel, and collection for a
standard ascending guard-on-entry loop. Space doesn’t allow for complete examples of all scenarios,
but the logic in the foregoing should allow you to implement safeguarding for descending loops
with guard-on-entry or guard-on-exit sentinels.

Skipping Iterations
Skipping iterations in a loop has been possible for many releases of Oracle Database. You would
implement skipping logic by using a combination of the GOTO statement and a label. While that’s
still possible, Oracle Database 11g introduced the CONTINUE and CONTINUE WHEN statements.
A CONTINUE statement differs from the GOTO statement because it doesn’t direct the program
flow to a label. A CONTINUE statement stops execution in the midst of a loop and returns control
to the top of the loop for the next iteration through the loop.

Although the CONTINUE statement provides a neat feature when it meets a requirement, it makes
it easier to inadvertently code an infinite loop (typically an undesired behavior). The infinite loop is
sometimes harder to see because the code cycles between the top of the loop and the CONTINUE
statement, and it skips the incrementing or decrementing logic. When you skip the incrementing
or decrementing logic, you can’t arrive at your sentinel value, resulting in an infinite loop.

We need to safeguard against an inadvertent infinite loop. We do so by remembering the order
required for our counter management, repeating statements, and exit condition in a guard-on-exit
loop, or inverting them for a guard-on-entry loop.

The following anonymous block illustrates how to avoid an infinite loop while implementing
a CONTINUE statement in a guard-on-entry simple loop:

SQL> DECLARE
 2 lv_counter NUMBER := 0;

05-ch05.indd 178 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 179

 3 BEGIN
 4 LOOP
 5 -- Index counter logic.
 6 lv_counter := lv_counter + 1;
 7
 8 -- Guard on entry statement.
 9 EXIT WHEN lv_counter > 5;
 10
 11 -- Repeatable statement for a continue on odd numbers.
 12 IF MOD(lv_counter,2) = 0 THEN
 13 CONTINUE;
 14 ELSE
 15 dbms_output.put_line('Index ['||lv_counter||'].');
 16 END IF;
 17 END LOOP;
 18 END;
 19 /

This version of the program only prints the even-numbered index value before the sentinel
value of 5. That’s because the CONTINUE statement instructs the program to skip the balance of
repeatable statements when the sentinel value is met.

NOTE
The MOD function is a SQL built-in function covered in Appendix C.

You can simplify your code by replacing the combination of an IF block and CONTINUE
statement with the CONTINUE WHEN statement. The following shows how you would replace the
if-then-else statement that starts on line 12 in the foregoing program:

 11 -- Repeatable statement with a continue for odd numbers.
 12 CONTINUE WHEN MOD(lv_counter,2) = 0;

The print statement was previously in the ELSE block. The CONTINUE WHEN statement
eliminates the need for the IF block.

Either program prints this to the console after five passes through the loop:

Iteration [1]
Iteration [3]
Iteration [5]

The simple loop becomes much more robust when combined with cursor attributes. That
discussion is in the “Cursor Structure” section later in the chapter.

FOR Loop Statements
The FOR loop is a favorite of many developers because it is powerful and simple to use. A FOR
loop manages the loop index and exit for you because it is part of the statement definition.

There are two types of FOR loop statements. One is a range FOR loop statement and the other
is a cursor FOR loop statement. The discussion of cursor FOR loop statements will be presented
later in the chapter, in the context of cursor structures.

05-ch05.indd 179 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

180 Oracle Database 12c PL/SQL Programming

Range FOR Loop Statements
A range FOR loop statement is ideal when you know the starting and ending points, and the range
can be represented in integers. You can also use a FOR loop statement to navigate the contents of
any varray or table collection or associative array (indexed by an integer) by traversing the number
of elements in it. For reference, the WHILE loop is a better solution for an associative array
indexed by strings.

The prototype for a range FOR loop statement is

FOR range_index IN [REVERSE] range_bottom..range_top LOOP
 repeating_statements
END LOOP;

The range index can be any identifier that you prefer. As when writing FOR loops in other
languages, many developers use i as a variable name (after all, i stands for iterator). Then, they
use j, k, l, and so forth as variable names when nesting loops. The range index for a range FOR
loop is a PLS_INTEGER data type.

You set the starting value when you set the bottom of the range to the left of the two dots (or
periods), and you set the ending value when you set the top of the range to the right of the dots.
When you use the REVERSE keyword, the FOR loop decrements from the top of the range to the
bottom of the range. For reference, you can’t reverse their position relative to the double dots without
causing the program to skip processing the internal logic of the loop.

The FOR loop always increments or decrements by 1, and you cannot change that. The following
anonymous block program demonstrates an incrementing FOR loop statement:

SQL> BEGIN
 2 FOR i IN 1..3 LOOP
 3 dbms_output.put_line('Iteration ['||i||']');
 4 END LOOP;
 5 END;
 6 /

This code prints

Iteration [1]
Iteration [2]
Iteration [3]

The range index variable value is printed in the square brackets. You should note that the range
limits are inclusive, not exclusive. An exclusive range would have excluded 1 and 3.

Including the REVERSE keyword, we refactor the program by changing line 2 as follows:

 2 FOR i IN REVERSE 1..3 LOOP

With the REVERSE keyword, the program decrements through the range and prints

Iteration [3]
Iteration [2]
Iteration [1]

05-ch05.indd 180 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 181

There is no EXIT statement in the example because one isn’t required. The EXIT statement is
implicitly placed at the top of the loop. The conditional logic checks whether the range index is
less than the top of the range, and it exits when that condition is not met.

If you were to reverse the bottom and top of the range on line 2, like this:

 2 FOR i IN REVERSE 3..1 LOOP

you would exit before processing any statements because the entry guard would find that 3 is not
less than 1. Please give it a try to see the embedded logic behind the range FOR loop.

WHILE Loop Statements
WHILE loops are explicit block structures like the simple loops. A WHILE loop starts with a guard-
on-entry condition. The WHILE loop requires that you manage the exit criterion (typical) or
criteria for the loop, but only requires you to manage a loop index value when you require one.
The WHILE loop is a guard-on-entry loop and may exclude a loop index. For example, counter
indexes may be excluded when you guard on a data event in a collection or row return. WHILE
loops work on truth, and truth may be determined many ways, as you’ll see in the examples.

The prototype for the WHILE loop is

WHILE { TRUE | NOT FALSE | { condition | condition | ... } } LOOP
 repeating_statements
 [counter_management_statements]
END LOOP;

The guard-on-entry loop can prevent entry when the guard condition fails to return a Boolean
true value when you code it to ask an affirmative question—while true. Likewise, if you ask a
negation question with the NOT operator—while not false—the guard condition can prevent entry
when the value returned isn’t false. If this sounds familiar, it should, because it is the same issue
we worked through with the conditional statement and three-valued logic. Failure can occur
because the comparison operation, expression, or Boolean value returns a null value. That’s why
you need to provide a safeguard before entry to a WHILE loop. Without a safeguard, it’s possible
your program would never enter a guard-on-entry loop because a null value isn’t true or false. The
safeguard assigns a default value of true or false to the variable when it contains a runtime null
value.

 The following example implements a WHILE loop with a comparison condition. The WHILE
loop uses a loop index value and a numeric literal as a sentinel value. While the loop index is less
than the sentinel value in an ascending index model, the loop continues to manage the repeatable
statement logic. Likewise, a WHILE loop manages the repeatable statement logic when the index
is greater than the sentinel value in a descending index model.

The following demonstrates a traditional ascending index model:

SQL> DECLARE
 2 lv_counter NUMBER := 1;
 3 BEGIN
 4 WHILE (lv_counter < 3) LOOP
 5 dbms_output.put_line('Index ['||lv_counter||'].');
 6 lv_counter := lv_counter + 1;
 7 END LOOP;
 8 END;
 9 /

05-ch05.indd 181 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

182 Oracle Database 12c PL/SQL Programming

Line 2 declares the counter index value, which eliminates the need for writing safeguard logic
before the WHILE loop. Line 4 compares the loop index against the sentinel value, and line 6
increments the index counter. A descending index model across the same range of values would
assign the lv_counter variable on line 2 a value of 3, and you would write the exit condition
on line 4, like

 4 WHILE (lv_counter > 1) LOOP

It prints the following:

Index [1].
Index [2].

The WHILE loop performs like a guard-on-entry simple loop. The difference is that you have
no way to implement a generic index counter at the top of the loop when you start the counter
with a value equal to the first index value. This means using a CONTINUE or CONTINUE WHEN
statement in the WHILE loop becomes trickier unless you enter the counter logic as the first
instruction in the loop.

The ugly version of an indexed-based WHILE loop is

SQL> DECLARE
 2 /* Initialize at beginning of the range. */
 3 lv_counter NUMBER := 1;
 4 BEGIN
 5 WHILE (lv_counter < 6) LOOP
 6 /* True for all even numbers – print odd results. */
 7 IF MOD(lv_counter,2) = 0 THEN
 8 /* Must increment here to avoid an infinite loop when
 9 the logic for a CONTINUE statement is met. */
 10 lv_counter := lv_counter + 1;
 11 CONTINUE;
 12 ELSE /* Contains all repeatable statements. */
 13 dbms_output.put_line('Index ['||lv_counter||'].');
 14 /* Increment here for all iterations where the logic
 15 for a CONTINUE statement is unmet. */
 16 lv_counter := lv_counter + 1;
 17 END IF;
 18 END LOOP;
 19 END;
 20 /

The counter logic occurs on lines 10 and 16. It should only occur once, and at the top of the
WHILE loop. The IF statement branches the program logic on line 7. It skips even numbers and
prints odd numbers. The counter logic on line 10 occurs only for even numbers and must come
immediately before the CONTINUE instruction (otherwise it would become an infinite loop).

The ELSE block also increments the counter when the index value is an odd number. The
presence of two incrementing counter instructions in a single loop makes the foregoing program a
bad solution. It’s also an ugly solution because the counter logic occurs twice and should occur
only once. The counter logic should also be the first instruction in the loop. It’s not the first
instruction because the index value starts with the first value of a densely populated index. A
densely populated index typically consists of sequential integers.

05-ch05.indd 182 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 183

You can replace the ugly code with bad (really suboptimal) code by making two changes. Start
the loop index counter at 0, or one below the starting index value, and put the counter management
logic once at the top of the loop.

The following program implements those two changes:

SQL> DECLARE
 2 /* Initialize one below the range. */
 3 lv_counter NUMBER := 0;
 4 BEGIN
 5 WHILE (lv_counter < 6) LOOP
 6 /* Must increment here to avoid an infinite loop when
 7 the logic for a CONTINUE statement is met. */
 8 lv_counter := lv_counter + 1;
 9
 10 /* True for all even numbers - print only odd results. */
 11 IF MOD(lv_counter,2) = 0 THEN
 12 CONTINUE;
 13 ELSE /* Contains all printable statements. */
 14 dbms_output.put_line('Index ['||lv_counter||'].');
 15 END IF;
 16 END LOOP;
 17 END;
 18 /

Line 3 sets the lv_counter value to 0, which is one below the first index value. This change
makes it possible to place the counter management logic at the top of the loop. You use this type
of solution frequently with varray and table collections, and they always have indexes that start
with 1.

Line 8 holds the counter logic for the loop in one place. The CONTINUE statement on line 12 tells
the loop to skip to the top and evaluate the next index value, where it immediately increments the
counter. The problem is we have an unnecessary IF statement. We can replace it by embracing
the CONTINUE WHEN statement, as shown in the following good program:

SQL> DECLARE
 2 /* Initialize one below the range. */
 3 lv_counter NUMBER := 0;
 4 BEGIN
 5 WHILE (lv_counter < 6) LOOP
 6 /* Must increment here to avoid an infinite loop when
 7 the logic for a CONTINUE statement is met. */
 8 lv_counter := lv_counter + 1;
 9
 10 /* Continue when an even number. */
 11 CONTINUE WHEN MOD(lv_counter,2) = 0;
 12
 13 /* Contains all printable statements. */
 14 dbms_output.put_line('Index ['||lv_counter||'].');
 15 END LOOP;
 16 END;
 17 /

05-ch05.indd 183 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

184 Oracle Database 12c PL/SQL Programming

The index value is initialized one below the start of the range on line 3. The counter logic
occurs once at the top of the loop, on line 8. The CONTINUE WHEN statement manages skipping
iterations through the loop, and line 14 can only be reached when the index value is an odd
number. The good, the bad, and the ugly versions of the WHILE loop sample program all print
only odd numbers in the following range:

Index [1].
Index [3].
Index [5].

Although the logic to use a CONTINUE statement in a WHILE loop works, there’s another
approach with the GOTO statement and a label. Together, they also let us avoid implementing and
maintaining the index counter logic in two places. However, the GOTO statement requires us to
put the counter at the bottom of the loop to work.

The next program demonstrates the GOTO and label construct by using a decrementing
version of the earlier program:

SQL> DECLARE
 2 lv_counter NUMBER := 6;
 3 BEGIN
 4 WHILE (lv_counter > 0) LOOP
 5 /* True for all even numbers. */
 6 IF MOD(lv_counter,2) = 0 THEN
 7 /* Must branch to the index counter logic to avoid
 8 an infinite loop. */
 9 GOTO decrement_index;
 10 ELSE /* Contains all repeatable statements. */
 11 dbms_output.put_line('Index ['||lv_counter||'].');
 12 END IF;
 13
 14 << decrement_index >>
 15 /* Decrement here for all iterations. */
 16 lv_counter := lv_counter - 1;
 17 END LOOP;
 18 END;
 19 /

Line 6 still checks for even numbers, but when the IF statement is true, it redirects processing
to the decrement_index label. The decrement_index label on line 14 is where you find the
decrementing logic.

As you’ve seen, the WHILE loop is useful when you want to guard entry to a loop. On the
downside, the WHILE loop can limit how you skip logic with a CONTINUE or CONTINUE WHEN
statement if you don’t understand the logic or approach.

The COUNTINUE and CONTINUE WHEN statements should eliminate any need to ever use a
GOTO statement. The GOTO statement and label should be avoided.

05-ch05.indd 184 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 185

Cursor Structures
Cursor structures are the return results from SQL SELECT statements. In PL/SQL, you can process
SELECT statements row by row or as bulk statements. This section covers how you work with
row-by-row statement-processing cursors.

There are two types of cursors—implicit and explicit. You create an explicit cursor when
you define a cursor inside a declaration block. You create an implicit cursor when you use a
SELECT statement with an INTO clause or BULK COLLECT INTO clause, or you embed
a SELECT statement inside a cursor FOR loop statement. Data Manipulation Language (DML)
statements inside any execution or exception block are also implicit cursors. These DML statements
include INSERT, UPDATE, DELETE, and MERGE statements.

The balance of this section discusses implicit and explicit cursors separately. Implicit cursors
come first, followed by explicit cursors. The details of bulk processing, which was introduced in
Chapter 3, are covered in the last subsection.

Implicit Cursors
Every SQL statement in a PL/SQL block is actually an implicit cursor. You can see how many rows
are changed by any statement using the %ROWCOUNT attribute after a DML statement. INSERT,
UPDATE, DELETE, and MERGE statements are DML statements. You can also count the number of

Review Section
This section has described the following points about iterative statements:

 ■ Iterative statements are blocks that let you repeat a statement or set of statements.

 ■ Iterative statements implement an exit guard and a block of repeatable statements.

 ■ The exit guard compares a loop index or variable against a sentinel value to determine
when to exit the loop.

 ■ Entry guards and exit guards can work to bar entry to or exit from a loop, and they can
be intrinsically linked to index counter and sentinel values.

 ■ To avoid runtime errors, programs should safeguard any dynamic variable values. You
do that by checking whether they have null values before your program uses them.
This type of checking is necessary because null values don’t work properly as index
counters because you can’t increment them, or as comparison variables because you
can’t compare them.

 ■ The CONTINUE, CONTINUE WHEN, and GOTO statements let you skip the balance of
iteration through a loop, and they require specialized handling with guard-on-entry
loops to avoid infinite loops.

 ■ The range FOR loop lets you increment or decrement across data by comparing a range
of values, and it hides the complexity of its guard-on-entry loop internals.

 ■ The WHILE loop is a guard-on-entry loop and requires careful attention to avoid
infinite loops when skipping iterations inside of its logic.

05-ch05.indd 185 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

186 Oracle Database 12c PL/SQL Programming

rows returned by a SELECT statement or query (regardless of whether you lock rows with the FOR
UPDATE clause).

The following example demonstrates the %ROWCOUNT cursor attribute by using a single-row
implicit cursor based on the DUAL pseudo table:

SQL> DECLARE
 2 lv_number NUMBER;
 3 BEGIN
 4 SELECT 1 INTO lv_number
 5 FROM dual;
 6 dbms_output.put_line('Selected ['||SQL%ROWCOUNT||']');
 7 END;
 8 /

The reserved word SQL before the %ROWCOUNT cursor attribute on line 6 stands for any implicit
cursor. PL/SQL manages implicit cursors and limits your access to their attributes. Table 5-6 lists
the available implicit cursor attributes.

There are five types of implicit cursors. One is an implicit bulk collection cursor, which is
covered in the “Bulk Statements” section later in the chapter. The other four implicit cursors are
the subject of this section. The first two that are covered are single-row and multiple-row implicit
cursors that use a SELECT or DML statement, and the final two are static and dynamic implicit
cursors in FOR loops.

Single-Row Implicit Cursors
The SELECT-INTO statement is present in all implicit cursors that query data outside of a loop. It
works only when a single row is returned by a SELECT statement. You can select a column or list
of columns in the SELECT clause and assign the column(s) to individual variables or collectively
to a record data type.

The prototype for a single-row implicit cursor minus standard SQL WHERE, HAVING, GROUP
BY, and ORDER BY clauses is

SELECT column [, column [, ...]] INTO variable [, variable [, ...]]FROM
table_name;

Attribute Description
%FOUND Returns TRUE only when a DML statement has changed a row.
%ISOPEN Always returns FALSE for any implicit cursor.
%NOTFOUND Returns TRUE when a DML statement fails to change a row.
%ROWCOUNT Returns the number of rows changed by a DML statement or the number

of rows returned by a SELECT INTO statement.

TABLE 5-6. Implicit Cursor Attributes

05-ch05.indd 186 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 187

Both of the example programs introduced in this section use the ITEM table that is seeded
from the code you can download from the McGraw-Hill Professional website. The first example
program assigns column values to scalar variables on a one-to-one basis:

SQL> DECLARE
 2 id item.item_id%TYPE;
 3 title item.item_title%TYPE;
 4 subtitle item.item_subtitle%TYPE;
 5 BEGIN
 6 SELECT item_id, item_title, item_subtitle
 7 INTO id, title, subtitle
 8 FROM item
 9 WHERE ROWNUM < 2;
 10 dbms_output.put_line('Selected ['||title||']');
 11 END;
 12 /

This example program anchors all variables to the columns of the target table on lines 2
through 4. It also limits the query to one row by using an inequality operator with the Oracle SQL
ROWNUM pseudocolumn. It prints one row:

Selected [Around the World in 80 Days]

One-to-one anchoring assignments get very tiresome to type after a while. They also make
your code more expensive to maintain over time. The more common convention is to assign
the columns as a group through a record data type, or by direct anchoring to a table’s definition.
The latter approach is available only if you want all the columns in the table; unfortunately, for
our example, we only want the same three columns used earlier.

An example with a record data type structure is

SQL> DECLARE
 2 TYPE item_record IS RECORD
 3 (id item.item_id%TYPE
 4 , title item.item_title%TYPE
 5 , subtitle item.item_subtitle%TYPE);
 6 lv_record ITEM_RECORD;
 7 BEGIN
 8 SELECT item_id, item_title, item_subtitle
 9 INTO lv_record
 10 FROM item
 11 WHERE rownum < 2;
 12 dbms_output.put_line('Selected ['||dataset.title||']');
 13 END;
 14 /

While record data types require explicit construction, columns within the structure can be
anchored individually to column data types, as shown on lines 3 through 5. On those lines,
the item table is glued by the component selector (.) to columns from that table and is glued
through the columns to their respective data types. The lv_record variable on line 6 uses the
local item_record data type.

05-ch05.indd 187 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

188 Oracle Database 12c PL/SQL Programming

Single-row implicit cursors are great quick fixes, but they have a weakness. It is a weakness
that many developers attempt to exploit by using it to raise exceptions when cursors return more
than one row. They do this because single-row implicit cursors raise an “exact fetch returned too
many rows” error (ORA-01422) when returning more than one row. Better solutions are available
to detect errors before fetching the data. You should explore alternatives when developing your
code and, where possible, explicitly handle errors. Explicit cursors are typically better solutions
every time.

Multiple-Row Implicit Cursors
There are two ways you can create multiple-row implicit cursors:

 ■ Write any DML statement in a PL/SQL block. DML statements are considered multiple-row
implicit cursors, although you can limit them to a single row.

 ■ Write an embedded query in a cursor FOR loop rather than define the query in a declaration
block. These are SELECT statements that have a marvelous feature: all the variables are
implicitly provided in the scope of the cursor FOR loop.

The following query demonstrates an implicit cursor created by a DML statement:

SQL> BEGIN
 2 UPDATE system_user
 3 SET last_update_date = SYSDATE;
 4 IF SQL%FOUND THEN
 5 dbms_output.put_line('Updated ['||SQL%ROWCOUNT||']');
 6 ELSE
 7 dbms_output.put_line('Nothing updated!');
 8 END IF;
 9 END;
 10 /

As defined in Table 5-6, the %FOUND cursor attribute for implicit cursors returns a Boolean
true value only when rows are updated. The preceding statement should update five rows and
print the following SQL%ROWCOUNT result:

Updated [5]

Cursor FOR Loop Statements
A cursor FOR loop statement is ideal when you query a database table or view because it’s simple
and manages many of the moving parts for you. While you don’t generally know how many rows
will be returned from a cursor (or query), a FOR loop statement manages the opening and closing
of the cursor, fetching of records, and exiting of the loop when all records are read.

The examples in this section use static and dynamic implicit cursors. The next section,
“Explicit Cursors,” demonstrates how to work with explicit cursors. Explicit cursors are defined as
a formal cursor structure in the declaration block. As a rule, using explicit cursors is the best practice
and using implicit cursors is considered a shortcut that you should avoid in production code.

Static and dynamic implicit cursors are SELECT statements defined within parentheses as part
of the cursor FOR loop statement. Unlike explicit cursors, implicit cursors don’t support formal
parameter lists. Dynamic implicit cursors rely on local scope access by embedding local variables
in their SELECT statements.

05-ch05.indd 188 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 189

The prototype for a cursor FOR loop statement is

FOR cursor_index IN [cursor_name[(parameter_list)] | (select_statement)] LOOP
 repeating_statements
END LOOP;

The cursor index can be any identifier that you prefer. As when writing FOR loops in other
languages, many developers use i as the cursor index (after all, i stands for iterator). Those same
developers also tend to use j, k, l, and so forth as nested cursor index values, but you can use
any non-identifier name you want as the cursor index.

Moreover, a cursor index for a cursor FOR loop is a pointer to a result set in a query work
area. As described in Chapter 4, a query work area is a memory region (known as a context area)
in the Oracle Database 12c Program Global Area (PGA). The query work area holds information
on the query, including the rows returned by a query, the number of rows processed by the query,
and a pointer to the parsed query. The query work area resides in the Oracle Shared Pool (see
Appendix A).

Static Implicit Cursor This section shows you how to implement a static implicit cursor in a
FOR loop. A static cursor is composed of SQL keywords, table and column names, and numeric
or string literal values. The alternative to a static implicit cursor in this case is a dynamic implicit
cursor. The difference between a static implicit cursor and a dynamic implicit cursor is that a
dynamic implicit cursor includes locally scoped variable names.

The following example (and many others in the chapter) depends on your having already run
the seeding code, as discussed in the Introduction. This particular cursor loop returns the names
of Harry Potter films found in the video rental store sample database.

SQL> BEGIN
 2 FOR i IN (SELECT COUNT(*) AS on_hand
 3 , item_title AS title
 4 , item_rating AS rating
 5 FROM item
 6 WHERE item_title LIKE 'Harry Potter%'
 7 AND item_rating_agency = 'MPAA'
 8 GROUP BY item_title
 9 , item_rating) LOOP
 10 dbms_output.put_line(
 11 i.on_hand||' '||i.title||' rated '||i.rating);
 12 END LOOP;
 13 END;
 14 /

The cursor index points to the row, and the component selector (.) links the row pointer to
the column name or alias assigned by the implicit cursor. This prints the following from inventory:

(3) Harry Potter and the Sorcerer's Stone [PG]
(3) Harry Potter and the Goblet of Fire [PG-13]
(3) Harry Potter and the Chamber of Secrets [PG]
(2) Harry Potter and the Prisoner of Azkaban [PG]
(1) Harry Potter and the Order of the Phoenix [PG-13]

05-ch05.indd 189 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

190 Oracle Database 12c PL/SQL Programming

There is no EXIT statement in the example because one isn’t required. The EXIT statement is
implicitly placed at the top of the loop right after the index counter. The index counter in a cursor
loop checks for the presence of another row. The exit condition checks whether all rows have
been read and exits when there are no more rows to read.

Dynamic Implicit Cursor As mentioned earlier, the difference between a dynamic implicit
cursor and static implicit cursor is that the dynamic one embeds locally scoped variables. The
variables act as placeholders and are substituted at runtime with the values from the local variables.

By making only slight changes, we can convert the implicit static cursor from the previous
example into a dynamic static cursor. The following program adds a declaration block to declare
a local variable and adds a placeholder variable to the SELECT statement:

SQL> DECLARE
 2 lv_item_title VARCHAR2(60) := 'Harry Potter';
 3 BEGIN
 4 FOR i IN (SELECT COUNT(*) AS on_hand
 5 , item_title AS title
 6 , item_rating AS rating
 7 FROM item
 8 WHERE item_title LIKE lv_item_title||'%'
 9 AND item_rating_agency = 'MPAA'
 10 GROUP BY item_title
 11 , item_rating) LOOP
 12 dbms_output.put_line(
 13 i.on_hand||' '||i.title||' rated '||i.rating);
 14 END LOOP;
 15 END;
 16 /

Line 2 adds a local lv_item_title variable and assigns a value of “Harry Potter” to it, and
line 8 includes a reference to the local lv_item_title variable. The variable in the implicit
cursor makes the cursor dynamic rather than static, notwithstanding that it acts like a constant in
this program because the value is assigned in the declaration block. Naturally, it returns the same
row set.

Explicit Cursors
As discussed earlier in this section, you create an explicit cursor when you define it inside a
declaration block. Explicit cursors can be static or dynamic SELECT statements. Static SELECT
statements return the same query each time with potentially different results. The results change as
the data changes in the tables or views. Dynamic SELECT statements act like parameterized
subroutines. They run different queries each time, depending on the actual parameters provided
when they’re opened.

You open static and dynamic explicit cursors differently, provided they are defined with formal
parameters. When they do not have formal parameters, you open them with the same syntax.
The actual parameters are then mapped by local variable substitution.

Explicit cursors require you to open, fetch, and close them regardless of whether you’re using
simple loop statements, WHILE loops statements, or cursor FOR loop statements. You use the OPEN
statement to open cursors, the FETCH statement to fetch records from cursors, and the CLOSE
statement to close and release resources of cursors. These statements work with both dynamic and

05-ch05.indd 190 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 191

static cursors inside or outside of a looping structure. Cursor FOR loop statements implicitly open,
fetch, and close cursors for you. The OPEN, FETCH, and CLOSE statements are key elements in
both of the following subsections, “Static Explicit Cursors” and “Dynamic Explicit Cursors,”
where the examples use simple loops.

The prototype for the OPEN statement is

OPEN cursor_name [(parameter [, parameter [, ...]])];

There are two prototypes for the FETCH statement. One assigns individual columns to variables,
and the other assigns rows to record structure variables.

The prototype for assigning individual columns to matching variables is

FETCH cursor_name
INTO variable [, variable [, ...]];

The prototype for assigning rows to record structure variables is

FETCH cursor_name
INTO record_variable;

The prototype for the CLOSE statement is

CLOSE cursor_name;

Table 5-7 lists the explicit cursor attributes, which work the same way for both dynamic and
static explicit cursors. Although they have the same names as the implicit cursor attributes, listed
in Table 5-6, they work differently. The explicit cursor attributes return different results based on
where they are called in reference to the OPEN, FETCH, and CLOSE statements.

The %FOUND attribute signals that rows are available to retrieve from the cursor, and the
%NOTFOUND attribute signals that all rows have been retrieved from the cursor. The %ISOPEN
attribute lets you know that the cursor is already open, and thus it is something you should consider

Statement State %FOUND %NOTFOUND %ISOPEN %ROWCOUNT

OPEN Before Exception Exception FALSE Exception

After NULL NULL TRUE 0

First FETCH Before NULL NULL TRUE 0

After TRUE FALSE TRUE 1

Next FETCH Before TRUE FALSE TRUE 1

After TRUE FALSE TRUE n + 1

Last FETCH Before TRUE FALSE TRUE n + 1

After FALSE TRUE TRUE n + 1

CLOSE Before FALSE TRUE TRUE n + 1

After Exception Exception FALSE Exception

TABLE 5-7. Explicit Cursor Attributes

05-ch05.indd 191 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

192 Oracle Database 12c PL/SQL Programming

running before you attempt to open a cursor. As with implicit cursors, the %ROWCOUNT attribute
tells you how many rows you’ve fetched at any given point. Only the %ISOPEN attribute works
anytime without an error. The other three raise errors when the cursor isn’t open. The Table 5-7
matrix captures these changing behaviors.

Static explicit cursors and dynamic explicit cursors are covered next in different subsections to
organize the examples and highlight differences. The examples use simple loop statements, but you
can also use explicit cursors in WHILE loop statements or nested inside range and cursor FOR loops.

Static Explicit Cursors
A static explicit cursor is a SQL SELECT statement that doesn’t change its behavior. An explicit
cursor has four components. You define, open, fetch from, and close a cursor. The following example
program defines, opens, fetches from, and closes a static cursor into a series of scalar variables:

SQL> DECLARE
 2 lv_id item.item_id%TYPE;
 3 lv_title VARCHAR2(60);
 4 CURSOR c IS
 5 SELECT item_id
 6 , item_title
 7 FROM item;
 8 BEGIN
 9 OPEN c;
 10 LOOP
 11 FETCH c
 12 INTO lv_id
 13 , lv_title;
 14 EXIT WHEN c%NOTFOUND;
 15 dbms_output.put_line('Title ['||lv_title||']');
 16 END LOOP;
 17 CLOSE c;
 18 END;
 19 /

Line 2 declares a variable by using column anchoring, and line 3 declares a variable by using
a static data type (that mirrors the physical column in the item table). You should really choose
one or the other style, but I wanted you to see both in the same example. The program fetches
two columns into two variables on lines 12 and 13. The assignment works because the data types
of the local variables on lines 2 and 3 match those for the SELECT-list columns on lines 5 and 6
of the cursor definition. The program exits when there are no more records to fetch.

As covered in Chapter 3, cursors offer an alternative to anchoring individual variables to
columns of a table, local record structures, and tables. That alternative lets you define a local
lv_record variable and anchor it to the structure of the cursor, as shown in the next example:

SQL> DECLARE
 2 CURSOR c IS
 3 SELECT item_id AS id
 4 , item_title AS title
 5 FROM item;
 6 lv_record c%ROWTYPE;
 7 BEGIN

05-ch05.indd 192 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 193

 8 OPEN c;
 9 LOOP
 10 FETCH c
 11 INTO lv_record;
 12 EXIT WHEN c%NOTFOUND;
 13 dbms_output.put_line('Title ['||lv_record.title||']');
 14 END LOOP;
 15 CLOSE c;
 16 END;
 17 /

Line 6 declares an lv_record variable that inherits a record structure data type from the
SELECT list of the cursor. Line 13 lets you print the title field value from the lv_record
structure by using the component selector. Using a FETCH statement that takes the structure of a
cursor and assigns it to a single variable is the best practice.

You should not assign columns to local variables unless you have a compelling reason to do
so, and the only reason that seems compelling is that a LOB is being returned as part of the SELECT
list and requires separate management from the handling of the non-LOB values. Sometimes it is
best to handle them in separate cursors. Chapter 6 covers handling nested structures, like varray
and table data types.

The PL/SQL-only alternative to coupling the lv_record variable to a cursor’s row structure
is to couple the lv_record to a table/view definition or to an explicit record type (check the
“Records” section in Chapter 4 for a complete example). If we create an item_record record
type in the declaration block, we can define the lv_record variable on line 9, like this:

 6 lv_record ITEM_RECORD;

While this is a valid option in PL/SQL, it isn’t as effective as coupling the variable data type to
the cursor’s row type. I recommend that you always couple variables to a cursor’s row structure
(over the other alternatives) because it simply makes your code more readable.

To help you avoid going down a dead-end street, you can’t SELECT-INTO an object type.
That means syntax like this will never work:

SQL> DECLARE
 ...
 6 lv_object ITEM_OBJECT;
 7 BEGIN
 ...
 10 FETCH c
 11 INTO lv_object(lv_id,lv_title);
 ...
 16 END;
 17 /

Line 6 now declares the lv_object variable with a SQL item_object object type. The
item_object object type mirrors the cursor’s row type. An attempt to assign the values from a
cursor structure to an object type constructor raises the following error:

 INTO lv_object(lv_id,lv_title);
 *
ERROR at line 11:
ORA-06550: line 11, column 11:

05-ch05.indd 193 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

194 Oracle Database 12c PL/SQL Programming

PLS-00308: this construct is not allowed as the origin of an assignment
ORA-06550: line 10, column 5:
PL/SQL: SQL Statement ignored

While you can’t transfer the contents of a cursor’s row type to an object type’s constructor,
you can use a FOR loop to transfer a cursor’s row type to an object.

The FOR Loop Variant of a Static Cursor A cursor FOR loop statement can support direct
assignment from any type of variable by implementing a dynamic SELECT statement. You embed
local variables or cursor parameters in SELECT statements to create a dynamic SELECT statement.
A static FOR loop statement uses a static SELECT statement in lieu of a dynamic SELECT statement.

While you can’t call a FOR loop with parameters when the cursor is static, you can assign
values from the static cursor inside the FOR loop statement. It’s done by using the FOR loop’s cursor
index. That’s because, unlike a range FOR loop, where the cursor index is a PLS_INTEGER data
type, a cursor FOR loop’s cursor index is an indirect reference to the rows returned from the cursor.

You can assign a record structure to a matching record structure variable. Likewise, you can
assign a scalar element of a record structure to a matching scalar variable. The lv_record
variable can be declared by using either an explicit record type or %ROWTYPE anchored to a local
or shared cursor variable.

The following demonstrates assigning a record structure from the cursor index:

SQL> DECLARE
 ... same as previous example ...
 7 BEGIN
 8 FOR i IN c LOOP
 9 lv_record := i;
 10 dbms_output.put_line('Title ['||lv_record.title||']');
 11 END LOOP;
 12 END;
 13 /

Line 9 shows the assignment of the FOR loop iterator to the lv_record variable. As
mentioned, this only works for PL/SQL-only record data structures.

You can assign elements from the cursor to scalar variables of a matching type or to fields of
the anchored record types. An alternate line 9 assigns a SELECT-list element to a field of the
lv_record data type (an anchored record created by using the %ROWTYPE attribute):

 9 lv_record.item_title := i.item_title;

You also can assign the cursor to a SQL object type constructor. You do that by passing the
SELECT-list elements as call parameters to the object type constructor. For example, suppose you
defined the following object type before running the program:

SQL> CREATE OR REPLACE
 2 TYPE item_object IS OBJECT
 3 (id NUMBER
 4 , title VARCHAR2(60));
 5 /

05-ch05.indd 194 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 195

Instead of anchoring lv_record with the %ROWTYPE attribute to the cursor’s record structure on
line 6, you would assign it your SQL user-defined type (UDT): item_object. The modified
declaration of lv_record is

 6 lv_record ITEM_OBJECT;

Then, you could assign the cursor’s returned record element by element to the item_object
constructor with the following syntax on line 9:

 9 lv_record.item_title := item_object(i.item_id, i.item_title);

Although the FOR loop automates many tasks, unfortunately, it doesn’t provide the ability to
manage behaviors when it returns or fails to return rows. You need to return to the simple loop to
manage those behaviors.

Conditional Return Values It is possible that the cursor may not find any records. When an
implicit or explicit cursor runs but doesn’t find data, no error is raised. If you want to be notified
when the cursor doesn’t find any records, you need to add that feature to your code. You can do
so by using an IF statement and the %NOTFOUND and %ROWCOUNT cursor attributes in a simple
loop (not a FOR loop).

The following simple loop example prints a “No Data Found.” message when the cursor fails
to find any records:

SQL> DECLARE
 2 CURSOR c IS
 3 SELECT item_id AS id
 4 , item_title AS title
 5 FROM item
 6 WHERE item_id = -1;
 7 lv_record c%ROWTYPE;
 8 BEGIN
 9 OPEN c;
 10 LOOP
 11 FETCH c INTO lv_record;
 12 IF c%NOTFOUND THEN
 13 IF c%ROWCOUNT = 0 THEN /* No rows returned. */
 14 dbms_output.put_line('No Data Found');
 15 ELSE /* One plus rows returned. */
 16 dbms_output.put_line('No More Data Found');
 17 END IF;
 18 EXIT;
 19 ELSE
 20 dbms_output.put_line('Title ['||lv_record.title||']');
 21 END IF;
 22 END LOOP;
 23 END;
 24 /

Line 6 adds a WHERE clause that ensures the query won’t return any rows. No rows are returned
by the cursor, and the c%NOTFOUND on line 12 returns true. Since the last SQL statement returned
no rows, the c%ROWCOUNT on line 13 also returns true and prints a “No Data Found.” message.

05-ch05.indd 195 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

196 Oracle Database 12c PL/SQL Programming

When the c%ROWCOUNT returns false, the program prints a “No More Data Found.” message. Line
18 exits the loop after it processes either of the output messages. Unfortunately, you can’t replicate
this logic inside a cursor FOR loop statement.

Dynamic Explicit Cursors
Dynamic explicit cursors are very much like static explicit cursors. They use a SQL SELECT
statement. Beyond using variables in SELECT statements or cursors, you can also embed local
variables in INSERT, UPDATE, DELETE, or MERGE statements. These variables take the place of
what would otherwise be literal values.

Dynamic explicit cursors have the same four components as static cursors: you define, open,
fetch from, and close a dynamic cursor. Dynamic explicit cursors also rely on local variable scope
access, as do implicit dynamic cursors.

The following example program defines a cursor as a SELECT statement that queries the
item table for a range of values. Both variables are declared as local variables and assigned
numeric literal values. The names of the local variables must differ from column names or else
the column name values will be substituted in place of the variable values.

SQL> DECLARE
 2 lv_lowend NUMBER := 1010;
 3 lv_highend NUMBER := 1020;
 4 CURSOR c IS
 5 SELECT item_id AS id
 6 , item_title AS title
 7 FROM item
 8 WHERE item_id BETWEEN lv_lowend AND lv_highend;
 9 lv_record c%ROWTYPE;
 10 BEGIN
 11 OPEN c;
 12 LOOP
 13 FETCH c INTO lv_record;
 14 EXIT WHEN c%NOTFOUND;
 15 dbms_output.put_line('Title ['||lv_record.title||']');
 16 END LOOP;
 17 END;
 18 /

Lines 2 and 3 declare the lv_lowend and lv_highend variables. Line 8 uses the lv_lowend
and lv_highend variables as inclusive boundaries of the BETWEEN operator. The values of the
local variables are substituted in the SELECT statement when you run the program. The same logic
works in FOR and WHILE loops.

You can rely on local variables, but doing so can be confusing and can make the code more
difficult to support. While the INSERT, UPDATE, DELETE, and MERGE statements limit you to
embedding local variables, SELECT statements in cursors don’t.

Cursors can have formal parameters, like functions and procedures. Moreover, SELECT
statement cursors should have formal parameters as a best practice. The next example replaces
the prior example by altering the cursor definition and the call to the OPEN statement:

SQL> DECLARE
 2 lv_lowend NUMBER := 1005;
 3 lv_highend NUMBER := 1021;

05-ch05.indd 196 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 197

 4 CURSOR c
 5 (cv_low_id NUMBER
 6 , cv_high_id NUMBER) IS
 7 SELECT item_id AS id
 8 , item_title AS title
 9 FROM item
 10 WHERE item_id BETWEEN cv_low_id AND cv_high_id;
 11 item_record c%ROWTYPE;
 12 BEGIN
 13 OPEN c (lv_lowend, lv_highend);
 14 LOOP
 15 FETCH c INTO item_record;
 16 EXIT WHEN c%NOTFOUND;
 17 dbms_output.put_line('Title ['||item_record.title||']');
 18 END LOOP;
 19 END;
 20 /

Lines 4 through 6 define a cursor with two numeric formal parameters, cv_low_id and
cv_high_id, which are also the inclusive range values of the BETWEEN operator on line 10.
Line 13 opens the cursor with the lv_lowend and lv_highend call parameters.

Note that the local variables have physical sizes but the formal parameters don’t. That’s
because formal parameters don’t have physical size until runtime or, in this case, until you pass
call parameters when you open the cursor on line 13.

Opening a cursor in a FOR loop is very much like opening a cursor in a simple loop. You
provide a comma-delimited list of call parameters inside parentheses. The following four lines
replace the six lines from the preceding example:

 13 FOR i IN c (lv_lowend, lv_highend) LOOP
 14 item := i;
 15 dbms_output.put_line('Title ['||item.title||']');
 16 END LOOP;

So far you’ve seen how to use cursors, but there’s more to see. You have the ability to use
cursors inside cursors, as discussed in the next section.

Subcursors
A nested cursor is a subcursor. You create a subcursor by embedding a correlated subquery inside
the SELECT list of an explicit or dynamic cursor. Correlated subqueries include a join inside the
WHERE clause that links the subquery to the outer query. You can refer to the “Correlated
Subqueries” section of Appendix B for more information on correlated subqueries.

You must explicitly fetch a SELECT list into a list of variables when it includes a subcursor.
Subcursor results are assigned to variables that use a PL/SQL-only REF CURSOR data type. Then,
you need to fetch their results inside a nested loop.

You may be asking yourself, “Why would I go to all that trouble?” To answer that question,
let’s first look at the return set of an ordinary query of three tables. The query uses inner joins to

05-ch05.indd 197 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

198 Oracle Database 12c PL/SQL Programming

link three tables through their primary and foreign key columns (and some formatting to provide
clear output).

SQL> COLUMN first_name FORMAT A10
SQL> COLUMN last_name FORMAT A10
SQL> COLUMN street_address FORMAT A20
SQL> COLUMN city FORMAT A8
SQL> COLUMN state FORMAT A2
SQL> COLUMN postal_code FORMAT A5
SQL> SELECT c.first_name
 2 , c.last_name
 3 , sa.street_address
 4 , a.city
 5 , a.state_province AS state
 6 , a.postal_code
 7 FROM contact c INNER JOIN address a
 8 ON c.contact_id = a.contact_id INNER JOIN street_address sa
 9 ON a.address_id = sa.address_id
 10 WHERE c.last_name = 'Vizquel';

The query returns the following four rows:

FIRST_NAME LAST_NAME STREET_ADDRESS CITY ST ZIP
---------- ---------- -------------------- -------- -- -----
Oscar Vizquel 12 El Camino Real San Jose CA 95192
Doreen Vizquel 12 El Camino Real San Jose CA 95192
Doreen Vizquel 41277 Roberts Avenue Fremont CA 94539
Doreen Vizquel Apt #14 Fremont CA 94539

The return set is symmetrical, which means you have the same number of rows for each
column in the query. Let’s look at Doreen Vizquel’s results. There are three rows returned for
Doreen Vizquel because the bottommost street_address table holds three unique results
linked to the same contact row. Likewise, there are two duplicate rows returned for city,
state, and zip because there are two unique street_address values linked to the same
address row. This is known as a symmetrical return set, any one row is duplicated for the related
unique rows.

Symmetrical return sets are normal in SQL but generally not too useful in web forms and
reports. For example, suppose the program requirements call for an asymmetrical return set, like
this:

Formatted Address

1004 Doreen Vizquel
 41277 Roberts Avenue, Apt #14
 Fremont, CA, 94539

 12 El Camino Real
 San Jose, CA, 95192

1003 Oscar Vizquel
 12 El Camino Real
 San Jose, CA, 95192

05-ch05.indd 198 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 199

Other than using some fancy SQL*Plus report writing commands, this type of output is not
suited to a SQL SELECT statement. You can write a function that lets you return a data set like the
foregoing by using subcursors.

Since the format_contact_address function returns a table collection of CLOB data
types, we need to define an appropriate SQL table collection. This syntax creates the table
collection of CLOBs:

SQL> CREATE OR REPLACE
 2 TYPE format_address_table IS TABLE OF CLOB;
 3 /

You now can create a function that uses subqueries to format and return a table collection of
formatted contact addresses, like

SQL> CREATE OR REPLACE FUNCTION format_contact_address
 2 (pv_last_name VARCHAR2) RETURN FORMAT_ADDRESS_TABLE IS
 3
 4 /* Declare a reference cursor. */
 5 TYPE ref_cursor IS REF CURSOR;
 6
 7 /* Declare a nested cursor. */
 8 CURSOR all_nested_results
 9 (cv_last_name VARCHAR2) IS
 10 SELECT c.contact_id
 11 , c.first_name
 12 || DECODE(c.middle_name,NULL,' ',' '||c.middle_name||' ')
 13 || c.last_name AS full_name
 14 , CURSOR(SELECT a.city
 15 , a.state_province AS state
 16 , CURSOR(SELECT sa.street_address
 17 FROM street_address sa
 18 WHERE sa.address_id =
 19 a.address_id)
 20 , a.postal_code
 21 FROM address a
 22 WHERE a.contact_id = c.contact_id
 23 ORDER BY a.start_date DESC)
 24 FROM contact c
 25 WHERE c.last_name = cv_last_name
 26 ORDER BY c.last_name
 27 , c.first_name;
 28
 29 /* Declare a street address counter. */
 30 lv_street_counter NUMBER := 0;
 31 lv_index_counter NUMBER := 1;
 32
 33 /* Declare two reference cursors. */
 34 lv_street_cursor REF_CURSOR;
 35 lv_address_cursor REF_CURSOR;
 36
 37 /* Declare local scalar variables. */

05-ch05.indd 199 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

200 Oracle Database 12c PL/SQL Programming

 38 lv_employee_id NUMBER;
 39 lv_full_name VARCHAR2(62);
 40 lv_city VARCHAR2(30);
 41 lv_state VARCHAR2(2);
 42 lv_street_address VARCHAR2(30);
 43 lv_postal_code VARCHAR2(10);
 44
 45 /* Declare a large string as the output target. */
 46 lv_output_message VARCHAR2(300);
 47 lv_output_table FORMAT_ADDRESS_TABLE := format_address_table();
 48
 49 BEGIN
 50
 51 /* Open the composite cursor. */
 52 OPEN all_nested_results (pv_last_name);
 53
 54 /* Read through the cursor result set. */
 55 LOOP
 56 FETCH all_nested_results
 57 INTO lv_employee_id
 58 , lv_full_name
 59 , lv_address_cursor;
 60 EXIT WHEN all_nested_results%NOTFOUND;
 61
 62 /* Set message with base cursor. */
 63 lv_output_message := lv_employee_id||' '||lv_full_name||CHR(10);
 64
 65 /* Read through the first-level nested table. */
 66 LOOP
 67 FETCH lv_address_cursor
 68 INTO lv_city
 69 , lv_state
 70 , lv_street_cursor
 71 , lv_postal_code;
 72 EXIT WHEN lv_address_cursor%NOTFOUND;
 73
 74 /* Read through the second-level nested table. */
 75 LOOP
 76 FETCH lv_street_cursor
 77 INTO lv_street_address;
 78
 79 /* Check for all reading all subcursor records. */
 80 IF lv_street_cursor%NOTFOUND THEN
 81
 82 /* Append a line return at the end. */
 83 IF lv_street_counter > 0 THEN
 84 lv_output_message := lv_output_message||CHR(10);
 85 lv_street_counter := 0;
 86 END IF;
 87
 88 /* Append and print address, then exit subcursor. */

05-ch05.indd 200 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 201

 89 lv_output_message := lv_output_message||' '
 90 || lv_city||', '||lv_state||', '
 91 || lv_postal_code||CHR(10);
 92
 93 EXIT;
 94 ELSE
 95 /* Append street addresses. */
 96 lv_street_counter := lv_street_counter + 1;
 97
 98 IF lv_street_counter = 1 THEN
 99 lv_output_message := lv_output_message||' '
100 || lv_street_address;
101 ELSE
102 lv_output_message := lv_output_message||', '
103 || lv_street_address;
104 END IF;
105 END IF;
106 END LOOP;
107
108 /* Reset message with base cursor. */
109 lv_output_message := lv_output_message||CHR(10);
110 END LOOP;
111
112 /* Extend space and assign to collection. */
113 lv_output_table.EXTEND;
114 lv_output_table(lv_index_counter) := lv_output_message;
115 lv_index_counter := lv_index_counter + 1;
116 END LOOP;
117
118 /* Close cursor resource. */
119 CLOSE all_nested_results;
120
121 /* Return the formatted address. */
122 RETURN lv_output_table;
123 END;
124 /

Line 5 declares a weakly typed system reference cursor, which is used as the target data type
for the two subcursors. Lines 14 through 23 contain a subcursor that holds another subcursor.
Line 22 contains the correlated subquery’s join between the outer cursor and the first-level subcursor.
Lines 18 and 19 (actually one line split into two to prevent wrapping in the book) contain the
correlated subquery’s join between the first- and second-level subcursors.

Lines 34 and 35 declare two target variables for the subcursors. It’s possible to eliminate the
user-defined and weakly typed REF_CURSOR because Oracle provides a generic SYS_REFCURSOR
data type for this exact purpose. You would change lines 34 and 35 as follows to use the built-in
weakly typed cursor data type:

 34 lv_street_cursor SYS_REFCURSOR;
 35 lv_address_cursor SYS_REFCURSOR;

05-ch05.indd 201 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

202 Oracle Database 12c PL/SQL Programming

The first-level subcursor is assigned to the system reference cursor on line 59 inside the
first-level nested loop, and the second-level subcursor is likewise assigned on line 70. You can
then call this function inside the TABLE function, like this:

SQL> SELECT column_value AS "Formatted Address"
 2 FROM TABLE(format_contact_address('Vizquel'));

While I try to avoid subcursors, you also can use subcursors when you have tables that hold
nested tables. You use cross-joins in lieu of the inner joins between cursor and subcursor, or
subcursor and nested subcursor. Leveraging the employee table described in the “Nested
Collection Types” section of Appendix B, you could substitute this cursor:

 9 CURSOR all_nested_results
 10 (cv_start_id NUMBER
 11 , cv_end_id NUMBER) IS
 12 SELECT e.employee_id
 13 , e.first_name
 14 || DECODE(e.middle_name,NULL,' ',' '||e.middle_name||' ')
 15 || e.last_name AS full_name
 16 , CURSOR(SELECT n.city
 17 , n.state
 18 , CURSOR(SELECT s.column_value
 19 FROM TABLE(n.street_address) s)
 20 , n.postal_code
 21 FROM TABLE(e.home_address) n)
 22 FROM employee e
 23 WHERE e.employee_id BETWEEN cv_start_id AND cv_end_id;

Lines 18 and 19 create a subcursor from a nested Attribute Data Type (ADT). Lines 16 through
21 create a subcursor from a nested user-defined type (UDT). Joins between the collections and
holding row are unnecessary because the Oracle database implicitly maps their relationships.

This section has explained how to use implicit and explicit cursors in your program units.
You’ve learned that some implicit behaviors are outside of your control. You’ve also learned that
explicit structures provide you with more control.

Review Section
This section has described the following points about cursor structures:

 ■ Cursor structures return row-by-row managed result sets from SQL SELECT statements.

 ■ Implicit cursors exist for all DML statements, such as the INSERT, UPDATE, DELETE,
and MERGE statements.

 ■ PL/SQL supports the %FOUND, %NOTFOUND, %ISOPEN, and %ROWCOUNT implicit
cursor attributes.

 ■ The SELECT-INTO statement is a single-row implicit cursor.

05-ch05.indd 202 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 203

Bulk Statements
Bulk statements let you select, insert, update, or delete large data sets in tables or views. You use
the BULK COLLECT statement with SELECT statements and the FORALL statement to insert,
update, or delete large data sets.

Table 5-8 lists and describes the two bulk collection attributes. The “INSERT Statements”
subsection under the “FORALL Statements” section illustrates how to use the %BULK_ROWCOUNT
attribute.

This section explains how to use the BULK COLLECT INTO and FORALL statements. The first
subsection discusses the uses of and differences between parallel scalar collections and record
collections. The subsequent “FORALL Statements” subsection explains how you can use bulk
INSERT, UPDATE, and DELETE statements. While initially shown to you in the “INSERT Statement”
section, the last subsection shows you how to use the %BULK_ROWCOUNT(i) and %BULK_
EXCEPTIONS(i) bulk collection attributes.

BULK COLLECT INTO Statements
The BULK COLLECT INTO statement lets you select a column of data and insert it into Oracle
collection data types. You can use a BULK COLLECT statement inside a SQL statement or as part
of a FETCH statement. A SQL statement bulk collection uses an implicit cursor, while a FETCH
statement works with an explicit cursor. You cannot limit the number of rows returned when
performing bulk collection in an implicit cursor. The FETCH statement lets you append the LIMIT
statement to set the maximum number of rows read from the cursor at a time. You can use any
standard or user-defined PL/SQL data type as the target of an implicit cursor statement.

 ■ The INSERT, UPDATE, DELETE, and MERGE statements are multiple-row implicit
cursors, although you can limit them to a single row.

 ■ Cursors can be static or dynamic, and dynamic implicit cursors can include placeholders
that are references to local variables.

 ■ SELECT statement cursors can have formal parameters, like functions and procedures.

 ■ Cursors support nested cursors, which are called subcursors.

Bulk Attribute Description
%BULK_EXCEPTIONS(i) Lets you see whether or not a row encountered an error during a

bulk INSERT, UPDATE, or DELETE statement. You access these
statistics by putting them in range FOR loop statements.

%BULK_ROWCOUNT(i) Lets you see whether or not an element is altered by a bulk
INSERT, UPDATE, or DELETE statement. You access these statistics
by putting them in range FOR loop statements.

TABLE 5-8. Bulk Collection Attributes

05-ch05.indd 203 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

204 Oracle Database 12c PL/SQL Programming

The following is a basic prototype of an implicit bulk collection statement:

 SELECT column [, column [, ...]]
 COLLECT BULK INTO collection [, collection [, ...]]
 FROM table_name
[WHERE where_clause_statements];

Bulk collections performed as part of a FETCH statement use an explicit cursor. They have the
following prototype:

 FETCH cursor_name [(parameter [, parameter [, ...]])]
 BULK COLLECT INTO collection [, collection [, ...]]
[LIMIT rows_to_return];

The number of columns returned by the explicit cursor determines the number of scalar
collection targets, or the structure of a record collection target. The SELECT statement defines the
number and type of columns returned by a cursor.

You can use BULK COLLECT INTO statements to insert a series of targets or a single target. A
series of targets is a set of collection variables separated by commas. The target comma-delimited
collections are known as parallel collections because you generally manage them in parallel. A
single target is a collection of a record structure. You cannot insert some of the columns into a
collection of a record structure and others into scalar collections in the same statement call. Any
attempt to do so raises a PLS-00494 error that disallows coercion into multiple record targets.

The BULK COLLECT INTO statement is much faster than a standard cursor because it has
one parse, execute, and fetch. Ordinary implicit INTO statement cursors or explicit cursors have
more parses, executes, and fetches. Bulk operations scale better as the number of rows increases,
but very large operations require database configurations to support them.

The “Parallel Collection Targets” and “Record Collection Targets” subsections that follow
demonstrate bulk collections using implicit cursors. The last subsection, “LIMIT-Constrained
Collection Targets,” demonstrates explicit cursors along with the LIMIT statement. The LIMIT
statement lets you constrain the size of bulk selections, but you can only use it with explicit
cursors. The last subsection demonstrates how you can work within your database operating
constraints, such as the PGA.

Parallel Collection Targets
Scalar collections are the only supported SQL collection data types. When you want to share data
with external programs or web applications, you should return your bulk selections into a series
of parallel collections. You can exchange these data types with external programs and web
applications, using the Oracle Call Interface (OCI).

The following example program uses an implicit BULK COLLECT INTO statement cursor and
performs a bulk selection into a set of parallel scalar collections:

SQL> DECLARE
 2 -- Declare a collection of a scalar data type.
 3 TYPE title_collection IS TABLE OF VARCHAR2(60);
 4 -- Declare two variables that use the scalar collection.
 5 lv_title TITLE_COLLECTION;
 6 lv_subtitle TITLE_COLLECTION;
 7 BEGIN

05-ch05.indd 204 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 205

 8 -- Call an implicit cursor with bulk collection.
 9 SELECT item_title
 10 , item_subtitle
 11 BULK COLLECT INTO lv_title
 12 , lv_subtitle
 13 FROM item;
 14 -- Print the output from the bulk collection.
 15 FOR i IN 1..lv_title.COUNT LOOP /* Print first element. */
 16 dbms_output.put_line('Title ['||lv_title(i)||']');
 17 END LOOP;
 18 END;
 19 /

Line 3 defines a collection type that supports both columns that the program needs to capture.
Lines 5 and 6 declare variables of the locally defined collection. The SELECT statement performs
a bulk collection into the lv_title and lv_subtitle collection variables on lines 11 and 12.
Line 15 declares a FOR loop that starts at 1 (or the beginning of a table collection) and ends at the
count of items in the collection. The repeatable statement in the loop prints only one of the two
local variables.

The program demonstrates how you can pass a set of values into two parallel scalar collections.
You should ensure that parallel scalar collections remain synchronized or else you’ll encounter an
error with this coding approach. I don’t recommend using this coding approach because it’s too
expensive to maintain in terms of time and money. You should only choose this direction if you
have a key business need to move data around using scalar SQL data types. Otherwise, you should
use record collection targets for bulk collection.

Record Collection Targets
The current limitations on building SQL collections limits us to collections of records of PL/SQL-
only structures. This means that you can only use SQL collections of record structures inside
programs that run exclusively in the PL/SQL environment. However, you can wrap these SQL
collections inside pipelined table functions (covered in Chapter 8) to convert them to collections
of SQL object types.

Although you can declare PL/SQL records and collections of records as data types in PL/SQL
bodiless packages (those without package bodies), you can’t use them in a SQL context. That’s
because PL/SQL-only data types can’t act as call parameters to functions or procedures when
you call them from a SQL statement. Likewise, PL/SQL-only data types can’t be return types from
PL/SQL functions when you want to call them from a SQL statement.

A better solution is to create a record structure and a collection of the record structure because
then you can declare a variable with the record structure collection as its data type. That lets you
assign a SELECT list directly to a single variable using a BULK COLLECT INTO statement, like

SQL> DECLARE
 2 -- Declare a record and collection user-defined type.
 3 TYPE title_record IS RECORD
 4 (title VARCHAR2(60)
 5 , subtitle VARCHAR2(60));
 6 TYPE title_table IS TABLE OF TITLE_RECORD;
 7 -- Declare a variable of the collection data type.
 8 lv_fulltitle TITLE_TABLE;

05-ch05.indd 205 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

206 Oracle Database 12c PL/SQL Programming

 9 BEGIN
 10 SELECT item_title
 11 , item_subtitle
 12 BULK COLLECT INTO lv_fulltitle
 13 FROM item;
 14 -- Print one element of a structure.
 15 FOR i IN 1..lv_fulltitle.COUNT LOOP
 16 dbms_output.put_line('Title ['||lv_fulltitle(i).title||']');
 17 END LOOP;
 18 END;
 19 /

Lines 3 through 5 define a record structure of two elements. Line 6 defines title_table as
a collection of the title_record record structure. Line 8 declares a variable of the title_
table collection. Then, the SELECT statement assigns the values of two columns through a bulk
collection into the lv_fulltitle collection on line 12.

LIMIT-Constrained Collection Targets
The LIMIT statement lets you set the maximum number of rows returned by a bulk collection.
It constrains the bulk collection. You can only constrain the number of rows returned by explicit
cursors in a FETCH statement.

The downside to this approach is tied to how interactive applications work. Interactive applications
generally require all or nothing, not just some of the records. Batch processing programs that
manage large transaction processing steps are the best candidates for leveraging this approach.
So, the LIMIT statement is useful when you’re doing batch processing or pulling very large cursors,
but not when you’re dealing with interactive programs.

Just take note of these words of advice about setting the LIMIT value: If your LIMIT value is
too large, your Oracle RDBMS will spend an inordinate amount of time managing the cursor in
memory and too little time doing the work. Make sure the LIMIT value is intelligently sized. I
find that setting the LIMIT value to a number between 500 and 1,000 rows is ample. Anything
below 500 isn’t worth your time to write the additional code.

The next two subsections demonstrate how to use the LIMIT statement with both the parallel
collection and record collection approaches.

Parallel Collection Targets As discussed earlier, parallel collections are typically synchronized
scalar collection variables. Parallel collections may differ by scalar data type but each must have
the same number of rows and matching index values. The prior examples use bulk collection with
implicit cursors, but you can also use explicit cursors.

The following program demonstrates how to manage a bulk collection ten rows at a time with
an explicit cursor:

SQL> DECLARE
 ... same as previous parallel collection example ...
 7 -- Declare an explicit cursor.
 8 CURSOR c IS
 9 SELECT item_title AS title
 10 , item_subtitle AS subtitle
 11 FROM item;
 12 BEGIN

05-ch05.indd 206 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 207

 13 OPEN c;
 14 LOOP
 15 -- Fetch explicit cursor into a record collection.
 16 FETCH c
 17 BULK COLLECT INTO lv_title
 18 , lv_subtitle LIMIT 10;
 19 EXIT WHEN lv_title.COUNT = 0;
 ... same as previous printing for loop ...
 25 END LOOP;
 26 END;
 27 /

Lines 8 through 11 add the definition of an explicit cursor. The cursor is opened and fetched
by using a bulk collection operation on lines 16 through 18. The fetch retrieves only ten rows at a
time because of the appended LIMIT clause. The LIMIT clause means all iterations through the
loop fetch all available rows up to ten rows of data from the open cursor. The last iteration through
the loop shouldn’t fetch any rows. Please note that line 19 introduces a new type of exit guard.
The exit condition in this case checks whether the collection is empty before it exits the loop.
More or less, this approach is equivalent exit logic for an ordinary cursor:

EXIT WHEN c%NOTFOUND;

While ten is a small number, the idea is to limit consumed memory and minimize the number
of parses, executes, and fetches. A better number is 250 or 500 because that typically doesn’t
bottleneck processing or strain computational resources for the database.

Record Collection Targets Over time, if not immediately obvious, you should find that record
collection variables are typically better solutions than parallel scalar collections. The next program
shows you how to manage bulk collections with an explicit cursor and record collection variable.
The example program places a LIMIT on how many rows can be processed by the bulk collection.
It limits processing to no more than ten rows with each pass through the loop.

The code follows:

SQL> DECLARE
 ... same as previous bulk record collection example ...
 9 -- Declare an explicit cursor.
 10 CURSOR c IS
 11 SELECT item_title AS title
 12 , item_subtitle AS subtitle
 13 FROM item;
 14 BEGIN
 15 OPEN c;
 16 LOOP
 17 -- Fetch explicit cursor into a record collection.
 18 FETCH c
 19 BULK COLLECT INTO lv_fulltitle LIMIT 10;
 20 EXIT WHEN lv_fulltitle.COUNT = 0;
 ... same as previous printing for loop ...
 25 END LOOP;
 26 END;
 27 /

05-ch05.indd 207 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

208 Oracle Database 12c PL/SQL Programming

Lines 10 through 13 hold the explicit cursor, and the bulk collect into a record collection
occurs on line 19. The LIMIT clause ensures ten or fewer rows are processed each time the code
traverses the result set from the cursor. Line 20 checks to see when there aren’t any more rows to
process. That’s the only time the lv_fulltitle collection should contain zero elements.

FORALL Statements
The FORALL loop is designed to work with Oracle collections. It lets you insert, update, and delete
bulk data. This section focuses on how to use the FORALL statement and build on the introduction
of collections in Chapter 3. Chapter 6 covers collections in greater depth.

These examples build on the bulk collection examples from the previous section. They also
depend on an item_temp table, which serves as the table for INSERT, UPDATE, and DELETE
statements. You should create the table by using the following syntax:

SQL> CREATE TABLE item_temp
 2 (item_id NUMBER
 3 , item_title VARCHAR2(62)
 4 , item_subtitle VARCHAR2(60));

The following subsections are ordered to support the example code. You insert, update, and
delete the data using FORALL statements. Then, you can drop the item_temp table from the
database.

INSERT Statement
Bulk inserts require that you use scalar collections inside the VALUES clause. That means you can
use parallel collections of scalar variables, or you can use dot notation to supply field elements of
a record collection. Any attempt to simply insert the record into the table raises an ORA-00947
“not enough values” error.

The following example code uses scalar collections to perform a bulk insert:

SQL> DECLARE
 2 -- Define a record type.
 3 TYPE item_record IS RECORD
 4 (id NUMBER
 5 , title VARCHAR2(62)
 6 , subtitle VARCHAR2(60));
 7 -- Define a collection based on the record data type.
 8 TYPE item_table IS TABLE OF ITEM_RECORD;
 9 -- Declare a variable of the collection data type.
 10 lv_fulltitle ITEM_TABLE;
 11 -- Declare an explicit cursor.
 12 CURSOR c IS
 13 SELECT item_id AS id
 14 , item_title AS title
 15 , item_subtitle AS subtitle
 16 FROM item;
 17 BEGIN
 18 OPEN c;
 19 LOOP
 20 FETCH c

05-ch05.indd 208 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 209

 21 BULK COLLECT INTO lv_fulltitle LIMIT 10;
 22 EXIT WHEN lv_fulltitle.COUNT = 0;
 23 FORALL i IN lv_fulltitle.FIRST..lv_fulltitle.LAST
 24 INSERT INTO item_temp
 25 VALUES
 26 (lv_fulltitle(i).id
 27 , lv_fulltitle(i).title
 28 , lv_fulltitle(i).subtitle);
 29 /* Print the number of rows inserted per iteration. */
 30 dbms_output.put_line('['||SQL%ROWCOUNT||'] Inserted.');
 31 END LOOP;
 32 END;
 33 /

The FORALL statement on line 23 reads the lv_fulltitle collection but its size is
constrained with the BULK COLLECT statement’s LIMIT clause. That means the FORALL
statement processes only ten or fewer rows when performing the INSERT statement. The record
type holds an index value to the collection and a component selector (.) to the field element in
the record type. Line 30 shows you how to use the %ROWCOUNT bulk collection attribute on the
implicit INSERT statement to the item_temp table. If you’ve forgotten, the SQL%ROWCOUNT
applies to your last processed DML statement.

The real performance advantage comes by placing the COMMIT statement after the end of the
loop. Otherwise, you commit for each batch of inserts. There are occasions when the size of data
inserted makes it more advantageous to put the COMMIT statement as the last statement in the
loop. You should examine the size factors and discuss them with your DBA when you analyze
statement performance.

If the value of a LIMIT statement is small, such as 10, I recommend that you never commit
inside a loop in production. On the other hand, if the value is between 500 and 1,000, I recommend
that you commit inside the loop. If you don’t write code to commit inside the loop with that type
of record set, you will certainly produce code that adversely impacts the database because it
forces the database to manage unnecessary redo actions.

UPDATE Statement
Bulk updates require that you use parallel scalar collections or field element references to record
collections. As you saw in the previous section, you also must use parallel scalar collections or
field element references to a record collection inside the VALUES clause of an INSERT statement.

The following example code uses scalar collections to perform a bulk UPDATE statement:

SQL> DECLARE
 ... same as previous bulk insert example ...
 23 -- Bulk update statement in a FORALL loop.
 24 FORALL i IN lv_fulltitle.FIRST..lv_fulltitle.LAST
 25 UPDATE item_temp
 26 SET item_id = lv_fulltitle(i).id
 27 , item_title = lv_fulltitle(i).title
 28 , item_subtitle = lv_fulltitle(i).subtitle
 29 WHERE item_id = lv_fulltitle(i).id
 30 AND NOT (item_title = lv_fulltitle(i).title AND
 31 item_subtitle = lv_fulltitle(i).subtitle);

05-ch05.indd 209 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

210 Oracle Database 12c PL/SQL Programming

 ... same as previous bulk insert example ...
END;
/

The FORALL statement on line 24 reads the lv_fulltitle collection and updates rows
where the conditions in the WHERE clause are met. As with the INSERT statement, you should
judge where the COMMIT statement belongs when updating bulk records.

DELETE Statement
In the scope of a FORALL loop, bulk DELETE statements work the same way as bulk INSERT and
UPDATE statements. The prior discussion has focused on the use of parallel scalar collections or
record collections to perform both bulk inserts and updates. While using record collections is the
preferred solution for the INSERT and UPDATE statements, using record collections is not the
best solution for DELETE statements. You can safely use a single scalar collection of surrogate
keys to identify unique rows in a well-defined table.

The following example code uses a scalar numeric collection to perform bulk delete operations:

SQL> DECLARE
 2 -- Define a table of a scalar number data type.
 3 TYPE id_table IS TABLE OF NUMBER;
 4 -- Declare a collection variable.
 5 lv_id ID_TABLE;
 6 /* Declare an explicit cursor to return the primary key
 7 value from a table. */
 8 CURSOR c IS
 9 SELECT item_id AS id
 10 FROM item;
 11 BEGIN
 12 OPEN c;
 13 LOOP
 14 FETCH c
 15 BULK COLLECT INTO lv_id LIMIT 10;
 16 EXIT WHEN lv_id.COUNT = 0;
 17 -- Bulk update statement in a FORALL loop.
 18 FORALL i IN lv_id.FIRST..lv_id.LAST
 19 DELETE
 20 FROM item_temp
 21 WHERE item_id = lv_id(i);
 22 /* Print the number of rows inserted per iteration. */
 23 dbms_output.put_line('['||SQL%ROWCOUNT||']');
 24 END LOOP;
 25 END;
 26 /

Line 3 defines the id_table scalar collection, and line 5 declares a local variable of that
data type. Lines 18 through 21 show you how to write bulk DELETE statements against an
item_id primary key column.

This section has demonstrated how to use bulk collections and the FORALL statement. Bulk
DML statements provide you with significant performance improvements over row-by-row processing.
You should look for opportunities to use them where they improve your application throughput.

05-ch05.indd 210 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 211

%BULK_EXCEPTION Handling
Toward the beginning of this “Bulk Statements” section, Table 5-8 introduces the two bulk
collection attributes, %BULK_ROWCOUNT and %BULK_EXCEPTION. You get the number or rows
inserted, updated, or deleted by a bulk statement when you couple SQL (for the last implicit DML
statement) and the %BULK_ROWCOUNT bulk collection attribute—SQL%BULK_ROWCOUNT. The
%BULK_ROWCOUNT bulk collection attribute returns the total number, the limit imposed, or the
residual number for the last INSERT, UPDATE, or DELETE statement.

%BULK_EXCEPTION returns three field values: COUNT, ERROR_INDEX, and ERROR_CODE.
The ERROR_CODE value is a positive integer, which means you need to multiply any ERROR_
CODE value by –1 before looking for its error message. You can access the fields by first coupling
SQL to the %BULK_EXCEPTION collection attribute and then using a component selector (.)
before the field name, like this:

SQL%BULK_EXCEPTIONS.COUNT

Oracle’s exception handling model is like that of most programming languages—straightforward.
When a program encounters an error, it raises an exception (in the Java programming language, it
throws an exception). The exception block captures and handles thrown exceptions, and exceptions
typically stop the program.

Bulk processing has two options. The default option accepts the default exception handling
paradigm and stops processing a program’s logic with a single error. The override option lets you
log errors and continue with the bulk processing until the completion of an INSERT, UPDATE, or
DELETE statement. You override the default behavior by appending a SAVE EXCEPTIONS clause
to the FORALL statement. Bulk exceptions raise an ORA-24381 error code. You need to define a
user-defined exception (covered briefly in Chapter 3 and in detail in Chapter 7) to manage bulk
exceptions because there isn’t a predefined exception for bulk exceptions in the standard
package.

The following example demonstrates how you handle bulk exceptions. It changes a few things
from the prior example. The record type is different, and a unique constraint on the item_title
and item_type columns will raise some errors when the program runs. The errors are important
because they show you how to handle bulk exceptions.

SQL> DECLARE
 2 /* Define a record type. */
 3 TYPE item_record IS RECORD
 4 (id NUMBER
 5 , title VARCHAR2(62)
 6 , type VARCHAR2(60));
 7 /* Define a collection based on the record data type. */
 8 TYPE item_table IS TABLE OF ITEM_RECORD;
 9 /* Declare a variable of the collection data type. */
 10 lv_fulltitle ITEM_TABLE;
 11 /* Declare an explicit cursor. */
 12 CURSOR c IS
 13 SELECT item_id AS id
 14 , item_title AS title
 15 , item_type AS type
 16 FROM item;
 17 /* Declare a bulk error and map it to Oracle's error code. */

05-ch05.indd 211 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

212 Oracle Database 12c PL/SQL Programming

 18 bulk_error EXCEPTION;
 19 PRAGMA EXCEPTION_INIT(bulk_error, -24381);
 20 BEGIN
 21 OPEN c;
 22 LOOP
 23 FETCH c
 24 BULK COLLECT INTO lv_fulltitle LIMIT 5;
 25 EXIT WHEN lv_fulltitle.COUNT = 0;
 26 FORALL i IN lv_fulltitle.FIRST..lv_fulltitle.LAST SAVE EXCEPTIONS
 27 INSERT INTO item_temp
 28 VALUES
 29 (lv_fulltitle(i).id
 30 , lv_fulltitle(i).title
 31 , lv_fulltitle(i).type);
 32 /* Print the number of rows inserted per iteration. */
 33 dbms_output.put_line(
 34 '['||SQL%ROWCOUNT||'] Inserted Successfully');
 35 END LOOP;
 36 EXCEPTION
 37 WHEN bulk_error THEN
 38 /* Print the count of bulk errors. */
 39 dbms_output.put_line(
 40 '['||SQL%ROWCOUNT||'] Inserted Successfully');
 41 /* Print individual errors. */
 42 FOR i IN 1..SQL%BULK_EXCEPTIONS.COUNT LOOP
 43 dbms_output.put_line('['
 44 || SQL%BULK_EXCEPTIONS(i).ERROR_INDEX ||'] ['
 45 || SQLERRM(-1 * SQL%BULK_EXCEPTIONS(i).ERROR_CODE) ||']');
 46 END LOOP;
 47 END;
 48 /

Lines 18 and 19 declare a user-defined exception and a precompiler directive that maps the
ORA-24381 exception to a bulk_error exception handler. Line 24 sets the LIMIT of bulk
inserts at five rows for each call of the FORALL loop. The FORALL statement on line 26 has a
SAVE EXCEPTIONS clause at its end, which ensures that exceptions are collected while the
FORALL completes the bulk INSERT statement.

Line 45 calls the SQLERRM function with a complex call parameter. While the call parameter
should be a negative number, the error_code field of the %BULK_EXCEPTION statement
returns a positive integer. That’s why we multiply it by a negative inverse (or –1).

It produces the following type of results:

[5] Inserted Successfully
[5] Inserted Successfully
[5] Inserted Successfully
[3] Inserted Successfully
[4] [ORA-00001: unique constraint (.) violated]
[5] [ORA-00001: unique constraint (.) violated]

05-ch05.indd 212 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 213

The anonymous block processes five rows for each bulk INSERT statement. During the last
bulk INSERT statement of five rows, three rows are inserted successfully while two rows are rejected.
The two rejected rows violate a UNIQUE database constraint on the combination (covered in
Appendix A). The completion of the fourth bulk INSERT statement raises an ORA-24381 exception,
and throws control to the exception block.

This section has shown you how to manage bulk DML statements.

Review Section
This section has described the following points about bulk statements:

 ■ Bulk processing can work with parallel collections of scalar data types or collections
of record data types.

 ■ The BULK COLLECT statement lets you gather rows from a cursor into a collection,
and collections can be single or parallel collections of scalar data types, or collections
of records.

 ■ PL/SQL supports the %BULK_EXCEPTIONS(i) and %BULK_ROWCOUNTS(i) bulk
collection attributes.

 ■ The FORALL statement lets you take a collection and pass it to an INSERT, UPDATE,
or DELETE statement.

 ■ The %ROWCOUNT attribute also works with bulk inserts, updates, and deletes, but in the
case of MERGE statements, you’re never sure which rows are inserted or updated.

 ■ Record collections work best when FORALL statements work with INSERT or UPDATE
statements.

 ■ Single scalar collections work best when FORALL statements work with DELETE
statements.

 ■ By default, Oracle’s exception handling stops program logic with a single error, which
isn’t optimal for bulk processing. The %BULK_EXCEPTION collection attribute lets you
override the default exception handling process in a FORALL statement, and lets you
capture errors for problem rows while successfully processing those rows without errors.

Supporting Scripts
This section describes programs placed on the McGraw-Hill Professional website to support this
chapter.

 ■ The conditional_logic.sql program contains small programs that support the
“Conditional Statements” section of this chapter.

 ■ The iterative_logic.sql program contains small programs that support the
“Iterative Statements” section of this chapter.

 ■ The bulk_processing_logic.sql program contains small programs that support
the “Bulk Statements” section of this chapter.

05-ch05.indd 213 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

214 Oracle Database 12c PL/SQL Programming

Summary
This chapter has examined the control structures in PL/SQL. You should understand how to effectively
use conditional statements and iterative statements. You should also understand how to build and
manage cursors in your PL/SQL programs.

Mastery Check
The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix I for answers to
these questions.

True or False:

1. ___Conjunctive logic involves determining when two or more things are true at the same
time.

2. ___Inclusion logic involves determining when one or another thing is true at any time.

3. ___Short-circuit logic occurs with inclusion logic.

4. ___Databases always rely on two-valued logic.

5. ___A searched CASE statement may use a string or numeric selector.

6. ___A simple CASE statement can use a numeric selector.

7. ___Conditional compilation supports conditional compilation flags.

8. ___A CONTINUE statement lets you skip the balance of an iteration through a loop.

9. ___A SELECT-INTO statement is an example of an explicit cursor.

10. ___The FORALL statement lets you perform bulk INSERT statements.

Multiple Choice:

11. A conditional statement applied against two operands can evaluate which of the following?
(Multiple answers possible)

A. The truth of a comparison involving only not-null values

B. The non-truth (or falsity) of a comparison involving only not-null values

C. The truth of a comparison involving one or more null values

D. The non-truth (or falsity) of a comparison involving one or more null values

E. The truth of null values

12. Which of the following are only guard-on-entry loops? (Multiple answers possible)

A. A simple range loop

B. A range FOR loop

C. A WHILE loop

D. A DO-UNTIL loop

E. A DO-WHILE loop

05-ch05.indd 214 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 5: Control Structures 215

13. Which of the following guards entry and exit to the loop in PL/SQL? (Multiple answers
possible)

A. A range FOR loop

B. A cursor FOR loop

C. A simple loop

D. A DO-WHILE loop

E. A WHILE loop

14. Which of the following are only guard-on-exit loops? (Multiple answers possible)

A. A simple cursor loop

B. A simple range loop

C. A cursor FOR loop

D. A WHILE loop

E. A range FOR loop

15. Which of the following collections work best with a bulk delete operation on a well-
defined (or normalized) table with a surrogate key for its single-column primary key?
(Multiple answers possible)

A. Parallel scalar collections

B. A single scalar collection

C. A single record collection

D. All of the above

E. None of the above

05-ch05.indd 215 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

05-ch05.indd 216 12/13/13 5:12 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

CHAPTER
6

Collections

06-ch06.indd 217 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

218 Oracle Database 12c PL/SQL Programming

Collections are arrays and lists—at least, that’s the way they’ve been labeled since the
advent of Java. An array is a collection of a fixed number of elements that share the
same data type. A list is a collection of any number of elements that share the same data

type. A list is generally more flexible than an array because you don’t have to know before you
create a list how many elements belong in the collection

Oracle Database 12c provides you with a very powerful collection framework, and the framework
lets you create collections in a SQL or PL/SQL context. You can use the collection framework to
create the equivalent of arrays, sets, bags, hash tables, and unordered tables.

There are four sections in this chapter. The “Introduction to Collections” section explains
the Oracle Database 12c collection framework. The “Object Types: Varray and Table Collections”
section shows you how to create and work with varrays and table collections. The “Associative
Arrays” section shows you how to work with structures that map keys to values. The “Oracle
Collection API” section describes and illustrates the application programming interface (API) for
Oracle’s collection types.

Introduction to Collections
Oracle 8i Database forward provides three types of collections. Two are SQL collections and one
is a PL/SQL-only collection. Oracle implements a SQL array as a varray data type and implements
a SQL list as a table data type. The PL/SQL-only collection is an associative array or an index-by
table data type and is implemented as a list. While the SQL collections are numerically indexed,
you can index an associative array with numbers or strings.

You can implement Oracle SQL collection data types in SQL or PL/SQL. SQL collections are
schema-level object types. Although you can implement SQL collection data types in PL/SQL, it’s
best to implement them in SQL, because any SQL data type can be accessed from SQL or PL/SQL.
Associative arrays don’t enjoy this interchangeable characteristic, and their use is limited to inside
a PL/SQL scope.

Oracle Database 12c does provide the ability to use a PL/SQL composite data type inside an
embedded SQL statement. However, you must declare a local variable of the PL/SQL collection
type in the local or containing PL/SQL block first. Then, you embed the SQL statement in the local
PL/SQL block. There’s a complete example in the “PL/SQL-Specific Data Types Allowed in SQL”
section of Chapter 2.

Oracle PL/SQL Tables
The Oracle Database PL/SQL Language Reference 12c Release 1 tells us that associative
arrays were previously called PL/SQL tables or index-by tables. Thus, to be consistent with
Oracle’s official lingo, you should use the term associative array instead. If you frequent
Oracle forums, don’t be surprised if you still encounter the term PL/SQL table or index-by
table being used in discussions.

06-ch06.indd 218 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 219

Beyond the scope limitation, PL/SQL index-by tables differ from the varray and table object
types in four key ways: initialization, assignment, index, and base data types. Table 6-1 highlights
the differences between how these different collection types work.

Chapter 4 covers the three composite data types: two are the UDT object and PL/SQL record
data types, and the third is a collection. The simplest one is a collection of a scalar data type, like
a number, string, or date. The scalar data type for this type of collection is the collection’s base type.
All collections are final data types. That means you can’t extend their behavior. The reason that
they are final data types isn’t explained in Oracle’s documentation (the Oracle Database PL/SQL
Language Reference and Oracle Object-Relational Developer’s Guide), but Oracle 8i forward
provides a Collection API to help you work with and manage collections. The Oracle Database
PL/SQL Language Reference uses Table 6-2 to qualify how non-PL/SQL composite types map to
these PL/SQL composite types.

SQL Collections Associative Arrays

Scope May be defined in SQL or PL/SQL scope. Are defined only in PL/SQL scope.

Initialization Require initialization before their first use. Don’t require initialization.

Assignment Preallocate space before assigning
values. You can preallocate space and
assign values for more than one element
at a time.

Don’t need to allocate space
because you manually assign
indexes and values one row at
a time.

Index Use a sequential set of integers as index
values (at least initially for the table data
types), which makes SQL collections
densely populated arrays and lists.

Use an integer or string as the
index, and the index value may
be in any order you like, which
makes associative arrays sparsely
populated lists.

Base Data Type Use any SQL scalar data type or UDT
object type.

Use any SQL or PL/SQL scalar
data type or a PL/SQL record type.

TABLE 6-1. Differences Between SQL Collections and Associative Arrays

Non PL/SQL Composite Type Equivalent PL/SQL Composite Type

Hash table Associative array

Unordered table Associative array

Set Nested table

Bag Nested table

Array Varray

TABLE 6-2. Map of Non PL/SQL to PL/SQL Composite Types

06-ch06.indd 219 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

220 Oracle Database 12c PL/SQL Programming

A record data type generally contains a collection of related field elements, similar to a row in
a table. That means a record structure is like a table structure, and a collection of a record
structure is like an in-memory PL/SQL-only table.

Object types have both subtle differences and broad differences from record data types. The
subtle difference occurs when you define a SQL object type without methods, because it creates
a SQL data type that mimics a PL/SQL record type. The subtle difference for assigning data to it
requires that you use a constructor function, which is just like a VALUES clause of an INSERT
statement. The values must match by position and data type the list of attributes in the object type.
Oracle checks the position and data type of attributes by implicitly inspecting the automatically
generated default object constructor (see Chapter 11 for the details).

Before I explain the broad differences, you need to understand how and where you can
define and use SQL and PL/SQL object types and PL/SQL record types. You can define object
types as schema-level objects in any container or pluggable database or inside any PL/SQL
declaration block. You can define record types inside any PL/SQL declaration block.

It’s possible to use object and record types in an anonymous or named block that has access
to the declaration block where they’re defined. Object and record types are locally available
when they’re defined in the local declaration block. They’re also available when defined in an
outer declaration block for nested PL/SQL programs. Object and record types are more broadly
available when they’re defined in package specifications, because any PL/SQL program run by a
user that has execute privileges on that package can use them.

Object types can define the data type of a column in a table, the structure of a table, the data
type of a parameter in a function or procedure, and the data type of a return type from a function.
Record types can also serve as parameters in stored programs or as function return types. Naturally,
collections of object and record types inherit the same features and limitations as their base
data types.

The broad difference between object types and record types are as follows:

 ■ Object types can define column data types and table structures, while record types can’t.

 ■ Object types can serve as parameter data types in functions and procedures called from
SQL or PL/SQL, while record types can only work in an exclusively PL/SQL call context.

 ■ Collections of object types can define column data types but not table structures.

 ■ Collections of object types can work in SQL and PL/SQL contexts, while collections of
record types are limited to PL/SQL-only contexts.

The similarities and differences of the base data types impact how you work with collections
of them. Figure 6-1 shows when you can call collections as parameters and function returns. You
should notice that SQL collection data types may be consumed in SQL scope or PL/SQL scope,
with one exception: an aggregate table. Aggregate tables occur whenever you return a SQL
collection from a function or return a PL/SQL collection from a pipelined table function (see
Chapter 8 for more details). Aggregate tables are essentially the same as result sets from SELECT
statements, and that’s why they have an asterisk in Figure 6-1.

06-ch06.indd 220 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 221

Object Types: Varray and Table Collections
As discussed, collections are programming structures that hold sets of like things, and they fall
into two categories, arrays and lists. Arrays typically have a physical size allocated when you
define them, while lists have no physical size limit. Oracle implements arrays as the varray data
type and lists as the table data type.

Oracle lets you define schema-level object types that hold collections of scalar or object data
types. It’s also possible that a collection may hold object types that contain other nested varray or
table collections. Whether a collection holds a scalar or composite data type, it holds what’s
known as its base data type.

A SQL collection of a scalar data type is an Attribute Data Type (ADT), while a collection of
an object type is a user-defined type (UDT). The allocation of space for new members of a SQL
collection is essential. Space allocation implicitly increments by one the integer value of the next
index. This makes object type collections densely indexed.

The following subsections cover SQL varray and table data types.

Varray Collections
Varray collections are single-dimensional structures that have a maximum number of elements.
The elements all have the same data type. As mentioned, the element data type is the base data
type of the varray collection.

The prototype for creating a SQL varray collection is

TYPE type_name IS {VARRAY | VARYING ARRAY}(size_limit) OF data_type
 [NOT NULL];

By default, new elements can be null. You must append the NOT NULL clause when you
define a collection to preclude null values, although it’s generally a good practice to allow null
values while ensuring you only add elements that aren’t null. You should preclude null values
only when you want to raise an exception while trying to assign a null value to a collection.

FIGURE 6-1. Collection access and return type scopes

SQL
Call

Parameter

SQL
Function
Return

PL/SQL
Function
Return

Varray

Nested Table

Associative Array

Yes

Yes

Varray

Nested Table SQL

PL/SQL

Collection
Data Type

PL/SQL
Call

Parameter

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Scope

Aggregate Table* Yes

06-ch06.indd 221 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

222 Oracle Database 12c PL/SQL Programming

You would define a three-element varray of strings in SQL with the following syntax:

SQL> CREATE OR REPLACE
 2 TYPE sql_varray IS VARRAY(3) OF VARCHAR2(20);
 3 /

Or, like this:

SQL> CREATE OR REPLACE
 2 TYPE sql_varray IS VARYING ARRAY(3) OF VARCHAR2(20);
 3 /

In both cases, line 1 uses SQL syntax to create or replace a schema-level object type. Line 2
defines the varray collection, and the syntax on line 2 is how you would define a varray collection
in a PL/SQL declaration block. Line 3 executes or compiles the type.

You can actually construct and use object types within a SQL statement without any other
components. While it’s not too useful, the following example shows how to do it:

SQL> SELECT column_value AS "Three Stooges"
 2 FROM TABLE(sql_varray('Moe','Larry','Curly'));

The SELECT list only returns a column_value pseudocolumn, which holds the results of
any aggregate result returned by an ADT collection. The “Three Stooges” column alias just adds
a formatting touch. The key to reading the collection is the TABLE function, which you can read
more about in Appendix C. The query constructs a three-element collection inside the call to the
TABLE function on line 2.

The results are

Three Stooges

Moe
Larry
Curly

You can order the return values by appending an ORDER BY clause that references the position
of the column_value pseudocolumn:

 3 ORDER BY 1;

You can also override the default sort order with an ORDER MEMBER function when you
implement an object body (see Chapter 11 for the details). Its ill advised to override the default

What’s in a Name?
As indicated in the prototype, VARRAY and VARYING ARRAY can be used interchangeably,
but the most common use is VARRAY. So, unless you rely on GeSHi (Generic System
Highlighter) tools, most of which highlight VARYING ARRAY but not VARRAY, you should
use the term VARRAY.

06-ch06.indd 222 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 223

sort operation of an ADT. The one exception to that rule is when you're using an encrypted scalar
data type as the base data type of the collection.

You would define a three-element varray of strings in PL/SQL with the following syntax in any
declaration block:

SQL> DECLARE
 2 /* Define a local PL/SQL collection. */
 3 TYPE sql_varray IS VARRAY(3) OF VARCHAR2(20);
 4 BEGIN
 5 ...
 6 END;
 7 /

The code in the execution and exception blocks would be exactly the same whether you
define the varray collection in SQL or PL/SQL. Let’s rework the example to construct and consume
values from a varray collection in PL/SQL. This time, we declare an lv_stooges variable by
constructing it with a list of two rather than three string elements. The code follows:

SQL> DECLARE
 2 /* Declare a collection variable with a constructor call. */
 3 lv_stooges SQL_VARRAY := sql_varray('Moe','Larry');
 4 BEGIN
 5 /* Print the number and limit of elements. */
 6 dbms_output.put_line(
 7 'Count ['||lv_stooges.COUNT||'] '||
 8 'Limit ['||lv_stooges.LIMIT||']');
 9
 10 /* Extend space and assign to the new index. */
 11 lv_stooges.EXTEND;
 12
 13 /* Print the number and limit of elements. */
 14 dbms_output.put_line(
 15 'Count ['||lv_stooges.COUNT||'] '||
 16 'Limit ['||lv_stooges.LIMIT||']');
 17
 18 /* Assign a new value. */
 19 lv_collection(lv_stooges.COUNT) := 'Curly';
 20
 21 /* Iterate across the collection to the total number of elements. */
 22 FOR i IN 1..lv_stooges.COUNT LOOP
 23 dbms_output.put_line(lv_stooges(i));
 24 END LOOP;
 25 END;
 26 /

Line 3 declares an lv_stooges variable of the sql_varray collection shown earlier. The
call to the sql_varray data type with a list of two strings creates an object type collection with
two elements. It’s possible to construct an empty collection by calling the constructor without any
call parameters, like this variation on line 3:

 3 lv_stooges SQL_VARRAY := sql_varray();

06-ch06.indd 223 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

224 Oracle Database 12c PL/SQL Programming

All varray and table data types have three possible states: null, empty, and populated. A null
collection is uninitialized; an empty collection is initialized without any elements; and a
populated collection is initialized with at least one element. You use the IS NULL comparison
operator to check whether a collection is uninitialized before you work with it. The IS EMPTY
comparison operator lets you find an empty collection, and the COUNT function lets you discover
how many elements a collection has. The COUNT function is part of the Oracle Collection API and
is available for all three collection types. The Collection API also includes the LIMIT function,
which lets you find the maximum number of elements in a varray. You use the COUNT and LIMIT
function by appending them after the component selector (.).

Lines 6 through 8 print a COUNT value of 2 and a LIMIT value of 3 because you have
allocated space for two out of three possible elements in the varray. Line 11 extends memory
space for a third element, which automatically creates a new index value of 3, and it points to a
null element. Lines 14 through 16 print a COUNT and LIMIT value of 3 because you have now
allocated space for all three possible elements. Line 18 assigns a value to the new element of the
collection. It identifies the new element by relying on the 1-based numbering of collections and
the fact that the COUNT function returns a correct index value for the last element in a collection.

Line 23 prints all the elements of the collection, but notice how it identifies the elements of
the collection. It uses a parenthetical reference to the index value of the collection, and that’s
different from other programming languages. Many languages use square brackets to offset index
values, but Oracle uses ordinary parentheses.

If you disallow null values by changing the earlier definition of the sql_varray data type,
the attempt to assign a null value on line 19 would raise the following exception:

 lv_collection(lv_collection.COUNT) := NULL;
 *
ERROR at line 18:
ORA-06550: line 18, column 41:
PLS-00382: expression is of wrong type
ORA-06550: line 18, column 3:
PL/SQL: Statement ignored

The physical size limit guarantees a varray collection can hold only so many elements. This
limit is often a key reason for using or avoiding the varray data type. Choosing a varray data type
as a developer means you want your program to fail when it attempts to assign a value beyond
the limit of possible values. Making that choice is a convenient way to raise an exception when
data violates a “no more than” type of rule. It also eliminates writing additional logic to check
whether the number of results exceeds a target limit. That’s because the varray does that check for
you by raising an out-of-bounds error.

We can generate an out-of-bounds error with the prior sample code by making one change.
Change the constructor call on line 3 from a list of two elements to a list of three elements (using
the original third stooge—Shemp, Curly’s real-life brother), like

 2 lv_collection SQL_VARRAY := sql_varray('Moe','Larry','Shemp');

You would now raise the following exception on line 10 when attempting to add space for an
element beyond the physical limit of three elements:

DECLARE
*

06-ch06.indd 224 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 225

ERROR at line 1:
ORA-06532: Subscript outside of limit
ORA-06512: at line 10

You would get virtually the same message if you were to attempt to access a varray with an
index value of 0. That’s because a varray always starts with an index value of 1. You can have a
0 index value in an associative array because it follows different rules.

Since varray and table collections have the same syntax when working with SQL object types and
PL/SQL record types, to avoid redundancy, those examples are presented in the next section only.

Table Collections
Table collections are single-dimensional structures that have no limit on the number of elements
that they hold—at least, no limit exists other than what’s available in the database resources. The
key resources that may impose limits are the System Global Area (SGA) and the Program Global
Area (PGA). Like a varray collection, the elements of table collections must all have the same data
type. The base type of a table collection, like a varray, is the data type of the elements held in the
collection. Table collections can hold scalar or composite data types.

The prototype for creating a SQL table collection is

TYPE type_name IS TABLE OF data_type [NOT NULL];

Unlike the varray collection discussion in the previous section, in this section we work
through table collections of scalar and composite data types. We also will look at local and
package-level PL/SQL collections.

Scalar Table Collections
Like varray collections, you have the option of allowing or disallowing null values. While the default
allows null values, appending a NOT NULL clause disallows them. The best practice is to allow
null values while ensuring that you only add elements that aren’t null (although some programmers
disallow null values to ensure null value assignments raise exceptions).

You would define a table of strings in SQL with the following syntax:

SQL> CREATE OR REPLACE
 2 TYPE sql_table IS TABLE OF VARCHAR2(20);
 3 /

Line 1 uses SQL syntax to create or replace a schema-level object type. Line 2 defines the table
collection, and the syntax on line 2 is how you would define a table collection in a PL/SQL
declaration block. Line 3 runs or compiles the type.

Like the varray collection example in the previous section, you can query a table collection
by using the TABLE function in the FROM clause of a query. Here’s the example of constructing
and consuming the collection in a query:

SQL> SELECT column_value AS "Dúnedain"
 2 FROM TABLE(sql_varray('Aragorn','Faramir','Boromir'))
 3 ORDER BY 1;

The TABLE function call on line 3 converts the table collection into an aggregate result set.
All return sets from queries are formally aggregate result sets. ADTs display their results by using

06-ch06.indd 225 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

226 Oracle Database 12c PL/SQL Programming

the column_value pseudocolumn. The example also uses a column alias, Dúnedain, to format
the result set from the query, and returns the following results:

Dúnedain

Aragorn
Boromir
Faramir

The problem with ADT collections is that you have no way to unnest them when they’re used
inside a table. That means the only way to add or update an element is through PL/SQL. The “PL/
SQL to the Rescue of Updating an ADT Element” sidebar in the “Nested Table Updates” section of
Appendix B shows you how to update an embedded ADT element. Therefore, in this section I’ll
only show you how to add a new element to an ADT by using a PL/SQL function. While an
anonymous block could illustrate it, a forward reference to a function seems more effective to use
with an UPDATE statement.

The code for the add_element function is

SQL> CREATE OR REPLACE FUNCTION add_element
 2 (pv_table SQL_TABLE
 3 , pv_element VARCHAR2) RETURN SQL_TABLE IS
 4
 5 /* Declare a local table collection. */
 6 lv_table SQL_TABLE := sql_table();
 7 BEGIN
 8
 9 /* Check for an initialized collection parameter. */
 10 IF pv_table.EXISTS(1) THEN -- A suboptimal comparison.
 11 lv_table := pv_table;
 12 END IF;
 13
 14 /* Check for a not null element before adding it. */
 15 IF pv_element IS NOT NULL THEN
 16 /* Extend space and add an element. */
 17 lv_table.EXTEND;
 18 lv_table(lv_table.COUNT) := pv_element;
 19 END IF;
 20
 21 /* Return the table collection with its new member. */
 22 RETURN lv_table;
 23 END;
 24 /

Line 2 declares a formal collection parameter, and line 3 declares a formal collection return
type. The logic of the program ensures one of four outcomes:

 ■ Adds an element to a collection with at least one preexisting member

 ■ Adds an element to an empty collection

 ■ Doesn’t add a null element to a populated or empty collection

 ■ Initializes an empty collection

06-ch06.indd 226 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 227

Line 6 declares an empty lv_table collection because the pv_table call parameter may
hold a null value. Initializing the lv_table collection prevents raising an uninitialized collection
error.

Line 10 checks whether the pv_table call parameter holds at least one member. It uses the
EXISTS function with what should be the first index value of the table collection. We make that
check because there’s no sense assigning an empty collection to the local lv_table collection
variable. While the EXISTS function works by using the first index value as a call parameter, it’s
a better practice to use an IS NOT EMPTY comparison operator, like

10 IF pv_table IS NOT EMPTY THEN -- The BEST PRACTICE always!

You ask, “Why is it a better practice?” That’s a great question. The answer is tricky, and it is
specific to table collections. While varray and table indexes start out at 1, and they are densely
populated with sequential integers, it’s possible to delete elements. Deleting elements creates gaps
in the sequence of index values. That’s why checking for the first element may or may not work.
All it does is check whether the first element is present. That’s not what you want to know in this
type of comparison. You want to know whether a table collection is populated. That’s why you should
always use the IS EMPTY comparison operator to check whether a table collection is populated.

You can add an element to an ADT that is nested inside a table when you call the add_an_
element function inside an UPDATE statement. The following UPDATE statement show you how
to add a new element to a nested ADT inside the employee table (the employee table is defined
in the “Nested Table Updates” section of Appendix B).

SQL> UPDATE TABLE (SELECT e.home_address
 2 FROM employee e
 3 WHERE e.employee_id = 1) e
 4 SET e.street_address = add_an_element(e.street_address, 'Suite 622')
 5 , e.city = 'Oakland'
 6 WHERE e.address_id = 1;

Line 4 calls the add_an_element function with the original street_address ADT column
value and a string literal value. Line 4 then assigns the function result to the street_address
ADT column. You also can write an update function to change an ADT column value (see
Appendix B for an example), and a delete function to remove an element from an ADT column.

Line 15 verifies the pv_element value isn’t null. It extends space for the table collection
and assigns the pv_element value to the collection on lines 17 and 18. You can test the add_
element function in a query, like

SQL> SELECT column_value AS "Dúnedain"
 2 FROM TABLE(add_element(sql_table('Faramir','Boromir')
 3 ,'Aragorn'))
 4 ORDER BY 1;

It prints the ordered set:

Dúnedain

Aragorn
Boromir
Faramir

06-ch06.indd 227 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

228 Oracle Database 12c PL/SQL Programming

The Case of the Missing Index
All varray and table collections start out with numeric index values, and they start with 1 in
all cases. While you can’t remove an element from a varray, you can remove an element
from a table collection. You do it by using the DELETE procedure from the Collection API.
That means a dense table index may become sparse over the instruction sequence of your
program.

A deleted item is a major issue for most developers because they increment across
collections by using a FOR loop. A FOR loop simply iterates to the next member and it can't
skip index gaps. However, the best method to illustrate the easy way and the hard way of
navigating across a sparsely populated table collection (or at least one at risk of being
sparsely populated) is to use a WHILE loop, so that’s what we’ll use in the following sample
programs.

The first sample program iterates across the collection without using an increment-by-
one logic. This is the easy way to iterate across any collection where the numeric index
value may have gaps or the index is a string (more or less a linked list).

SQL> DECLARE
 2 /* Declare a meaning-laden variable name and exclude the
 3 lv_ preface from the variable name. */
 4 current INTEGER;
 5
 6 /* Declare a local table collection. */
 7 lv_table SQL_TABLE :=
 8 sql_table('Aragorn','Faramir','Boromir');
 9 BEGIN
 10 /* Remove the lead element of a table collection. */
 11 lv_table.DELETE(1);
 12
 13 /* Set the starting point. */
 14 current := lv_table.FIRST;
 15
 16 /* Check pseudo index value less than last index value. */
 17 WHILE (current <= lv_table.LAST) LOOP
 18 /* Print current value. */
 19 dbms_output.put_line(
 20 'Index ['||current||']['||lv_table(current)||']');
 21
 22 /* Shift the index to the next value. */
 23 current := lv_table.NEXT(current);
 24 END LOOP;
 25 END;
 26 /

Note on line 4 that the current variable violates the generic rules for naming variables
(it lacks the prefix lv_). That’s because the current variable name has special meaning as
the current index value, and it makes our program more readable. The current variable
holds the current index value. Line 14 assigns the starting index value, which in this case is 2.

06-ch06.indd 228 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 229

The WHILE loop guard on entry checks whether the current value is less than the last value
(also the maximum value). Line 23 increments the current index to the next available value,
which may mean by one, two, or more. The NEXT function takes the current index value to
find the next index value.

The hard way to iterate across a collection with a sparse index uses increment-by-one
logic and a CONTINUE, GOTO, or IF statement to skip over logic when an index value is
missing, as shown in the following sample program:

SQL> DECLARE
 2 /* Declare a local counter variable. */
 3 lv_counter INTEGER := 0;
 4
 5 /* Declare a local table collection. */
 6 lv_table SQL_TABLE :=
 7 sql_table('Aragorn','Faramir','Boromir');
 8 BEGIN
 9 /* Remove the lead element of a table collection. */
 10 lv_table.DELETE(1);
 11
 12 /* Check pseudo index value less than last index value. */
 13 WHILE (lv_counter <= lv_table.LAST) LOOP
 14 /* Increment the index counter. */
 15 lv_counter := lv_counter + 1;
 16
 17 /* Check whether the index returns a value. */
 18 IF lv_table.EXISTS(lv_counter) THEN
 19 dbms_output.put_line(
 20 'Values ['||lv_counter||']['||lv_table(lv_counter)||']');
 21 END IF;
 22 END LOOP;
 23 END;
 24 /

Line 3 declares the lv_counter variable and sets the initial value to 0, but line 10
deletes that element. Line 13 checks whether the counter value is less than or equal to the
last numeric index value before entering the loop. Line 18 checks if an index value references
an element in the collection. It only prints output when the element is found.

The first example works best for sparsely populated indexes. The second example, minus
the check for a valid index value, works best for densely populated indexes.

Let’s look at reimplementing this as an associative array (previously called PL/SQL tables or
index-by tables) collection. Recall that we have two options: implement a local table collection
or implement a package-level table collection. Any user with execute privileges on the package
where you define a table data type can use a package-level variable.

06-ch06.indd 229 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

230 Oracle Database 12c PL/SQL Programming

The following uses a local table collection data type:

SQL> DECLARE
 2 /* Define a local table collection. */
 3 TYPE plsql_table IS TABLE OF VARCHAR2(20);
 4
 5 /* Declare a local table collection. */
 6 lv_table PLSQL_TABLE :=
 7 plsql_table('Aragorn','Faramir','Boromir');
 8 BEGIN
 9 /* Loop through the collection and print the results. */
 10 FOR i IN lv_table.FIRST..lv_table.LAST LOOP
 11 dbms_output.put_line(lv_table(i));
 12 END LOOP;
 13 END;
 14 /

Line 3 defines a local table collection. Lines 6 and 7 declare a local variable that uses the
local plsql_table collection type. A range FOR loop lets us navigate through the collection
and print results. This local plsql_table data type is only available inside the anonymous
block program.

A better solution with an associative array collection requires that you implement it in a
package specification. While you’ve only had a brief introduction to packages in Chapter 3, it’s
necessary to define a package specification to support this example.

You can define PL/SQL-only data types in a package specification. Variables defined in package
specifications are package-level data types. Sometimes package specifications only act to define
UDTs. When they do so, they don’t have accompanying package bodies and are known as
bodiless packages.

The initial type_library defines only a table collection data type:

SQL> CREATE OR REPLACE PACKAGE type_library IS
 2 /* Define a local table collection. */
 3 TYPE plsql_table IS TABLE OF VARCHAR2(20);
 4 END;
 5 /

Line 3 shows that the definition of a package-level collection type is the same as the definition
of a local PL/SQL collection type. The next program mirrors the prior anonymous block program
with one exception: it no longer defines a local plsql_table collection type. That’s because
the lv_table variable uses the package-level data type.

SQL> DECLARE
 2 /* Declare a local table collection. */
 3 lv_table TYPE_LIBRARY.PLSQL_TABLE :=
 4 type_library.plsql_table('Aragorn','Faramir','Boromir');
 5 BEGIN
 ...
 10 END;
 11 /

06-ch06.indd 230 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 231

Line 3 declares a variable by referring to the package name and data type name. The component
selector (.) selects the data type from the package specification. You should note that both the
data type and table collection constructor must reference the package and data type.

Having shown you the possibilities with scalar collections, the next section shows you how to
work with composite collections.

Composite Table Collections
There are two types of composite collections. One is a collection of an object type, and the other
is a collection of an object type that holds a nested collection. Collections that hold other collections
are multilevel collections.

A composite data type or object type that holds only scalar variables is a symmetrical element,
which means all elements contain one instance of the composite set of columns. A composite
data type that holds scalar and composite data types can still be symmetrical provided that the
nested composite data type is like a record structure (or a single row). A composite data type is
asymmetrical when it has one member attribute (or field) that is a collection data type.

The subsections that follow show you how to implement symmetrical and asymmetrical
composite variables in collections. Appendix B discusses how you work with composite data
types in tables. The same appendix also shows you how to write unnested queries and update
nested tables.

Symmetrical Composite Table Collections To look at an example of a symmetrical composite
table collection, we first need to create a few composite object types. A simple composite object
type has two or more columns, and this one has just two attributes (or fields) to keep it manageable.
Recall that object types are SQL data types, not PL/SQL data types, and that you must define them
as schema-level objects.

The following creates a prominent_object composite object type at the schema level:

SQL> CREATE OR REPLACE
 2 TYPE prominent_object IS OBJECT
 3 (name VARCHAR2(20)
 4 , age VARCHAR2(10));
 5 /

Next, let’s create another composite object type that uses the original prominent_object
composite object type. The people_object composite object type holds one copy of the
prominent_object composite object type, as qualified in the following example:

SQL> CREATE OR REPLACE
 2 TYPE people_object IS OBJECT
 3 (race VARCHAR2(10)
 4 , exemplar PROMINENT_OBJECT);
 5 /

Line 4 defines a variable of the prominent_object composite object type.
The last step creates a table collection of the composite object type:

SQL> CREATE OR REPLACE
 2 TYPE people_table IS TABLE OF people_object;
 3 /

06-ch06.indd 231 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

232 Oracle Database 12c PL/SQL Programming

Like the varray and table collection examples presented earlier, the primary definition is on
line 2. After creating these types, you can query them with the following (albeit complex) syntax:

SQL> COLUMN EXEMPLAR FORMAT A40
SQL> SELECT *
 2 FROM TABLE(
 3 SELECT CAST(COLLECT(
 4 people_object(
 5 'Men'
 6 , prominent_object('Aragorn','3rd Age')
 7)
 8) AS people_table
 9)
 10 FROM dual);

The query shows that you need to call the COLLECT function to put the composite object into
a runtime collection. Then, you can CAST the runtime collection to a known schema-level
collection data type. Finally, you can SELECT the data by using the TABLE function to convert it
into an aggregate result set (fancy speak for any result set from a SELECT statement).

It prints the following:

RACE EXEMPLAR(NAME, AGE)
---------- --
Men PROMINENT_OBJECT('Aragorn', '3rd Age')

The only problem with this output is the constructor versus column values for the nested
pseudo (at this point) collection. You can fix that by unnesting the query with a CROSS JOIN, like

SQL> SELECT o.race, n.name, n.age
 ...
 10 FROM dual) o CROSS JOIN
 11 TABLE(
 12 SELECT CAST(COLLECT(exemplar) AS prominent_table)
 13 FROM dual) n;

Line 1 (or the SQL line) shows the SELECT list’s three columns. If you were to include an
asterisk, the query would return four columns. In addition to the three columns from the SELECT
list, it would return the exemplar column, because the cross join simply adds the new columns
to the same row of data. The o alias represents the outer query, and the n alias represents the
nested table, which is based on a prominent_object object type. This returns the nested
columns matched against the single row where they’re linked. A cross join (or Cartesian product)
returns the number of rows found in the nested table because it’s always matched against the
containing row.

It prints

RACE NAME AGE
---------- -------------------- ---------
Men Aragorn 3rd Age

The TABLE function returns an aggregate result set that is compatible with the rest of the
query. The SELECT statement and the CAST and COLLECT functions let us work with a single
element rather than a real table collection. The exemplar column is returned by the query but

06-ch06.indd 232 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 233

filtered out by the SELECT list’s choice (formally projection) of columns. You can check the
“Unnesting Queries” section in Appendix B for more information on this approach.

It’s actually a much simpler query when you have a real people_table collection. The
following query fabricates a collection of two elements. The fabricating syntax creates a multilevel
people_table collection. Here’s the code without the COLLECT and CAST functions:

SQL> SELECT o.race, n.name, n.age
 2 FROM TABLE(
 3 people_table(
 4 people_object(
 5 'Men'
 6 , prominent_object('Aragorn','3rd Age'))
 7 , people_object(
 8 'Elf'
 9 , prominent_object('Legolas','3rd Age'))
 10)) o CROSS JOIN
 11 TABLE(
 12 SELECT CAST(COLLECT(exemplar) AS prominent_table)
 13 FROM dual) n;

Lines 3 through 9 (fewer lines would be necessary without the constraints of the printed page)
construct a people_table collection of two composite elements. Lines 6 and 9 construct the
nested prominent_object composite type for each element of the collection. Then, the TABLE
function lets us query the contents of the dynamically created table collection.

It prints

RACE NAME AGE
---------- -------------------- ---------
Men Aragorn 3rd Age
Elf Legolas 3rd Age

Shifting the code from SQL exploration of composite object types, the following creates a
local people_table instance, and it reads and prints selected contents:

SQL> DECLARE
 2 /* Declare a table collection. */
 3 lv_tolkien_table PEOPLE_TABLE :=
 4 people_table(
 5 people_object(
 6 'Men'
 7 , prominent_object('Aragorn','3rd Age'))
 8 , people_object(
 9 'Elf'
 10 , prominent_object('Legolas','3rd Age')));
 11 BEGIN
 12 /* Add a new record to collection. */
 13 lv_tolkien_table.EXTEND;
 14 lv_tolkien_table(lv_tolkien_table.COUNT) :=
 15 people_object('Dwarf'
 16 , prominent_object('Gimili','3rd Age'));
 17

06-ch06.indd 233 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

234 Oracle Database 12c PL/SQL Programming

 18 /* Read and print values in table collection. */
 19 FOR i IN lv_tolkien_table.FIRST..lv_tolkien_table.LAST LOOP
 20 dbms_output.put_line(
 21 lv_tolkien_table(i).race||': '||lv_tolkien_table(i).exemplar.name);
 22 END LOOP;
 23 END;
 24 /

The initial constructor call on lines 3 through 10 is exactly like the one in the preceding
query. You allocate space on line 13 and then add a new composite element to the collection on
lines 14 through 16.

Line 21 provides the syntax to read the scalar and composite columns of the collection. In
both cases, you must first access the lv_tolkien collection variable by providing an index
value. You read the scalar column by referring to its race attribute name. It’s more complex to
access the nested composite object. After referring to the lv_tolkien collection variable with
an index value, you access the exemplar attribute name. The exemplar attribute identifies the
nested composite type, and lets you append with a dot (.) either of its scalar attributes. The
example accesses the nested name attribute.

It prints

Men: Aragorn
Elf: Legolas
Dwarf: Gimili

You can also transfer an object type to a PL/SQL record structure or collection. The SELECT-
INTO statement from the “Single-Row Implicit Cursors” section of Chapter 5 lets you assign a
single object type or one of a collection of object types to a record type. The BULK COLLECT INTO
statement from the “Record Collection Targets” section of Chapter 5 lets you assign an object
collection to a PL/SQL record collection. Rather than write two full examples with a people_
object and people_table, we’ve got only one that simply limits the number of people_
object rows returned by the collection:

SQL> DECLARE
 2 /* Declare a PL/SQL record. */
 3 TYPE tolkien_record IS RECORD
 4 (race VARCHAR2(10)
 5 , name VARCHAR2(20)
 6 , age VARCHAR2(10));
 7
 8 /* Declare a table of the record. */
 9 TYPE tolkien_plsql_table IS TABLE OF TOLKIEN_RECORD;
 10
 11 /* Declare record and table collection variables. */
 12 lv_tolkien_record TOLKIEN_RECORD;
 13 lv_tolkien_plsql_table TOLKIEN_PLSQL_TABLE;
 14
 15 /* Declare a table collection. */
 16 lv_tolkien_table PEOPLE_TABLE :=

06-ch06.indd 234 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 235

 17 people_table(
 ... Same definition as prior example ...
 24 BEGIN
 25 /* Single-row implicit subquery. */
 26 SELECT o.race, n.name, n.age
 27 INTO lv_tolkien_record
 28 FROM TABLE(lv_tolkien_table) o CROSS JOIN
 29 TABLE(
 30 SELECT CAST(COLLECT(exemplar) AS prominent_table)
 31 FROM dual) n
 32 WHERE ROWNUM < 2;
 33
 34 dbms_output.put_line(
 35 '['||lv_tolkien_record.race||'] '||
 36 '['||lv_tolkien_record.name||'] '||
 37 '['||lv_tolkien_record.age ||']');
 38 END;
 39 /

Lines 3 through 6 define the tolkien_record structure, and line 9 defines a table of the
tolkien_record data type. The SELECT-INTO query found on lines 26 through 32 returns
one row from the lv_tolkien_table collection and assigns that row to our local lv_
tolkien_record variable.

Line 32 limits the table collection to one row with the backward-compatible ROWNUM
comparison, which prior to Oracle Database 12c has always been a pseudo top-n query. Oracle
Database 12c lets you do better because it provides real top-n query syntax. You can replace line 32
with the following in an Oracle Database 12c database:

 32 FETCH FIRST 1 ROWS ONLY;

From my perspective, the Oracle Database 12c top-n query syntax is much clearer than the
older syntax. After the SELECT-INTO query, the program prints the record’s values:

[Men] [Aragorn] [3rd Age]

Replacing INTO with BULK COLLECT INTO on line 27 lets the program perform a bulk
operation. The bulk operation performed by the following line 27 transfers all rows from the table
collection into the local variable of the anonymous block program:

27 BULK COLLECT INTO lv_tolkien_plsql_table

It’s important to note that bulk collections require a table data type of PL/SQL records as their
target variables. That’s why we created the lv_tolkien_plsql_table variable as a collection
of records.

Whether or not you replace line 32 (with the FETCH FIRST 1 ROWS ONLY clause), the
modified program can’t print results. That’s because it now retrieves one or more rows into a
collection. Effectively, with the bulk collect, we changed the target assignment from a composite
record structure to a composite collection of the same record structure. The assignment target
change breaks our printing logic. We now need to print elements of the collection one at a time,
and that means printing them in loop.

06-ch06.indd 235 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

236 Oracle Database 12c PL/SQL Programming

The easiest way to accomplish the change is with a FOR loop, as shown:

 33 /* Loop through the result set and print the results. */
 34 FOR i IN 1..lv_tolkien_plsql_table.COUNT LOOP
 35 dbms_output.put_line(
 36 '['||lv_tolkien_plsql_table(i).race||'] '||
 37 '['||lv_tolkien_plsql_table(i).name||'] '||
 38 '['||lv_tolkien_plsql_table(i).age ||']');
 39 END LOOP;

You should note that the collection rows are referred to by their index value on lines 36
through 38. The component selector (.) then connects the row to a field of the record type.
Although I’ve advocated that you move data to SQL data types, sometimes you do need to move
object collection data back to the older (or from the perspective of some, legacy) PL/SQL
collection data types. Now you have examples of doing that one row or many rows at a time.

The SELECT-INTO or BULK COLLECT INTO assignment is generally the most effective way
to move data quickly from a table collection of object types into a table collection of PL/SQL
records, but there is an alternative way. It requires you to initialize the collection as an empty
collection, allocate space, and assign elements one at a time. It’s that one at a time assignment in
a loop that should alert you to the fact you could create a CPU bottleneck.

NOTE
DBAs who say they hate PL/SQL usually mean that they hate the
programs produced by developers who lack the knowledge to write
unnesting queries that outperform row-by-row assignments.

While you can construct a table collection without members, you can’t construct an instance
of a record data type. That’s because a record data type doesn’t have a default constructor
function. The first change to our program occurs on line 13, where we construct an empty
collection of records. It requires this change:

13 lv_tolkien_plsql_table TOLKIEN_PLSQL_TABLE := tolkien_plsql_table();

If we didn’t know any better, we might try to assign the object type directly to the record type.
In that scenario, we would rework the execution block to look like the following:

SQL> DECLARE
 2 ...
 24 BEGIN
 25 /* Loop through transferring elements one-by-one. */
 26 FOR i IN 1..lv_tolkien_table.COUNT LOOP
 27 lv_tolkien_plsql_table.EXTEND;
 28 lv_tolkien_plsql_table(i) := lv_tolkien_table(i);
 29 END LOOP;
 30 ... never gets here, so no sense in wasting space ...
 38 END;
 39 /

06-ch06.indd 236 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 237

Line 27 would work because the collection is an object type. Line 28 would fail because we
can’t assign an object instance to a PL/SQL RECORD data structure. The attempt generates the
following error:

 lv_tolkien_plsql_table(i) := lv_tolkien_table(i);
 *
ERROR at line 28:
ORA-06550: line 28, column 34:
PLS-00382: expression is of wrong type
ORA-06550: line 28, column 5:
PL/SQL: Statement ignored

The error states that you can’t assign an object type to a PL/SQL RECORD data type. They’re
mutually incompatible. You can assign the element values of the object type to the element values
of the RECORD data type. The execution block would be rewritten to do the following:

SQL> DECLARE
 2 ...
 24 BEGIN
 25 /* Loop through transferring elements one-by-one. */
 26 FOR i IN 1..lv_tolkien_table.COUNT LOOP
 27 lv_tolkien_plsql_table.EXTEND;
 28 lv_tolkien_plsql_table(i).race := lv_tolkien_table(i).race;
 29 lv_tolkien_plsql_table(i).name := lv_tolkien_table(i).exemplar.name;
 30 lv_tolkien_plsql_table(i).age := lv_tolkien_table(i).exemplar.age;
 31 END LOOP;
 32
 33 /* Loop through the result set and print the results. */
 34 FOR i IN 1..lv_tolkien_plsql_table.COUNT LOOP
 35 dbms_output.put_line(
 36 '['||lv_tolkien_plsql_table(i).race||'] '||
 37 '['||lv_tolkien_plsql_table(i).name||'] '||
 38 '['||lv_tolkien_plsql_table(i).age ||']');
 39 END LOOP;
 40 END;
 41 /

Line 28 assigns the race attribute by referring to the object instance by its index value in the
collection and its name. Lines 29 and 30 must use the exemplar attribute to access the nested
column values of name and age. Once assigned to the record structure, there aren’t any nested
fields. In this example, the record structure is simple, or absent any nested record structures.

NOTE
You can’t assign constructed object instances to PL/SQL RECORD data
types.

As you may imagine, listing only one dwarf, elf, or man (from the Lord of the Rings trilogy)
isn’t very useful. This type of information would be more natural if the nested composite type
were a collection of the people_object composite object type. Such a change makes it an
asymmetrical composite data type, and the subject of the next section.

06-ch06.indd 237 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

238 Oracle Database 12c PL/SQL Programming

Asymmetrical Composite Table Collections As qualified earlier, an asymmetrical composite
varray or table collection holds scalar and collection fields. The former has one row and the latter
has one to many rows.

Leveraging our examples from the prior section, let’s add a prominent_table collection
type that has a base type of prominent_object composite types. After all, the Lord of the Rings
trilogy has more than one prominent dwarf, elf, or man, as well as a few prominent women (though
unfortunately no female dwarves, females belong to their respective race of dwarves, elves, and men).

SQL> CREATE OR REPLACE
 2 TYPE prominent_table IS TABLE OF prominent_object;
 3 /

Having created a prominent_table collection type, let’s redefine both the people_
object and people_table composite types. The syntax to create an asymmetrical people_
object is

SQL> CREATE OR REPLACE
 2 TYPE people_object IS OBJECT
 3 (race VARCHAR2(10)
 4 , exemplar PROMINENT_TABLE);
 5 /

Line 4 changes from a prominent_object data type to a prominent_table collection
type. There’s really no change between the prior and current syntax of the people_table
because its base type remains unchanged. The base type is the now modified people_object
composite object, but Oracle Database 12c takes care of that change through type evolution.

The last step creates a table collection of the asymmetrical composite data type:

SQL> CREATE OR REPLACE
 2 TYPE people_table IS TABLE OF people_object;
 3 /

While it’s nice to see how to do things in SQL (and if you’d like more insight, check the
“Unnesting Queries” section in Appendix B), let’s implement the new type in an anonymous PL/
SQL program. The following program initializes a multilevel collection and then assigns a new
element to the collection. The size of this program is large, but that’s necessary to give you a
complete picture of the moving parts.

SQL> DECLARE
 2 /* Declare a table collection. */
 3 lv_tolkien PEOPLE_TABLE :=
 4 people_table(
 5 people_object(
 6 'Men'
 7 , prominent_table(
 8 prominent_object('Aragorn','3rd Age')
 9 , prominent_object('Boromir','3rd Age')
 10 , prominent_object('Faramir','3rd Age')

06-ch06.indd 238 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 239

 11 , prominent_object('Eowyn','3rd Age')))
 12 , people_object(
 13 'Elves'
 14 , prominent_table(
 15 prominent_object('Legolas','3rd Age')
 16 , prominent_object('Arwen','3rd Age'))));
 17 BEGIN
 18 /* Add a new record to collection. */
 19 lv_tolkien.EXTEND;
 20 lv_tolkien(lv_tolkien.COUNT) :=
 21 people_object('Dwarves'
 22 , prominent_table(
 23 prominent_object('Gimili','3rd Age')
 24 , prominent_object('Gloin','3rd Age')));
 25
 26 /* Read and print values in table collection. */
 27 FOR i IN lv_tolkien.FIRST..lv_tolkien.LAST LOOP
 28 FOR j IN
 29 lv_tolkien(i).exemplar.FIRST..lv_tolkien(i).exemplar.LAST LOOP
 30 dbms_output.put_line(
 31 lv_tolkien(i).race||': '||lv_tolkien(i).exemplar(j).name);
 32 END LOOP;
 33 END LOOP;
 34 END;
 35 /

Lines 3 through 16 construct a new multilevel table collection. Line 19 allocates space for a
new element. Lines 20 through 24 add a new multilevel composite people_object variable to
the lv_tolkien collection.

Line 28 shows how you can perform a nested loop against the multilevel table collection. While
the initial FOR loop works with the lv_tolkien variable, the nested FOR loop works with the
embedded exemplar variable. Moreover, the nested loop reads through the embedded exemplar
table collection. Line 30 shows how you must use the index value of both collections. You
reference the element in lv_tolkien collection, then the element in exemplar collection,
and finally the attribute of the exemplar table collection.

It prints

Men: Aragorn
Men: Boromir
Men: Faramir
Men: Eowyn
Elves: Legolas
Elves: Arwen
Dwarves: Gimili
Dwarves: Gloin

This chaining of operations works no matter how many levels you have in a multilevel collection.
While the syntax is verbose, there’s not another alternative when working with multilevel collections.

06-ch06.indd 239 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

240 Oracle Database 12c PL/SQL Programming

Review Section
This section has described the following points about SQL collection types:

 ■ SQL collections are defined as schema-level object types.

 ■ SQL collections require construction, which you do by calling the type name with a
list of actual parameters that map to the definition of the object type’s attributes.

 ■ SQL collections with a base scalar data type are Attribute Data Types (ADTs), while
collections of object types are user-defined types (UDTs).

 ■ SQL collections have a base type, and it can be either a scalar or composite data type;
and a SQL collection is a multilevel collection when its base composite data type is
also a collection.

 ■ SQL collections can be function and procedure formal parameters and function return
types in both SQL and PL/SQL operating contexts.

 ■ A varray collection is defined with a fixed size, while a table collection is not constrained
by a maximum size value.

 ■ The varray always has a sequential or densely populated index.

 ■ The table collection starts with a sequential or densely populated index, but it is possible
to delete elements from the collection, which creates gaps in the sequence of index values,
potentially making the index sparsely populated.

Associative Arrays
Associative arrays are also single-dimensional structures of an Oracle Database 12c database, and
they can hold the same base data types as SQL collections. As discussed in the “Oracle PL/SQL
Tables” sidebar, they were previously known as PL/SQL tables. This section focuses on single-
dimensional structures of the associative array.

Associative arrays are single-dimensional composite data types, and they can hold only a
scalar or composite base data type. You can’t define a multidimensional collection because
collections can’t hold multiple copies of a base type across each element (row). While collections
can’t hold other composite data types, they can hold another copy of the collection in each row.
When collections hold other collections, they’re called multilevel collections.

Associative arrays cannot be used as column data types in tables. They may be used only as
programming structures. You can only use associative arrays in a PL/SQL context, which means
you can’t pass a PL/SQL collection as a parameter from within a SQL statement or as a return
value from a function.

It is important to note some key issues presented by associative arrays. These issues drive a
slightly different approach to illustrating how you use them. Associative arrays

 ■ Do not require initialization and have no constructor syntax. They also do not need to
allocate space before assigning values.

 ■ Can be indexed numerically in Oracle Database versions up to and including 12c. In
Oracle Database 12c forward, they can also use unique variable-length strings.

 ■ Can use any integer as the index value, which means any negative, positive, or zero
whole numbers.

06-ch06.indd 240 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 241

 ■ Are implicitly converted from equivalent %ROWTYPE, record type, and object type return
values to associative array structures.

 ■ Require special treatment when using a character string as an index value in any database
using globalized settings, such as NLS_COMP or NLS_SORT initialization parameters.

TIP
Unique strings as indexes can encounter sorting differences when
the National Language Support (NLS) character set changes during
operation of the database.

The following subsections describe how you can best use associative arrays in your PL/SQL
programs.

Defining and Using Associative Arrays
The syntax to define an associative array in PL/SQL has two possibilities. One is

CREATE OR REPLACE TYPE type_name AS TABLE OF base_type [NOT NULL]
INDEX BY [PLS_INTEGER | BINARY_INTEGER | VARCHAR2(size)];

The same issues around enabling or disabling null values in nested tables apply to associative
arrays. As a rule, you should ensure that data in an array is not null. You can do that either
programmatically or by enabling the constraint when defining an associative array. It is a decision
that you will need to make on a case-by-case basis.

You can use a negative, positive, or zero number as the index value for associative arrays.
Both PLS_INTEGER and BINARY_INTEGER data types are unconstrained types that map to call
specifications in C/C++, C#, and Java in Oracle Database 12c.

The other possible syntax to define an associate array in PL/SQL is

CREATE OR REPLACE TYPE type_name AS TABLE OF base_type [NOT NULL]
INDEX BY key_type;

The key_type alternative enables you to use VARCHAR2, STRING, or LONG data types in
addition to PLS_INTEGER and BINARY_INTEGER. Both VARCHAR2 and STRING require a size
definition. The LONG data type does not require a size definition; however, the LONG data type is
considered deprecated, so avoiding its use is recommended.

As discussed, unlike SQL varray and table collections, associative arrays do not require
initialization and can’t call a constructor. Other than that, the only major difference between
associative arrays and SQL varray and table collections is where you can use them. Associative
arrays are limited to an exclusively PL/SQL scope. You can create associative arrays with a
base object type, record data type, or scalar data type. Record types also can hold embedded
object types.

The following subsections explain how to work with associative arrays of scalar and composite
data types, respectively.

Associative Arrays of Scalar Data Types
Working with an associative array of a scalar data type is simpler than working with an associative
array of a composite data type. This collection type is an ADT and has some differences from
collections of composite data types. One difference is that Oracle Database 12c returns the values

06-ch06.indd 241 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

242 Oracle Database 12c PL/SQL Programming

from an ADT as the column_value column, whereas it returns values from composite base
types by their field names.

You have the option of using a numeric index or a key (or string) index with associative arrays.
The next two subsections present numerically indexed associative arrays and key indexed associative
arrays, respectively.

Numerically Indexed Associative Arrays For demonstration purposes, assume that you confused
associative arrays with SQL varray or table collections and tried to construct an instance of
the associative array in your declaration block, as shown in the following program:

SQL> DECLARE
 2 /* Define an associative array of a scalar data type. */
 3 TYPE suit_table IS TABLE OF VARCHAR2(7 CHAR)
 4 INDEX BY BINARY_INTEGER;
 5
 6 /* Declare and attempt to construct an object. */
 7 lv_suit CARD_TABLE := suit_table('Club','Heart','Diamond','Spade');
 8 BEGIN
 9 NULL;
 10 END;
 11 /

The associative array definition on lines 3 and 4 is fine. However, the attempt to assign the
result of a constructor function on line 7 raises a PLS-00222 doesn’t exist in scope error, as
shown next, because associative arrays don’t have constructor functions that you can call:

 lv_suit CARD_TABLE := suit_table('Club','Heart','Diamond','Spade');
 *
ERROR at line 7:
ORA-06550: line 7, column 25:
PLS-00222: no function with name 'SUIT_TABLE' exists in this scope
ORA-06550: line 7, column 9:
PL/SQL: Item ignored

The failure on line 7 occurs because the INDEX BY clause makes the collection an associative
array, not a nested table. As mentioned, you can’t call a constructor with an associative array
because one doesn’t exist.

The correct way to assign values to an associative array requires that you assign them one at
a time in the execution or exception block. Each assignment provides a value and an index value,
and the index values may or may not be sequential values. As a rule, they are sequential values,
but there’s no guarantee that they are sequential when your program reads them (and that’s why
you need to be careful about how you read them in your programs).

The reworked program (which excludes a duplicate declaration block) is

SQL> DECLARE
 ...
 8 BEGIN
 9 /* Assign values to an ADT. */
 10 lv_suit(1) := 'Club';
 11 lv_suit(2) := 'Heart';
 12 lv_suit(3) := 'Diamond';

06-ch06.indd 242 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 243

 13 lv_suit(4) := 'Spade';
 14
 15 /* Loop through a densely populated indexed collection. */
 16 FOR i IN lv_suit.FIRST..lv_suit.LAST LOOP
 17 dbms_output.put_line(lv_suit(i));
 18 END LOOP;
 19 END;
 20 /

Lines 10 through 13 assign the suits of a deck of cards to the associative array of card suits.
Line 17 prints the elements of the lv_suit associative array.

Having covered the basics, let’s revisit an associative array of an object type. You create the
necessary suit_object object type like this:

SQL> CREATE OR REPLACE
 2 TYPE suit_object IS OBJECT
 3 (suit VARCHAR2(7));
 4 /

The suit_object mimics the scalar data type used in the two previous programs. Staying as
close as possible to the preceding two examples, the following shows you how to implement a
numerically indexed associative array of an object type:

SQL> DECLARE
 2 /* Define an associative array of an object type. */
 3 TYPE suit_table IS TABLE OF suit_object
 4 INDEX BY BINARY_INTEGER;
 5
 6 /* Declare an associative array. */
 7 lv_suit SUIT_TABLE;
 8 BEGIN
 9 /* Populate elements of the associative array. */
 10 lv_suit(1) := suit_object('Club');
 11 lv_suit(2) := suit_object('Heart');
 12 lv_suit(3) := suit_object('Diamond');
 13 lv_suit(4) := suit_object('Spade');
 14
 15 /* Read the object type contents. */
 16 FOR i IN 1..lv_suit.COUNT LOOP
 17 dbms_output.put_line(lv_suit(i).suit);
 18 END LOOP;
 19 END;
 20 /

Lines 3 and 4 define the local associative array. Line 7 declares the lv_suit variable as an
associative array. You should note that the declaration of the lv_suit variable doesn't use a
constructor function. That’s because only the elements of the associative array are constructed.
Lines 10 through 13 assign constructed instances of the suit_object to the numerically
indexed elements of the associative array. The “Associative Arrays of Composite Data Types”
section later in this chapter covers how you work with elements of composite data types.

06-ch06.indd 243 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

244 Oracle Database 12c PL/SQL Programming

Key (or String) Indexed Associative Arrays Having mastered the difference between SQL and
PL/SQL associative arrays, you know that you can’t call a nonexistent constructor function. You
also know that SQL varray and table collections only use numeric indexes. Associative arrays
enable you to create collections with key or string indexes, and this section shows you how to
implement them.

Instead of creating a collection of cards, as does the previous program, the following program
assigns a number to each card. Numbered cards are assigned their respective numbers, aces are
assigned 1, and the Jack, Queen, and King face cards map to numbers 11, 12, and 13, respectively.

SQL> DECLARE
 2 /* Variable name carries meaning. */
 3 current VARCHAR2(5);
 4
 5 /* Define an associative array of a scalar data type. */
 6 TYPE card_table IS TABLE OF NUMBER
 7 INDEX BY VARCHAR2(5);
 8
 9 /* Declare and attempt to construct an object. */
 10 lv_card CARD_TABLE;
 11 BEGIN
 12 /* Assign values to an ADT. */
 13 lv_card('One') := 1;
 14 lv_card('Two') := 2;
 ...
 24 lv_card('Queen') := 12;
 25 lv_card('King') := 13;
 26
 27 /* Set the starting point. */
 28 current := lv_card.FIRST; -- First alphabetical key.
 29
 30 /* Check pseudo index value less than last index value. */
 31 WHILE (current <= lv_card.LAST) LOOP
 32 /* Print current value. */
 33 dbms_output.put_line(
 34 'Values ['||current||']['||lv_card(current)||']');
 35
 36 /* Shift the index to the next value. */
 37 current := lv_card.NEXT(current);
 38 END LOOP;
 39 END;
 40 /

Line 7 defines the index as a five-character string. Lines 13 through 25 assign numbers to
string index values. Line 28 provides a safeguard to entry of the WHILE loop by initializing the
first index value. The WHILE loop reads through the indexes from lowest to highest, which means
alphabetically. That means the program prints

Values [Ace][1]
Values [Eight][8]
Values [Five][5]
...

06-ch06.indd 244 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 245

The ordering of printed values may surprise you. Associative arrays are always navigated from
the lowest to highest value based on the NLS_COMP and NLS_SORT alphabetical rules. It’s probably
one of the reasons you don’t see too many collections indexed by strings.

Associative Arrays of Composite Data Types
While it’s simpler to work with an associative array of scalar data types, most collections are of
composite data types. A collection that uses a SQL object type or a PL/SQL record type is an
object collection or a record collection, respectively. Oracle Database 12c maintains the field or
attribute names in the data catalog when you define these types of collections.

The next example reuses the SQL prominent_object object type defined in an earlier
example of this chapter. Rather than have you flip back a few pages to find it, the type’s definition is

SQL> CREATE OR REPLACE
 2 TYPE prominent_object IS OBJECT
 3 (name VARCHAR2(20)
 4 , age VARCHAR2(10));
 5 /

While you could pull lines 2 through 4 from the SQL object type definition to create a PL/
SQL-only version in a declaration block, the pattern of assignment differs between an object data
type and a record data type.

The following program defines a prominent_table associative array that uses a
prominent_object object type as its base type. Naturally, the prominent_table collection
has a local PL/SQL-only scope. You can assign the result of a constructor function to each element
in this collection because its base type is an object type. If its base type were a record data type,
you would need to make record-to-record or field-level assignments to the collection. The following
program also shows you how to assign and retrieve values from an associative array of a composite
data type.

SQL> DECLARE
 2 /* Declare a local type of a SQL composite data type. */
 3 TYPE prominent_table IS TABLE OF prominent_object
 4 INDEX BY PLS_INTEGER;
 5
 6 /* Declare a local variable of the collection data type. */
 7 lv_array PROMINENT_TABLE;
 8 BEGIN
 9 /* The initial element uses -100 as an index value. */
 10 lv_array(-100) := prominent_object('Bard the Bowman','3rd Age');
 11
 12 /* Check whether there are any elements to retrieve. */
 13 IF lv_array.EXISTS(-100) THEN
 14 dbms_output.put_line(
 15 '['||lv_array(-100).name||']['||lv_array(-100).age||']');
 16 END IF;
 17 END;
 18 /

Line 10 assigns a value to the –100th element of the local lv_array variable that is declared
on line 7. While it’s unconventional to use negative integers as index values, the program uses

06-ch06.indd 245 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

246 Oracle Database 12c PL/SQL Programming

one to show you that it’s possible. You can use any integer value in any order as the index value of
an associative array. Please note that the object type requires two string attributes, and that’s what
we supply in the constructor.

If you were to remark out the assignment on line 10 or change the index value, the references
to the element on line 15 would fail. That’s because it would reference an unknown index value
and then it would raise the following runtime exception:

DECLARE
*
ERROR at line 1:
ORA-01403: no data found
ORA-06512: at line 12

Line 15 also shows you how to refer to embedded attribute or field values of the object type.
You must reference them by using their attribute names. That means you can work with either the
whole set of attributes or only one attribute at a time.

You should always take the precaution of evaluating the presence of an associative array’s
index value, because its absence raises an exception. By so doing, your program only references
elements that have valid index values. Line 13 checks whether there is an element with an index
value of -100. The program only reaches line 15 when there’s a valid element at the specified
index value.

Refactoring the prior example, let’s examine how a record data type works in an associative
array. To properly extend what you’ve done so far, let’s use a composite record data type made up
of a scalar data type and object type. The program code follows:

SQL> DECLARE
 2 /* Define a symmetrical record data type. */
 3 TYPE prominent_record IS RECORD
 4 (id INTEGER
 5 , element PROMINENT_OBJECT);
 6
 7 /* Declare a local type of a SQL composite data type. */
 8 TYPE prominent_table IS TABLE OF prominent_record
 9 INDEX BY PLS_INTEGER;
 10
 11 /* Declare a local variable of the collection data type. */
 12 lv_array PROMINENT_TABLE;
 13 BEGIN
 14 /* The initial element uses 1 as an index value. */
 15 lv_array(1).id := 1;
 16 lv_array(1).element := prominent_object('Bilbo Baggins','3rd Age');
 17 /* The initial element uses 1 as an index value. */
 18 lv_array(2).id := 2;
 19 lv_array(2).element := prominent_object('Frodo Baggins','3rd Age');
 20
 21 /* Check whether there are any elements to retrieve. */
 22 FOR i IN 1..lv_array.COUNT LOOP
 23 IF lv_array.EXISTS(i) THEN
 24 dbms_output.put_line('['||lv_array(i).id||']'||
 25 '['||lv_array(i).element.name||']'||

06-ch06.indd 246 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 247

 26 '['||lv_array(i).element.age||']');
 27 END IF;
 28 END LOOP;
 29 END;
 30 /

Lines 3 through 5 define a composite record data type with a scalar integer and a composite
object type. You can access the id field name by prefacing it with the lv_array variable name
with a subscript index value and the component selector (.). The other field in the record data
type is more complex because it’s an embedded object type. As you nest composite data types,
you require another component selector to get to the nested fields or attributes.

Lines 15 and 18 assign integer values to the id field of the prominent_record record data
type. The assignments to the two id fields are direct assignments. Lines 16 and 19 assign a
constructed object instance to the element field of the same record data type. The assignments
to the two element fields are also direct assignments, but the assignments to the name and age
attributes are indirect assignments. That because they are made through the object type’s
constructor function. Lines 24 through 26 retrieve the id field value and the element field
value’s name and age attributes.

 10 lv_array(-100) := lv_prominent_record;

You have seen in this section how to work with associative arrays. We’ll explore the Oracle
Collection API next.

Review Section
This section has described the following points about PL/SQL associative arrays:

 ■ Associative arrays are defined as PL/SQL-only data types.

 ■ Associative arrays must be assigned elements one at a time.

 ■ Associative arrays with a base scalar data type are Attribute Data Types (ADTs).

 ■ Associative arrays with a base composite data type are PL/SQL user-defined types
(UDTs).

 ■ Composite type associative arrays with a base record type must be assigned one record
at a time or one record element at a time, and those with a base object type must be
assigned a constructed object type.

 ■ Associative arrays have a sparsely populated index, which may be numeric (negative,
positive, or zero integer) values or string index values.

Oracle Collection API
Oracle 8i Database introduced the Collection API, which provides simplified access to collections.
It works with all three collection types. SQL varray and table collections use integers as indexes.
Associative arrays in Oracle Database 11g and forward support numeric and string index values.

The Collection API methods are really not “methods” in a truly object-oriented sense. They
are functions and procedures. While EXTEND, TRIM, and DELETE are procedures, the rest are
functions. Table 6-3 summarizes the Oracle Databases 12c Collection API.

06-ch06.indd 247 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

248 Oracle Database 12c PL/SQL Programming

Method Definition
COUNT Returns the number of elements that have been allocated space in varray and table

data types, and returns the total of all elements in associative arrays. The return value
of the COUNT method can be smaller than the return value of LIMIT for the varray
collection.
It has the following prototype:
PLS_INTEGER COUNT

DELETE Lets you remove elements from table collections and associative arrays. It doesn’t
work with varray collections, and an attempt to remove an element from a varray
raises a PLS-00306 exception.
The DELETE method takes two formal parameters; one is mandatory and the other is
optional. Both parameters are index values and must occur in ascending order. The
DELETE procedure deletes everything from the parameter n to m, inclusively, when
you supply two parameters.
The prototypes are as follows:
void DELETE(n)
void DELETE(n,m)

EXISTS Checks to find an element with the supplied index in a collection. It returns true when
the element is found and null when an initialized varray or table is empty. It has one
mandatory parameter, which is a valid index value.
It has the following prototype:
Boolean EXISTS(n)

EXTEND Allocates space for one or more new elements in a varray or table collection. It has two
optional parameters. It adds space for one element by default without a parameter.
The first parameter designates how many physical spaces should be allocated in
memory, the only constraint being the limit (or maximum value) of the varray.
The second parameter is an index value. When the function receives two parameters,
the first determines how many elements to add and the second is an index value. The
EXTEND procedure uses the index value to copy a value into the newly added space.
It has the following prototypes:
void EXTEND
void EXTEND(n)
void EXTEND(n,i)

FIRST Returns the lowest subscript value in a collection. It can return a
PLS_INTEGER, VARCHAR2, or LONG type.
It has the following prototype:
mixed FIRST

LAST Returns the highest subscript value in a collection. It can return a
PLS_INTEGER, VARCHAR2, or LONG type.
It has the following prototype:
mixed LAST

TABLE 6-3. Oracle Database 12c Collection API

06-ch06.indd 248 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 249

Method Definition
LIMIT Returns the highest possible subscript value in a collection. It can only return a

PLS_INTEGER type, and can only be used by a VARRAY data type.
It has the following prototype:
mixed LIMIT

NEXT(n) Returns the next higher subscript value in a collection when successful; otherwise
returns false. The return value is a PLS_INTEGER, VARCHAR2, or LONG type. It requires
a valid index value as an actual parameter and raises an exception when the index is
invalid.
It has the following prototype:
mixed NEXT(n)

PRIOR(n) Returns the next lower subscript value in a collection when successful; otherwise
returns false. The return value is a PLS_INTEGER, VARCHAR2, or LONG type. It requires
a valid index value as an actual parameter and raises an exception when the index is
invalid.
It has the following prototype:
mixed PRIOR(n)

TRIM Removes a subscripted value from a collection. It has one optional parameter. Without
an actual parameter, it removes the highest element from the array. An actual parameter
is interpreted as the number of elements removed from the end of the collection.
It has the following prototype:
void TRIM
void TRIM(n)

TABLE 6-3. Oracle Database 12c Collection API

Note that only the EXISTS method fails to raise an exception when a SQL varray or table
collection element is null. Instead, it returns true because it checks for an element allocated in
memory. Any scalar data type element may contain a null or a value, and any object type element
may contain a null, empty, or object instance.

The following tests the limit of the EXISTS method:

SQL> DECLARE
 2 /* Define the table collection. */
 3 TYPE empty_table IS TABLE OF prominent_object;
 4 /* Declare a table collection variable */
 5 lv_array EMPTY_TABLE := empty_table(null);
 6 BEGIN
 7 /* Check whether the element is allocated in memory. */
 8 IF lv_array.EXISTS(1) THEN
 9 dbms_output.put_line('Valid collection.');
 10 ELSE
 11 dbms_output.put_line('Invalid collection.');
 12 END IF;
 13 END;
 14 /

06-ch06.indd 249 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

250 Oracle Database 12c PL/SQL Programming

Line 5 declares a local lv_array table collection with a single null element value. Line 8
checks whether there’s memory allocated for the first element of the collection, and it returns true
and prints

Valid collection.

 That’s why you should combine it with an evaluation that checks whether the element
contains a value. You can modify line 8 like this to check for memory allocation and a value:

 8 IF lv_array.EXISTS(1) AND lv_array(1) IS NOT NULL THEN

The conjunction operator (AND) guarantees that when the EXISTS function returns false, the
comparison operation stops. Conjunctive operators perform short-circuit evaluation, and they
pare the evaluation tree when one comparison is false. A short-circuit evaluation guarantees that
the second condition is never reached when the first is false.

There are five standard collection exceptions, described in Table 6-4.
The following subsections examine each of the Collection API methods in alphabetical order,

with examples to demonstrate each of the methods in action. Some examples include multiple
Collection API methods because, like the coverage of the collection types, it is hard to treat
the Collection API methods in isolation. Where a single example fully covers multiple methods,
it will be cross referenced.

COUNT Method
The COUNT method is a function. It has no formal parameter list. It returns the number of elements
in the array. The number of elements in an array corresponds to the closing boundary element
of a collection because Oracle Database uses 1-based index numbering. The following example
program returns the number of items in a collection by using the COUNT method:

SQL> DECLARE
 2 /* Define a table collection. */
 3 TYPE x_table IS TABLE OF INTEGER;

Collection Exception Raised By
COLLECTION_IS_NULL An attempt to use a null collection.
NO_DATA_FOUND An attempt to use a subscript that has been deleted or is

nonexistent in an associative array.
SUBSCRIPT_BEYOND_COUNT An attempt to use a numeric index value that is higher than the

current maximum number value or an element that has been
deleted from a table. The error applies only to varray and table
collections.

SUBSCRIPT_OUTSIDE_LIMIT An attempt to use a numeric index value outside of the LIMIT
return value. The error applies only to a varray collection.

VALUE_ERROR An attempt is made to use a data type that cannot be converted
to a PLS_INTEGER type.

TABLE 6-4. Collection Exceptions

06-ch06.indd 250 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 251

 4
 5 /* Declare an initialized table collection. */
 6 lv_table NUMBER_TABLE := number_table(1,2,3,4,5);
 7 BEGIN
 8 DBMS_OUTPUT.PUT_LINE('How many? ['||lv_table.COUNT||']');
 9 END;
 10 /

Line 8 prints

How many? [5]

The best use case for the COUNT function involves checking the number of elements before
performing some task with the collection.

DELETE Method
The DELETE method is a procedure. It is an overloaded procedure. (If the concept of overloading
is new to you, consult Chapter 9.) One version of the procedure takes a single formal parameter,
and the other version takes two formal parameters. You provide the index to delete when you use
one parameter. You provide a range of index values when you use two parameters. The lower of
the two index values must be the first parameter to delete and the higher of the two must be the
last parameter to delete. You would provide the index value twice if you were deleting a single
index value with a call to the two-parameter version.

The following anonymous block program shows you how to perform range deletions:

SQL> DECLARE
 2 /* Declare variable with meaningful name. */
 3 current INTEGER;
 4
 5 /* Define a table collection. */
 6 TYPE x_table IS TABLE OF VARCHAR2(6);
 7
 8 /* Declare an initialized table collection. */
 9 lv_table X_TABLE := xtable('One','Two','Three','Four','Five');
 10 BEGIN
 11 /* Remove one element with an index of 2. */
 12 lv_table.DELETE(2,2);
 13
 14 /* Remove elements for an inclusive range of 4 to 5. */
 15 lv_table.DELETE(4,5);
 16
 17 /* Set the starting index. */
 18 current := lv_table.FIRST;
 19
 20 /* Read through index values in ascending order. */
 21 WHILE (current <= lv_table.LAST) LOOP
 22 dbms_output.put_line(
 23 'Index ['||current||'] Value ['||lv_table(current)||']');
 24 /* Shift index to next higher value. */
 25 current := lv_table.NEXT(current);

06-ch06.indd 251 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

252 Oracle Database 12c PL/SQL Programming

 26 END LOOP;
 27 END;
 28 /

Line 12 removes one element from the collection, by using the index of 2. You really don’t
need to call the inclusive range version of the DELETE procedure to remove a single element.
It would be simpler to use the single-element DELETE procedure on line 12, like

 12 lv_table.DELETE(2);

Line 15 removes two elements from the collection, which is the right way to use the inclusive
range version of the function. While the program starts with five elements, it has only two when it
enters the WHILE loop:

Index [1] Value [One]
Index [3] Value [Three]

As a rule of thumb, call with a single index when you want to delete one element. Call with
two index values when you want to delete two or more elements. While the use case for the
DELETE procedure supports removing an element from the collection, you really have to ask
yourself why you let the element into the collection. All too often, the DELETE procedure filters
out results that you should have removed with a WHERE or HAVING clause from a cursor.

NOTE
The WHERE clause filters in or out rows from a DML statement. The
HAVING clause filters out aggregated rows from a DML statement with
aggregation functions in the SELECT list.

EXISTS Method
The EXISTS method is a function. It supports only one formal parameter, which should be a valid
index value. The index value may be a number or a unique string. A unique string index only works
when you use it against an associative array. The EXISTS function returns true or null, and it
generally works best inside a conditional IF statement.

As mentioned, the EXISTS function doesn’t raise a COLLECTION_IS_NULL exception when
it encounters an empty collection. Instead, it returns a null value when a varray or table collection
is empty. There are two varieties of null element collections. One is a varray or table that has been
initialized without any elements. The other is an associative array without any elements.

The following program demonstrates the best way to use the EXISTS method:

SQL> DECLARE
 2 /* Define table. */
 3 TYPE x_table IS TABLE OF VARCHAR2(10);
 4
 5 /* Declare an index counter. */
 6 lv_index NUMBER := 1;
 7
 8 /* Declare a local collection variable. */
 9 lv_table X_TABLE := x_table();
 10 BEGIN

06-ch06.indd 252 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 253

 11 IF lv_table.EXISTS(lv_index) AND NOT lv_table.COUNT = 0 THEN
 12 dbms_output.put_line('List ['||lv_table(lv_index)||']');
 13 END IF;
 14 END;
 15 /

Line 3 defines a table collection. Line 9 declares the lv_table variable as an initialized
collection. Line 11 uses the EXISTS function to check for the first element. Since one doesn’t
exist, it returns a null. Conjunctive logic (the AND logical operator) uses the COUNT function next,
and it checks whether there aren’t any elements. The logic on line 11 could be rewritten to check
whether there are more than zero elements, like

 11 IF lv_table.EXISTS(lv_index) AND lv_table.COUNT > 0 THEN

You need to ask both questions to ensure that you don’t attempt to access a nonexistent index
value. That’s because the EXISTS function returns a null when the index isn’t found. The function
returns nothing because the table collection is empty. If you rework line 9 to create a table collection
of one or more elements,

 09 lv_table X_TABLE := x_table('Something');

the program would print the following string:

List [Something]

You can avoid runtime errors by using the EXISTS function before working with an element
of the collection. That’s the sole use case for its existence.

EXTEND Method
The EXTEND method is a procedure. Like DELETE, it’s also an overloaded procedure. (Chapter 9
covers overloading, if that’s a new concept to you.) There are three overloaded versions of the
EXTEND procedure:

 ■ One takes no parameters. It allocates space for one element.

 ■ One takes one parameter. It allocates space for the number of elements designated by the
parameter.

 ■ One takes two parameters. Like the one-parameter version, it allocates space for the number
of elements designated by the first parameter. The second parameter must be a valid index
value, and it’s used to copy the value from the referenced index into the newly allocated
space.

The following program shows how to allocate new space with the EXTEND procedure (leveraging
the anonymous block from the DELETE procedure example):

SQL> DECLARE
 ... same as the DELETE procedure ...
 7
 8 /* Declare an initialized table collection. */
 9 lv_table X_TABLE := x_table('One');
 10 BEGIN

06-ch06.indd 253 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

254 Oracle Database 12c PL/SQL Programming

 11 /* Extend space, and assign a value. */
 12 lv_table.EXTEND;
 13
 14 /* Assign a value to the last allocated element. */
 15 lv_table(lv_table.COUNT) := 'Two';
 16
 ... same as the DELETE procedure ...
 27 END;
 28 /

Line 9 changes from the earlier example by constructing a collection of only one element.
Line 12 extends space for one element. Line 15 identifies the last added element by calling the
COUNT function.

The program prints

Index [1] Value [One]
Index [2] Value [Two]

The use case for the EXTEND method exists when you want to assign an unknown number of
elements from a cursor to a varray or table collection. It gives you two principal alternatives. One
adds the space one element at a time (as shown in the previous example). The other adds all the
space at one time, but it requires that you know how many elements will be added to the collection.

FIRST Method
The FIRST method is a function. It returns the lowest index value used in a collection, which is one
of the boundary elements of a collection. The FIRST function returns a numeric 1 when working
with a varray or table collection. It returns the lowest integer value from an associative array indexed
numerically. Similarly, it returns the lowest string index value from an associative array; which value
is considered lowest depends on how strings are sorted (based on the NLS_COMP and NLS_SORT
alphabetical rules).

While the rule applying to numbers is clear, the rule for strings sometimes isn’t. The following
example creates a string-indexed associative array and then prints its first value:

SQL> DECLARE
 2 /* Define an associative array. */
 3 TYPE x_table IS TABLE OF INTEGER
 4 INDEX BY VARCHAR2(9 CHAR);
 5
 6 /* Declare an associative array variable. */
 7 lv_table X_TABLE;
 8 BEGIN
 9 /* Add elements to associative array. */
 10 lv_table('Seven') := 7;
 11 lv_table('Eight') := 8;
 12
 13 /* Print the element returned by the lowest string index. */
 14 dbms_output.put_line(
 15 'Index ['||lv_table.FIRST||']['||lv_table(lv_table.FIRST)||']');
 16 END;
 17 /

06-ch06.indd 254 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 255

Lines 10 and 11 assign two elements to an associative array. The values are entered lowest to
highest, but the indexes are ordered highest to lowest when treated as sorted strings. Lines 14 and
15 (for book formatting purposes) print the index and value of the collection for the first element
of the associative array:

Index [Eight][8]

The FIRST function is critical in finding the first index value in any collection, but its importance
becomes most evident when searching for the first index value in a sparsely populated index. The
use case for the FIRST function is to determine definitively where you should start when navigating
a collection.

LAST Method
The LAST method is a function. Like the FIRST function, the LAST function returns the index of
a boundary element of the collection. The LAST function returns the highest index value used in a
collection. The LAST function also returns the same value as the COUNT function in varray and
table collections, which isn’t always the same value returned by the LIMIT function. While the
LAST function returns the highest integer value from varray and table collections, it returns either
the highest integer value or the highest string index value from an associative array. Oracle Database
uses the NLS_COMP and NLS_SORT values to create alphabetical sorting rules, which decide how
to sort strings.

If you replace the FIRST function call with a LAST function call on line 15 from the sample
program for the FIRST method (presented in the previous section), the program prints the highest
alphabetical string index and value:

 14 dbms_output.put_line(
 15 'Index ['||lv_table.LAST||']['||x_list(lv_table.LAST)||']');

And, that is

Index [Seven][7]

The LAST function is critical in finding the last index value in any collection, but its [referring
to LAST indeed of FIRST] importance becomes most evident when searching for the last index
value in an associative array and a sparsely populated string index.

LIMIT Method
The LIMIT method is a function. It returns the highest possible subscript value for a varray, and
you can’t use it with any other type of collection.

The example program that follows illustrates the LIMIT method:

SQL> DECLARE
 2 /* Define an associative array. */
 3 TYPE x_varray IS VARRAY(5) OF INTEGER;
 4
 5 /* Declare an initialized table collection. */
 6 lv_array X_VARRAY := x_varray(1,2,3);
 7 BEGIN
 8 /* Print the count and limit values. */

06-ch06.indd 255 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

256 Oracle Database 12c PL/SQL Programming

 9 dbms_output.put_line(
 10 'Count['||lv_array.COUNT||']: Limit['||lv_array.LIMIT||']');
 11 END;
 12 /

Line 3 defines a five-element varray collection. Line 6 constructs the varray with three
elements. Line 10 prints the count and limit of elements in the varray, which are

Count[3]: Limit[5]

The LIMIT function serves the purpose of qualifying the maximum number of elements in a
varray. The use case for the LIMIT function would be using it as a guard condition to avoid adding
more than the maximum number of elements in a varray.

NEXT Method
The NEXT method is a function. It returns the next index value by receiving the current index
value. Since Oracle collections act like singly linked lists, not rings, when you get to the last
index, the NEXT method returns a null. While you can increment one at a time with a densely
populated index, you can’t do the same with a sparsely populated index. The NEXT function lets
you move from one index to another whether the index is densely or sparsely populated.

The following snippet from an earlier example shows how you use the NEXT function:

 10 BEGIN
 11 /* Set the starting index. */
 12 current := lv_table.FIRST;
 13
 14 /* Read through index values in ascending order. */
 15 WHILE (current <= lv_table.LAST) LOOP
 16 dbms_output.put_line(
 17 'Index ['||current||'] Value ['||lv_table(current)||']');
 18 /* Shift index to next higher value. */
 19 current := lv_table.NEXT(current);
 20 END LOOP;
 21 END;
 22 /

Line 12 assigns the lowest index value to a current variable. Line 15 evaluates the current
variable’s value against the highest index value. The comparison uses a less-than or equal operator
because you want to exit the loop before the NEXT function returns a null value. Ultimately, line
19 shifts the index value to the next highest value.

Navigating across a sparsely populated index is the essential use case for the NEXT function.
You should navigate from the lowest to the highest index value in table collections and associative
arrays with the NEXT function.

PRIOR Method
The PRIOR method is a function. It returns the prior element’s index value by using the current
index value as an argument to the function. Like the NEXT function, the PRIOR function lets you
move across a collection by skipping missing index values in a sparsely populated index. Unlike
the NEXT function, which moves from the lowest to the highest index value, the PRIOR method
traverses the index from the highest to the lowest index value.

06-ch06.indd 256 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 257

Refactoring the WHILE loop from the prior section, you would decrement a collection with
the PRIOR function like this:

 10 BEGIN
 11 /* Set the starting index. */
 12 current := lv_table.LAST;
 13
 14 /* Read through index values in ascending order. */
 15 WHILE (current <= lv_table.FIRST) LOOP
 16 dbms_output.put_line(
 17 'Index ['||current||'] Value ['||lv_table(current)||']');
 18 /* Shift index to next higher value. */
 19 current := lv_table.PRIOR(current);
 20 END LOOP;
 21 END;
 22 /

The change on line 12 requires starting with the return value of the LAST function rather than
the return value of the FIRST function. Line 15 also makes a similar change, and it replaces a
call to the LAST function with a call to the FIRST function. Line 19 replaces the NEXT function
call with a PRIOR function call because it’s now decrementing through the collection.

Like the NEXT function, the PRIOR function’s use case is managing a decrementing process
across a sparsely populated index list. The PRIOR function lets you navigate from the highest to
lowest index value without worrying about gaps in the index sequence of values.

TRIM Method
The TRIM method is a procedure, and it’s an overloaded procedure. (Again, consult Chapter 9 if
the concept of overloading is new to you.) The TRIM procedure only works with varray and table
collections. There are two overloaded versions of the TRIM procedure:

 ■ One takes no parameters. It deallocates space for one element.

 ■ One takes one parameter. It deallocates space for the number elements designated by the
parameter.

The following program deallocates existing space from a collection:

SQL> DECLARE
 2 /* Declare variable with meaningful name. */
 3 current INTEGER;
 4
 5 /* Define a table collection. */
 6 TYPE x_table IS TABLE OF VARCHAR2(6);
 7
 8 /* Declare an initialized table collection. */
 9 lv_table X_TABLE := x_table('One','Two','Three','Four','Five');
 10 BEGIN
 11 /* Remove three elements from the end of the table. */
 12 lv_table.TRIM(3);
 13
 14 /* Set the starting index. */

06-ch06.indd 257 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

258 Oracle Database 12c PL/SQL Programming

 15 current := lv_table.FIRST;
 16
 17 /* Read through index values in ascending order. */
 18 WHILE (current <= lv_table.LAST) LOOP
 19 dbms_output.put_line(
 20 'Index ['||current||'] Value ['||lv_table(current)||']');
 21 /* Shift index to next higher value. */
 22 current := lv_table.NEXT(current);
 23 END LOOP;
 24 END;
 25 /

Line 9 declares an lv_table table collection variable with five elements. Line 12 removes
the last three elements by trimming them.

The program prints the first two elements:

Index [1] Value [One]
Index [2] Value [Two]

The use case for the TRIM procedure is removing elements from the end of a collection. You
can remove one element or a set of elements. When you trim the elements, you remove both their
values and their space. That means the COUNT function would return 2 after the TRIM procedure
call on line 12 of the preceding program.

You have now gone through the complete Oracle 12c Collection API. It is time to summarize
what you have covered in the chapter.

Review Section
This section has described the following points about the Oracle Collection API:

 ■ The Oracle Collection API simplifies working with all three types of Oracle collections.

 ■ The methods of the Oracle Collection API are functions or procedures; some only
work with one or two of the collection types, while others perform differently based on
the type of collection.

 ■ The LIMIT function only works with varray collections, and it captures the maximum
number of elements allowed in the collection.

 ■ The overloaded EXTEND procedure only works with varray and table collections, and
it allocates space before you can assign values.

 ■ The EXISTS function lets you check whether an element has been allocated memory.

 ■ The DELETE procedure lets you remove an element from a collection.

 ■ The COUNT function returns the number of elements in a varray or table collection. The
COUNT and LIMIT function can return the same number for a varray collection, but
only when the varray collection is full.

 ■ The NEXT, PRIOR, FIRST, and LAST functions let you traverse sparsely populated
index lists by painlessly skipping gaps in the sequence.

 ■ The TRIM procedure lets you deallocate space from varray and table collections.

06-ch06.indd 258 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 6: Collections 259

Supporting Scripts
This section describes programs placed on the McGraw-Hill Professional website to support this
chapter.

 ■ The sql_collection.sql program contains small programs that support the “Object
Types: Varray and Table Collections” section of this chapter.

 ■ The symmetrical_composites.sql program contains fully functional examples for
the redacted versions in the chapter.

 ■ The asymmetrical_composites.sql program contains fully functional examples for
the redacted versions in the chapter.

 ■ The associative_array.sql program contains small programs that support the
“Associative Arrays” section of this chapter.

 ■ The collection_api.sql program contains small programs that support the “Oracle
Collection API” section of this chapter.

Summary
This chapter has covered the definition and use of varrays, nested tables, and associative arrays,
which are the Oracle Database 12c collection types. You have worked through examples in SQL
DML and PL/SQL that use Oracle Database 12c collections. Finally, you have explored the details
of the Oracle Collection API.

Mastery Check
The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix I for answers to
these questions.

True or False:

1. ___SQL varray collections can only be used in a SQL context.

2. ___Table collections can be used in a SQL context or a PL/SQL context.

3. ___Associative arrays can be used only in a PL/SQL context.

4. ___A table collection can hold a record or object type as its composite base data type.

5. ___A varray has a fixed number of elements when you define it.

6. ___A varray or table of a scalar variable is an Attribute Data Type (ADT).

7. ___A varray or table of a composite data type is a user-defined type (UDT).

8. ___A LIMIT function from the Oracle Collection API only works with table collections.

9. ___A BULK COLLECT statement can work with a table collection of object types.

10. ___The TABLE function lets you consume a varray or table collection as an ordinary SQL
result set.

06-ch06.indd 259 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

260 Oracle Database 12c PL/SQL Programming

Multiple Choice:

11. Which of the following is a densely populated index in an Oracle varray or table collection?
(Multiple answers possible)

A. A sequence of negative integers without any gaps in the sequence of integers

B. A sequence of positive integers starting at a number of your choosing without any gaps
in the sequence of integers

C. A sequence of positive integers starting at 1 without any gaps in the sequence

D. A sequence of letters without any gaps in the sequence of integers

E. A sequence of positive integers starting at 1 with some gaps in the sequence of integers

12. Which of the following support string indexes? (Multiple answers possible)

A. PL/SQL tables

B. Table collections

C. Varray collections

D. Associative arrays

E. Java ArrayList classes

13. Which of the following is a sparsely populated index in an Oracle varray or table collection?
(Multiple answers possible)

A. A sequence of negative integers without any gaps in the sequence of integers

B. A sequence of positive integers starting at a number of your choosing without any gaps
in the sequence of integers

C. A sequence of positive integers starting at 1 without any gaps in the sequence

D. A sequence of letters without any gaps in the sequence of integers

E. A sequence of positive integers starting at 1 with some gaps in the sequence of integers

14. Which of the following are boundary elements of collections? (Multiple answers possible)

A. The index value returned by the FIRST function

B. The index value returned by the COUNT function

C. The index value returned by the LIMIT function

D. The index value returned by the LAST function

E. All of the above

15. Which of the following collections work in SQL and PL/SQL contexts? (Multiple answers
possible)

A. Varray collections of scalar data types

B. Varray collections of record data types

C. Table collections of scalar data types

D. Table collections of object data types

E. All of the above

06-ch06.indd 260 12/13/13 2:41 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

CHAPTER
7

Error Management

07-ch07.indd 261 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

262 Oracle Database 12c PL/SQL Programming

This chapter covers PL/SQL error management.

Two types of PL/SQL errors exist: those that happen at compilation time (also known as syntax
errors or compile-time errors) and those that happen at runtime (also known as semantic errors).
You will see compilation errors in both anonymous and named blocks—functions, procedures,
packages, or user-defined object types. Compilation errors are easier to find because Oracle
immediately alerts you when it comes across syntax errors. Semantic errors occur as a result of
bad logic in your program, and they can be very subtle. In some cases, only a keen eye catches
them before runtime. You handle semantic errors in the exception blocks of your PL/SQL programs.

As stated, runtime errors are complex and more difficult to solve because they only occur
occasionally. Two scenarios exist for runtime errors: they are raised automatically, such as
NO_DATA_FOUND errors, or they are not raised automatically. The latter are logical errors. You
must create user-defined exceptions for logical errors. Moreover, logical errors cannot be
managed when they occur inside the declaration block—unless exception assignments are made
via static string or numeric literal variables that act like constants.

You will learn about both compilation errors and runtime errors in this chapter. You’ll also
learn how to capture and manage thrown exceptions.

The following topics are covered in this chapter:

 ■ Exception types and scope

 ■ Compilation errors

 ■ Runtime errors

 ■ Exception management built-in functions

 ■ User-defined exceptions

 ■ Declaring user-defined exceptions

 ■ Dynamic user-defined exceptions

 ■ Exception Stack Functions

Although this chapter is designed to be read sequentially, you can skim through it first and
then quickly dive into almost any section that you are particularly interested in.

Exception Types and Scope
As previously mentioned, two types of errors exist in PL/SQL: compilation errors and runtime
errors. A compilation error occurs if you have made an error typing a program, such as forgetting
a comma, period, identifier, or semicolon. As defined in Chapter 4, identifiers include reserved
words and keywords as well as both subroutine and variable names. These compilation errors are
lexical errors. The compiler catches lexical errors when it parses the program’s plain text file. Parsing
is the process of reading a text file to ensure that it meets the lexical usage rules of a programming
language.

Runtime errors occur when actual data fails to meet the rules (or, more precisely, the programming
instructions) defined by your program unit.

07-ch07.indd 262 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 7: Error Management 263

Chapter 3 explains variable and subroutine scopes. Variable and subroutine scopes have two
views. One view is a top-down availability of variables and subroutines, and the other view is
bottom-up accessibility to variables and subroutines. Developers who design their code before
they write any of it take a top-down view, while those who write code before they design it take
a bottom-up view. The first version of your program code should always take a top-down view,
while the progressive iterations from prototype to finished product benefit from a bottom-up view.

The amount of time it takes you to write and maintain good code decreases as your ability to
understand and manage exceptions increases. That’s because when you design first, you add
exception handlers. The exception handlers provide you with clues that tell you where the code
is broken and what you need to do to fix it.

Compile-time errors are often easy to see because they identify the line number of the exception
or the line following the exception. The lines with errors fail to compile and Oracle’s exception
handling engine keeps track of the line and row numbers where syntax errors occur.

NOTE
Compile-time errors may have incorrect numbers when debugging
triggers because the trigger declaration isn’t counted by the parsers in
the line count of the trigger body, or anonymous block.

Runtime errors aren’t quite so easy to see. That’s because when runtime exception are thrown
and potentially re-thrown by the calling program. The first runtime exception throws (or raises,
according to Oracle semantics) an exception. Either a local handler or the calling handler catches
the exception. Handlers may handle the exception or re-throw it. That process can repeat itself
until the exception reaches the point where it all started.

Figure 7-1 shows this exception management process.
The next two subsections cover compilation errors and runtime errors in more depth.

Compilation Errors
Compilation errors are generally typing errors. The parsing of your PL/SQL text file into a set of
interpreted instructions, known as p-code, finds lexical errors. Lexical errors occur when you
misuse a delimiter, identifier, literal, or comment. You can misuse lexical units by

 ■ Forgetting a semicolon (the statement terminator)

 ■ Using only one delimiter when you should use two, such as failing to enclose a string
literal

 ■ Misspelling an identifier (reserved words and keywords)

 ■ Commenting out a lexical value required by the parsing rules

There are three general patterns for error messages:

 ■ Prior line errors Point to an error on the prior statement line, which is generally a
missing statement terminator.

 ■ Current line errors Point to the column of the error or one column after the error. The
difference generally means that the parser is looking for a missing lexical unit.

 ■ Declaration errors Point to any failure in the declaration block, and generally have the
actual error line as the last line of the error message.

07-ch07.indd 263 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

264 Oracle Database 12c PL/SQL Programming

The following program should print a Hello World message, but it fails to compile because it
is missing the statement terminator on line 2:

SQL> BEGIN
 2 dbms_output.put_line('Hello World.')
 3 END;
 4 /

This raises the following error message:

END;
*
ERROR at line 3:
ORA-06550: line 3, column 1:
PLS-00103: Encountered the symbol "END" when expecting one of the following:
:= . (% ;
The symbol ";" was substituted for "END" to continue.

This error message may look undecipherable, but it is actually quite informative when you
know how to read it. The first line of the error message provides either the line where the error
occurred or the line after the error. The second line places an asterisk immediately below the error

FIGURE 7-1. Exception scope and routing

Exception
Block

Declaration
Block

Exception
Block

Execution
Block

Declaration
Block

Execution
Block

Compilation
Failure

Thrown Exception

07-ch07.indd 264 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 7: Error Management 265

location or the first column of the line. The PLS-00103 error message raised by the example says
that a lexical unit is missing immediately before the END reserved word. This typically means the
error occurred one statement line before the echoed error message line. The error message also
provides five possible lexical values for a missing symbol. The parser suggests using a semicolon.
In this case the semicolon or statement terminator is the missing lexical unit. The semicolon
should end the statement on line 2.

The next example shows a compilation error where the error occurs on the same line:

SQL> DECLARE
 2 lv_a NUMBER := 0;
 3 lv_b NUMBER;
 4 lv_c NUMBER;
 5 BEGIN
 6 lv_c := lv_a lv_b;
 7 dbms_output.put_line('['||lv_c||']');
 8 END;
 9 /

The error message displayed is

 lv_c := lv_a lv_b;
 *
ERROR at line 6:
ORA-06550: line 6, column 17:
PLS-00103: Encountered the symbol "LV_B" when expecting one of the following:
. (* @ % & = - + ; < / > at in is mod remainder not rem
<an exponent (**)> <> or != or ~= >= <= <> and or like LIKE2_
LIKE4_ LIKEC_ between || multiset member SUBMULTISET_
The symbol "." was substituted for "LV_B" to continue.

The PLS-00103 error message says that a lexical unit is missing immediately before the
variable lv_b. The asterisk on the second line below the variable lv_b tells you that the error
occurs immediately before the variable. You can fix this program by placing any arithmetic
operator in between the lv_a and lv_b variables.

A variation on the prior error message places the asterisk immediately below where the error
occurs in a statement line. The following program raises this type of error message:

SQL> DECLARE
 2 lv_a NUMBER;
 3 BEGIN
 4 lv_a = 1;
 5 END;
 6 /

Line 4 contains a comparison operator when it should use an assignment operator. The error
message points to the comparison operator as the problem:

 lv_a = 1;
 *
ERROR at line 4:
ORA-06550: line 4, column 8:

07-ch07.indd 265 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

266 Oracle Database 12c PL/SQL Programming

PLS-00103: Encountered the symbol "=" when expecting one of the following:
:= . (@ % ;
The symbol ":= was inserted before "=" to continue.

The error message points to the incorrect use of a comparison operator. This is an easy type of
error message to read and understand.

You receive a less obvious error message when you trigger an error in the declaration block.
The following example tries to assign a two-character string to a one-character variable in the
declaration block:

SQL> DECLARE
 2 lv_a CHAR := 'AB';
 3 BEGIN
 4 dbms_output.put_line('['||lv_a||']');
 5 END;
 6 /

The program raises the following error message, which would provide very little information if
you were trying to apply the previously discussed rules:

DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character string buffer too small
ORA-06512: at line 2

The error points to line 1. Unlike the earlier errors, this does not point to a problem before
the DECLARE statement. It tells you that the error occurs in the declaration block. The statement
following the ERROR at line 1 message describes the problem, and the following line tells
you the line number where it occurs.

It’s important to note that the last line is actually the first error written to the exception stack.
The ORA-06512 error on the last line of the error message points to the line number where the
problem occurs. The next line put in the stack describes the problem. The third message says the
problem occurs in the declaration block.

The error occurs when the program tries to assign a string literal 'AB' into a single-character-
sized variable. The error occurs after parsing the program when it attempts to bind any string and
numeric literal values to variables.

Runtime Errors
Runtime errors can happen in declaration, execution, and exception PL/SQL blocks. The easiest to
catch and handle are those errors thrown from an execution block because they are caught first
by any local exception block and next by any containing block. On the other hand, only an external
exception block can catch errors thrown from declaration or exception blocks.

Exception blocks contain WHEN blocks, which catch specific errors or general errors. The prototype
for the WHEN block is

 WHEN [predefined_exception | user_defined_exception | OTHERS] THEN
 [RETURN | EXIT];

07-ch07.indd 266 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 7: Error Management 267

The WHEN block can take an Oracle predefined exception name, a user-defined exception, or
the catch-all OTHERS keyword. You use the OTHERS reserved word when you want a WHEN clause
to catch any exception. Unless you want to skip your specific exception handlers, the WHEN
OTHERS exception handler should always be the last exception handler.

Later in the chapter, Table 7-2 lists Oracle predefined exception names. The predefined errors
map to known error numbers. They are defined in the sys.standard package. Oracle predefines
these errors as follows in the sys.standard package:

162 CURSOR_ALREADY_OPEN exception;
163 pragma EXCEPTION_INIT(CURSOR_ALREADY_OPEN, '-6511');

Alternatively, you can define your own exceptions, which is a two-step process. First, you
assign a variable that uses the EXCEPTION data type. Second, you map your user-defined
EXCEPTION variable to a specific error numbers. The PRAGMA (a precompiler instruction) lets
you map the exception to the error number, as done in the sys.standard package.

The “User-Defined Exceptions” section, later in this chapter, covers the process of creating
user-defined exceptions. Oracle also provides two built-in exception handling functions:
SQLCODE and SQLERRM. They provide a simplified way to see the raised error code and its
message. Table 7-1 explains the SQLCODE and SQLERRM built-in functions.

The following subsections cover execution and exception block errors first and then declaration
block errors. They’re ordered that way because you need to see how the basic mechanics work
before you see how they fail.

Execution and Exception Block Errors
Errors raised in the execution block are thrown to the local exception block where they are caught
and managed. Exception handler is another name for the exception block in PL/SQL. When the
local exception block fails to catch an exception, it throws the exception back to the program
that called it. That program may be the SQL*Plus environment, a SQL statement (more on this in
Chapter 8), or a PL/SQL block. In fact, the PL/SQL block can simply be an outer block, which is
the simplest way to demonstrate the behavior.

Function Oracle Predefined Error User-Defined Error
SQLCODE Returns a negative integer for

standard Oracle exceptions, except
the NO_DATA_FOUND exception,
which returns a positive 100.

Returns a positive 1 if no EXCEPTION_INIT
PRAGMA is defined. If an EXCEPTION_INIT
PRAGMA is defined, it returns a valid number
in the range of –20001 to –20999.

SQLERRM Returns the error code and
message of a standard Oracle
exception. SQLERRM is an
overloaded function that operates
only in the exception block.

Returns a 1 and a “User-Defined Exception”
message when the exception is thrown by
the RAISE statement. Returns a valid negative
integer in the qualified range and a text
message when the exception is thrown by
the raise_application_info function.

TABLE 7-1. Oracle Exception Management Built-in Functions

07-ch07.indd 267 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

268 Oracle Database 12c PL/SQL Programming

Oracle Built-in Exception Handling Functions
The SQLCODE function returns the error number associated with an exception. The SQLERRM
function returns the error number and the message associated with an exception. Unfortunately,
how they work is not as simple as the preceding sentences suggest, because they work
differently under different scenarios. That’s why they’re qualified next. They’re also covered
in Appendix C.

The SQLCODE Exception Function The SQLCODE function returns one of three values.
It returns a negative number for all predefined Oracle exceptions, except the NO_DATA_
FOUND exception. The SQLCODE function returns a positive 100 for a NO_DATA_FOUND
exception. The SQLCODE function also returns a positive 1 when a user-defined exception is
raised.

The SQLERRM Exception Function The SQLERRM function returns an error code and
either an empty string or a message. It returns the following:

 ■ A code and message for any unhandled error code or Oracle predefined exception
name.

 ■ A 100 code value and a User-Defined Exception message for a user-defined exception
thrown by the following statement:

RAISE user_defined_exception;

 ■ A –20001 to –20999 code value and a customized message for a user-defined
exception thrown by the following function call:

RAISE_APPLICATION_ERROR(error_code, customized_message);

The PRAGMA EXCEPTION_INIT maps a negative integer to an error message. A call to
the RAISE_APPLICATION_ERROR function throws that error with a customized message.
Then, the SQLERRM function returns the code and customized message.

You should keep track of user-defined messages, because developers tend to use and
reuse the same number for different kinds of errors. This practice of reusing errors for
different purposes confuses system users and administrators. It makes it difficult, if not
impossible, to understand what specific errors mean. The question is, how can you manage
it? I suggest that you create a common lookup table in which to store and maintain the list
of defined errors and then require developers to log their use of user-defined messages in
that table. Then, whenever a developer needs to know which error numbers are in use, they
can check the values in the table. This approach avoids reusing user-defined values and
makes identification of errors and maintenance of user-defined messages a snap.

07-ch07.indd 268 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 7: Error Management 269

Calling programs should have generic exception handlers to manage any exceptions re-thrown
by other program units. The next program shows you how to handle a locally raised exception in
a local exception block. The exception block only manages a value_error exception. While a
number of things can raise a value_error exception, the following program raises the error by
trying to put a two-character string in a one-character variable:

SQL> DECLARE
 2 lv_a VARCHAR2(1);
 3 lv_b VARCHAR2(2) := 'AB';
 4 BEGIN
 5 lv_a := lv_b;
 6 EXCEPTION
 7 WHEN value_error THEN
 8 dbms_output.put_line(
 9 'You can''t put ['||lv_b||'] in a one character string.');
 10 END;
 11 /

Line 1 declares a one-character lv_a variable. Line 3 declares a two-character lv_b variable.
Line 5 attempts to assign the two-character variable to the one-character variable; it fails and raises
the following error:

You can't put [AB] in a one character string.

This shows you how a local error is caught and managed by a local exception block. It also
uses the value_error built-in exception in the WHEN clause. The WHEN clause becomes a
value_error exception handler, and it only catches and manages ORA-06502 errors. Any
other exception would be ignored and thrown to the SQL*Plus session.

The following raises a NO_DATA_FOUND error inside the inner block. Since the only
exception handler only checks for a value_error built-in exception, the error isn’t caught.
Instead, it is re-thrown to the calling block, as shown:

SQL> DECLARE
 2 lv_a VARCHAR2(1);
 3 BEGIN
 4 DECLARE
 5 lv_b VARCHAR2(2);
 6 BEGIN
 7 SELECT 1 INTO lv_b
 8 FROM dual
 9 WHERE 1 = 2;
 10 lv_a := lv_b;
 11 EXCEPTION
 12 WHEN value_error THEN
 13 dbms_output.put_line(
 14 'You can''t put ['||lv_b||'] in a one character string.');
 15 END;
 16 EXCEPTION
 17 WHEN others THEN
 18 dbms_output.put_line(

07-ch07.indd 269 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

270 Oracle Database 12c PL/SQL Programming

 19 'Caught in outer block ['||SQLERRM||'].');
 20 END;
 21 /

The SELECT-INTO query on lines 7 through 9 fails to select a numeric literal value into a
local variable. That’s because the WHERE clause always returns false (after all, 1 isn’t equal to 2).
The local value_error exception handler is skipped and the error is re-thrown to the calling
scope or outer block. The others exception handler catches the NO_DATA_FOUND exception.

You should always put the others exception handler last in a list of exception handlers
because it’s generic and catches all other exceptions—both those that you anticipate and those
that you don’t anticipate.

The preceding program’s exception handler in the outer block prints the following SQLERRM
message:

Caught in outer block [ORA-01403: no data found].

You can manually raise a user-defined exception without encountering one. The RAISE
statement lets you throw such an error. The following program uses this technique to show you
what happens when an error is raised inside an exception block:

SQL> DECLARE
 2 lv_a VARCHAR2(1);
 3 e EXCEPTION;
 4 BEGIN
 5 DECLARE
 6 lv_b VARCHAR2(2) := 'AB';
 7 BEGIN
 8 RAISE e;
 9 EXCEPTION
 10 WHEN others THEN
 11 lv_a := lv_b;
 12 dbms_output.put_line('Never reaches this line.');
 13 END;
 14 EXCEPTION
 15 WHEN others THEN
 16 dbms_output.put_line(
 17 'Caught in outer block->'||dbms_utility.format_error_backtrace);
 18 END;
 19 /

Line 8 calls the RAISE statement to throw an error. It passes control to the exception block
that starts on line 9. Line 11 attempts to assign a two-character string to a one-character variable-
length string. The error passes control from the inner block to the outer block’s exception handler.

NOTE
Always put the general others error handler at the end of any list of
exception handlers.

The outer block calls the format_error_backtrace function and returns

Caught in outer block->ORA-06512: at line 11

07-ch07.indd 270 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 7: Error Management 271

The ORA-06512 exception identifies the line number where the error occurred. This line
number is calculated by parsing the file submitted to run the program. You can find that line number
by running the script file from SQL*Plus and then typing list (actually, you only need to type the
letter l). It lists the program with the line numbers that are reported by an ORA-06512 error. You
can query the DBA_, ALL_, or USER_SOURCE view when the program is a stored function,
procedure, package, or object type.

You can replace the call to format_error_backtrace with two calls to Oracle Database
12c’s new utl_call_stack package. One call gets the error number and the other call gets the
line number, as qualified later in the chapter in Table 7-3. However, neither of these functions
returns the “ORA-” or “: at ” substrings, which make the format_error_backtrace output
readable.

You return a value from the backtrace_line function with the following call:

utl_call_stack.backtrace_line(utl_call_stack.backtrace_depth)

and you get the line number for the error with the following function call:

utl_call_stack.backtrace_line(utl_call_stack.backtrace_depth)

The “Exception Stack Functions” section later in this chapter expands on these types of
supporting utilities for exception handling. The utl_call_stack package is also mentioned in
Appendix C.

This section has demonstrated the basics of runtime exception management. You should note
that when you raise an error in the execution block, it is handled locally, if possible. When the
local exception block doesn’t manage the error, the error is sent to an outer block or SQL*Plus
environment. PL/SQL throws exceptions raised in an exception block to an outer block or the
SQL*Plus environment.

Declaration Block Errors
As demonstrated earlier in the chapter, if you attempt to assign a two-character string literal to a
one-character variable, an exception is raised at compile time. A runtime exception is raised
when you call the program with an inappropriate value for the assignment. Like raised errors in
the exception block, you can’t catch runtime errors in the local exception block, because the
declaration block throws the error back to the calling program’s scope.

The next example rewrites an earlier example from the chapter. It assigns the value of a
substitution variable to a local variable. (The “Interactive Mode Parameter Passing” section of
Appendix A explains the use of substitution variables.) It doesn’t raise a compile-time error
because substitution variables don’t have a physical size until runtime.

SQL> DECLARE
 2 lv_a CHAR := '&input';
 3 BEGIN
 4 dbms_output.put_line('['||lv_a||']');
 5 EXCEPTION
 6 WHEN OTHERS THEN
 7 dbms_output.put_line('['||SQLERRM||']'
 5 END;
 6 /

07-ch07.indd 271 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

272 Oracle Database 12c PL/SQL Programming

Line 2 assigns a substitution variable to the local variable. Assigning a value of 'AB' to the
substitution variable raises a runtime exception like the following:

DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character string buffer too small
ORA-06512: at line 2

The inner anonymous block raises an unhandled exception because the exception block on
lines 5 through 7 can’t manage runtime exceptions.

The following program shows you how to capture the raised exception in the outer block:

SQL> BEGIN
 2 DECLARE
 3 lv_a CHAR := '&input';
 4 BEGIN
 5 dbms_output.put_line('['||lv_a||']');
 6 END;
 7 EXCEPTION
 8 WHEN OTHERS THEN
 9 dbms_output.put_line('['||SQLERRM||']');
 10 END;
 11 /

You capture the exception raised on line 3 by nesting the original program in another program.
The container program captures the unhandled exception when the nested program throws it back
to its calling program’s scope.

This same behavior exists in stored program units, like functions and procedures. While
procedures require wrapping their calls, functions don’t. If you call a function directly from SQL,
it can raise an unhandled exception.

NOTE
You can call stored functions from SQL when they return a native SQL
data type.

The following function replicates the dynamic assignment problem, but does so in a stored
programming unit:

SQL> CREATE OR REPLACE FUNCTION runtime_error
 2 (lv_input VARCHAR2) RETURN VARCHAR2 IS
 3 a VARCHAR2(1) := lv_input;
 4 BEGIN
 5 NULL;
 6 EXCEPTION
 7 WHEN others THEN
 8 dbms_output.put_line('Function error.');
 9 END;
 10 /

07-ch07.indd 272 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 7: Error Management 273

Line 2 takes a single input parameter. A call to the runtime_error function passes any
valid VARCHAR2 string (that’s up to 32,768 bytes when the MAX_STRING_SIZE is set to
EXTENDED). That’s possible because formal parameters of functions or procedures have no
physical size limit. Formal VARCHAR2 parameters inherit their size from the calling parameters.

Inside the function, you assign the formal parameter to a one-character lv_input variable.
The assignment raises a runtime exception when the input is greater than a one-character string.

You can call this function in SQL by using it as a SELECT-list element of a query, like:

SQL> SELECT runtime_error ('AB') FROM dual;

It generates the following unhandled exception:

SELECT runtime_error ('AB') FROM dual;
 *
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character string buffer too small
ORA-06512: at "PLSQL.RUNTIME_ERROR", line 3

This section has demonstrated that you should make dynamic assignments in execution
blocks because PL/SQL doesn’t catch dynamic assignment errors in local exception handlers.

TIP
Good PL/SQL coding practices avoid dynamic assignments in
declaration blocks.

Review Section
This section has described the following points about exception types and scope:

 ■ Compile-time errors typically are typing errors, and they occur during the parsing
of PL/SQL programs. They can include errors with lexical units, and they can be the
misspelling of or misuse of identifiers as variable names. The misspelled or misused
identifiers are typically keywords or reserved words in SQL or PL/SQL languages.

 ■ A compile-time error may point to one of three locations: the first character of the
next line, when the error occurs as the last element of the preceding line; a character
immediately following the error on the same line; or the beginning of the declaration
block, for a nonparsing error.

 ■ Runtime errors occur after the program is parsed and literal values are assigned to
local variables.

 ■ Runtime errors can occur in the declaration, execution, or exception blocks.

 ■ Runtime errors thrown in the execution block are handled by the local exception block.

 ■ Runtime errors thrown in the declaration or exception block can’t be handled by local
exception blocks.

07-ch07.indd 273 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

274 Oracle Database 12c PL/SQL Programming

Exception Management Built-in Functions
Oracle provides a series of predefined exceptions in the sys.standard package. These are
useful tools in your debugging of Oracle PL/SQL programs. Most errors raise a negative number
as their error number.

You find error codes by using the SQLCODE built-in function. The SQLERRM built-in function
returns both error codes and messages. The earlier “Oracle Built-in Exception Handling Functions”
section explains how the SQLCODE and SQLERRM functions work. You can also find more coverage
in Appendix C on these two error handling functions.

The predefined exceptions are noted in Table 7-2.

Exception Error When Raised
ACCESS_INTO_NULL ORA-06530 When you attempt to access an uninitialized

object.
CASE_NOT_FOUND ORA-06592 When you have defined a CASE statement

without an ELSE clause and none of the CASE
statements meet the runtime condition.

COLLECTION_IS_NULL ORA-06531 When you attempt to access an uninitialized
table or varray collection.

CURSOR_ALREADY_OPEN ORA-06511 When you attempt to open a cursor that is
already open.

DUP_VAL_ON_INDEX ORA-00001 When you attempt to insert a duplicate value
to a table’s column when there is a unique
index on it.

INVALID_CURSOR ORA-01001 When you attempt a disallowed operation on a
cursor, like closing a closed cursor.

INVALID_NUMBER ORA-01722 When you attempt to assign something other
than a number to a number or when the
LIMIT clause of a bulk fetch returns a non-
positive number.

LOGIN_DENIED ORA-01017 When you attempt to log in with a program to
an invalid username or password.

NO_DATA_FOUND ORA-01403 When you attempt to use the SELECT-INTO
structure and the statement returns a null
value; when you attempt to access a deleted
element in a nested table; or when you attempt
to access an uninitialized element in an
associative array.

TABLE 7-2. Predefined Exceptions in the Standard Package

07-ch07.indd 274 12/17/13 12:14 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 7: Error Management 275

Exception Error When Raised
NO_DATA_NEEDED ORA-06548 When a caller to a pipelined function signals

no need for further rows.
NOT_LOGGED_ON ORA-01012 When a program issues a database call and

is not connected, which is typically after the
instance has disconnected your session.

PROGRAM_ERROR ORA-06501 When an error occurs that Oracle has not yet
formally trapped. This happens all too often
with a number of the object features of the
database.

ROWTYPE_MISMATCH ORA-06504 When your cursor structure fails to agree with
your PL/SQL cursor variable, or an actual cursor
parameter differs from a formal cursor parameter.

SELF_IS_NULL ORA-30625 When you try to call an object type non-static
member method in which an instance of the
object type has not been initialized.

STORAGE_ERROR ORA-06500 When the SGA has run out of memory or has
been corrupted.

SUBSCRIPT_BEYOND_COUNT ORA-06533 When the space allocated to a table or varray
collection is smaller than the subscript value
used.

SUBSCRIPT_OUTSIDE_LIMIT ORA-06532 When you use an illegal index value to access
a varray or table collection, which means a
non-positive integer.

SYS_INVALID_ROWID ORA-01410 When you try to convert a string into an invalid
ROWID value.

TIMEOUT_ON_RESOURCE ORA-00051 When the database is unable to secure a lock
to a resource.

TOO_MANY_ROWS ORA-01422 When using the SELECT-INTO structure and
the query returns more than one row.

USERENV_COMMITSCN_ERROR ORA-01725 You can only use the function
userenv('COMMITSCN') as a top-level
expression in a VALUES clause of an INSERT
statement or as a right operand in the SET
clause of an UPDATE statement. It’s raised
when a system change number (SCN) can’t be
written to a database file.

VALUE_ERROR ORA-06502 When you try to assign a variable into another
variable that is too small to hold it.

ZERO_DIVIDE ORA-01476 When you try to divide a number by zero.

TABLE 7-2. Predefined Exceptions in the Standard Package

07-ch07.indd 275 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

276 Oracle Database 12c PL/SQL Programming

These predefined exceptions are very handy tools for writing exception handlers. You should
use these when they meet your exception handling needs. When they don’t meet your needs, you
should create user-defined exceptions.

User-Defined Exceptions
You can declare user-defined exceptions in the following three ways. This section explains all
three and shows you how to implement and throw them.

 ■ Declare an EXCEPTION variable in the declaration block, which you can throw by using
the RAISE statement.

 ■ Declare an EXCEPTION variable and map it to a standard Oracle exception with a
PRAGMA (or precompiler) instruction in the declaration block. This type of error occurs
when the code generates the standard Oracle exception.

 ■ Use the raise_application_error function to create a dynamic exception. This
technique doesn’t require you to declare an EXCEPTION variable. The function lets you
map a user-defined error code to a message. You can call the raise_application_
error function in the execution or exception blocks. Calling the function throws a
dynamic exception. It’s important to note that you must use an integer in the range of
–20000 to –20999 as the error number.

NOTE
Oracle E-Business Suite and other software applications already use
numbers in the –20000 to –20999 range for their exceptions. You should
try to avoid conflicts when working with the Oracle E-Business Suite.

The “Declaring User-Defined Exceptions” subsection shows you how to work with the first
two types of user-defined exceptions. The subsequent “Dynamic User-Defined Exceptions”
subsection shows you how to use the third type of exception.

Declaring User-Defined Exceptions
This section shows you how to declare an exception and raise it. It also shows you how to declare
a precompiler instruction or compiler directive that lets you map an exception to an error code.
Moreover, it covers the first two types of user-defined exceptions.

You declare an exception like any other variable in PL/SQL. After declaring it, you can raise
the exception, but you have no way to catch it in the exception handler. The purpose behind your
user-defined exception dictates which way you declare it.

The following program declares and raises an exception:

SQL> DECLARE
 2 e EXCEPTION;
 3 BEGIN
 4 RAISE e;
 5 dbms_output.put_line('Can''t get here.');
 6 EXCEPTION

07-ch07.indd 276 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 7: Error Management 277

 7 WHEN OTHERS THEN /* Catch all exceptions. */
 8 /* Check user-defined exception. */
 9 IF SQLCODE = 1 THEN
 10 dbms_output.put_line('This is a ['||SQLERRM||'].');
 11 END IF;
 12 END;
 13 /

Line 2 declares a local EXCEPTION variable. Line 4 raises the user-defined exception. Since
there’s no PRAGMA (or precompiler) instruction, it raises an error code of 1. The exception block
uses a generic handler to catch all exceptions on line 7, and line 9 checks for a user-defined
exception code.

The program raises the exception and prints

This is a [User-Defined Exception].

A two-step declaration process lets you declare an exception and map it to a number. The first
step is to declare an EXCEPTION variable. The second step is to declare a PRAGMA, which is a
precompiler instruction or compiler directive. PRAGMA instructions let you direct the compiler to
perform something differently than the default behavior.

While PL/SQL supports a number of PRAGMA directives, you use the following compiler
directive to map an exception string to an error code:

PRAGMA EXCEPTION_INIT(locally_declared_exception, error_code);

TIP
You should avoid mapping a user-defined exception to an error code
that is already a predefined exception, as qualified in Table 7-2.

The following example program defines an EXCEPTION variable and maps the exception to
an error number:

SQL> DECLARE
 2 lv_a VARCHAR2(20);
 3 invalid_userenv_parameter EXCEPTION;
 4 PRAGMA EXCEPTION_INIT(invalid_userenv_parameter,-2003);
 5 BEGIN
 6 lv_a := SYS_CONTEXT('USERENV','PROXY_PUSHER');
 7 EXCEPTION
 8 WHEN invalid_userenv_parameter THEN
 9 dbms_output.put_line(SQLERRM);
 10 END;
 11 /

Line 3 declares a local EXCEPTION variable. Line 4 provides the compiler directive that maps
the exception name to an error number. Line 6 raises a real ORA-02003 error code because
proxy_pusher isn’t a valid USERENV system context. Line 8 is a specialized exception handler
that only catches invalid calls to the sys_context function.

07-ch07.indd 277 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

278 Oracle Database 12c PL/SQL Programming

The choice of invalid_userenv_parameter also mirrors its actual definition in the
sys.standard package body. The code prints the standard Oracle error message:

ORA-02003: invalid USERENV parameter

Our prior example relies on a predefined Oracle exception. Let’s examine what happens
when we map a user-defined error code to a local exception. Again, it’s important to note that
you must declare user-defined error codes in the range of –20001 to –20999.

The following maps a local exception to a user-defined error code:

SQL> DECLARE
 2 e EXCEPTION;
 3 PRAGMA EXCEPTION_INIT(e,-20001);
 4 BEGIN
 5 RAISE e;
 6 EXCEPTION
 7 WHEN e THEN
 8 dbms_output.put_line(SQLERRM);
 9 END;
 10 /

Line 3 maps the local exception to a valid user-defined error code. Line 5 raises or throws the
exception. Line 7 catches our local exception and prints

ORA-20001:

The SQLERRM function returns only the user-defined error code because there’s no standard
message associated with user-defined error codes. The next section shows you how to fix that
deficit with the RAISE_APPLICATION_ERROR function.

Dynamic User-Defined Exceptions
This section shows you how to declare an exception, assign it a number, and provide it with a
user-defined error message. This is the third type of exception, a dynamic user-defined exception.
This section also introduces the idea of an error stack, which is a collection of cascading exceptions.

The RAISE_APPLICATION_ERROR function lets you raise an exception and provide a
customized error message. The prototype for the dynamic RAISE_APPLICATION_ERROR
function is

RAISE_APPLICATION_ERROR(error_number, error_message [, keep_errors])

The function’s first formal parameter is an error number, which must be in the range of
–20000 to –20999. You raise an ORA-21000 error when you provide any other value. The second
formal parameter is a user-defined error message. You can provide any string message value you’d
like, but try to keep it under 68 characters, because SQLERRM returns a nine-character error code,
a semicolon, and white space before the error message. The last formal parameter is optional.
The optional parameter has a default value of FALSE. You override it by providing a TRUE value,
in which case you’re instructing the function to add the new error message to any existing
error stack.

07-ch07.indd 278 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 7: Error Management 279

It’s possible to show how to use the dynamic RAISE_APPLICATION_ERROR function without
declaring an exception or compiler directive. The following raises a dynamic exception without a
local exception or compiler directive:

SQL> BEGIN
 2 RAISE_APPLICATION_ERROR(-20001,'A not too original message.');
 3 EXCEPTION
 4 WHEN others THEN
 5 dbms_output.put_line(SQLERRM);
 6 END;
 7 /

Line 2 raises the dynamic exception. Line 4 catches any exception because it uses the generic
others keyword. The program prints

ORA-20001: A not too original message.

The next program combines declaring an EXCEPTION variable and a compiler directive with
declaring a dynamic exception. It shows you how they work together in a program. Why bother
declaring an EXCEPTION variable and compiler directive when dynamic exceptions don’t need
them? Because you can create a custom exception handler when you combine them with a
dynamic exception.

The anonymous block code follows:

SQL> DECLARE
 2 e EXCEPTION;
 3 PRAGMA EXCEPTION_INIT(e,-20001);
 4 BEGIN
 5 RAISE_APPLICATION_ERROR(-20001,'A less original message.');
 6 EXCEPTION
 7 WHEN e THEN
 8 dbms_output.put_line(SQLERRM);
 9 END;
 10 /

Line 2 declares the exception variable. Line 3 declares the compiler directive with a user-
defined error code value. Line 5 throws the exception with the same user-defined error code. Line
7 catches the dynamic error because the error code values on lines 3 and 5 couple the behavior
of the exception variable and dynamic exception.

The specialized error handler prints the same dynamic error message:

ORA-20001: A less original message.

Unlike the message files for standard Oracle errors, this message is dynamic to your PL/SQL
program units. The SQLERRM built-in function does not look up the message in an external file for
a dynamic exception. Instead, it uses the string literal value provided as the second parameter to
the RAISE_APPLICATION_ERROR function.

TIP
Oracle stores error messages by language in several of the Oracle
home directories, and all the error messages have a *.msg file type.

07-ch07.indd 279 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

280 Oracle Database 12c PL/SQL Programming

Building on what you now know, let’s add and shift some code from a prior example and
then look at how to generate an error stack with the RAISE_APPLICATION_ERROR function.

The following program simply throws and captures a value_error exception:

SQL> DECLARE
 2 lv_a VARCHAR2(1);
 3 lv_b VARCHAR2(2) := 'AB';
 4 BEGIN
 5 lv_a := lv_b;
 6 dbms_output.put_line('Never reaches this line.');
 7 EXCEPTION
 8 WHEN value_error THEN
 9 RAISE_APPLICATION_ERROR(-20001,'A specific message.');
 10 WHEN others THEN
 11 dbms_output.put_line(SQLERRM);
 12 END;
 13 /

Line 5 throws a value_error exception by attempting a two-character assignment to a
one-character variable. The value_error exception handler raises a dynamic exception on
line 9, which suppresses the original exception:

DECLARE
*
ERROR at line 1:
ORA-20001: A specific message.
ORA-06512: at line 9

This is the default behavior of the RAISE_APPLICATION_ERROR function. The last element
of the exception is an ORA-06512 error. It reports the line number that threw the exception,
which is line 9, where you raise the application error. You can change the default behavior of
the RAISE_APPLICATION_ERROR function by replacing the default value of the optional third
parameter.

The modified line 11 would look like this:

 11 RAISE_APPLICATION_ERROR(-20001,'A specific message.',TRUE);

It would raise the following error stack:

DECLARE
*
ERROR at line 1:
ORA-20001: A specific message.
ORA-06512: at line 9
ORA-06502: PL/SQL: numeric or value error: character string buffer too small

What’s lost in this approach is the original line number of the error. What’s gained is a list of
all raised exceptions. In real code, the RAISE_APPLICATION_ERROR function would provide a
meaningful error to your support personnel, who could then proceed to troubleshoot the problem.

07-ch07.indd 280 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 7: Error Management 281

This section has demonstrated how to declare exceptions and use them. You have seen how to
map existing Oracle errors and error message definitions to user-defined exceptions. You have
also seen how to provide your own error messages dynamically.

Review Section
This section has described the following points about user-defined exceptions:

 ■ You can declare user-defined exceptions in any declaration block.

 ■ You can declare a PRAGMA, which is a precompiler instruction or compiler directive
that maps an error code to a user-defined exception.

 ■ The RAISE statement lets you throw an exception.

 ■ A RAISE statement with an Oracle error code lets the SQLERRM function return an
error code and message.

 ■ A RAISE statement with a user-defined error code lets the SQLERRM function return
only an error code because there’s no external message file that supports the error code.

 ■ The RAISE_APPLICATION_ERROR function lets you raise a dynamic error code and
message with or without an exception stack.

Exception Stack Functions
The exception stack is a first-in, last-out data structure. The first error thrown becomes the last
error displayed. This is analogous to a stack of printed paper. The first page printed is at the
bottom of the stack, and the last page printed is at the top.

PL/SQL throws an exception in the execution block when a failure occurs. The failure triggers
or fires any exception handlers in the local exception block. Program units re-throw exceptions
when they’re not handled locally. This re-throwing can occur once, twice, or several times. It
continues until control returns to the outermost PL/SQL block.

The behavior or re-throwing exceptions creates an error stack. You analyze the error stack to
find the root cause. The root cause is always the first error thrown.

There are two approaches to managing errors in PL/SQL. Which approach you should choose
depends on your application transaction control requirements. You raise an exception to stop the
process when you run into a fatal business logic gap. Such an exception stops the business
process and rolls back the transaction to a state where the data is safe and consistent.
Alternatively, you log a nonfatal business process error by using an autonomous block of code.
The best way to do that is to use a database trigger, which Chapter 12 covers.

Oracle Database 12c introduces the utl_call_stack package, which contains the
functions and procedures listed in Table 7-3. Oracle Database 10g forward only has the format_
error_backtrace function, which you find in the dbms_utility package.

We need to create a couple of stored procedures before we use the utl_call_stack
package. They’re kept very short to show a three-level call stack:

SQL> CREATE OR REPLACE PROCEDURE pear IS
 2 /* Declare two variables. */
 3 lv_one_character VARCHAR2(1);

07-ch07.indd 281 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

282 Oracle Database 12c PL/SQL Programming

Package Function Description
backtrace_depth Returns the number of backtrace items in the backtrace. It returns

a PLS_INTEGER of 1 or greater, and returns a 0 in the absence
of an exception.

backtrace_line Returns the line number of the backtrace unit at the specified
backtrace depth. It takes a single input parameter, which is the
result from the backtrace_depth function. It returns the line
number where the error occurred at that particular depth of
execution.

backtrace_unit Returns the name of the unit at the specified backtrace depth.
It takes a single input parameter, which is the result from the
backtrace_depth function. It returns a module name or a null
value for an anonymous block.

current_edition Returns the current edition name of the unit of the subprogram
at the specified dynamic depth. It takes a single input parameter,
which is the result from the backtrace_depth function. It
returns the edition name of the program where the database
employs edition-based redefinition.

concatenate_subprogram Returns a concatenated form of a unit-qualified name. Takes
the qualified name as an input parameter and returns the fully
qualified program name.

dynamic_depth Returns the number of subprograms on the call stack.
error_depth Returns the number of errors on the error stack.
error_msg Returns the error message of the error at the specified error depth.
error_number Returns the error number of the error at the specified error depth.

It takes a single input parameter, which is the result from the
backtrace_depth function.

lexical_depth Returns the lexical nesting level of the subprogram at the specified
dynamic depth. It takes a single input parameter, which is the result
from the backtrace_depth function.

owner Returns the owner name of the unit of the subprogram at the
specified dynamic depth. It takes a single input parameter, which
is the result from the backtrace_depth function.

unit_line Returns the line number of the unit of the subprogram at the
specified dynamic depth. It takes a single input parameter, which
is the result from the backtrace_depth function.

subprogram Returns the unit-qualified name of the subprogram at the specified
dynamic depth. It takes a single input parameter, which is the
result from the backtrace_depth function.

TABLE 7-3. Functions in the utl_call_stack Package

07-ch07.indd 282 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 7: Error Management 283

 4 lv_two_character VARCHAR2(2) := 'AB';
 5 BEGIN
 6 lv_one_character := lv_two_character;
 7 END pear;
 8 /

Staying with the simple example of assigning a two-character string to a one-character variable,
the pear procedure declares lv_one_character and lv_two_character variables on
lines 3 and 4, respectively. The assignment of the two-character value to the one-character variable
on line 6 will throw an error whenever you call the pear procedure. The lack of an exception
handler in the pear procedure means it throws the error back to its caller.

The orange procedure is even simpler because it doesn’t include any variable declarations:

SQL> CREATE OR REPLACE PROCEDURE orange IS
 2 BEGIN
 3 pear();
 4 END orange;
 5 /

The call to the pear procedure on line 3 causes the pear procedure to throw an exception.
That exception can’t be handled because the orange procedure doesn’t have any exception
handlers for the error.

The apple procedure mimics the orange procedure. It only calls the orange procedure.
Like the orange procedure, the apple procedure doesn’t have any exception handlers, which
means it re-throws any exception from the orange procedure to its calling scope program:

SQL> CREATE OR REPLACE PROCEDURE apple IS
 2 BEGIN
 3 orange();
 4 END apple;
 5 /

There’s no surprise with the apple procedure. Like the preceding orange procedure, the
apple procedure calls the orange procedure. The apple procedure re-throws the caught
exception to its calling scope because it lacks an exception handler. The calling scope is the
following anonymous block program:

SQL> BEGIN
 2 apple;
 3 EXCEPTION
 4 WHEN others THEN
 5 FOR i IN REVERSE 1..utl_call_stack.backtrace_depth LOOP
 6 /* Check for an anonymous block. */
 7 IF utl_call_stack.backtrace_unit(i) IS NULL THEN
 8 /* utl_call_stack doesn't show an error, manually override. */
 9 dbms_output.put_line(
 10 'ORA-06512: at Anonymous Block, line '||
 11 utl_call_stack.backtrace_line(i));
 12 ELSE
 13 /* utl_call_stack doesn't show an error, manually override. */
 14 dbms_output.put_line(

07-ch07.indd 283 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

284 Oracle Database 12c PL/SQL Programming

 15 'ORA-06512: at '||utl_call_stack.backtrace_unit(i)||
 16 ', line '||utl_call_stack.backtrace_line(i));
 17 END IF;
 18
 19 /* The backtrace and error depth are unrelated, and the depth of
 20 calls can be and generally is higher than the depth of errors. */
 21 IF i = utl_call_stack.error_depth THEN
 22 dbms_output.put_line(
 23 'ORA-'||LPAD(utl_call_stack.error_number(i),5,0)
 24 ||' '||utl_call_stack.error_msg(i));
 25 END IF;
 26 END LOOP;
 27 END;
 28 /

Line 2 calls the apple procedure, which ultimately returns an exception. The anonymous
block program does have an exception handler. The exception handler manages any exception by
starting a decrementing loop on line 5 and ending on line 26. Line 7 checks to see if the
backtrace_unit function returns a null value. It returns a null when the calling program is an
anonymous block program and has the qualified name of a stored function or procedure.

Lines 10 and 15 place the traditional ORA-06512 error code before the program units that
raise the exception because it’s not captured by the utl_call_stack package. You only find
the original thrown error in the error stack managed by the utl_call_stack package. This can
be illustrated when you try to call for the exception at a backtrace depth rather than an error
depth. For example, this program has a backtrace depth of 4 and an error depth of 1. That’s why
line 21 exists.

Line 21 checks whether the error depth is equal to the backtrace depth. If you removed the IF
block on lines 21 and 25, the program would fail because it would make a call to a nonexistent
error depth on line 23, like this:

 23 'ORA-'||LPAD(utl_call_stack.error_number(i),5,0)

It would result in the following exception:

BEGIN
*
ERROR at line 1:
ORA-64610: bad depth indicator
ORA-06512: at "SYS.UTL_CALL_STACK", line 130
ORA-06512: at line 21
ORA-06502: PL/SQL: numeric or value error: character string buffer too small

Suffice it to say, you always need to differentiate between the backtrace depth and error depth
to avoid errors like that. As a rule of thumb, the error depth is always less than the backtrace
depth. This is a new feature, so it may evolve between releases.

Let’s move back to analyzing the earlier program. Line 22 left-pads the error number with
zeros to return a five-digit number because the function returns the number as an integer. Line 22
also puts an 'ORA-' string in front of the left-padded error code and appends the error message
after the error code.

07-ch07.indd 284 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 7: Error Management 285

The foregoing program prints

ORA-06512: at VIDEO.PEAR, line 6
ORA-06512: at VIDEO.ORANGE, line 3
ORA-06512: at VIDEO.APPLE, line 3
ORA-06512: at Anonymous Block, line 2
ORA-06502 PL/SQL: numeric or value error: character string buffer too small

You can raise the same stack trace with a call to the format_error_backtrace function,
which is found in the dbms_utility package. That means switching lines 22 through 24 with
the following lines 22 and 23 would replace all the preceding logic for a stack trace:

 22 dbms_output.put_line(
 23 dbms_utility.format_error_backtrace);

However, the stack trace from the format_error_backtrace function doesn’t print well
when you call it from inside the put_line procedure, because it forces additional line breaks.
It takes some effort, but we can get a clean stack trace by making the following changes to our
program:

SQL> DECLARE
 2 lv_length NUMBER;
 3 lv_counter NUMBER := 0;
 4 lv_begin NUMBER := 1;
 5 lv_end NUMBER;
 6 lv_index NUMBER := 0;
 7 lv_trace VARCHAR2(2000);
 8 BEGIN
 9 apple;
 10 EXCEPTION
 11 WHEN others THEN
 12 FOR i IN REVERSE 1..utl_call_stack.backtrace_depth LOOP
 13 /* The backtrace and error depth are unrelated, and the depth of
 14 calls can be and generally is higher than the depth of errors. */
 15 IF i = utl_call_stack.error_depth THEN
 16 /* Capture the stack trace. */
 17 lv_trace := dbms_utility.format_error_backtrace;
 18
 19 /* Count the number of line returns - ASCII 10s. */
 20 lv_length := REGEXP_COUNT(lv_trace,CHR(10),1);
 21
 22 /* Read through the stack to remove line returns. */
 23 WHILE (lv_counter < lv_length) LOOP
 24 /* Increment the counter at the top. */
 25 lv_counter := lv_counter + 1;
 26
 27 /* Get the next line return. */
 28 lv_end := REGEXP_INSTR(lv_trace,CHR(10),lv_begin,1);
 29
 30 /* Cut out the first substring from the stack trace. */
 31 dbms_output.put_line(SUBSTR(lv_trace,lv_begin,lv_end - lv_begin));

07-ch07.indd 285 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

286 Oracle Database 12c PL/SQL Programming

 32
 33 /* Assign the substring ending to the beginning. */
 34 lv_begin := lv_end + 1;
 35 END LOOP;
 36 END IF;
 37 END LOOP;
 38
 39 /* Print the actual original error message. */
 40 dbms_output.put_line(
 41 'ORA-'||LPAD(utl_call_stack.error_number(i),5,0)
 42 ||': '||utl_call_stack.error_msg(i));
 43 END IF;
 44 END LOOP;
 45 END;
 46 /

Line 15 ensures that the evaluation process begins with the first item in the error stack. Line
28 marks the index location within the string for line returns. Line 31 prints only the substring
from the stack trace. Lines 40 through 42 print the original error.

This prints the following stack trace:

ORA-06512: at "VIDEO.PEAR", line 6
ORA-06512: at "VIDEO.ORANGE", line 3
ORA-06512: at "VIDEO.APPLE", line 3
ORA-06512: at line 9
ORA-06502: PL/SQL: numeric or value error: character string buffer too small

This knowledge comes in handy when you want to render the stack trace in HTML. You can
make a slight modification to replace the line returns with HTML
 tags (which adds line
returns enabled for web pages).

The best-practice steps for making such a change require adding a few lines to the preceding
program. The following displays the key modifications:

SQL> DECLARE
 ...
 8 lv_break VARCHAR2(6) := '
';
 9 BEGIN
 10 apple;
 11 EXCEPTION
 ...
 31 /* Replace and cut out the next substring from stack trace. */
 32 lv_trace := REGEXP_REPLACE(lv_trace,CHR(10),lv_break,lv_end,1);
 33 lv_end := lv_end + LENGTH(lv_break);
 34 dbms_output.put_line(
 35 SUBSTR(lv_trace,lv_begin,lv_end - lv_begin));
 ...
 42 END;
 43 /

07-ch07.indd 286 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 7: Error Management 287

Line 8 adds a new local variable for an HTML
 tag. Line 32 replaces the line return
with the HTML line break tag. Line 33 adds the length of the tag to reset the ending point for the
current substring and starting point for the next substring.

The modified program prints

ORA-06512: at "VIDEO.PEAR", line 6

ORA-06512: at "VIDEO.ORANGE", line 3

ORA-06512: at "VIDEO.APPLE", line 3

ORA-06512: at line 10

ORA-06502: PL/SQL: numeric or value error: character string buffer too small

This section has shown you how to use both stack trace tools. It has also given you some
ideas for how you can mix and match the tools to get a desired result.

Review Section
This section has described the following points about user-defined exceptions:

 ■ Oracle provides you with the utl_call_stack package to manage exception stacks.

 ■ The dbms_utility package provides you with the format_error_backtrace
function, which generates a stack trace.

 ■ The utl_call_stack package keeps tabs of the execution stack separately from the
error stack.

 ■ It’s possible to parse and convert the text output from the format_error_backtrace
function to HTML output.

Supporting Scripts
This section describes programs placed on the McGraw-Hill Professional website to support
the book.

 ■ The exception_handling.sql program contains small programs that support the
exception types, built-in functions, and user-defined exceptions.

 ■ The stack_trace_management.sql program contains programs that support how
you manage stack traces as covered in this chapter.

Summary
This chapter has explained how to work with PL/SQL error management. It has qualified the
differences between compilation errors and runtime errors. You have also learned about the
unhandled behavior of runtime errors that occur in declaration blocks and how to handle raised
errors in both the execution and exception blocks.

07-ch07.indd 287 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

288 Oracle Database 12c PL/SQL Programming

Mastery Check
The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix I for answers to
these questions.

True or False:

1. ___Oracle PL/SQL programming requires you to understand how to capture and analyze
both compile-time errors and runtime errors.

2. ___A compile-time error may occur when you try to run an anonymous block program.

3. ___A runtime error may occur when you try to compile a stored procedure.

4. ___A runtime error may occur when you call a stored procedure.

5. ___A THROW command raises a runtime exception.

6. ___It’s possible to declare a user-defined EXCEPTION variable with the same error code
as a predefined exception.

7. ___A PRAGMA is a precompiler instruction or compiler directive.

8. ___An EXCEPTION_INIT complier directive lets you map a user-defined EXCEPTION
variable to a message.

9. ___A raise_application_error function call lets you map only a user-defined error
code to a custom error message.

10. ___A call to the format_error_backtrace function from the utl_call_stack
package creates a stack trace.

Multiple Choice:

11. Which of the following error codes belongs to a predefined exception? (Multiple answers
possible)

A. ORA-01402

B. ORA-01722

C. ORA-06548

D. ORA-01422

E. ORA-00001

12. Which of the following is a predefined exception keyword? (Multiple answers possible)

A. CURSOR_IS_OPEN

B. INVALID_NUMBER

C. LOGIN_DENIED

D. NO_DATA_FOUND

E. VALUE_INCORRECT

07-ch07.indd 288 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 7: Error Management 289

13. Which of the following lets you raise an exception in PL/SQL? (Multiple answers possible)

A. A THROW e; statement

B. A RAISE e; statement

C. A THROW; statement

D. A RAISE; statement

E. A raise_application_error function call

14. Which of the following are functions of the utl_call_stack package? (Multiple
answers possible)

A. The backtrace_error function

B. The backtrace_depth function

C. The error_number function

D. The subprogram_name function

E. The error_depth function

15. Which of the following displays an HTML-ready stack trace? (Multiple answers possible)

A. The utl_call_stack.current_edition function

B. The dbms_utility.format_stack_trace function

C. The dbms_utility.format_error_backtrace function

D. All of the above

E. None of the above

07-ch07.indd 289 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

07-ch07.indd 290 12/13/13 2:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

PART
II

PL/SQL Programming

08-ch08.indd 291 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1
Blind folio: 292

08-ch08.indd 292 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

CHAPTER
8

Functions and Procedures

08-ch08.indd 293 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

294 Oracle Database 12c PL/SQL Programming

As you’ve seen in previous chapters, there are two types of subroutines: functions and
procedures. You use these to build database-tier libraries to encapsulate application
 functionality, which is then collocated on the database tier for efficiency.

This chapter covers the following subroutine topics:

 ■ Function and procedure architecture

 ■ Transaction scope

 ■ Functions

 ■ Creation options

 ■ Pass-by-value functions

 ■ Pass-by-reference functions

 ■ Procedures

 ■ Pass-by-value procedures

 ■ Pass-by-reference functions

Oracle Database 12c supports subroutines that are stored as functions and procedures in the
database. They are named PL/SQL blocks. You can deploy them as stand-alone subroutines or as
components in packages. Packages and object types can contain both functions and procedures.
Anonymous blocks can also have local functions and procedures defined in their declaration
blocks. You can also nest functions and procedures inside other functions and procedures.

You publish functions and procedures as stand-alone units or within packages and object types.
Stand-alone units are also known as schema-level functions or procedures. Publishing functions
and procedures within packages and object types means that they are defined in the package
specification or object type, not in the package body or object type body. They’re local subroutines
when you define functions or procedures inside package bodies or object type bodies. Local
subroutines aren’t published subroutines. Likewise, subroutines defined in the declaration block
of anonymous block programs are local subroutines.

You deploy collections of related functions and procedures in packages and object types.
Packages and object types serve as library containers in the database. Packages act as primary
library containers because you don’t have to create instances to use them, whereas some subroutines
in object types require you to create instances to use them. Packages also let you overload functions
and procedures. Chapter 9 covers packages.

User-defined object types are SQL data types. Inside object types, functions and procedures
can be defined as class- or instance-level subroutines. Class functions and procedures are static
subroutines, and you can access them the same way you use functions and procedures in packages.
Instance-level subroutines are only accessible when you create an instance of an object type.
Chapter 11 covers object types.

The sections work sequentially to build a foundation of concepts. If you wish to skip ahead,
browsing from the beginning may provide clarity to later sections.

08-ch08.indd 294 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 295

Function and Procedure Architecture
As described in Chapter 4, functions and procedures are named PL/SQL blocks. You can also call
them subroutines or subprograms. They have headers in place of the declaration block. The header
defines the function or procedure name, a list of formal parameters, and a return data type for
functions. Formal parameters define variables that you can send to subroutines when you call
them. You use both formal parameters and local variables inside functions and procedures. While
functions return a data type, procedures don’t. At least, procedures don’t formally list a return data
type, because they return a void. The void is explicitly defined in other programming languages,
like C, C#, Java, and C++. Procedures can return values through their formal parameter list variables
when they are passed by reference.

Local functions and procedures don’t require, but should have, forward-referencing stubs.
While stored functions and procedures define their parameter list and return types in the database
catalog, local functions don’t. Providing forward-referencing stubs for local functions or procedures
avoids a procedure or function “not declared in this scope” error. The “Local Named Blocks” section
in Chapter 3 has an example of the best practice.

There are four types of generic subroutines in programming languages. The four types are defined
by two behaviors: whether they return a formal value or not and whether their parameter lists are
passed by value or by reference.

You set formal parameters when you define subroutines. You call subroutines with actual
parameters. Formal parameters define the list of possible variables, and their position and data type.
Formal parameters do not assign values other than a default value, which makes a parameter optional.
Actual parameters are the values you provide to subroutines when calling them. You can call
subroutines without an actual parameter when the formal parameter has a default value. Subroutines
may be called without actual parameters if all their formal parameters are defined as optional.

Subroutines are black boxes. They’re called that because black boxes hide their implementation
details and only publish what you can send into them or receive from them. Table 8-1 describes
and illustrates these subroutines.

The “Black Box”
The black box (the term comes from engineering lexicon) is part of verification and validation.
Verification is a process that examines whether you built something right. Validation checks
whether you built the right thing. For example, you validate that the manufacturing line is
producing iPod nanos, and then you verify that they are being made to the new specification.

Integration testing validates whether components work as a part. You can’t see how the
product works. You only know what it should do when you provide input, like a function
that should add two numbers. If one plus one equals two, then the function appears to work
per expectations. This is black box testing.

Black box testing is the process of validation. Verification requires peering into the black
box to inspect how it behaves. This type of testing is white box testing because you can see
how things actually work—step by step. Unit testing verifies that your function or procedure
builds the thing right. An example would be verifying that you’re using the right formula to
calculate the future value of money using compounding interest.

08-ch08.indd 295 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

296 Oracle Database 12c PL/SQL Programming

Subroutines are functions when they return output and are procedures when they don’t.
Functions return output as values represented as SQL or PL/SQL data types. Chapter 4 qualifies
the characteristics of PL/SQL data types, and Appendix B discusses SQL data types. Pass-by-value
functions are sometimes called expressions because you submit values that are returned as a
result. When the return data type is a SQL type, you can call the function inside a SQL statement.

Creating a pass-by-value function is like baking a cake. You put variables inside a black box,
mix them up, and you get a result. The original ingredients or variables are consumed by making
the cake. Creating a pass-by-reference function is like polishing a gem stone. You put the stone
in with a solution and polish it. The solution dissipates but the stone remains; the stone is your
pass-by-reference or IN OUT mode variable. The remaining case is an OUT mode pass-by-reference
variable. Consider the analogy of slicing up salami into pieces. Until you complete the process,
you don’t know how many slices it yields. The number of pieces is the OUT mode variable result.

Subroutine Description Subroutine Illustration

Pass-by-value functions:
They receive copies of values when they are called. These functions
return a single output variable upon completion. The output variable
can be a scalar or compound variable. This type of function can also
perform external operations, like SQL DML statements to the database. Black

Box

Input

Output

Pass-by-reference functions:
They receive references to variables when they are called. The
references are actual parameters to the function. Like other functions,
they return a single output value, which can be a scalar or compound
variable. Unlike functions that work with values, this type of function
can change the values of actual parameters. They return their actual
parameter references upon completion to the calling program. This
type of function can also perform external operations, like SQL DML
statements to the database, but only in the context of a PL/SQL block.

Black
Box

Reference Input

Output

Reference Output

Pass-by-value procedures:
They receive copies of values when they are called. Procedures do
not return an output variable. They only perform internal operations
on local variables or external operations, like SQL statements to the
database. Black

Box

Input

Pass-by-reference procedures:
They receive references to variables when they are called. Procedures
do not return an output variable. This type of procedure can change
the value of actual parameters. They return their actual parameter
references upon completion to the calling program. They can also
perform external operations, like SQL statements to the database.

Black
Box

Reference Input

Reference Output

TABLE 8-1. List of Subroutine Types

08-ch08.indd 296 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 297

NOTE
Data types are defined in the database catalog two ways. They can be
defined as native or user-defined SQL types, or as user-defined PL/SQL
types inside package specifications.

You can use functions as right operands in assignments because their result is a value of a
data type defined in the database catalog. Both pass-by-value and pass-by-reference functions fill
this role equally inside PL/SQL blocks. You can use pass-by-reference functions in SQL statements
only when you manage the actual parameters before and after the function call. You can also use
the CALL statement with the INTO clause to return SQL data types from functions.

NOTE
Technically, you only need to handle SQL session bind variables before
the call to a pass-by-reference function.

Figure 8-1 shows how you can assign the return value from a function in a PL/SQL block.
SQL statements typically use pass-by-value functions because they don’t manage reference output.
Most SQL function calls submit columns or literals as actual parameters and expect a scalar return
value. A SQL function call mimics a SQL expression, which is a SQL query that returns only one
column and row.

Procedures can’t serve as right operands. Procedures also must have runtime scope set inside
a calling PL/SQL block. You cannot call procedures in SQL statements. However, you can use
the CALL statement or EXECUTE statement to run procedures in SQL*Plus. Procedures are also
self-contained units, whereas functions can only run as part of an assignment, comparative evaluation,
or SQL statement.

Generic or default functions and procedures run inline, which means that they run in the same
process context as their calling program unit. Inline programs exist in the same transaction scope
as the calling program. An inline program can’t commit without committing any DML statements
processed before its call in the transaction scope. Autonomous programs run in a separate process
context and have an independent transaction control.

FIGURE 8-1. Assignment of a function result

Left Operand Operator Right Operand

Target Assignment Function Call

Black
Box

Input

Variable := ;Output

08-ch08.indd 297 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

298 Oracle Database 12c PL/SQL Programming

Oracle Database 12c adds the ability to white list the callers of any function or procedure.
You do that by providing the ACCESSIBLE BY clause with a list of functions, procedures, packages,
and object types. Once you white list a function or procedure, only those white listed functions,
procedures, packages, or object types that are white listed may call the function or procedure.

PL/SQL functions or procedures can also run SQL statements inside their black boxes. These
actions are not represented in the previous diagrams. Figure 8-2 shows a modified pass-by-value
function that actually updates the database. This gets more complex for pass-by-reference functions
because they have an output, reference output, and database action as outcomes of a single
function. A function that calls an INSERT, UPDATE, or DELETE statement typically can’t run inside
a query. It can run inside another PL/SQL block.

NOTE
You can include SQL statements in functions.

You can call a pass-by-value function from inside a SELECT statement when it meets one of
two conditions. One condition requires that there can’t be any embedded DML statements because
you can’t have a transaction context inside a query. The other condition lets you embed DML
statements when a function runs autonomously.

You can’t use a pass-by-reference function because there’s no way to manage an IN OUT or
OUT-only mode parameter (covered in the upcoming Table 8-2). Autonomous programs run
in a different session context from their caller. That means the embedded INSERT, UPDATE, or
DELETE statements don’t return a direct acknowledgement of their success or failure, unless the
function raises an exception.

Any attempt to call a non-autonomous function inside a query with an INSERT, UPDATE, or
DELETE statement fails with an ORA-14551 error. Likewise, an attempt to use a pass-by-reference
function returns an ORA-06572 error, which means the function has IN OUT or OUT-only mode
formal parameters.

The benefit of wrapping an INSERT, UPDATE, or DELETE statement in an autonomous
function is that you can create a wait-on-completion function. A wait-on-completion function
returns one value when successful and another when not. Typically, this is done by returning a 1
for true and a 0 for false, which mimics a Boolean in a SQL context. You can’t create a wait-on-
completion autonomous procedure without using an OUT mode parameter. That means wait-on-
completion procedures can’t work in SQL statements. Wait-on-completion functions or procedures
let you check for completion of a spawned or forked process before continuing with your current
program’s execution. Wait-on-completion functions are also known as pessimistic functions

FIGURE 8-2. Pass-by-value functions with read-write access to the database

DDL/DMLBlack
Box

Oracle

Input

Output

08-ch08.indd 298 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 299

because they verify an event before continuing to process programming logic. Figure 8-3 displays
a generic pessimistic function.

PL/SQL qualifies functions and procedures as pass-by-value or pass-by-reference subroutines
by the mode of their formal parameter lists. PL/SQL supports three modes—read-only, write-only,
and read-write. The IN mode is the default and designates a formal parameter as read-only. OUT
mode designates a write-only parameter, and IN OUT mode designates a read-write parameter
mode. Table 8-2 presents the details of these available parameter modes.

By default, Oracle Database 12c programs send copies of all parameters to subroutines
when they call them. Although this may seem strange, because it is contrary to the concept of
pass-by-reference subroutines, it is exactly what you’d expect for a pass-by-value subroutine.

When subroutines complete successfully, they copy OUT or IN OUT mode parameters back
into external variables. This approach guarantees the contents of an external variable are unchanged
before a subroutine completes successfully. This eliminates the possibility of writing partial result
sets because an error terminates a subroutine. When an exception is thrown by a subroutine, you
have an opportunity to attempt recovery or write variables to log files.

You can override the default behavior of passing copies of variables when calling functions
and procedures for local transactions. This means you use fewer resources and actually pass a
reference, not a copy of data. You cannot override that default behavior when calling the program
unit via a database link or external procedure call. You override the copy behavior by using the
NOCOPY hint.

The NOCOPY hint doesn’t override the copy rule when

 ■ An actual parameter is an element of an associative array. The NOCOPY hint works when
you pass a complete associative array but not a single element.

 ■ An actual parameter is NOT NULL constrained.

 ■ An actual parameter is constrained by scale.

 ■ An actual parameter is an implicitly defined record structure, which means you used
either the %ROWTYPE or %TYPE anchor.

 ■ An actual parameter is an implicitly defined record structure from a FOR loop, which fails
because the native index has restricted scope to the loop structure.

 ■ An actual parameter requires implicit type casting.

FIGURE 8-3. Pessimistic functions guarantee outcomes of SQL statements.

SQLIF THEN

some_statement;

END IF;

BOOLEAN EXPRESSION

Input

Output

08-ch08.indd 299 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

300 Oracle Database 12c PL/SQL Programming

You can define functions, procedures, packages, or object types in either of two ways:

 ■ Definer rights model This default model of operation ensures that stored programs work
with local data that resides in the same schema. It automatically sets AUTHID to DEFINER.

 ■ Invoker rights model You can define a subroutine to write to the current user’s local
repository. You do this by defining the AUTHID as CURRENT_USER. The invoker rights
model has a single code repository that allows independent users to act on local data.
This type of model requires you to maintain multiple copies of tables or views in different
schemas or databases. You then grant the EXECUTE privilege to other schemas. The invoker
rights model best supports distributed computing models.

Mode Description
IN The IN mode, the default mode, means you send a copy as the actual parameter.

Any formal parameter defined without an explicit mode of operation is implicitly
an IN-only mode parameter. It means a formal parameter is read-only. When you
set a formal parameter as read-only, you can’t alter it during the execution of the
subroutine. You can assign a default value to a parameter, making the parameter
optional. You use the IN mode for all formal parameters when you want to define
a pass-by-value subroutine.

OUT The OUT mode means you send a reference, but a null as an initial value. A
formal parameter is write-only. When you set a formal parameter as write-only,
no initial physical size is allocated to the variable. You allocate the physical size
and value inside your subroutine. You can’t assign a default value, which would
make an OUT mode formal parameter optional. If you attempt that, you raise a
PLS-00230 error. The error says that an OUT or IN OUT mode variable cannot
have a default value. Likewise, you cannot pass a literal as an actual parameter
to an OUT mode variable because that would block writing the output variable.
If you attempt to send a literal, you’ll raise an ORA-06577 error with a call from
SQL*Plus, and a PLS-00363 error inside a PL/SQL block. The SQL*Plus error
message states the output parameter is not a bind variable, which is a SQL*Plus
session variable. The PL/SQL error tells you that the expression (or, more clearly,
literal) cannot be an assignment target. You use an OUT mode with one or more
formal parameters when you want a write-only pass-by-reference subroutine.

IN OUT The IN OUT mode means you send a reference and starting value. A formal
parameter is read-write. When you set a formal parameter as read-write, the
actual parameter provides the physical size of the actual parameter. While you
can change the contents of the variable inside the subroutine, you can’t change
or exceed the actual parameter’s allocated size. The IN OUT mode restrictions
on default values and literal values mirror those of the OUT mode.

TABLE 8-2. Subroutine Parameter Modes

08-ch08.indd 300 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 301

The examples in this chapter and the book use the definer rights model, which is the more
common solution. The differences between the two models are described in detail in Appendix A.

Oracle Database 11g introduced changes in how name and positional notation work in both
SQL and PL/SQL. With those changes, they actually now work the same way in both SQL and
PL/SQL. This fixes a long-standing awkwardness in how you made function and procedure calls
in the database.

What Is Local Data?
Oracle qualifies local data as materialized views, synonyms, tables, or views. Tables and
materialized views are physically stored data. Views are runtime queries drawn from tables,
materialized views, and other views. Synonyms are pointers to materialized views, synonyms,
tables, or views.

You can write to a local materialized view, table, view, or synonym from a stored
subprogram collocated in the same schema. Synonyms can point to objects in the same
schema or another schema. When the object is defined in another schema, you must have
privileges to read or write to them for a synonym to translate correctly to the object. A local
synonym can resolve a schema, component selector (the period or dot), and object name
into a local schema name.

Review Section
This section has described the following points about the architecture of functions and procedures:

 ■ Pass-by-value functions are black boxes that perform tasks by consuming inputs and
returning a completely new result.

 ■ Pass-by-value procedures are black boxes that perform tasks by consuming inputs
without returning a result.

 ■ Pass-by-reference functions are black boxes that perform tasks by consuming some
inputs and returning other inputs as altered values to the calling variables, and
returning a completely new result.

 ■ Pass-by-reference procedures are black boxes that perform tasks by consuming some
inputs and returning other inputs as altered values to the calling variables.

 ■ Inline functions and procedures run in the same transaction scope as the calling
program unit.

 ■ Autonomous functions and procedures run in a different transaction scope from the
calling program unit.

 ■ The IN mode is the default mode and is a pass-by-value parameter, and the IN OUT
and OUT modes are pass-by-reference parameters.

 ■ The ACCESSIBLE BY clause lets you white list functions and procedures.

 ■ Final control of whether the NOCOPY hint passes a copy or a reference to the parameter
rests with Oracle’s PL/SQL engine.

08-ch08.indd 301 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

302 Oracle Database 12c PL/SQL Programming

Transaction Scope
As discussed in the “Data Transactions” section of Appendix A, transaction scope is a thread of
execution—a process. You establish a session when you connect to the database. What you do
during your session is visible only to you until you commit any changes to the database. After
committing the changes, other sessions can see the changes you’ve made.

During a session, you can run one or more PL/SQL programs. They execute serially, or in
sequence. The first program can alter the data or environment before the second runs, and so on.
This is true because your session is the main transaction. All activities depend on one or more
prior activities. You can commit work, making all changes permanent, or reject work, repudiating
all or some changes.

Functions and procedures are the natural way to guarantee ACID compliance when you want
to guarantee the ACID compliance across two or more DML statements. Appendix A explains
ACID compliance. Oracle Database 12c database implements all INSERT, UPDATE, DELETE,
and MERGE statements as ACID-compliant transactions. However, sometimes you may want to
perform two DML statements against the same or different tables, and the only way to guarantee
that such behavior is ACID compliant is to use a function or procedure. You enclose the collection
of DML statements in a single transaction scope within the stored program unit, as illustrated in
Figure 8-4.

FIGURE 8-4. Stored program transaction flow

2PC

Atomic & Consistent

Isolated

DurableN

DML Statements

Error
Raised?

Commit

R
ol

l b
ac

k

Fi
rs

t P
ha

se
Se

co
nd

Ph
as

e

Savepoint

Stored Program Table Resource Other Sessions

Existing
Rows

V
is

ib
le

Original Row

Altered Row

New Row

Deleted Row

New
&

Existing
Rows

V
is

ib
le

08-ch08.indd 302 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 303

Guaranteeing the ACID compliance of two or more DML statements when they work against
one or more tables is the core purpose of functions and procedures. The other purpose of functions
and procedures is to isolate and modularize your program logic.

Transaction scope is fairly straightforward when you work within a single context. A context is
a process or program scope. Oracle Database 12c manages program scope by individual sessions.
That means any program that runs inside a single session has one operational context. Within that
operational context or session, Oracle functions and procedures may call SQL statements, and
SQL statements may call named PL/SQL blocks. These internal calls within the scope of an operational
transaction are known as context switches.

Functions and procedures have one of two types of scope. They are dependently scoped by
default, which means that they run inline or in the same transaction scope as the main process.
The main process is the calling program. However, you can set functions or procedures to run
in their own operational scope by defining them as autonomous transactions. It’s always more
complex to manage autonomous transactions because they run independently.

NOTE
Don’t confuse an inline flow with the compiler trick of inlining
subroutines. The latter means taking a copy of a discrete stand-alone
program and embedding it as a local routine.

Autonomous transactions can commit their local work independently of the calling program—
that is, provided they don’t create resource contention, which is where two independent processes
try to change the same data. Oracle’s MVCC architecture prevents a direct collision, and that’s
one of the reasons individual autonomous programs must have their own COMMIT statement.
The COMMIT statement makes all changes spawned by autonomous block changes permanent
notwithstanding the main program control rules.

Autonomous transactions are great when you want something to happen notwithstanding the
success or failure of something else. They’re useful when you want to write data in a trigger before
raising an exception that causes the main program’s failure. However, they’re dangerous for the
same reason. You can inadvertently write data states when you don’t want them written.

You should note that transaction scope is controlled by using the SAVEPOINT, ROLLBACK,
and COMMIT commands. Both autonomous functions and procedures must include their own
COMMIT statement. If you fail to provide a minimum of a COMMIT statement inside an autonomous
program unit, it fails to compile.

Calling Subroutines
Prior to Oracle Database 11g, you could use both positional notation and named notation when
calling subroutines in PL/SQL program units, but you could not use named notation in SQL calls
to functions. Oracle Database 11g fixed that shortfall and introduced mixed notation calls too.

Positional notation means that you provide a value for each variable in the formal parameter
list. The values must be in sequential order and must also match the data type. Named notation
means that you pass actual parameters by using their formal parameter name, the association
operator (=>), and the value. Named notation lets you only pass values to required parameters,
which means you accept the default values for any optional parameters.

The new mixed notation means that you can now call subroutines by a combination of positional
notation and named notation. This becomes very handy when parameter lists are defined with all

08-ch08.indd 303 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

304 Oracle Database 12c PL/SQL Programming

mandatory parameters first, and optional parameters next. It lets you avoid naming the mandatory
parameters and lets you skip optional parameters where their default values work. It does not
solve exclusionary notation problems. Exclusionary problems occur with positional notation when
optional parameters are interspersed with mandatory parameters, and when you call some but not
all optional parameters.

The following function lets you experiment with these different approaches. The function accepts
three optional parameters and returns the sum of three numbers.

 CREATE OR REPLACE FUNCTION add_three_numbers
 (a NUMBER := 0, b NUMBER := 0, c NUMBER := 0) RETURN NUMBER IS
 BEGIN
 RETURN a + b + c;
 END;
 /

The first three subsections show you how to make positional, named, and mixed notation
function calls. The last one demonstrates how to make exclusionary notation calls.

Positional Notation
You use positional notation to call the function as follows:

 BEGIN
 dbms_output.put_line(add_three_numbers(3,4,5));
 END;
 /

Named Notation
You call the function using named notation as follows:

 BEGIN
 dbms_output.put_line(add_three_numbers(a => 4,b => 5,c => 3));
 END;
 /

Mixed Notation
You call the function by a mix of both positional and named notation as follows:

 BEGIN
 dbms_output.put_line(add_three_numbers(3,c => 4,b => 5));
 END;
 /

There is a restriction on mixed notation. All positional notation actual parameters must occur
first and in the same order as they are defined by the function signature. You cannot provide a
position value after a named value without raising an exception.

Exclusionary Notation
As mentioned, you can also exclude one or more of the actual parameters when the formal
parameters are defined as optional. All parameters in the add_three_numbers function are

08-ch08.indd 304 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 305

optional. The following example passes a value to the first parameter by positional reference and
to the third parameter by named reference:

 BEGIN
 dbms_output.put_line(add_three_numbers(3,c => 4));
 END;
 /

When you opt to not provide an actual parameter, it acts as if you’re passing a null value.
This is known as exclusionary notation. Oracle has recommended for years that you should list
optional parameters last in function and procedure signatures. They’ve also recommended that you
sequence optional variables so that you never have to skip an optional parameter in the list.
These recommendations exist to circumvent errors when making positional notation calls.

You can’t really skip an optional parameter in positional notation call. This is true because all
positional calls are in sequence by data type, but you can provide a comma-delimited null value
when you want to skip an optional parameter in the list. Oracle supports mixed notation calls
from Oracle Database 11g forward. You can now use positional notation for your list of mandatory
parameters and named notation for optional parameters. This lets you skip optional parameters
without naming all parameters explicitly.

SQL Call Notation
Previously, you had only one choice. You had to list all the parameters in their positional order
because you couldn’t use named references in SQL. This was fixed in Oracle Database 11g;
now you can call parameters just as you do from a PL/SQL block. The following demonstrates
mixed notation in a SQL call:

SQL> SELECT add_three_numbers(3,c => 4,b => 5)
 2 FROM dual;

As in earlier Oracle Database releases, you can only call functions that have IN-only mode
variables from SQL statements. You cannot call a function from SQL when any of its formal
parameters are defined as IN OUT mode or OUT-only mode variables without handling the actual
parameter in SQL*Plus as a session bind variable. This is true because you must pass a variable
reference when a parameter has an OUT mode.

Review Section
This section has described the following points about the transaction scope of functions and
procedures:

 ■ A transaction scope lets you manage multiple DML statements against one or more tables
with an ACID-compliant guarantee that all or none of the DML statements work or fail.

 ■ Default transaction scope occurs in a single operational context.

 ■ Autonomous functions and procedures run in their own operational context and require
a minimum of a COMMIT instruction to compile.

 ■ Oracle supports positional, named, mixed, and exclusionary call notation in SQL and
PL/SQL contexts.

08-ch08.indd 305 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

306 Oracle Database 12c PL/SQL Programming

Functions
As previously described, PL/SQL has pass-by-value and pass-by-reference functions. Both types of
functions return output values. Function output values can be any SQL or PL/SQL data type. You
can use functions that return SQL data types inside SQL statements. Functions returning PL/SQL
data types work only inside PL/SQL blocks.

One exception to these general rules is that you cannot call a stored function that contains a
DML operation from inside a SQL query. If you do, it raises an ORA-14551 error saying that it
can’t perform a DML operation inside a query. However, you can call a function that performs a
DML operation inside INSERT, UPDATE, and DELETE statements.

Functions can also contain nested named blocks, which are local functions and procedures.
You define named blocks in the declaration block of the function. You can likewise nest anonymous
blocks in the execution block.

The following illustrates a named block function prototype:

[{EDITIONALBE | NONEDITIONALBE}] FUNCTION function_name
(parameter [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
[, parameter [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
[, ...]]) RETURN [sql_data_type | plsql_data_type]
[AUTHID [DEFINER | CURRENT_USER]]
[DETERMINISTIC | PARALLEL_ENABLE]
[PIPELINED]
[ACCESSIBLE BY
([{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]unit_name)
[,[{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]unit_name)]
[,...]]])
[RESULT_CACHE [RELIES ON table_name [, table_name [, ...]]]] IS
 declaration_statements
BEGIN
 execution_statements
 RETURN variable;
[EXCEPTION]
 exception_handling_statements
END [function_name];
/

You call functions by providing any required parameters as a list of arguments inside opening
and closing parentheses. No parentheses are required when functions aren’t defined with required
parameters. This differs from most other programming languages. Calls in other languages require
an empty set of opening and closing parentheses.

The prototype for a function call with actual parameters from SQL*Plus is

CALL function_name(parameter [, parameter [, ...]])
INTO target_variable_name;

When there aren’t any mandatory formal parameters, the prototype differs, as shown:

CALL function_name INTO target_variable_name;

08-ch08.indd 306 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 307

Assignments inside PL/SQL blocks with mandatory parameters look like:

target_variable_name :=
 function_name(parameter [, parameter [, ...]]);

The assignment prototype drops the parentheses when unnecessary:

target_variable_name := function_name;

Returning a function value as an expression is done by using the following prototype:

external_function_name(function_name(parameter
 [, parameter [, ...]]));

There are several optional configurations that you can use when creating functions. You can
define a function to support a definer rights or invoker rights model by including the AUTHID
clause. You can also guarantee the behavior of a function, which makes it possible to use functions
in SQL statements, function-based indexes, and materialized views. You can also configure functions
to return pipelined tables and, in Oracle Database 12c, shared result sets from the cache in the SGA.

As previously introduced, Oracle Database 12c now lets you white list callers of functions,
procedures, packages, or object types via the ACCESSIBLE BY clause. You should use it anytime
you want your security API to validate before calling stored functions. Chapter 2 contains a full
example of white listing a library function.

As discussed, you can define formal parameters in one of three modes:

 ■ IN mode, for read-only parameters

 ■ OUT mode, for write-only parameters

 ■ IN OUT mode, for read-write parameters.

The parameter modes let you create pass-by-value and pass-by-reference functions. You build
a pass-by-value function when you define all parameters as IN mode. Alternatively, you build a
pass-by-reference function when you defined one or more parameters as an IN OUT mode or
OUT-only mode parameters.

The next three sections discuss how you can create functions. The first section examines the
optional clauses that let you create functions for various purposes. The second section examines
pass-by-value functions, and the third discusses pass-by-value functions.

Function Model Choices
What are the rules of thumb with regard to choosing a pass-by-value or pass-by-reference function?
They’re quite simple, as you’ll see.

You should implement a pass-by-value function when you want to produce a result by consuming
the input. You also should implement a pass-by-value function when you want to use the function
in a SQL statement. A pass-by-value function is ideal when its transaction scope is autonomous.
In object-oriented programming terms, you want to use a pass-by-value function when you want
the lowest possible coupling—message coupling.

When programs are loosely coupled, they’re more flexible and reusable in applications. Tightly
coupled programs are intrinsically linked to form a processing unit—like root beer and vanilla
ice cream are used make a traditional root beer float, so are these programs blended to form a
processing unit.

08-ch08.indd 307 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

308 Oracle Database 12c PL/SQL Programming

You implement a pass-by-reference function when you need to couple behavior of the calling
and called program units (known as data coupling). This happens when the function is called in a
single threaded execution scope, which is the default in most transactional database applications.
Tightly coupled programs such as these let you opt to return values through the IN OUT or OUT
mode formal parameters. When the parameters receive raw and return processed data, the formal
return value of the function becomes a signal of success or failure.

PL/SQL functions that use the return type to signal success or failure typically implement
either a Boolean or number data type. They use the Boolean when you design them to work
exclusively inside PL/SQL blocks and a number when they might need to work in either a SQL
or PL/SQL scope.

A pass-by-reference function is ideal when you want to couple client-side interaction with
server-side modules. In this context, you should define the function as autonomous. Autonomous
functions run in their own transaction scope and are thereby independent of the calling transaction
scope. The only way you know whether they succeeded or failed is to capture their return state
through the function return type.

A pass-by-reference function is generally a bad idea when you simply want to couple two
server-side programs. When the programs are on the same tier and might be called in the same
serial transaction scope, you should implement the behavior as a pass-by-reference procedure. A
pass-by-reference procedure is a specialized form of a function that returns no value. Procedures
are most similar to C, C++, C#, or Java methods that return a void rather than a tangible data type.

Creation Options
You create functions for SQL statements, function-based indexes, and materialized views by using
the DETERMINISTIC clause or the PARALLEL_ENABLE clause. The DETERMINISTIC and
PARALLEL_ENABLE clauses replace the older RESTRICT_REFERENCES precomplier instructions
that limited what functions could do when they were in packages. The new clauses let you assign
the same restrictions to functions in packages, and they also let you assign them to stand-alone
stored functions.

The PIPELINED clause lets you build functions that return pipelined tables. Pipelined tables
act like pseudo–reference cursors and are built using modified PL/SQL collection types. They let
you work with PL/SQL collections of record structures without defining them as instantiable
user-defined object types. You can also read the collections in SQL statements as you would an
inline view.

Object table functions let you return a varray or table collection directly to any DML statement.
That is, if you remember to wrap the result in a TABLE function call. The object table function lets
you stop writing pipelined table functions, except for legacy PL/SQL code. You will probably use
pipelined table functions to wrap legacy PL/SQL functions that return associative arrays of scalar
or record data types.

Oracle Database 11g introduced the cross-session result cache for definer rights functions.
Oracle Database 12c lets you cache the results of invoker rights functions. It does this by adding
the current user identity to the cached results. You implement the result cache feature by defining
functions with the RESULT_CACHE clause. The cross-session result cache stores the actual parameters
and result for each call to these functions and, for invoker rights programs, the CURRENT_USER
value. A second call to the function with the same actual parameters finds the result in the
cross-session cache and thereby avoids rerunning the code. The result is stored in the SGA.
When the result cache runs out of memory, it ages out the least used function call results.

08-ch08.indd 308 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 309

Backward Compatibility Issues for Functions
Functions were restricted subroutines before Oracle 8i Database (8.1.6). You had to define
them with a guarantee of performance, which was known as their level of purity. The guarantees
limited whether functions could read or write to package variables or to the database.

These limits can still be imposed on functions inside packages by using the RESTRICT_
REFERENCES PRAGMA options listed in the following table. A PRAGMA is a precomplier
instruction.

Option Description
RNDS The RNDS option guarantees a function reads no data state. This means you

cannot include a SQL query of any type in the function. It also cannot call
any other named block that includes a SQL query. A PLS-00452 error is
raised during compilation if you have a query inside the function’s program
scope that violates the PRAGMA restriction.

WNDS The WNDS option guarantees a function writes no data state. This means you
cannot include SQL statements that insert, update, or delete data. It also
cannot call any other named block that includes a SQL query. A PLS-00452
error is raised during compilation if you have a DML statement inside the
function’s program scope that violates the PRAGMA restriction.

RNPS The RNPS option guarantees a function reads no package state, which means
that it does not read any package variables. This means you cannot access a
package variable in the function. It also cannot call any other named block that
reads package variables. A PLS-00452 error is raised during compilation if
you have a query inside the function’s program scope that violates the PRAGMA
restriction.

WNPS The WNPS options guarantees a function writes no package state, which means
that it does not write any values to package variables. This means you cannot
change package variables or call another named block that changes them. A
PLS-00452 error is raised during compilation if you have a statement inside
the function’s program scope that violates the PRAGMA restriction.

TRUST The TRUST option instructs the function not to check whether called programs
enforce other RESTRICT_REFERENCES options. The benefit of this option
is that you can slowly migrate code to the new standard. The risks include
changing the behavior or performance of SQL statements. For reference, the
other options guard conditions necessary to support function-based indexes
and parallel query operations.

You should define these PRAGMA restrictions in package specifications, not in package
bodies. There should be only one PRAGMA per function. You can include multiple options in
any RESTRICT_REFERENCES precomplier instruction. The TRUST option can be added to
restricting PRAGMA instructions when you want to enable a restricted function to call other

(continued)

08-ch08.indd 309 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

310 Oracle Database 12c PL/SQL Programming

DETERMINISTIC Clause
The DETERMINISTIC clause lets you guarantee that a function always works the same way with
any inputs. This type of guarantee requires that a function doesn’t read or write data from external
sources, like packages or database tables. Only deterministic functions work in materialized
views and function-based indexes. They are also recommended solutions for user-defined functions
that you plan to use in SQL statement clauses, like WHERE, ORDER BY, or GROUP BY; or SQL
object type methods, like MAP or ORDER.

Deterministic functions typically process parameters in the exact same way. This means that
no matter what values you submit, the function works the same way. They should not have internal
dependencies on package variables or data from the database. The following function is deterministic
and calculates the present value of an investment:

SQL> CREATE OR REPLACE FUNCTION pv
 2 (future_value NUMBER
 3 , periods NUMBER
 4 , interest NUMBER)
 5 RETURN NUMBER DETERMINISTIC IS
 6 BEGIN
 7 RETURN future_value / ((1 + interest)**periods);
 8 END pv;
 9 /

Assume you want to know how much to put in a 6 percent investment today to have $10,000
in five years. You can test this function by defining a bind variable, using a CALL statement to put
the value in the bind variable, and querying the result against the DUAL table, like this:

SQL> VARIABLE result NUMBER
SQL> CALL pv(10000,5,6) INTO :result;
SQL> COLUMN money_today FORMAT 9,999.90
SQL> SELECT :result AS money_today
 2 FROM dual;

unrestricted functions. The TRUST option disables auditing whether called functions adhere
to the calling program unit’s restrictions—level of purity.

NOTE
You should consider replacing these restricting precompiler
instructions with the DETERMINISTIC clause or PARALLEL_
ENABLE clause to guarantee the behavior of a function.

Backward compatibility is nice but seldom lasts forever. You should replace these old
precompiler instructions by defining functions with the new syntax. This means making
functions DETERMINISTIC when they are used by function-based indexes. Likewise, you
should define functions as PARALLEL_ENABLE when they may run in parallelized operations.

08-ch08.indd 310 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 311

The function call uses positional notation but could also use named notation or mixed notation.
It prints the formatted present value amount:

MONEY_TODAY

 7,472.58

You use deterministic functions inside materialized views and function-based indexes. Both
materialized views and function-based indexes must be rebuilt when you change the internal
working of deterministic functions.

PARALLEL_ENABLE Clause
PARALLEL_ENABLE lets you designate a function to support parallel query capabilities. This type
of guarantee requires that a function doesn’t read or write data from external sources, like packages
or database tables. You should consider designating functions as safe for parallel operations to
improve throughput, but the Oracle Database 12c optimizer may run undesignated functions
when it believes they are safe for parallel operations. Java methods and external C programs are
never deemed safe for parallel operations.

The following function supports parallel SQL operations and merges last name, first name,
and middle initial into a single string:

SQL> CREATE OR REPLACE FUNCTION merge
 2 (last_name VARCHAR2
 3 , first_name VARCHAR2
 4 , middle_initial VARCHAR2)
 5 RETURN VARCHAR2 PARALLEL_ENABLE IS
 6 BEGIN
 7 RETURN last_name ||', '||first_name||' '||middle_initial;
 8 END;
 9 /

Materialized Views
Unlike a standard view in a relational database, a materialized view is a cached result set.
As a cached result set, it is stored as a concrete table.

Materialized views are more responsive to queries because they don’t demand resources
to dynamically build the view each time. The trade-off is that materialized views are often
slightly out of date because underlying data may change between when the view is cached
versus it is accessed.

You can use function-based indexes in materialized views provided they use deterministic
functions. Deterministic functions always produce the same result value when called with
any set of actual parameters. They also guarantee that they don’t modify package variables
or data in the database.

Consider using materialized views when the underlying table data changes infrequently
and query speed is important. Materialized views are possible solutions when developing
data warehouse fact tables.

08-ch08.indd 311 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

312 Oracle Database 12c PL/SQL Programming

You can use the function safely in database queries, like

SQL> SELECT merge(last_name,first_name,middle_initial) AS full_name
 2 FROM contact
 3 ORDER BY last_name, first_name, middle_initial;

This query depends on the code discussed in the introduction and returns

FULL_NAME

Sweeney, Ian M
Sweeney, Irving M
 ...

Parallel operations do not always occur when you use the PARALLEL_ENABLE hint. Parallel
operations are more expensive with small data sets. The Oracle Database 12c optimizer judges
when to run operations in parallel mode. Also, sometimes the optimizer runs functions in parallel
when they’re not marked as parallel enable. It makes this decision after checking whether the
function can support the operation. It is a good coding practice to enable functions for parallel
operation when they qualify.

PIPELINED Clause
The PIPELINED clause provides improved performance when functions return collections, like
varray or table collections. You’ll also note performance improvements when returning system
reference cursors by using the PIPELINED clause. Pipelined functions also let you return aggregate
tables. Aggregate tables act like collections of PL/SQL record structures. They only work in SQL
statements.

This section discusses collection concepts. Chapter 6 covers collections for those new to
PL/SQL. Collections are arrays and lists of scalar and compound variables. Pipelined functions
only work with table or varray collections. These two types of collections are indexed by sequential
numbers. You can also build collections of user-defined SQL object types, which are treated like
single-dimensional arrays of number, strings, or dates.

The easiest implementation of a pipelined function involves a collection of scalar values
defined by a SQL data type. You define a NUMBERS data type as a varray collection of NUMBER
by using the following command:

SQL> CREATE OR REPLACE
 2 TYPE numbers AS VARRAY(10) OF NUMBER;
 3 /

The 10 in parentheses after the VARRAY sets the maximum number of elements in the collection,
as qualified by Chapter 6. VARRAY data types are very similar to arrays. Arrays in most programming
languages are initialized with a fixed size or memory allocation.

After you create the collection data type, you can describe it at the SQL command line:

SQL> DESCRIBE NUMBERS
 NUMBERS VARRAY(10) OF NUMBER

08-ch08.indd 312 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 313

NOTE
When you create types in the database, the DDL command acts
like a PL/SQL block. These commands require a semicolon to end
the statement and a forward slash to execute it (or compile it into the
database).

A pipelined function depends on available SQL or PL/SQL collection data types. These types
are limited to varray or table collections. You can define SQL collection types of scalar variables
or user-defined object types.

The following defines a pipelined function that returns a list of numbers:

SQL> CREATE OR REPLACE FUNCTION pipelined_numbers
 2 RETURN NUMBERS
 3 PIPELINED IS
 4 list NUMBERS := numbers(0,1,2,3,4,5,6,7,8,9);
 5 BEGIN
 6 FOR i IN 1..list.LAST LOOP
 7 PIPE ROW(list(i));
 8 END LOOP;
 9 RETURN;
 10 END;
 11 /

The function returns the NUMBERS user-defined SQL data type from the data catalog. That
means it’s a SQL table collection. The function declares a local table collection of NUMBERS on
line 4. It also initializes the table collection. As discussed in Chapter 6, you initialize a table
collection by calling the user-defined SQL data type name with an empty set of parentheses or
with a list of the base type of the collection. In this case, it’s a base type of numbers. Line 7
assigns elements from the collection to the pipe.

You can then query the results as follows:

SQL> SELECT *
 2 FROM TABLE(pipelined_numbers);

The output is a single column with the ordinal numbers from 0 to 9.
Pipelined functions can also use PL/SQL collection types. PL/SQL collection types can hold

scalar variables or user-defined object types like their SQL equivalents. They can also be collections
of record structures. This means they are similar to system reference cursors.

Unlike system reference cursors, PL/SQL collection types cannot be defined as SQL or PL/SQL
data types. They can only be defined as PL/SQL data types. In order to return these types in stored
functions, they must be defined inside a package specification. Chapter 9 covers packages in depth.

The following package specification declares a record structure, a table collection that uses
the account_record data structure, and a function that returns the table collection:

SQL> CREATE OR REPLACE PACKAGE pipelined IS
 2 /* Declare a PL/SQL record and collection type. */
 3 TYPE account_record IS RECORD
 4 (account VARCHAR2(10)
 5 , full_name VARCHAR2(42));

08-ch08.indd 313 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

314 Oracle Database 12c PL/SQL Programming

 6 TYPE account_table IS TABLE OF account_record;
 7
 8 /* Declare a pipelined function. */
 9 FUNCTION pf RETURN account_table PIPELINED;
 10 END pipelined;
 11 /

Line 6 declares a collection of the record structure declared above it. Line 9 declares a pf
function as a pipelined function. You should take careful note that the collection on line 6 is a
table collection rather than an associative array. A pipelined table function requires the data to be
put in a table or varray collection.

The pf function is implemented in the package body:

SQL> CREATE OR REPLACE PACKAGE BODY pipelined IS
 2 /* Implement a pipelined function. */
 3 FUNCTION pf
 4 RETURN account_collection
 5 PIPELINED IS
 6 /* Declare a collection control and collection
 7 variable. */
 8 counter NUMBER := 1;
 9 account ACCOUNT_COLLECTION := account_collection();
 10
 11 /* Declare a cursor. */
 12 CURSOR c IS
 13 SELECT m.account_number
 14 , c.last_name || ', '||c.first_name full_name
 15 FROM member m JOIN contact c
 16 ON m.member_id = c.member_id
 17 ORDER BY c.last_name, c.first_name;
 18 BEGIN
 19 FOR i IN c LOOP
 20 /* Allot space and add values to collection. */
 21 account.EXTEND;
 22 account(counter).account := i.account_number;
 23 account(counter).full_name := i.full_name;
 24 /* Assign the record structure to the PIPE. */
 25 PIPE ROW(account(counter));
 26 counter := counter + 1;
 27 END LOOP;
 28 RETURN;
 29 END pf;
 30 END pipelined;
 31 /

The package body implements only the pf function. Inside the pf function, line 8 implements
a counter for the account table collection. Line 9 declares and initializes the account collection.
The account and full_name fields are individually assigned variables from the cursor because
a PL/SQL record type doesn’t support a constructor call.

08-ch08.indd 314 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 315

There is a more efficient assignment available. You can assign the iterator of a cursor FOR
loop directly to a table collection when the list of data types match. The syntax replaces lines 22
and 23 with this:

 22 account(counter) := i;
 23

As you can see, the assignment went from two individual field assignments on lines 22 and 23
to a single record assignment from the cursor on line 22. You’ll most likely use the direct cursor
assignment any time you’re working with a collection of PL/SQL records.

Varray and table collections are internal objects of a package when you implement them in a
package. While they require explicit construction when the base type is an object, they can’t accept
constructed object assignments when the base type is a PL/SQL record structure.

Varray and table collections require you to allocate space before adding elements to a
collection. The EXTEND method on line 19 allocates space for one element and then values are
assigned to components of that indexed element. As discussed, they may be assigned by field
element or by record through the cursor pointer, or iterator of a cursor FOR loop.

Line 25 assigns the PL/SQL collection to a PIPE, which translates the collection into a SQL
result set, which you may then display or consume as a result set with the TABLE function. The
PIPE is a simplex (one-way communication channel) FIFO (First In, First Out) translator. Line 28
returns the PIPE, which is the table collection as a SQL result set.

You can call the function using the package name, component selector, and function name,
as shown:

SQL> SELECT *
 2 FROM TABLE(pipelined.pf);

This returns rows from the record structure:

ACCOUNT FULL_NAME
---------- ----------------
B293-71447 Sweeney, Ian
B293-71446 Sweeney, Irving
 ...

It may appear that you’re limited to packages because that’s where you’ve declared the
account_table return type. While package varray and table collections aren’t directly available
in the data dictionary, they are available to other PL/SQL programs because they’re implicitly
created in the data catalog. The fact that they’re declared in a package specification also lets us
implement them in stand-alone functions.

The following stand-alone function implements the same logic as the pf pipelined function,
the difference being that it’s a stand-alone schema-level function:

SQL> CREATE OR REPLACE FUNCTION pf
 2 RETURN pipelined.account_collection
 3 PIPELINED IS
 4 /* Declare a collection control and collection variable. */
 5 counter NUMBER := 1;
 6 account PIPELINED.ACCOUNT_COLLECTION :=
 7 pipelined.account_collection();
 8

08-ch08.indd 315 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

316 Oracle Database 12c PL/SQL Programming

 9 ... cursor redacted to save space ...
 15 BEGIN
 17 FOR i IN c LOOP
 18 /* Allot space and add values to collection. */
 19 account.EXTEND;
 20 account(counter) := i;
 21
 22 /* Assign the record structure to the PIPE. */
 23 PIPE ROW(account(counter));
 24 counter := counter + 1;
 25 END LOOP;
 26 RETURN;
 27 END pf;
 28 /

The only difference is how you reference the PL/SQL collection type. Note on lines 6 and 7
that the pipelined package name precedes the table collection type. It does so for the variable’s
data type on line 6 and the constructor function call on line 7.

You can now call the function by referencing only the function name, like

SQL> SELECT *
 2 FROM TABLE(pf);

You can use pipelined functions to build views, like this:

SQL> CREATE OR REPLACE VIEW pipelined_view AS
 2 SELECT result.account
 3 , result.full_name
 4 FROM TABLE(pf) result;

Views built by calls to pipelined functions require INSTEAD OF triggers to manage inserts,
updates, and deletes. At least, you build the INSTEAD OF trigger when you want to allow DML
operations.

Pipelined functions are designed to let you use collections of scalar variables or record
structures. The previously demonstrated pipelined functions convert the PL/SQL collection into an
aggregate table. You cannot reuse the pipelined table in another PL/SQL scope, but you can use it
in SQL scope queries.

Prior to Oracle Database 12c, a pipelined table function was your only alternative to access a
PL/SQL collection in a SQL statement. Now you can access a local PL/SQL associative array in a
SQL statement. There’s no sense in repeating the full example from Chapter 2, but the following
unnamed block shows you how to use a PL/SQL associative array in a query:

SQL> DECLARE
 2 lv_list TYPE_DEFS.PLSQL_TABLE;
 3 BEGIN
 4 list := implicit_convert;
 5 FOR i IN (SELECT column_value
 6 FROM TABLE(lv_list)) LOOP
 7 dbms_output.put_line(i.column_value);
 8 END LOOP;
 9 END;
 10 /

08-ch08.indd 316 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 317

Line 6 refers to the local lv_list associative array, which is based on an associative array
type defined in the type_defs package example. Oracle Database 12c knows how to translate
the associative array in the context switch between PL/SQL and SQL because lv_list is declared
in the local block where you call the SELECT statement.

You now know how to use pipelined functions and understand their strengths and weaknesses.
They’re great tools when you want to get data into a query or view that requires procedural logic.

Pipelined Results Are Limited to SQL Scope
There is a temptation to pass the return value from a pipelined function to another PL/SQL
module because it isn’t clear that these aggregate tables are designed only for use in SQL
statements. You receive a PLS-00653 error when you try to pass a pipelined function result
to another PL/SQL program as an actual parameter. A PLS-00653 error states that
“aggregate/table functions are not allowed in PL/SQL scope.” Pipelined table results are
only accessible in SQL scope.

The following procedure passes compilation checks because it refers to a valid PL/SQL
collection type:

SQL> CREATE OR REPLACE PROCEDURE read_pipe
 2 (pipe_in pipelined.account_collection) IS
 3 BEGIN
 4 FOR i IN 1..pipe_in.LAST LOOP
 5 dbms_output.put(pipe_in(i).account);
 6 dbms_output.put(pipe_in(i).full_name);
 7 END LOOP;
 8 END read_pipe;
 9 /

This seems a logical segue to control the reading of a pipelined table. The following
demonstrates how you would call the procedure by passing the result set of a call to the
pipelined pf function:

EXECUTE read_pipe(pf);

This raises the following error message:

BEGIN read_pipe(pf); END;
 *
ERROR at line 1:
ORA-06550: line 1, column 10:
PLS-00653: aggregate/table functions are not allowed in PL/SQL scope

The error occurs because the actual data type passed to the procedure is a pipelined
aggregate or table with equivalent values but not a PL/SQL collection data type. Fortunately,
the error message gives you great feedback when you know that a pipelined aggregate table
isn’t a PL/SQL collection type.

08-ch08.indd 317 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

318 Oracle Database 12c PL/SQL Programming

Object Table Functions
Although no clause exists for object table functions, it seems best to discuss them here because
they are the new alternative to pipelined table functions. They let you convert SQL collections to
a SQL result set. This eliminates the need for using PL/SQL associative arrays in all but a few rare
cases. One of those would be when you want a sparsely populated string-based index.

As a rule, SQL table collections perform as well as associative arrays. They also are more
flexible to work with when you call them from external languages, like Java.

Creating an object table function is a three-step process: you define the record structure as
an object type, then define the collection, and finally define a function to show how to return
the collection from a PL/SQL context to a SQL context.

Ultimately, you can simply query the models inside a SQL statement. This makes lists and
arrays of SQL object types reusable in the context of external programming languages such as
C#, C++, Java, and Hypertext Preprocessor (PHP).

You create the base SQL user-defined type (UDT) like this:

SQL> CREATE OR REPLACE TYPE title_structure IS OBJECT
 2 (title varchar2(60)
 3 , subtitle varchar2(60));
 4 /

You can create the collection by using a varray or table collection. A table collection is always
the more flexible option because it doesn’t have a predefined number of elements. You create a
SQL table collection of the object type like this:

SQL> CREATE OR REPLACE
 2 TYPE title_table IS TABLE OF title_structure;
 3 /

The following function is a rather trivial example but is effective because of its readability and
small size (it has one less input parameter than the earlier anonymous block). Naturally, when you
write real logic, it will be a bit more complex, because this could easily be solved as an ordinary
query:

SQL> CREATE OR REPLACE FUNCTION get_full_titles
 2 (pv_title VARCHAR2) RETURN TITLE_TABLE IS
 3
 4 -- Declare a variable that uses the record structure.
 5 lv_counter PLS_INTEGER := 1;
 6
 7 -- Declare a variable that uses the record structure.
 8 lv_title_table TITLE_TABLE := title_table();
 9
 10 -- Declare dynamic cursor structure.
 11 CURSOR c (cv_search VARCHAR2) IS
 12 SELECT item_title, item_subtitle
 13 FROM item
 14 WHERE REGEXP_LIKE(item_title
 15 , '^.*'||cv_search||'.*','i')
 16 AND item_type =
 17 (SELECT common_lookup_id
 18 FROM common_lookup

08-ch08.indd 318 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 319

 19 WHERE common_lookup_type =
 20 'DVD_WIDE_SCREEN')
 21 ORDER BY release_date;
 22
 23 BEGIN
 24 -- Open the cursor and map results to collection.
 25 FOR i IN c (pv_title) LOOP
 26 lv_title_table.EXTEND; -- Extends memory.
 27
 28 /* The assignment pattern for a SQL Collection is
 29 incompatible with the cursor return type, and you
 30 must construct an instance of the object type
 31 before assigning it to collection. */
 32 lv_title_table(lv_counter) :=
 33 title_structure(i.item_title,i.item_subtitle);
 34 lv_counter := lv_counter + 1; -- Increment counter.
 35 END LOOP;
 36 RETURN lv_title_table;
 37 END;
 38 /

Line 8 declares the collection variable by instantiating it as a null value collection. Inside the
FOR loop, line 26 extends memory space for a new element in the collection. Lines 32 and 33
assign an instance of the title structure to an indexed element of the collection. It is critical that
you note that the assignment requires that you explicitly construct an instance of the structure by
passing actual parameters of equal type.

You can then query the result as follows:

SQL> SELECT title
 2 FROM TABLE(get_full_titles('Harry'));

The column name is no longer that of the table but is that of the element in the SQL record
structure. This differs from the column_value pseudocolumn returned by an Attribute Data Type
(ADT) collection, as qualified in Chapter 6. It doesn’t appear that they put the Harry Potter movies
into moratorium after all. The results from the query are

TITLE
--
Harry Potter and the Sorcerer's Stone
Harry Potter and the Chamber of Secrets
 ...

Composite variables are tremendously valuable assets in the PL/SQL and SQL programming
environment. They let you define complex logic in named blocks that you can then simply query
in C#, Java, or PHP programs. You should take advantage of composite variables where possible.

RESULT_CACHE Clause
The RESULT_CACHE clause was new in Oracle Database 11g. Oracle Database 12c extends the
behaviors of result cache functions to work with invoker rights programs. A result cache function
stores the function name, the call parameters, the results, and the CURRENT_USER value in the
SGA. Oracle Database 12c adds the CURRENT_USER value to the stored results. This is how
Oracle Database 12c maintains different result sets for different callers of the same function.

08-ch08.indd 319 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

320 Oracle Database 12c PL/SQL Programming

The RESULT_CACHE clause instructs the PL/SQL engine to check the result cache for function
calls with matching actual parameters. A matching function call also stores the result, and the
cache returns the result and skips rerunning the function. This means the function only runs
when new parameters are sent to it.

NOTE
Cross-session functions only work with IN mode formal parameters.

The prototype for the RESULT_CACHE clause has an optional RELIES_ON clause. The
RELIES_ON clause is critical because it ensures any change to the underlying table invalidates
the result cache. This also means any DML transactions that would change result sets. The
RELIES_ON clause ensures that the cache is dynamic, representing the current result set. You
can list any number of dependent tables in the RELIES_ON clause, and they’re listed as comma-
delimited names.

The next example depends on the downloadable code from the publisher’s website. You can
find a description of the code in the Introduction. Also, this example builds upon the discussion
of table collections in Chapter 6.

This statement lets you build a collection of VARCHAR2 values:

SQL> CREATE OR REPLACE
 2 TYPE strings AS TABLE OF VARCHAR2(60);
 3 /

This function implements a cross-session result cache with the RELIES_ON clause:

SQL> CREATE OR REPLACE FUNCTION get_title
 2 (pv_partial_title VARCHAR2) RETURN STRINGS
 3 RESULT_CACHE RELIES_ON(item) IS
 4 /* Declare control and collection variable. */
 5 counter NUMBER := 1;
 6 return_value STRINGS := strings();
 7
 8 -- Define a parameterized cursor.
 9 CURSOR get_title
 10 (cv_partial_title VARCHAR2) IS
 11 SELECT item_title
 12 FROM item
 13 WHERE UPPER(item_title) LIKE '%'||UPPER(cv_partial_title)||'%';
 14 BEGIN
 15 -- Read the data and write it to the collection in a cursor FOR loop.
 16 FOR i IN get_title(pv_partial_title) LOOP
 17 return_value.EXTEND;
 18 return_value(counter) := i.item_title;
 19 counter := counter + 1;
 20 END LOOP;
 21 RETURN return_value;
 22 END get_title;
 23 /

08-ch08.indd 320 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 321

Line 3 qualifies the get_title function as a result cache function. The cached results don’t
change between calls when the function is deterministic. They do change when the function is
nondeterministic. All functions that rely on data in the tables are nondeterministic. You use the
RELIES_ON clause when working with nondeterministic functions.

Cached values are discarded when there’s a change to any table in the RELIES_ON list.
Oracle discards cached results when there’s an INSERT, UPDATE, or DELETE statement against
the item table in this case.

While it’s possible that some table changes may not merit discarding cached results, you
should routinely list all tables that are referenced in the result cache function. The RELIES_ON
clause ensures the integrity of the result set against changes in the source data only when you
include all tables in the clause.

NOTE
The RELIES_ON clause can accept one actual parameter or a list of
actual parameters.

You can test the get_title function with the following anonymous block program:

SQL> DECLARE
 2 lv_list STRINGS;
 3 BEGIN
 4 lv_list := get_title('Harry');
 5 FOR i IN 1..lv_list.LAST LOOP
 6 dbms_output.put_line('list('||i||') : ['||lv_list(i)||']');
 7 END LOOP;
 8 END;
 9 /

Like the earlier examples with a pipelined table function, you can test the get_title
function inside a query:

SQL> SELECT column_value
 2 FROM TABLE(get_title('Harry'));

After calling the result cache function, you insert, delete or update dependent data. Then, you’ll
find new result sets are displayed. This change ensures that stale data never misleads the user. The
RELIES_ON clause ensures the integrity of the result set, but it does cost you some processing
overhead.

TIP
You should consider excluding the RELIES_ON clause to improve
transactional efficiency in data warehouse implementations.

The preceding sections have covered the available options for defining functions. These skills
are assumed when discussing pass-by-value functions.

08-ch08.indd 321 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

322 Oracle Database 12c PL/SQL Programming

Pass-by-Value Functions
A pass-by-value function receives values when they’re called. They return a single thing upon
completion. The tricky parts with this type of function are the data types of the inputs and outputs.
Inputs are formal parameters and have only one mode in pass-by-value programs, and that’s an
IN-only mode. An IN-only mode means that you send a copy of either a variable value or a literal
value into the function as a raw input. These copies are actual parameters or call parameters. All
raw materials (call parameters) are consumed during the production of the finished goods—or the
return value of this type of function. The return type value of the function must be assigned to a
variable in a PL/SQL block, but it can also be returned as an expression in a SQL query.

Functions return a single output variable. Output variables can be scalar values or composite
data types. This means that a single variable can contain many things when it is a composite data
type.

As discussed, you can define pass-by-value functions as deterministic or parallel enable when
the functions don’t alter package variables or database values. You can also define functions to
return pipelined tables that mimic SQL or PL/SQL collections. The results of pipelined functions
require that you use them in SQL scope. All functions except those created with pipelined results
support result caches.

Whether functions interact with the file system or database does not impact how they act
inside your PL/SQL code block. You can use a function to assign a result to a variable, or return
a variable as an expression. Figure 8-1, earlier in the chapter, illustrates using a function as a right
operand in an assignment operation.

A sample hello_whom function, a variation on the classic hello_world function,
demonstrates a pass-by-value function:

SQL> CREATE OR REPLACE FUNCTION hello_whom
 2 (pv_name IN VARCHAR2) RETURN VARCHAR2 IS
 3 /* Default name value. */
 4 lv_name VARCHAR2(10) := 'World';
 5 BEGIN
 6 /* Check input name and substitute a valid value. */
 7 IF pv_name IS NOT NULL THEN
 8 lv_name := pv_name;
 9 END IF;
 10 /* Return the phrase. */
 11 RETURN 'Hello '||lv_name||'!';
 12 END;
 13 /

When you call the hello_whom function from a query, like this:

SQL> SELECT hello_whom('Henry') AS "Salutation"
 2 FROM dual;

it prints

Salutation

Hello Henry!

08-ch08.indd 322 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 323

Line 2 explicitly qualifies the IN mode of operation for the pass-by-value parameter. The default
for parameters when none is provided is the IN mode. So, omitting from the function’s signature
doesn’t change a pass-by-value parameter’s mode of operation.

The following line 2 is functionally equivalent to the previous one:

 2 (pv_name VARCHAR2) RETURN VARCHAR2 IS

As a rule, providing the mode of operation adds clarity to your function. However, most
programmers leave it out.

Inexperienced programmers sometimes reverse the logic of the IF block and check for a null
parameter and then try assigning the local variable to the parameter:

 7 IF pv_name IS NULL THEN
 8 pv_name := lv_name;

It raises the following message:

Errors for FUNCTION HELLO_WHOM:
LINE/COL ERROR
---- ---

8/5 PL/SQL: Statement ignored
8/5 PLS-00363: expression 'PV_NAME' cannot be used as an assignment
 target

You can use a function that returns a variable as an expression when you put it inside a call to
another PL/SQL built-in function, like this:

SQL> EXECUTE dbms_output.put_line(TO_CHAR(pv(10000,5,6),'9,999.90'));

The most embedded pass-by-value function runs first in the preceding line. That means the
call to the pv function returns a value as a call parameter to the TO_CHAR SQL built-in function.
The TO_CHAR function formats the first call parameter’s value with the format mask provided as
the second call parameter. It outputs the following when SERVEROUTPUT is enabled:

7,472.58

The preceding example uses the pv function demonstrated earlier in this chapter’s
“DETERMINISTIC Clause” section. It also uses the TO_CHAR built-in function, which you can
read more about in Appendix D on SQL built-in functions.

As mentioned, Oracle Database 12c introduces white listing as a new feature. You can white
list the earlier hello_whom function like this:

SQL> CREATE OR REPLACE FUNCTION hello_whom
 2 (pv_name IN VARCHAR2) RETURN VARCHAR2
 3 ACCESSIBLE BY
 4 (FUNCTION video.gateway
 5 , PROCEDURE video.backdoor
 6 , PACKAGE video.api
 7 , TYPE video.hobbit) IS
 8 /* Default name value. */

08-ch08.indd 323 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

324 Oracle Database 12c PL/SQL Programming

 9 lv_name VARCHAR2(10) := 'World';
 10 BEGIN
 11 /* Check input name and substitute a valid value. */
 12 IF pv_name IS NOT NULL THEN
 13 lv_name := pv_name;
 14 END IF;
 15 /* Return the phrase. */
 16 RETURN 'Hello '||lv_name||'!';
 17 END;
 18 /

Lines 3 through 7 specify the authorized list of callers, which is known as a white list. White
lists authorize a list of functions, procedures, packages, and object types to perform some activity.
They’re the opposite of black lists, which disallow access to a list of functions, procedures, packages,
and object types. After you white list the hello_whom function, you can attempt to call it from a
query, like this:

SQL> SELECT hello_whom('Henry') AS "Salutation"
 2 FROM dual;

It raises the following exception:

SELECT hello_whom('Henry') AS "Salutation"
 *
ERROR at line 1:
ORA-06552: PL/SQL: Statement ignored
ORA-06553: PLS-904: insufficient privilege to access object HELLO_WHOM

At present, there doesn’t appear to be any way in Oracle Database 12c to grant privileges to
queries from a schema. That means you’d need to wrap a call to the hello_world function in
one of the authorized modules, like this gateway function:

SQL> CREATE OR REPLACE FUNCTION gateway
 2 (pv_name IN VARCHAR2) RETURN VARCHAR2 IS
 3 BEGIN
 4 /* Return the phrase. */
 5 RETURN hello_whom(pv_name);
 6 END;
 7 /

When you call the authorized gateway function from a query, like this:

SQL> SELECT gateway('Samuel') AS "Salutation"
 2 FROM dual;

it calls the white-listed hello_whom function on line 5 and returns the following result:

Salutation

Hello Samuel!

08-ch08.indd 324 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 325

PL/SQL pass-by-value functions are defined by the following six rules:

 ■ All formal parameters must be defined as write-only variables by using the IN mode.

 ■ All formal parameters are locally scoped variables that cannot be changed during
execution inside the function.

 ■ Any formal parameter can use any valid SQL or PL/SQL data type. Only functions with
parameter lists that use SQL data types work in SQL statements.

 ■ Any formal parameter may have a default initial value.

 ■ The formal return variable can use any valid SQL or PL/SQL data type, but pipelined
return tables must be used in SQL statements. You can’t access pipelined table results in
another PL/SQL scope.

 ■ Any system reference cursor cast from a SQL query into a function is not writeable and
therefore must be passed through an IN mode parameter.

System Reference Cursor Functions
All cursor result sets are static structures stored in the Oracle SGA. Cursor variables are actually
references or handles. The handle points to an internally cached result set from a query. You populate
cursor variables by fetching records, typically by using

OPEN cursor_name FOR select_statement;

You access cursors by using a reference or handle that lets you scroll their content. Once you
declare an implicit or explicit cursor structure, you can then assign its reference to a SQL cursor
data type. You can also return these cursor variables as function return types or as IN OUT or OUT
reference variables in function and procedure signatures. The result sets are read-only structures.

The following shows how to return a cursor using a function:

SQL> CREATE OR REPLACE FUNCTION get_full_titles
 2 RETURN SYS_REFCURSOR IS
 3 lv_title_cursor SYS_REFCURSOR;
 4 BEGIN
 5 OPEN lv_title_cursor FOR
 6 SELECT item_title, item_subtitle
 7 FROM item;
 8 RETURN lv_title_cursor;
 9 END;
 10 /

The function uses the predefined SYS_REFCURSOR, which is a weakly typed system reference
cursor. A weakly typed reference cursor can assume any record structure at runtime, whereas a
strongly typed reference cursor is anchored to a database catalog object.

The OPEN clause creates a reference in the SGA for the cursor. You can then pass the reference
to another PL/SQL block as a cursor variable, as shown in the following anonymous block:

SQL> DECLARE
 2 /* Declare a record and collection type. */
 3 TYPE full_title_record IS RECORD
 4 (item_title item.item_title%TYPE

08-ch08.indd 325 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

326 Oracle Database 12c PL/SQL Programming

 5 , item_subtitle item.item_subtitle%TYPE);
 6 lv_full_title_table FULL_TITLE_RECORD;
 7
 8 /* Declare a system reference cursor variable. */
 9 lv_title_cursor SYS_REFCURSOR;
 10 BEGIN
 11 /* Assign the reference cursor function result. */
 12 lv_title_cursor := get_full_titles;
 13
 14 /* Print one element at a time. */
 15 LOOP
 16 FETCH lv_title_cursor INTO lv_full_title_table;
 17 EXIT WHEN titles%NOTFOUND;
 18 dbms_output.put_line('Title ['||lv_full_title_table.item_title||']');
 19 END LOOP;
 20 END;
 21 /

NOTE
There is never an OPEN statement before the loop when a cursor is
passed into a subroutine because the cursor is already open. Cursor
variables are actually references that point into a specialized cursor
work area in the SGA.

The receiving or processing block needs to know what record type is stored in the cursor.
Some programmers use this requirement to argue that you should use only strongly typed reference
cursors. In PL/SQL-only solutions, they have a point. The other side of the argument can be
made for weakly typed reference cursors when you query them through external programs using
the OCI libraries. In these external languages, you can dynamically discover the structure of
reference cursors and manage them discretely through generic algorithms.

Deterministic Pass-by-Value Functions
Let’s examine a deterministic pass-by-value function, calculating the future value of a bank
deposit. The following builds the fv function:

SQL> CREATE OR REPLACE FUNCTION fv
 2 (current_value NUMBER := 0
 3 , periods NUMBER := 1
 4 , interest NUMBER)
 5 RETURN NUMBER DETERMINISTIC IS
 6 BEGIN
 7 /* Compounded Daily Interest. */
 8 RETURN current_value*(1+((1+((interest/100)/365))**365-1)*periods);
 9 END fv;
 10 /

The function defines three formal parameters. Two are optional parameters because they have
default values. The default values are the current balance of the account and the 365 days of the

08-ch08.indd 326 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 327

year (for non-leap years). The third parameter is mandatory because no value is provided. As
discussed, the IN mode is the default, and you do not have to specify it when defining functions.

As a general practice, mandatory parameters come before optional parameters. This is critical
when actual parameters are submitted in positional order. Oracle Database 11g supports positional
order, named notation order, and mixed notation.

After defining an output variable, you use the CALL statement to run the function using named
notation:

SQL> VARIABLE future_value NUMBER
SQL> CALL fv(current_value => 10000, periods => 5, interest => 4)
 2 INTO :future_value
 3 /

You can then use the following to select the future value of $10,000 after five years at 4 percent
annual interest compounded daily:

SQL> SELECT :future_value FROM dual;

Alternatively, you can format with SQL*Plus and call the function in SQL with this statement:

SQL> COLUMN future_value FORMAT 99,999.90
SQL> SELECT fv(current_value => 10000, periods => 5, interest => 4) FROM dual;

Both the CALL statement and SQL query return a result of $12,040.42. The compounding of
interest yields $40.42 more than an annual rate. There might be an extra penny or two, depending
on where leap year falls in the five years, but the function doesn’t manage that nuance in the
calculation.

As covered in Chapter 2, Oracle Database 12c lets you embed functions inside the WITH
clause of a SELECT statement. You need to suppress the SQL terminator value, a semicolon (;)
by default, before you embed a function inside the WITH clause of a SELECT statement. The SQL
terminator restriction on embedding functions means you must run the SELECT statement from
a customized SQL*Plus environment. The better alternative is to create a view in the specialized
SQL*Plus session, which other programs can then use without specialized rules.

The following deterministic glue function and person view were introduced in Chapter 2.
Together, they show you how to embed a deterministic function in the WITH clause of a SELECT
statement.

SQL> WITH
 2 FUNCTION glue
 3 (pv_first_name VARCHAR2
 4 , pv_last_name VARCHAR2) RETURN VARCHAR2 IS
 5 lv_full_name VARCHAR2(100);
 6 BEGIN
 7 lv_full_name := pv_first_name || ' ' || pv_last_name;
 8 RETURN lv_full_name;
 9 END;
 10 SELECT glue(a.first_name,a.last_name) AS person
 11 FROM actor a
 12 /

08-ch08.indd 327 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

328 Oracle Database 12c PL/SQL Programming

Pass-by-Value Functions That Wrap Java Libraries
It’s possible to write the programming logic for your stored functions and procedures in Java
libraries. Then, you write a PL/SQL wrapper that accesses the library.

The following TwoSignersJava library checks whether there are two authorized
signers on a group account. You would use it to return a 0 (or false flag) when it’s fine to add
a second authorized signer, or return a 1 (or true flag) when there are already two authorized
signers. You can create this library from the SQL*Plus command line:

SQL> CREATE OR REPLACE AND COMPILE JAVA SOURCE NAMED "TwoSignersJava" AS
 2
 3 // Required class libraries.
 4 import java.sql.*;
 5 import oracle.jdbc.driver.*;
 6
 7 // Define class.
 8 public class TwoSignersJava {
 9
 10 // Connect and verify new insert would be a duplicate.
 11 public static int contactTrigger(Integer memberID)
 12 throws SQLException {
 13 Boolean duplicateFound = false; // Control default value.
 14
 15 // Create a Java 5 and Oracle 11g connection forward.
 16 Connection conn =
 17 DriverManager.getConnection("jdbc:default:connection:");
 18
 19 // Create a prepared statement that accepts binding a number.
 20 PreparedStatement ps =
 21 conn.prepareStatement("SELECT null " +
 22 "FROM contact c JOIN member m " +
 23 "ON c.member_id = m.member_id " +
 24 "WHERE c.member_id = ? " +
 25 "HAVING COUNT(*) > 1");
 26
 27 // Bind the local variable to the statement placeholder.
 28 ps.setInt(1, memberID);
 29
 30 // Execute query and check if there is a second value.
 31 ResultSet rs = ps.executeQuery();
 32 if (rs.next())
 33 duplicateFound = true; // Control override value.
 34
 35 // Clean up resources.
 36 rs.close();
 37 ps.close();
 38 conn.close();
 39
 40 /* Return 1 (true) when two signers and 0 when they don't. */
 41 if (duplicateFound) return 1;
 42 else return 0; }}
 43 /

08-ch08.indd 328 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 329

Lines 16 and 17 would be on a single line normally but they’re split across two lines
here to accommodate the formatting of the book’s text. The internal connection syntax on
line 17 works for Java 5 forward, and you would replace it with the following for an Oracle
Database 10g database (technically no longer supported with the production release of
Oracle Database 12c). When you migrate Java libraries from an Oracle Database 10g
database forward to an Oracle Database 11g or 12c database, you need to change internal
Oracle connection syntax.

 15 // Create an Oracle 10g JDBC connection.
 16 Connection conn = new OracleDriver().defaultConnection();

The PL/SQL wrapper for this library is

SQL> CREATE OR REPLACE FUNCTION two_signers
 2 (pv_member_id NUMBER) RETURN NUMBER IS
 3 LANGUAGE JAVA
 4 NAME 'TwoSingersJava.contactTrigger(java.lang.Integer) return int';
 5 /

Line 3 designates that you have implemented the function body in Java for the
two_signers function. Line 4 maps the Java data types to the native Oracle types.

The following shows you how to test all the moving parts:

SQL> SELECT CASE
 2 WHEN two_signers(member_id) = 0 THEN 'Only one signer.'
 3 ELSE 'Already two signers.'
 4 END AS "Available for Assignment"
 5 FROM contact c JOIN member m USING (member_id)
 6 WHERE c.last_name = 'Sweeney'
 7 OFFSET 1 ROWS FETCH FIRST 1 ROWS ONLY;

Although, you’d probably call the two_signers function from a WHERE clause. For
example, you’d do so if you wanted your production code to insert data from the contact
and member tables, with a WHERE clause checking for a zero value from the two_signers
function.

The function on lines 2 through 9 simply concatenates two strings with a single-character
white space between them. Assuming that you disable the SQLTERMINATOR in SQL*Plus, the
semicolons are treated as ordinary characters in the query. You should also note that the SQL
statement is run by the SQL*Plus forward slash and that the complete statement doesn’t have a
terminating semicolon on line 11.

Unfortunately, you can’t suppress the SQLTERMINATOR value when you make calls from
other programming languages. The means you need to wrap any query with an embedded
function in a WITH clause as a view.

08-ch08.indd 329 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

330 Oracle Database 12c PL/SQL Programming

Assuming you create an actor_v view by using the preceding query, you could query the
result like this:

SQL> COLUMN person FORMAT A18
SQL> SELECT a.person
 2 FROM actor_v;

And retrieve results, like

PERSON

Nicolas Cage
Diane Kruger

Embedding deterministic functions in a view seems a logical thing to do when your business
case requires a deterministic function inside a query. After all, views do abstract or hide logic from
application programmers.

Nondeterministic Pass-by-Value Functions
The key difference between nondeterministic and deterministic functions is simple: the former
relies on inputs and data, while the latter relies only on inputs. That means you may get different
results with the same inputs from a nondeterministic function. Naturally, that can’t happen in a
deterministic function.

In Oracle Database 12c, you can now write a nondeterministic function by including a cursor
that searches for a partial string in a first or last name. The full_name function delivers that
functionality:

SQL> CREATE OR REPLACE FUNCTION full_name
 2 (pv_search_name VARCHAR2) RETURN VARCHAR2 IS
 3 /* Declare local return variable. */
 4 lv_retval VARCHAR2(50);
 5 /* Declare a dynamic cursor. */
 6 CURSOR get_names
 7 (cv_search_name VARCHAR2) IS
 8 SELECT c.first_name, c.middle_name, c.last_name
 9 FROM contact c
 10 WHERE REGEXP_LIKE(c.first_name, cv_search_name,'i')
 11 OR REGEXP_LIKE(c.last_name, cv_search_name,'i')
 12 OFFSET 1 ROWS FETCH FIRST 1 ROWS ONLY; -- New Oracle 12c feature.
 13 BEGIN
 14 /* Check for a middle name. */
 15 FOR i IN get_names('^.*'||pv_search_name||'.*$') LOOP
 16 IF i.middle_name IS NOT NULL THEN
 17 lv_retval := i.first_name||' '||i.middle_name||' '||i.last_name;
 18 ELSE
 19 lv_retval := i.first_name||' '||i.last_name;
 20 END IF;
 21 END LOOP;
 22 END;
 23 /

08-ch08.indd 330 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 331

The call parameter determines the results from a table of data. The function returns only one
row because of the use of an Oracle Database 12c new top-n query restriction. Line 12 guarantees
that the function only returns a single row where the first and last names match the search criteria.
The result changes when you change the input, but the result of a nondeterministic program also
returns when the underlying data changes in the tables.

TIP
The any character before ('^.*') and after ('.*$') regular
expressions is used in two places within the dynamic cursor but only
provided once with the call parameter to the cursor.

The key piece of knowledge about nondeterministic functions is that they depend on two
dynamic inputs. One is the call parameters and the other is the data stored in the database.

 ■ Call parameters can’t change during execution of the function, which means formal
parameters can’t be assignment targets inside the function. You raise a PLS-00363 error
that tells you the expression (formal parameter) can’t be used as an assignment target.

 ■ Nondeterministic functions may return different results when called with the same
parameters because another user can change the data stored in the database between
the two calls.

DML-Enabled Pass-by-Value Functions
Functions also let you process DML statements inside them. Some people think that functions
shouldn’t be used to perform DML statements simply because, historically, procedures were used.
The only downside of embedding a DML statement inside a function is that you can’t call that
function inside a query. At least, you can’t call it when it’s in the same operational context unless
it’s an autonomous function. An attempt at calling an inline (or default) function raises an
ORA-14551 error. The error message says that you can’t have a DML operation inside a query.

Recall from the discussion of the function and procedure architecture that pessimistic
functions return an affirmative result when they succeed and a negative result when they fail.
Inside an exclusively PL/SQL scope, you can write a pessimistic function with a Boolean return
type. A pessimistic function also must include Transaction Control Language (TCL) statements
when it runs in an autonomous context. Let’s create a small avatar table to look at how a
pessimistic function works:

SQL> CREATE TABLE avatar
 2 (avatar_id NUMBER GENERATED AS IDENTITY
 3 , avatar_name VARCHAR2(30));

The following demonstrates a pessimistic function that inserts a row into the avatar table
when successful:

SQL> CREATE OR REPLACE FUNCTION add_avatar
 2 (pv_avatar_name VARCHAR2) RETURN BOOLEAN IS
 3 /* Set function to perform in its own transaction scope. */
 4 PRAGMA AUTONOMOUS_TRANSACTION;
 5 /* Set default return value. */

08-ch08.indd 331 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

332 Oracle Database 12c PL/SQL Programming

 6 lv_retval BOOLEAN := FALSE;
 7 BEGIN
 8 /* Insert row into avatar. */
 9 INSERT INTO avatar (avatar_name)
 10 VALUES (pv_avatar_name);
 11 /* Save change inside its own transaction scope. */
 12 COMMIT;
 13 /* Reset return value to true for complete. */
 14 lv_retval := TRUE;
 15 RETURN lv_retval;
 16 END;
 17 /

Line 2 defines a Boolean return type. Line 4 declares a compiler directive that makes the
function an autonomous program unit. Line 12 commits the work that occurs only within the function.
Line 15 returns a local Boolean variable.

You can test the pessimistic function with the following anonymous block program:

SQL> DECLARE
 2 /* Declare local variable. */
 3 lv_avatar VARCHAR2(30);
 4 /* Declare a local cursor. */
 5 CURSOR capture_result
 6 (cv_avatar_name VARCHAR2) IS
 7 SELECT avatar_name
 8 FROM avatar
 9 WHERE avatar_name = cv_avatar_name;
 10 BEGIN
 11 IF add_avatar('Earthbender') THEN
 12 dbms_output.put_line('Record Inserted');
 13 ROLLBACK;
 14 ELSE
 15 dbms_output.put_line('No Record Inserted');
 16 END IF;
 17 OPEN capture_result('Earthbender');
 18 FETCH capture_result INTO lv_avatar;
 19 CLOSE capture_result;
 20 dbms_output.put_line('Value ['||lv_avatar||'].');
 21 END;
 22 /

Line 11 calls the pessimistic add_avatar function and returns true. That means the add_
avatar autonomous function inserted a row in a discrete transaction scope. The ROLLBACK
statement on line 13 can’t roll back the transaction because it was committed in another transaction
scope.

The test program prints the following on line 20, which shows the written row:

Value [Earthbender].

08-ch08.indd 332 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 333

You can modify the return type of the function with the following changes:

SQL> CREATE OR REPLACE FUNCTION add_avatar
 2 (pv_avatar_name VARCHAR2) RETURN NUMBER IS
 ...
 6 lv_retval NUMBER := 0;
 7 BEGIN
 ...
 13 /* Reset return value to true for complete. */
 14 lv_retval := 1;
 15 RETURN lv_retval;
 16 END;
 17 /

Line 2 changes the return type of the function to a NUMBER. Line 6 sets the initial value of the
local return variable to 0, which typically indicates a false value. Line 14 resets it to 1, which
serves as our true value.

You can now call the altered pessimistic function from a SQL SELECT statement, like this:

SQL> SELECT CASE
 2 WHEN add_avatar('Firebender') = 1 THEN 'Success' ELSE 'Failure'
 3 END AS Autonomous
 4 FROM dual;

Line 2 returns the Success string after inserting the Firebender value. This is a very powerful
feature of autonomous functions, and becomes more powerful when you enclose a query like this
in a view.

Recursive Functions
Using recursive functions is a useful tool for solving some complex problems, such as advanced
parsing. A recursive function calls one or more copies of itself to resolve a problem by converging
on a result. Recursive functions look backward in time, whereas nonrecursive functions look
forward in time. Recursive functions are a specialized form of pass-by-value functions.

Nonrecursive programs take some parameters and begin processing, often in a loop, until
they achieve a result. This means they start with something and work with it until they find a result
by applying a set of rules or evaluations. This means nonrecursive programs solve problems moving
forward in time.

Recursive functions have a base case and a recursive case. The base case is the anticipated
result. The recursive case applies a formula that includes one or more calls back to the same
function. One recursive call is known as a linear or straight-line recursion. Recursive cases that
make two or more recursive calls are nonlinear. Linear recursion is much faster than nonlinear
recursion, and the more recursive calls, the higher the processing costs. Recursive functions use
the recursive case only when the base case isn’t met. A result is found when a recursive function
call returns the base case value. This means recursive program units solve problems moving
backward in time, or one recursion after another.

08-ch08.indd 333 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

334 Oracle Database 12c PL/SQL Programming

Solving factorial results is a classic problem for linear recursion. The following function
returns the factorial value for any number:

SQL> CREATE OR REPLACE FUNCTION factorial
 2 (n BINARY_DOUBLE) RETURN BINARY_DOUBLE IS
 3 BEGIN
 4 IF n <= 1 THEN
 5 RETURN 1;
 6 ELSE
 7 RETURN n * factorial(n - 1);
 8 END IF;
 9 END factorial;
 10 /

The base case is met when the IF statement resolves as true. The recursive case makes only
a single call to the same function. Potentially, the recursive case can call many times until it also
returns the base case value of 1. Then, it works its way back up the tree of recursive calls until an
answer is found by the first call.

Fibonacci numbers are more complex to derive because they require two recursive calls for
each level of recursion. A recursive program is nonlinear when it makes two or more calls that are
separated by an operator. These are nonlinear for two reasons:

 ■ Mathematical operators have a lower order of precedence than function calls. That means
functions are always called first, before other operators perform their respective functions.

 ■ Each recursive call may spawn zero or two recursive function calls. A linear recursion
calls one copy at each level of the recursion, and a nonlinear recursion calls more than
one copy at any level of recursion.

The following Fibonacci function maintains title case in the database thanks to the quoted
identifier, which is a specialized delimiter (check Table 4-1 for delimiter details). After all, credit
should be given to a great mathematician!

SQL> CREATE OR REPLACE FUNCTION "Fibonacci"
 2 (n BINARY_DOUBLE) RETURN BINARY_DOUBLE IS
 3 BEGIN
 4 /* Set the base case. */
 5 IF n < 2 THEN
 6 RETURN n;
 7 ELSE
 8 RETURN fibonacci(n - 2) + fibonacci(n - 1);
 9 END IF;
 10 END "Fibonacci";
 11 /

Lines 6 and 8 have RETURN statements. This really is suboptimal as a coding practice because
there should only be one RETURN statement in any function. The alternative to this design would
be to add a local variable to the function and then assign the results from the base or alternate
case to that local variable.

08-ch08.indd 334 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 335

The addition operator on line 8 has a lower order of precedence than a function call. Therefore,
the recursive call on the left is processed first until it returns an expression. Then, the recursive call
on the right is resolved to an expression. The addition happens after both recursive calls return
expressions.

Calling a preserved case function requires a trick, as shown next. The following
FibonacciSequence function calls the Fibonacci function eight times, which gives us the
classic Fibonacci sequence (the same one left by Jacques Saunière when he’s murdered in the
Louvre by Silas in Dan Brown’s The Da Vinci Code):

SQL> CREATE OR REPLACE FUNCTION "FibonacciSequence"
 2 RETURN VARCHAR2 IS
 3 /* Declare an output variable. */
 4 lv_output VARCHAR2(40);
 5 BEGIN
 6 /* Loop through enough for the DaVinci Code myth. */
 7 FOR i IN 1..8 LOOP
 8 IF lv_output IS NOT NULL THEN
 9 lv_output := lv_output||', '||LTRIM(TO_CHAR("Fibonacci"(i),'999'));
 10 ELSE
 11 lv_output := LTRIM(TO_CHAR("Fibonacci"(i),'999'));
 12 END IF;
 13 END LOOP;
 14 RETURN lv_output;
 15 END;
 16 /

Lines 9 and 11 take the binary double and format it into a number without any leading white
space. Note that the double quotes enclose only the function name and not the parameter list. That’s
the trick to calling case-preserved function names. Line 11 runs the first call to the Fibonacci
program, and line 9 runs for all subsequent calls. Line 9 concatenates results to the original string.

You can query the case-preserved FibonacciSequence with this syntax:

SQL> SELECT "FibonacciSequence"
 2 FROM dual;

It produces the following output:

FibonacciSequence

1, 1, 2, 3, 5, 8, 13, 21

This discussion has demonstrated how you can implement recursion. You should note that
recursion lends itself to pass-by-value functions because you only want the base case returned.
While you can call recursive functions using pass-by-reference semantics, you shouldn’t. Recursive
parameters should not be altered during execution because that creates a mutating behavior in
the recursive case.

You should explore recursion when you want to parse strings or are checking for syntax rules.
It is much more effective than trying to move forward through the string.

This section has explained how to use pass-by-value functions. The next section builds on this
information and explores pass-by-reference functions.

08-ch08.indd 335 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

336 Oracle Database 12c PL/SQL Programming

Pass-by-Reference Functions
Pass-by-reference functions can exhibit many of the behaviors we’ve worked through earlier in the
chapter. As discussed, they can have IN, IN OUT, or OUT mode parameters. An IN mode parameter
passes in a value that can change but is consumed wholly. An IN OUT mode parameter passes in
a reference that can change and be returned in a new state. An OUT mode parameter passes in
nothing but can return something.

You use pass-by-reference functions when you want to perform an operation, return a value
from the function, and alter one or more actual parameters. These functions can only act inside
the scope of another program or environment. The SQL*Plus environment lets you define session-
level variables (also known as bind variables) that you can use when you call these types of
functions. You cannot pass literals (like dates, numbers, or strings) into a parameter defined as
OUT or IN OUT mode.

PL/SQL pass-by-reference functions are defined by the following six rules:

 ■ At least one formal parameter must be defined as a read-only or read-write variable by
using the OUT mode or IN OUT mode, respectively.

 ■ All formal parameters are locally scoped variables that you can change during operations
inside the function.

 ■ Any formal parameter can use any valid SQL or PL/SQL data type. Only functions with
parameter lists that use SQL data types work in SQL statements.

 ■ Any IN mode formal parameters can have a default initial value.

 ■ The formal return variable can use any valid SQL or PL/SQL data type, but pipelined
return tables must be used in SQL statements. You can’t access pipelined table results in
another PL/SQL scope.

 ■ Any system reference cursor cast from a SQL query into a function is not writeable and
therefore must be passed through an IN mode parameter.

The following pass-by-reference counter function demonstrates returning an altered
parameter variable value and a discrete return variable. The IN OUT mode pv_number variable
submits a number that’s incremented inside the counter function. The counter function’s
formal return type is a VARCHAR2, and it holds a message about the incoming and outgoing value
of the pv_number parameter.

SQL> CREATE OR REPLACE FUNCTION counter
 2 (pv_number IN OUT INTEGER
 3 , pv_increment_by IN INTEGER DEFAULT 1)
 4 RETURN VARCHAR2 IS
 5 /* Declare a return value. */
 6 lv_return VARCHAR2(50) := 'Inbound [';
 7 BEGIN
 8 /* Add inbound value. */
 9 lv_return := lv_return || pv_number ||'] ';
 10
 11 /* Replace a null value to ensure increment. */
 12 IF pv_number IS NOT NULL THEN
 13 pv_number := pv_number + pv_increment_by;
 14 ELSE

08-ch08.indd 336 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 337

 15 pv_number := 1;
 16 END IF;
 17
 18 /* Add inbound value. */
 19 lv_return := lv_return || 'Outbound [' || pv_number ||']';
 20
 21 /* Return increment_by module. */
 22 RETURN lv_return;
 23 END;
 24 /

Line 2 defines the IN OUT mode pv_number parameter. Line 12 checks whether the
pv_number isn’t null. Line 13 increments the value of pv_number by one. Line 15 assigns a
value of 1 to pv_number when the original number is null. Both lines 13 and 15 assign new
values to the pv_number parameter. This is possible because a pass-by-reference parameter
with either IN OUT mode or OUT mode is a valid assignment target. That differs from IN mode
parameters, which can’t be assignment targets in the function.

You can test the counter function with the following anonymous block:

SQL> DECLARE
 2 /* Declare an increment by value. */
 3 lv_counter INTEGER := 0;
 4 lv_increment_by INTEGER := 1;
 5 BEGIN
 6 /* Loop through five times. */
 7 FOR i IN 1..5 LOOP
 8 dbms_output.put_line(
 9 'Counter ['||i||'] {'||counter(lv_counter)||'}');
 10 END LOOP;
 11 END;
 12 /

The output from the anonymous block is

Counter [1] {Inbound [0] Outbound [1]}
Counter [2] {Inbound [1] Outbound [2]}
 ...

As you can see in the output, the IN OUT mode actual parameter is always incremented by
one. A read-only (OUT mode) formal parameter can’t work in this type of call because the new
value is never read.

Changing the IN OUT mode to OUT mode for the pv_number parameter gives you a
completely different function. With the following change to the parameter list of the counter
function, every call now holds a null value:

 2 (pv_number OUT INTEGER

The same anonymous block program yields these results:

Counter [1] {Inbound [] Outbound [1]}
Counter [2] {Inbound [] Outbound [1]}
 ...

08-ch08.indd 337 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

338 Oracle Database 12c PL/SQL Programming

This section has covered how you define and use a pass-by-reference function. You should
recognize that there are two types of pass-by-reference parameters. One type has a value on entry
and exit: IN OUT mode variables. The other always has a null value on entry and should have a
value on exit: OUT mode parameters.

Review Section
This section has described the following points about the behaviors and characteristics of functions:

 ■ The DETERMINISITIC clause designates that a program always returns the same
results with the same parameters.

 ■ The PARALLEL_ENABLE clause designates that a function supports parallel query
capabilities; these are best implemented with both the DETERMINISTIC and
PARALLEL_ENABLE clauses.

 ■ The PIPELINED clause lets you create pipelined table functions, which translate
PL/SQL associative array collections into SQL aggregate result sets.

 ■ In lieu of the PIPELINED clause, you can convert or wrap associative arrays as SQL
table collections.

 ■ The RESULT_CACHE clause lets you cache result sets from deterministic and
nondeterministic functions and, effective with Oracle Database 12c, lets you work
with invoker rights functions.

 ■ Pass-by-value functions take IN-only mode variables and don’t let you use the
parameters as assignment targets.

 ■ A system reference cursor function returns a PL/SQL system reference cursor.

 ■ The difference between deterministic and nondeterministic functions is that
nondeterministic functions have runtime dependencies on internally referenced tables.

 ■ You can embed DML statements inside autonomous pass-by-value functions, which
requires that you provide Transaction Control Language (TCL) commands inside the
functions. These types of functions are known as pessimistic functions.

 ■ Oracle supports both linear and nonlinear recursive functions.

 ■ Oracle supports IN OUT and OUT mode parameters in pass-by-reference variables.

Procedures
A procedure is essentially a function with a void return type. As such, you can’t use it as a right
operand because it doesn’t have a return value. Procedures, like functions, are black boxes.
Procedures provide a named subroutine that you call within the scope of a PL/SQL block. Although
the behavior differs slightly whether you pass call parameters by value or reference, the inputs
and outcomes are the only way to exchange values between the calling block and the procedure.

Procedures cannot be right operands or called from SQL statements. They do support using
IN, OUT, and IN OUT mode formal parameters.

08-ch08.indd 338 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 339

Like functions, procedures can also contain nested named blocks. Nested named blocks are
local functions and procedures that you define in the declaration block. You can likewise nest
anonymous blocks in the execution block or procedures.

The following illustrates a named block procedure prototype:

[{EDITIONALBE | NONEDITIONALBE}] PROCEDURE procedure_name
(parameter1 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
, parameter2 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
, parameter(n+1) [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype)
[ACCESSIBLE BY
([{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]unit_name)
[,[{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]unit_name)]
[,...]]])
[AUTHID DEFINER | CURRENT_USER] IS
 declaration_statements
BEGIN
 execution_statements
[EXCEPTION]
 exception_handling_statements
END [procedure_name];
/

You can define procedures with or without formal parameters. Formal parameters in procedures
can be either pass-by-value or pass-by-reference variables in stored procedures. Pass-by-reference
variables have both an IN mode and an OUT mode. Similar to functions, a procedure is created as
a pass-by-value procedure when you don’t specify the parameter mode, because it uses the default
IN mode. Compiling (creating or replacing) the procedure implicitly assigns the IN mode phrase
when none is provided. Like functions, formal parameters in procedures also support optional default
values for IN mode parameters.

The ACCESSIBLE BY clause lets you white list callers of the procedure. You can white list
functions, procedures, packages, or object types.

The AUTHID clause sets the execution authority model. The default is definer rights, which
means anyone with execution privileges on the procedure acts as if they are the owner of that
same schema. Defining the AUTHID as CURRENT_USER overrides the default and sets the execution
authority to invoker rights. Invoker rights authority means that you call procedures to act on your
local data, and it requires that you replicate data objects in any participating schema.

As in functions, the declaration block is between the IS and BEGIN phrases, while other blocks
mirror the structure of anonymous block programs. Procedures require an execution environment,
which means you must call them from SQL*Plus or another program unit. The calling program
unit can be another PL/SQL block or an external program using the OCI or JDBC.

Procedures are used most frequently to perform DML statements and transaction management.
You can define procedures to act in the current transaction scope or an independent transaction
scope. As with functions, you use the PRAGMA AUTONOMOUS_TRANSACTION to set a procedure
so that it runs as an independent transaction.

Pass-by-Value Procedures
A pass-by-value procedure receives values when they’re called. They return nothing tangible
to the calling scope block, but they can interact with the database. Pass-by-value procedures

08-ch08.indd 339 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

340 Oracle Database 12c PL/SQL Programming

implement a delegation model. Procedures are often used to group and control a series of DML
statements in the scope of a single transaction.

The mode of all formal parameters is IN-only for pass-by-value procedures. This means they
receive a copy of an external variable or a numeric or string literal when you call the procedure.
Call parameters can’t be changed during the execution of a subroutine. You can transfer the contents
from a call parameter to a local variable inside the procedure and then update that calling scope
variable.

As discussed, you can define pass-by-value procedures to run autonomously in a separate
transaction scope, or you can accept the default and have them run in the current transaction
scope. Pass-by-value procedures frequently run in the current transaction scope. They organize
database DML statements, such as INSERT statements to multiple tables.

PL/SQL pass-by-value procedures are defined by the following five rules:

 ■ All formal parameters must be defined as write-only variable by using the IN mode.

 ■ All formal parameters are locally scoped variables that cannot be changed during execution
inside the procedure.

 ■ Any formal parameter can use any valid SQL or PL/SQL data type.

 ■ Any formal parameter may have a default initial value.

 ■ Any system reference cursor cast from a SQL query into a function is not writeable and
therefore must be passed through an IN mode parameter. This includes those passed as
explicit cursor variables and those cast using the CURSOR function. As mentioned in the
section “System Reference Cursor” earlier in the chapter, cursor variables are actually
references or handles. The handles point to internally cached result sets, which are read-
only structures.

Sometimes you’ll want to build smaller reusable program units. For example, each INSERT
statement could be put into its own stored procedure. You accomplish that by implementing
pass-by-reference procedures. These new procedures expand the parameter lists by using both
primary and foreign key parameters. The parameter list change makes the procedures capable of
exchanging values between programs.

The adding_avatar procedure demonstrates a procedure that inserts values into two tables.
The procedure uses two call parameters. The first value goes to the first table, and the second
value goes to the second table. I’ve opted for a small table to demonstrate the concept without
losing too much of the SQL syntax. This example relies on the avatar and episode tables.
They’re defined with Oracle Database 12c identity columns.

The first table is the avatar table:

SQL> CREATE TABLE avatar
 2 (avatar_id NUMBER GENERATED AS IDENTITY
 3 CONSTRAINT avatar_pk PRIMARY KEY
 4 , avatar_name VARCHAR2(30));

Line 2 creates the avatar_id column as an identity column with a primary key constraint.
It’s necessary to define a primary key constraint for the avatar_id column because the
episode table refers to that column for its foreign key column.

08-ch08.indd 340 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 341

The following defines the episode table:

SQL> CREATE TABLE episode
 2 (episode_id NUMBER GENERATED AS IDENTITY
 3 CONSTRAINT episode_pk PRIMARY KEY
 4 , avatar_id NUMBER CONSTRAINT episode_nn1 NOT NULL
 5 , episode_name VARCHAR2(30)
 6 , CONSTRAINT episode_fk1 FOREIGN KEY(avatar_id)
 7 REFERENCES avatar(avatar_id));

Line 4 defines a NOT NULL constraint for the avatar_id column. Lines 6 and 7 define an
out-of-line foreign key constraint for the same avatar_id column. Together these two constraints
mean that it’s impossible to insert a row into the episode table without providing a valid value
from the list of possible values in the primary key avatar_id column of the avatar table.

The adding_contact procedure shows you how to use a pass-by-value procedure to
manage multiple DML statements across a single transaction scope:

SQL> CREATE OR REPLACE PROCEDURE adding_avatar
 2 (pv_avatar_name VARCHAR2
 3 , pv_episode_name VARCHAR2) IS
 4
 5 /* Declare local variable to manage IDENTITY column
 6 surrogate key. */
 7 lv_avatar_id NUMBER;
 8 BEGIN
 9 /* Set a Savepoint. */
 10 SAVEPOINT all_or_none;
 11
 12 /* Insert row into avatar. */
 13 INSERT INTO avatar (avatar_name)
 14 VALUES (pv_avatar_name)
 15 RETURNING avatar_id INTO lv_avatar_id;
 16
 17 /* Insert row into avatar. */
 18 INSERT INTO episode (avatar_id, episode_name)
 19 VALUES (lv_avatar_id, pv_episode_name);
 20
 21 /* Save change inside its own transaction scope. */
 22 COMMIT;
 23 EXCEPTION
 24 WHEN OTHERS THEN
 25 ROLLBACK TO all_or_none;
 26 END;
 27 /

Lines 2 and 3 define the formal parameters for the adding_avatar procedure. Line 10 sets
a SAVEPOINT, which is a beginning point for the transaction. Lines 13 through 15 insert a row
into the avatar table. The RETURNING INTO clause returns the value from the identity column
into a local variable. Line 19 uses the lv_avatar_id local variable as the foreign key value
when it inserts into the episode table. After the INSERT statements to both the avatar and
episode tables, the writes to both tables are committed on line 22. If there’s an exception,
line 25 rolls back any part of the transaction that may have occurred.

08-ch08.indd 341 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

342 Oracle Database 12c PL/SQL Programming

This anonymous block program tests the procedure:

SQL> BEGIN
 2 adding_avatar('Airbender','Episode 1');
 3 END;
 4 /

Unfortunately, the identity columns are not backward compatible with prior editions of the
database. Oracle Database 11g supports sequence calls in INSERT statements with the .nextval
and .currval pseudocolumns. The .nextval pseudocolumn supports pseudocolumns for primary
key columns. The .currval pseudocolumn supports pseudocolumns for foreign key columns,
and you must call the .currval pseudocolumn in the same session after you call the .nextval
pseudocolumn.

Here are the equivalent lines in an Oracle Database 11g database:

 ...
 13 INSERT INTO avatar (avatar_id, avatar_name)
 14 VALUES (avatar_s.nextval, pv_avatar_name);
 ...
 18 INSERT INTO episode (episode_id, avatar_id, episode_name)
 19 VALUES (episode_s.nextval, avatar_s.currval, pv_episode_name);
 ...

Stepping back one release to Oracle Database 10g, you must query the .nextval result into
a local variable before you try to use it in an INSERT statement. Here is the code for performing
that task:

 12 /* Get the sequence into a local variable. */
 13 SELECT avatar_s.nextval
 14 INTO lv_avatar_id
 15 FROM dual;

Pass-by-value procedures let you perform tasks in the database or external resources. When
you designate a pass-by-value procedure as an autonomous program unit with a compile directive,
the procedure becomes optimistic and a no-wait module. Pass-by-value procedures also let you
manage primary and foreign keys in a single program scope.

Pass-by-Reference Procedures
A basic pass-by-reference procedure takes one or more call parameters by reference. Inside the
procedure, the values of the reference variables can change. Their scope is defined by the calling
program unit, and to some extent they treat variables much like nested anonymous blocks.

As discussed, you can define pass-by-reference procedures to run autonomously. Then, they
execute in a separate transaction scope. You can also accept the default and run them in the current
transaction scope. They organize database DML statements to move data between the program
and database, or they send data to external program units.

PL/SQL pass-by-reference procedures are defined by the following five rules:

 ■ At least one formal parameter must be defined as a read-only or read-write variable by
using the OUT mode or IN OUT mode, respectively.

 ■ All formal parameters are locally scoped variables that you can change during operations
inside the procedure.

08-ch08.indd 342 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 343

 ■ Any formal parameter can use any valid SQL or PL/SQL data type.

 ■ Any IN mode formal parameters can have a default initial value.

 ■ Any system reference cursor cast from a SQL query into a procedure is not writeable and
therefore must be passed through an IN mode parameter.

Pass-by-value procedures let you put sequences of multiple DML statements into a single
transaction and program scope. You are able to share values, like primary and foreign keys, inside
of the black box when using them. Pass-by-value procedures can function as pessimistic programming
blocks. That’s accomplished by using an OUT mode parameter to signal success or failure.

The following is a pass-by-reference variation of the adding_avatar procedure:

SQL> CREATE OR REPLACE PROCEDURE adding_avatar
 2 (pv_avatar_name IN VARCHAR2
 3 , pv_episode_name IN VARCHAR2
 4 , pv_completion OUT BOOLEAN) IS
 5
 6 /* Declare local variable to manage IDENTITY column
 7 surrogate key. */
 8 lv_avatar_id NUMBER;
 9 BEGIN
 10 /* Set completion variable. */
 11 pv_completion := FALSE;
 12
 13 /* Set a Savepoint. */
 14 SAVEPOINT all_or_none;
 15
 ...
 24
 25 /* Save change inside its own transaction scope. */
 26 COMMIT;
 27
 28 /* Set completion variable. */
 29 pv_completion := TRUE;
 30 EXCEPTION
 31 WHEN OTHERS THEN
 32 ROLLBACK TO all_or_none;
 33 END;
 34 /

Line 4 introduces a pv_completion pass-by-reference variable, and it has OUT mode
operation. That means you can’t assign a value but can receive a value at the completion of the
procedure. Line 11 assigns an initial value to the pv_completion variable. The assignment
precedes setting the SAVEPOINT for the transaction. After the COMMIT statement, line 29 assigns
TRUE to the pv_completion variable. An exception would stop execution of the transaction
and roll back the DML statements to the SAVEPOINT. The pass-by-reference procedure returns
false when the transaction doesn’t complete and returns true when it does. If you added a compiler
directive to make this an autonomous transaction, it would become a wait-on-completion
autonomous procedure because the pv_completion parameter must be returned to the calling
scope. Removing the pass-by-reference parameter, you get a no-wait pass-by-value procedure.

08-ch08.indd 343 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

344 Oracle Database 12c PL/SQL Programming

Smaller units, like pass-by-reference procedures, are more reusable but are harder to manage.
They can exist for every table or view in your application. Lager units, like pass-by-value procedures,
let you manage complex processes in a single black box. They tend to implement what are
sometimes called workflow units. Pass-by-value procedures are generally more process centric
than data-centric wrappers and less expensive to maintain. However, you should note that
pass-by-reference procedures are ideal for supporting stateless web-based applications.

The best rule of thumb is probably that all procedures should focus on process-centric activities.
Then, you can choose which subroutine best suits your task.

Review Section
This section has described the following points about the behaviors and characteristics of
procedures:

 ■ You can define procedures as pass-by-value or pass-by-reference modules.

 ■ A pass-by-value procedure is an optimistic program when you make it an autonomous
unit with a compiler directive.

 ■ A pass-by-reference procedure is a pessimistic program. Making a procedure an autonomous
program unit with a compiler directive doesn’t change its status as a pessimistic module.

 ■ Procedures can create ACID-compliant transactions that span multiple tables.

 ■ It is possible to inline program execution with a compiler directive.

Inlining Subroutine Calls
Inlining is a compiler behavior that copies an external subroutine into another program. This
is done to avoid the overhead of frequently calling an external subroutine. While leaving
the decision to the compiler is always an option, you can designate when you would like to
suggest an external call is copied inline.

You designate a subroutine call for inlining by using the following prototype:

PRAGMA INLINE(subroutine_name, 'YES'|'NO')

The compiler ultimately makes the decision whether to inline the subroutine, because
precomplier instructions are only hints. There are other factors that make inlining some
subroutines undesirable. This PRAGMA affects any call to the function or procedure when
it precedes the call. It also impacts every call to CASE, CONTINUE-WHEN, EXECUTE
IMMEDIATE, EXIT-WHEN, LOOP, and RETURN statements.

The behavior of the PRAGMA INLINE precomplier hint changes depending on the
setting of the PLSQL_OPTIMIZE_LEVEL session variable. Subprograms are inlined when
PLSQL_OPTIMIZE_LEVEL is set to 2 and are only given a high priority when set to 3. If
the PLSQL_OPTIMIZE_LEVEL is set to 1, subprograms are only inlined when the compiler
views it as necessary.

08-ch08.indd 344 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 8: Functions and Procedures 345

Supporting Scripts
This section describes programs placed on the McGraw-Hill Professional website to support the book.

 ■ The deterministic.sql, java_library.sql, merging.sql, pass_by_
reference.sql, pipelined.sql, recursive.sql, and result_cache.sql
programs contain fully functional examples for the redacted versions in the “Functions”
section of this chapter.

 ■ The avatar.sql program contains small programs that support the “Procedures” section
of this chapter.

Summary
You should now have an understanding of transaction scope and how to implement functions
and procedures. This should include knowing when to choose a function over a procedure and
vice versa.

Mastery Check
The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix I for answers to
these questions.

True or False:

1. ___A pass-by-value function takes parameters that are consumed completely and changed
into some outcome-based value.

2. ___An INLINE compiler directive lets you include a stand-alone module as part of your
compiled program unit.

3. ___A pass-by-reference function takes literal values for any of the call parameters.

4. ___A pass-by-value procedure takes literal values for any of the call parameters.

5. ___The RETURN statement must always include a literal or variable for all pass-by-value
and pass-by-reference functions.

6. ___You need to provide forward-referencing stubs for local functions or procedures to
avoid a procedure or function “not declared in this scope” error.

7. ___You can’t assign an IN mode parameter a new value inside a stored function or procedure.

8. ___You can’t assign an IN OUT mode parameter a new value inside a stored function or
procedure.

9. You can’t embed an INSERT, UPDATE, or DELETE statement in any function that you
plan to call from a SQL SELECT statement.

10. ___Some functions can only be called from within a PL/SQL scope.

08-ch08.indd 345 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

346 Oracle Database 12c PL/SQL Programming

Multiple Choice:

11. Which types of subroutines return a value at completion? (Multiple answers possible)

A. A pass-by-value function

B. A pass-by-value procedure

C. A pass-by-reference function

D. A pass-by-reference procedure

E. All of the above

12. Which of the following clauses are supported in PL/SQL? (Multiple answers possible)

A. An INLINE clause

B. A PIPELINED clause

C. A DETERMINISTIC clause

D. A NONDETERMINISTIC clause

E. A RESULT_CACHE clause

13. Which call notations are supported by the Oracle Database 12c database? (Multiple
answers possible)

A. Positional notation

B. Named notation

C. Mixed notation

D. Object notation

E. Exclusionary notation

14. Which of the following isn’t possible with a result cache function in the Oracle Database
12c database? (Multiple answers possible)

A. A definer rights deterministic pass-by-value function

B. An invoker rights deterministic pass-by-value function

C. A definer rights nondeterministic pass-by-value function

D. An invoker rights nondeterministic pass-by-value function

E. A definer rights nondeterministic pass-by-reference function

15. Which of the following is specifically a backward-compatible Oracle 8i Database compiler
directive?

A. RESTRICT_ACCESS

B. INLINE

C. AUTONOMOUS

D. DETERMINISTIC

E. EXCEPTION_INIT

08-ch08.indd 346 12/17/13 2:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

CHAPTER
9

Packages

09-ch09.indd 347 12/17/13 2:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

348 Oracle Database 12c PL/SQL Programming

Packages are the backbone of Oracle Database 12c application development. They let you
group functions and procedures as components into libraries. Inside these package libraries
you can have shared variables, types, and components. Components are functions and

procedures. Unlike stand-alone stored functions and procedures, covered in Chapter 8, stored
packages divide their declaration from their implementation. Package specifications publish the
declaration, and package bodies implement the declaration.

This chapter explains how to declare, implement, leverage, and manage stored packages. It is
written in a way to help the novice user grasp package concepts; however, the ideas contained
herein are suitable for even the advanced PL/SQL programmer.

This chapter covers the following package-related topics:

 ■ Package architecture

 ■ Package specification

 ■ Package body

 ■ Definer versus invoker rights mechanics

 ■ Managing packages in the database catalog

While packages aren’t object types, they can mimic some features of object types. As you’ll
see later in this chapter, you can use the SERIAL_REUSABLE precompiler directive to make
packages state-aware. So, if you’re unfamiliar with the concept of object types, you may want to
look ahead and glance through Chapter 11 before covering serially reusable packages.

Package Architecture
Packages are stored libraries in the database. They are owned by the user schema where they’re
created, like tables and views. This ownership makes packages schema-level objects in the database
catalog, like stand-alone functions and procedures.

Package specifications declare variables, data types, functions, and procedures, and the package
declaration publishes them to the local schema. You use package variables and data types in other
PL/SQL blocks, and you call published functions and procedures from PL/SQL blocks inside or
outside of the package where they’re declared.

Oracle Database 12c adds the ability to white list packages, which restricts the callers to a list
of functions, procedures, other packages, and object types. While all users, other than the owner,
must be granted the EXECUTE privilege on a package to call its published components, a white-
listed package must also authorize its callers.

Other than the ability to white list, the same rules that apply to tables, views, and SQL data
types apply to packages. Stand-alone modules (like stand-alone functions and procedures) also
have the ability to white list their callers. Published components have context inside the package,
just as stand-alone components have context inside a user’s schema.

The Oracle Database 12c security model lets you grant the EXECUTE privilege on any
package to all users (through a grant to PUBLIC). This effectively makes it possible to grant public
access to packages. Alternatively, you can restrict access to packages when you choose to do so.
Prior to Oracle Database 12c, an invoker rights package always runs with the privilege of its
invoker, meaning the invoker rights package might perform operations unintended by or forbidden
to its owner when the invoker user holds greater privileges than the owner. Oracle Database 12c

09-ch09.indd 348 12/17/13 2:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 9: Packages 349

has also narrowed the scope of invoker rights programs. By default, it now disallows inheritance
of user privileges. You must override that default (ill advised) by granting either the INHERIT
PRIVILEGES or INHERIT ANY PRIVILEGES privilege to the caller of the package to replicate
the behavior of earlier Oracle Database releases. These Oracle Database security tools let you
narrow privileges to targeted audiences.

You define (declare and implement) package-only scope functions and procedures in package
bodies. Package-only scope functions and procedures can access anything in the package
specification. They can also access anything declared before them in the package body. However,
they don’t know anything declared after them in the package body. This is true because PL/SQL
uses a single-pass parser. Parsers place identifiers into a temporary name space as they read
through the source code. A parser fails when identifiers are referenced before they are declared.
This is why identifiers are declared in a certain order in PL/SQL declaration sections. Typically, you
declare identifiers in the following order: data types, variables, exceptions, functions, and procedures.

The sequencing of identifiers solves many but not all problems with forward referencing (see
the sidebar). Sometimes a component implementation requires access before another component
exists. While you could shift the order of some components to fix this sequencing problem, it is
often more effective to declare a forward-referencing stub, which declares a subroutine without
implementing it. You can do this in any declaration block.

Forward Referencing
The concept of forward referencing is rather straightforward. To use an analogy, after you
arrive home from a conference, you can’t send a text message to a new acquaintance from that
conference if you didn’t get their cell phone number. In the same vein, you can’t call a
function or procedure until you know its name and formal parameter list.

The following example, similar to one in Chapter 3, demonstrates that the local first
procedure can’t call the local second procedure until the second procedure has been
declared, or placed in scope. The example is missing a forward-referencing stub or prototype
for the second procedure, which means the first procedure doesn’t know anything
about the second procedure when it wants to call it.

SQL> DECLARE
 2 -- Placeholder for a forward-referencing stub.
 3 PROCEDURE first(pv_caller VARCHAR2) IS
 4 BEGIN
 5 dbms_output.put_line('"First" called by ['||pv_caller||']');
 6 second('First');
 7 END;
 8 PROCEDURE second(pv_caller VARCHAR2) IS
 9 BEGIN
 10 dbms_output.put_line('"Second" called by ['||pv_caller||']');
 11 END;
 12 BEGIN
 13 first('Main');
 14 END;
 15 /

(continued)

09-ch09.indd 349 12/17/13 2:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

350 Oracle Database 12c PL/SQL Programming

The program raises the following exception because it lacks a forward-referencing stub
for the local second procedure:

 second('First');
 *
ERROR at line 6:
ORA-06550: line 6, column 5:
PLS-00313: 'SECOND' not declared in this scope
ORA-06550: line 6, column 5:
PL/SQL: Statement ignored

You can fix the error by providing a forward-referencing stub on line 2. It would look
like the following:

 2 PROCEDURE second(pv_caller VARCHAR2);

This prints

"First" called by [Main]
"Second" called by [First]

The execution block knows everything in its declaration block or external declaration
block(s). The forward-referencing stub lets the PL/SQL single-pass parser put the second
procedure declaration in its list of identifiers. It is added before the parser reads the first
procedure because single-pass parsers read from the top down. When the parser reads the
first procedure, it knows about the second procedure. The parser then validates the call
to the second procedure and looks for the implementation of second later in the program
to compile the code successfully. The parser raises a PLS-00328 error if the subprogram is
missing after reading the complete source code.

NOTE
Java uses a two-pass parser and lets you avoid forward
declarations.

Package specifications exist to declare implementations. Package bodies provide
implementations of the declarations found in the package specifications. Package bodies must
implement all functions and procedures defined by the package specification. However, local
functions and procedures can raise errors when you fail to provide them in the package body.

Figure 9-1 depicts the package specification and body. It shows you that the package
specification acts as an interface to the package body. You can declare variables, types, and
components inside both the package specification and the body. Those declared in the package
specification are published, while those declared only in the package body are private
components.

You can use published package-level user-defined types in other programs but you can’t use
private user-defined types in other programs. Named blocks defined inside component
implementations are private modules, or part of the black box of local functions or procedures.

09-ch09.indd 350 12/17/13 2:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 9: Packages 351

(See the sidebar “The ‘Black Box’” in Chapter 8 for details about the black box.) The advantage of
defining functions in a package body is that they can be shared across all public and private
functions and procedures. You need to ensure that forward-referencing stubs or specifications exist
at the top of your package bodies because their compilation process includes a single-run parser.

Types can be referenced by external PL/SQL blocks. You can assign values to package
variables or use their values. Constants are specialized variables that disallow assignments. You
can only use the values of constants as right operands. External PL/SQL blocks call package
functions and procedures when they’re declared in a package specification. Components declared
only in the package body call published components through their package declarations.

Chapter 4 discusses scalar and composite data types that are available in anonymous and
named blocks. All of these are available in packages because they’re named blocks. You can use
any scalar or compound variable available in your package specification or body. You can also
create user-defined data types in your package or package body. When user-defined data types
are defined in the package specification, they are publicly available to anyone who either has the
correct privileges or is white listed. When user-defined data types are defined in the package
body, they are available only privately to PL/SQL blocks implemented in the package body.

As with functions and procedures, you can declare variables, types, and components in your
package specification or body. Unlike stand-alone functions and procedures, you can access and
use data types from your package specification in other PL/SQL blocks. You only need to preface
the components with the package name and the component selector (.) before the data type, as
shown in the following call:

 EXECUTE some_package.some_procedure('some_string');

NOTE
Package types may include shared cursors. Shared cursors are
mutually exclusive structures during runtime in Oracle Database 12c,
which means they can be run by only a single process at any time.

FIGURE 9-1. PL/SQL package architecture

Components

Variables

Types

Input/Output

Input/Output

Referenced

Package
Speci�cation

Components

Variables

Types

Package
Body

09-ch09.indd 351 12/17/13 2:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

352 Oracle Database 12c PL/SQL Programming

The way in which you implement variables and data types is the same whether you’re
declaring them in a package specification or in a package body. You’ll also find that, in addition
to doing everything described in Chapter 8, functions and procedures also support overloading.
Overloading is typically an object-oriented programming language (OOPL) feature, and it lets you
define a function name with different signatures (or parameter lists). You can overload functions or
procedures that are defined in package specifications. Unfortunately, you can’t overload functions
or procedures that are defined and implemented in the package body.

Overloading
Overloading means that you create more than one function or procedure with the same
identifier (or component name) but different signatures. Function and procedure signatures
are defined by their respective formal parameter lists. An overloaded component differs in
either the number of parameters or the data types of parameters in respective positions.
While PL/SQL supports named, mixed, and positional notation (Oracle Database 11g forward),
formal parameters are only unique by position and data type. Parameter names do not
make formal parameter lists unique.

For example, you cannot overload the adding function that uses two numbers by simply
changing the formal parameter names, like this:

SQL> CREATE OR REPLACE PACKAGE not_overloading IS
 2 FUNCTION adding (a NUMBER, b NUMBER) RETURN NUMBER;
 3 FUNCTION adding (one NUMBER, two NUMBER) RETURN BINARY_INTEGER;
 4 END not_overloading;
 5 /

NOTE
PL/SQL allows you to overload functions and procedures by
simply renaming variables, but at runtime the ambiguity raises a
PLS-00307 exception.

You can compile this package specification and implement its package body without
raising a compile-time error. However, you can’t call the overloaded function without
finding that too many declarations of the function exist. The ambiguity between declarations
raises the PLS-00307 exception. The return data type for functions is not part of their
signature. A change in the return data type for functions does not alter their unique
signatures because the return type isn’t part of the signature.

Redefining the package declaration as follows lets you call either implementation of the
adding function. The data types now differ between the two declarations.

SQL> CREATE OR REPLACE PACKAGE overloading IS
 2 FUNCTION adding (a NUMBER, b NUMBER) RETURN NUMBER;
 3 FUNCTION adding (a VARCHAR2, b NUMBER) RETURN NUMBER;
 4 FUNCTION adding (a NUMBER, b VARCHAR2) RETURN NUMBER;
 5 FUNCTION adding (a VARCHAR2, b VARCHAR2) RETURN BINARY_INTEGER;
 6 END not_overloading;
 7 /

09-ch09.indd 352 12/17/13 2:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 9: Packages 353

The following illustration shows you how overloading works inside the black box. In the first
signature, the second parameter is a CLOB and third is a DATE, while their positions are reversed
in the second signature. A drawing of the sample adding function would show two round
funnels for the VARCHAR2 parameters and two square funnels for the NUMBER parameters.

Output Position 1
Name A

V
A

R
C

H
A

R
2

Position 2
Name B

C
LO

B

Position 3
Name C

D
A

TE

Position 4
Name D

N
U

M
B

ER

Position 5
Name E

IN
TE

G
ER

Assignment Channel

Pass-by-reference Return Channel

Position 1
Name A

V
A

R
C

H
A

R
2

Position 2
Name B

D
A

TE

Position 3
Name C

C
LO

B

Position 4
Name D

N
U

M
B

ER

Position 5
Name E

IN
TE

G
ER

Assignment Channel

Pass-by-reference Return Channel

Black Box

Posi
Nam

it
m

Output

Reference Input

Only one of the
overloaded
functions
returns a value.

Reference Output

(continued)

09-ch09.indd 353 12/17/13 2:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

354 Oracle Database 12c PL/SQL Programming

You call an overloaded function or procedure name with a list of actual parameters.
Inside the black box, the runtime engine identifies the sequence and data types of the actual
parameters. It matches the calls against possible candidates. When the runtime engine finds
a matching candidate, it sends the actual parameters to that version of the function or
procedure.

This information is stored in the database catalog. You can see it in the CDB_, ALL_,
DBA_, and USER_ARGUMENTS views. If there isn’t a signature that matches a function call,
the PL/SQL runtime engine returns an ORA-06576 error, indicating you’ve called an invalid
function or procedure.

The next three sections cover how you define and implement packages. They examine the
details of package specifications and bodies, and examine how you can manage packages
through the Oracle Database 12c catalog.

Review Section
This section has described the following points about package architecture:

 ■ Packages have the published package specification and private package body.

 ■ The private package body implements everything defined in the public package
specification, and may implement private user-defined data types, variables, cursors,
functions, and procedures.

 ■ Packages can have a white list that limits those who can call it.

 ■ Package specifications eliminate the need for forward-referencing public functions and
procedures because the definitions of those functions and procedures are defined in
the data catalog.

 ■ Package bodies require forward-referencing stubs for private functions and procedures
because their compilation process relies on a single-run parser.

 ■ Packages support overloading public function and procedure signatures.

Package Specification
The package specification declares a package as a black box to a user’s schema, but it also publishes
the available public functions and procedures. After compiling a package specification, you can
create packages and functions that use it. The implementation isn’t necessary until you want to
test the parts.

You can use the SQL*Plus DESCRIBE command to see the functions and procedures inside a
package. Unfortunately, the package variables and data types are not visible when you describe
a package by using the DESCRIBE command.

You can determine the package variables and data types by inspecting the package specification
found in the text column of the CDB_, ALL_, DBA_, and USER_SOURCE administrative views.
While the text column displays the data catalog information from the package specification,

09-ch09.indd 354 12/17/13 2:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 9: Packages 355

it doesn’t necessarily display the implementation because you can wrap your code when you
compile it. Wrapping the implementation obfuscates the code by converting it into a meaningless
set of characters. Appendix F discusses wrapping your PL/SQL code.

You can query the data catalog information, and sometimes the actual source, from the
USER_SOURCE view for definer rights programs. To see invoker rights programs, owned by
another user typically, you need to have superuser privileges to use the CDB_, ALL_, or DBA_
SOURCE administrative view.

From SQL*Plus you can query the CDB_, ALL_, or DBA_SOURCE administrative view by using
the following formatting commands and SELECT statement:

SQL> -- Set page break to maximum SQL*Plus value.
SQL> SET PAGESIZE 49999
SQL> -- Set column formatting for 80-column display.
SQL> COLUMN line FORMAT 99999 HEADING "Line#"
SQL> COLUMN text FORMAT A73 HEADING "Text"
SQL> -- Query any source in the user's account.
SQL> SELECT line
 2 , text
 3 FROM user_source
 4 WHERE UPPER(name) = UPPER('&input_name');

NOTE
Oracle Database 12c and previous releases store all metadata by
default in uppercase strings. You can override that default behavior in
Oracle Database 12c, as described in the sidebar “Case-Sensitive Table
and Column Names” of Appendix B. The UPPER function around the
column name ensures you’ll always match uppercase strings from
the database catalog.

The next five subsections discuss the prototype features and serially reusable precompiler
directive of a package specification and how you work with variables, types, and components.
They point out changes in behavior between serially reusable packages and non–serially reusable
packages. Non–serially reusable packages are the default. Types are subdivided into structures,
cursors, and collections.

Prototype Features
The prototype for a package specification lists all components as optional because it is possible to
build a package without any components. The prototype shows the possibilities for package
variables, types, and subroutines (functions and procedures).

Since the previous edition of this book, the package specification prototype includes two new
elements: the optional EDITIONABLE clause, introduced in Oracle Database 11g Release 2, and
the white-listing ACCESSIBLE BY clause, introduced in Oracle Database 12c. Following is a
generic package specification:

CREATE [OR REPLACE] PACKAGE package_name
[EDITIONABLE | NONEDITIONABLE]
[AUTHID {DEFINER | CURRENT_USER}]
[ACCESSIBLE BY

09-ch09.indd 355 12/17/13 2:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

356 Oracle Database 12c PL/SQL Programming

 (FUNCTION some_schema.function_name
 [, PROCEDURE some_schema.procedure_name
 [, PACKAGE some_schema.package_name
 [, TYPE some_schema.object_type_name]]])] IS
 [PRAGMA SERIALLY_REUSABLE;]
 [variable_name [CONSTANT] scalar_data_type [:= value];]
 [collection_name [CONSTANT] collection_data_type [:= constructor];]
 [object_name [CONSTANT] object_data_type [:= constructor];]

 [TYPE record_structure IS RECORD
 (field_name data_type
 [, field_name data_type
 [, ...]]);]

 [CURSOR cursor_name
 [(parameter_name data_type
 [,parameter_name data_type
 [, ...]])] IS
 select_statement;]

 [TYPE ref_cursor IS REF CURSOR [RETURN { catalog_row | record_structure }];]
 [user_exception_name EXCEPTION;
 [PRAGMA EXCEPTION_INIT(user_exception_name,-20001);]]

 [FUNCTION function_name
 [(parameter [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type
 [, parameter [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type
 [, ...]])]
 RETURN { sql_data_type | plsql_data_type }
 [DETERMINISTIC | PARALLEL_ENABLED]
 [PIPELINED]
 [RESULT_CACHE [RELIES_ON (table_name)]];]

 [PRAGMA RESTRICT_REFERENCES ({ DEFAULT | function_name }
 , option [, option [, ...]]);]

 [PROCEDURE procedure_name
 [(parameter1 [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type
 [, parameter2 [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type
 [, parameter(n+1) [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type])];]
END package_name;
/

NOTE
The OR REPLACE clause is very important. Without it, you must drop
the package specification before attempting to re-declare it.

Definer rights packages use an AUTHID value of DEFINER, while invoker rights packages use
an AUTHID value of CURRENT_USER. Appendix A describes definer and invoker rights in more
detail, and they’re touched on in the “Schema-Level Programs” sidebar a bit later in this chapter.

09-ch09.indd 356 12/17/13 2:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 9: Packages 357

The EDITIONABLE clause lets you create multiple copies of the same package in the database
at the same time. These EDITIONABLE packages only apply to certain editions of the database,
and they enable virtually zero-downtime upgrades of the database. You should check the
Oracle Database Advanced Application Developer’s Guide for more information on editions in
the Oracle Database 11g Release 2 and Oracle Database 12c release.

The ACCESSIBLE BY clause lets you white list a package. White listing limits those in the list
as the only authorized callers of public functions and procedures. White listing also extends itself
to public variables and data types. Refer to Chapter 2 for coverage on white listing as a new feature.
A package specification is white listed like this:

SQL> CREATE OR REPLACE PACKAGE small_one
 2 ACCESSIBLE BY
 3 (FUNCTION video.gateway
 4 , PROCEDURE video.backdoor
 5 , PACKAGE video.api
 6 , TYPE video.hobbit) IS
 7 FUNCTION add
 8 (lv_a NUMBER
 9 , lv_b NUMBER) RETURN NUMBER;
 10 END small_one;
 11 /

You use the ACCESSIBLE BY clause only in package specifications, as shown on lines 2
through 6. Waiting until the “Package Body” section to introduce the small_one package body
(or implementation) would be a bit disjointed, so here’s the package body for the small_one
package:

 SQL> CREATE OR REPLACE PACKAGE BODY small_one IS
 2 FUNCTION add
 3 (lv_a NUMBER
 4 , lv_b NUMBER) RETURN NUMBER IS
 5 BEGIN
 6 RETURN lv_a + lv_b;
 7 END add;
 8 END small_one;
 9 /

Note the absence of an ACCESSIBLE BY clause from the package body declaration. You can
then create the gateway function to call the small_one.add function. The function compiles
because the small_one package specification includes the gateway function on its white list.

The gateway function takes two parameters and passes them through to the white-listed add
function, as you can see in the following implementation of the gateway function:

SQL> CREATE OR REPLACE FUNCTION gateway
 2 (pv_a NUMBER
 3 , pv_b NUMBER) RETURN NUMBER IS
 4 BEGIN
 5 RETURN small_one.add(pv_a, pv_b);
 6 END;
 7 /

09-ch09.indd 357 12/17/13 2:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

358 Oracle Database 12c PL/SQL Programming

You can test the whole thing with the following anonymous block program:

SQL> BEGIN
 2 dbms_output.put_line(gateway(2,2));
 3 END;
 4 /

The call to the gateway function passes in two 2s and gets back a 4.

Serially Reusable Precompiler Directive
The SERIALLY_REUSABLE PRAGMA (precompiler directive or instruction) can only be used in a
package context. You must use it in both the package specification and the body. This practice
differs from the PRAGMA instructions covered in previous chapters for exceptions, functions, and
procedures. The SERIALLY_REUSABLE PRAGMA is important when you want to share variables
and cursors because it guarantees their starting state each time they’re called.

The CONSTANT qualifier lets you designate variables as read-only and static variables. While
not mentioned in earlier chapters, you can also designate any variable as a CONSTANT in any
anonymous or named block. A constant can’t be used as an assignment target in any package where
it is defined. Constants become more important when you share them through package specifications.

NOTE
You cannot use package variables as assignment targets when they’re
defined as constants. Any attempt to assign a value to a constant raises
a PLS-00363 exception.

Package exceptions are helpful development tools because they can be referenced by other
program units. All you need do to use a package exception in other programs is prepend the
package name and component selector to the exception.

For example, you would declare an exception like

 sample_exception EXCEPTION;
 PRAGMA EXCEPTION_INIT(sample_exception,-20003);

Chapter 7 demonstrates how you can leverage exceptions. You declare them in packages just
as you do in stand-alone functions and procedures, or anonymous blocks.

The section “System Reference Cursors” in Chapter 4 only discusses strongly and weakly
typed reference cursors. There, the chapter covers strongly typed reference cursors as data types
anchored to a catalog object, like a table or view. Package specifications let you share record type
definitions with other PL/SQL blocks. This feature lets you share record types with other PL/SQL
blocks and anchor reference cursors to package-defined record types.

The nested function definition also shows the potential for pipelined and cached result sets.
You should remember to use a collection as the return type of pipelined functions. If you forget,
the compilation cycle raises a PLS-00630 exception stating that you must return a supported
collection.

NOTE
The cached result set feature works for stand-alone (schema-level)
functions but doesn’t work for functions inside packages.

09-ch09.indd 358 12/17/13 2:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 9: Packages 359

The sidebar “Backward Compatibility Issues for Functions” in Chapter 8 includes a table that
covers the precomplier options that restrict function performance. The package specification
introduces a DEFAULT mode, which means apply the limitations to all functions defined in the
package. Again, these precomplier options that restrict function behaviors and the TRUST option
are intended more for backward compatibility than for new development.

Variables
Packages are non–serially reusable by default. This means that a second user isn’t guaranteed the
same package after a first user calls a package. The default works well when you don’t declare
shared variables or cursors in a package specification because the functions and procedures are
reusable. At least, they’re reusable when they don’t depend on package variables. Moreover, you
should always make packages serially reusable when they contain shared variables.

You define a package as serially reusable by placing the SERIALLY_REUSABLE PRAGMA in
the package specification, as shown next. The PRAGMA changes the basic behavior of package
variables. A serially reusable package creates a new (fresh) copy of the package when it is called
by another program unit, whereas a default (non–serially reusable) package reuses variables.

PRAGMA SERIALLY_REUSABLE;

While you declare variables like any other anonymous or named block, they are not hidden
inside the black box. Package-level variables are publicly accessible from other PL/SQL programs.
This means package-level variables are public or shared variables. They are also subject to change
by one or more programs. The duration of package-level variables varies in any session. The length

Schema-Level Programs
Stored functions, procedures, packages, and objects are schema-level programs. Only
schema-level programs can be defined as programs with definer rights or invoker rights. The
default model of operation is definer rights, which means the code runs with the permissions
available to the owner of the schema. You can define a schema-level program as an invoker
rights model by including the AUTHID as CURRENT_USER. An invoker rights model runs
with the permissions of the schema that calls the component.

The definer rights model runs with the privileges of the owning schema and is best
suited for a centralized computing model. The AUTHID as DEFINER sets a schema-level
program as a definer rights model, but it is unnecessary because that’s the default. The
invoker rights model requires you to maintain multiple copies of tables or views in different
schemas or databases.

Package specifications define packages. The package body only implements the declaration
from the package specification. The package specification is the schema-level program. You
can define a package as definer rights or invoker rights, but all components of the package
inherit a single mode of operation.

You raise a PLS-00157 exception when try to set the mode of operation for functions
and procedures when they’re inside packages. Functions and procedures defined inside
packages are not schema-level programs. They’re actually nested components of packages.
They inherit the operational mode of the package.

09-ch09.indd 359 12/17/13 2:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

360 Oracle Database 12c PL/SQL Programming

of time can extend through the life of a connection or can be shortened when other packages
displace it in the SGA. The older and less-used packages can age out of the SGA because of how
the least-used algorithm works. The least-used algorithm acts more or less like a garbage collector
for the database. It is very similar to the garbage collector in a JVM (Java Virtual Machine).

Enabling other program units to change package-level variables generally isn’t a good
practice. In fact, it couples the behavior of two or more programs on something that can change
state unexpectedly. As a rule of thumb, you should avoid public variables. It’s a better coding
practice to implement package variables inside the package body, which makes them behave like
protected attributes in OOPLs such as C++, C#, or Java.

You can access shared constants or variables from package specifications. Constants have
fixed values whether you declare the package as serially reusable or non–serially reusable.
Variables don’t have a fixed value in either case. A serially reusable package guarantees the initial
values of variables because a call to the package always gets a new copy of the package. A non–
serially reusable package doesn’t guarantee the initial value because it can’t. A non–serially
reusable package variable returns either the initial value or last value of a variable. The last value
is returned when the package still resides in the SGA from a prior call in the same session.

The following example creates a shared_variables package specification and demonstrates
the behavior of a non–serially reusable package specification. The package defines a constant and
a variable. You can use the package specification to test the behavior of shared variables.

SQL> CREATE OR REPLACE PACKAGE shared IS
 2 lv_protected CONSTANT NUMBER := 1;
 3 pv_unprotected NUMBER := 1;
 4 END shared;
 5 /

The following change_unprotected procedure changes the state of the package-level
variable and then prints the lv_unprotected variable value. It takes one formal parameter,
which can be any number.

SQL> CREATE OR REPLACE PROCEDURE change_unprotected
 2 (pv_value NUMBER) IS
 3 /* Declare the initial package variable value. */
 4 lv_package_var NUMBER := shared.lv_unprotected;
 5 /* Define the unit to run in a discrete session. */
 6 PRAGMA AUTONOMOUS_TRANSACTION;
 7 BEGIN
 8 shared.lv_unprotected := shared.lv_unprotected + pv_value;
 9 dbms_output.put_line(
 10 'Calls ['||pv_value||'] + ['||lv_package_var||']'
 11 || ' = ['||shared.lv_unprotected||']');
 12 END change_unprotected;
 13 /

NOTE
You can access package specification variables from PL/SQL blocks
but not from SQL commands.

09-ch09.indd 360 12/17/13 2:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 9: Packages 361

Line 4 captures the value from the package-level variable before reassigning it a value on
line 8. Lines 9 through 11 print the output as the number to add, the initial value of the lv_
unprotected package-level variable, and the new value of the lv_unprotected package-
level variable. You can test the durability of the shared package-level variable with the following
anonymous block program. It calls the change_unprotected function four times.

SQL> BEGIN
 2 FOR i IN 1..4 LOOP
 3 change_unprotected(i);
 4 END LOOP;
 5 END;
 6 /

It prints

Calls [1] + [1] = [2]
Calls [2] + [2] = [4]
Calls [3] + [4] = [7]
Calls [4] + [7] = [11]

You should note that number to add increments by one, and the initial value starts at 1 and
becomes the new_value the next time you call the change_unprotected function. This type of
incrementing continues until the package ages out of the SGA, or you switch connections.

You use the following command to reset the shared_variables package to age out of the
SGA:

SQL> ALTER PACKAGE shared_variables COMPILE SPECIFICATION;

The procedure always returns 3 when you redefine it as serially reusable. This is true because
each call to the package gets a fresh copy. Serially reusable packages re-initialize the values of
shared variables. The only difference between a serially reusable variable and a constant is that a
constant can never change its value, while the variable can. The change is lost on any subsequent
call to the package when the package is serially reusable. As a rule of thumb, package
specification variables should always be constants.

Types
There are two generalized types that you can declare in packages: static data types and dynamic
data types. Data types are typically PL/SQL structures, collections, reference cursors, and cursors.
All of these can be dynamic or static data types. They are dynamic when their declaration anchors
their type to a row or column definition. You use the %ROWTYPE to anchor to a row and the
%TYPE to anchor to a column, as qualified in the “Attribute and Table Anchoring” section of
Chapter 3. Types are static when they rely on explicitly declared SQL data types, such as DATE,
INTEGER, NUMBER, or VARCHAR2.

As a general rule, package specifications are independent of other schema-level objects.
You build dependencies when you anchor types declared in package specifications to catalog
objects, like tables and views. If something changes in the dependent table or view, the package
specification becomes invalid. As discussed later in the chapter, in the section “Managing Packages
in the Database Catalog,” changes in package specifications can create a cascade reaction that
invalidates numerous package bodies and stand-alone schema-level programs.

09-ch09.indd 361 12/17/13 2:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

362 Oracle Database 12c PL/SQL Programming

Beyond the dynamic or static condition of package types, a shared cursor is a package cursor.
Shared cursors are dynamic insofar as they return different data sets over time. Other package data
types don’t inherit anything beyond the default values that may be assigned during their declaration.

You can use any PL/SQL record type or collection type that you declare in a package
specification as a formal parameter or function return data type of a named PL/SQL block. You
can’t use these PL/SQL data types in SQL statements. PL/SQL blocks that reference package-level
record and collection types are dependent on the package. If the package specification becomes
invalid, so do the external program units that depend on the package declarations.

Chapter 8 contains an example using this technique in the “PIPELINED Clause” section. There
it declares a pipelined package specification that contains a record type and a collection type.
The collection type is dependent on the record structure. The stand-alone pf pipelined function
returns an aggregate table to the SQL environment. The stand-alone function uses the package-
level collection type, which implicitly relies on the package-level record structure. This example
demonstrates how you can use record and collection types found in package specifications in
other PL/SQL blocks.

Declaring shared cursors in the package specification anchors a cursor to the tables or views
referenced by its SELECT statement. This makes the package specification dependent on any
referenced tables or views. A change to the tables or views can invalidate the package
specification and all package bodies that list the invalid specification as a dependent.

Shared cursors can be queried simultaneously by different program units. The first program
that opens the cursor gains control of the cursor until it is released by a CLOSE cursor command.
Prior to Oracle Database 11g, these shared cursors were not read consistent and required that
you declare the package serially reusable to ensure they performed as read-consistent cursors.
Any attempt to fetch from an open shared cursor by another process is denied immediately. An
ORA-06511 ‘cursor already open’ exception should be thrown, but the error message can be
suppressed when the calling program runs as an autonomous transaction. Autonomous
transactions suppress the other error and raise an ORA-06519 exception. Unfortunately, PL/SQL
doesn’t have a WAIT n (seconds) command syntax that would allow you to wait on an open
cursor. This is probably one reason some developers avoid shared cursors.

The following demonstrates a shared cursor package specification definition:

SQL> CREATE OR REPLACE PACKAGE shared_types IS
 2 CURSOR item_cursor IS
 3 SELECT i.item_id
 4 , i.item_title
 5 FROM item i;
 6 END shared_cursors;
 7 /

Pseudotypes or Attributes
The %ROWTYPE and %TYPE act as pseudotypes because they inherit the base catalog type
for a table or column, respectively. More importantly, they implicitly anchor PL/SQL
variable data types to the database catalog, shared package cursors, or local cursors. They
are also known as attributes because they’re preceded by the attribute indicator (the %
symbol). The important point to remember is that these attributes inherit a data type and
anchor a variable’s data type to the database catalog.

09-ch09.indd 362 12/17/13 2:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 9: Packages 363

You can then access the shared cursor in an anonymous or named block, as follows:

SQL> BEGIN
 2 FOR i IN shared_types.item_cursor LOOP
 3 dbms_output.put_line('['||i.item_id||']['||i.item_title||']');
 4 END LOOP;
 5 END;
 6 /

NOTE
You can also reference any package specification collection type by
prepending the package name and component selector.

There’s the temptation to use a reference cursor defined by a record structure. You may choose
that development direction because you don’t want to create a view. The following declares a
strongly typed PL/SQL-only reference cursor:

SQL> CREATE OR REPLACE PACKAGE shared_types IS
 2 CURSOR item_cursor IS
 3 SELECT i.item_id
 4 , i.item_title
 5 FROM item i;
 6 TYPE item_type IS RECORD
 7 (item_id item.item_id%TYPE -- Anchored to the data catalog.
 8 , item_title item.item_title%TYPE); -- Anchored to the data catalog.
 9 END shared_types;
 10 /

You can now use the reference cursor but not with the package-level cursor. Reference cursors
only support explicit cursors. You can test the shared package-level record structure and cursor by
first creating a SQL session-level (or bind) variable, like

SQL> VARIABLE refcur REFCURSOR

Then, you can run the following anonymous block program:

SQL> DECLARE
 2 TYPE package_typed IS REF CURSOR RETURN shared_types.item_type;
 3 quick PACKAGE_TYPED;
 4 BEGIN
 5 OPEN quick FOR
 6 SELECT item_id, item_title FROM item;
 7 :refcur := quick;
 8 END;
 9 /

The package_typed variable uses the package specification data type to create a strong
reference cursor that is dependent on a package-level data type as opposed to a schema-level
table or view. The record structure is a catalog object declared in the context of the package.

09-ch09.indd 363 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

364 Oracle Database 12c PL/SQL Programming

The anonymous block returns the cursor results into the bind variable. You can query the bind
variable reference cursor as follows:

SQL> SELECT :refcur FROM dual;

The query will return the results from the explicit query in the FOR clause. You should note
that OPEN reference cursor FOR sql_statement; fails if you change the query so that
it returns a different set of data types or columns.

NOTE
The substitution of a dynamic reference for a literal query raises a
PLS-00455 exception, which is “cursor such-and-such cannot be
used in a dynamic SQL OPEN statement.”

Shared record structures, collections, and reference cursors are the safest types to place
in package specifications. They become accessible to anyone with the EXECUTE privilege on
the package, but they aren’t part of the output when you describe a package. As mentioned in the
beginning of the “Package Specification” section, you must query the source to find the available
package specification types.

Components: Functions and Procedures
The components in package specifications are functions or procedures. They have slightly different
behaviors than their respective schema-level peers. Package specification functions and procedures
are merely forward-referencing stubs. They define the namespace for a function or procedure and
their respective signatures. Functions also define their return types.

The package specification information is recorded in the CDB_, ALL_, DBA_, and USER_
ARGUMENTS catalog views. These catalog views are covered in the “Checking Dependencies”
subsection later in this chapter.

You define a function stub as follows:

 FUNCTION a_function
 (a NUMBER := 1
 , b NUMBER) RETURNS NUMBER;

You define a procedure stub like this:

 PROCEDURE a_procedure
 (a NUMBER := 1
 , b NUMBER);

The sample declarations assign a default to the first formal parameter, which makes it optional.
When there’s an optional parameter before mandatory parameters, you need to use named notation.

The package specification is also where you provide any PRAGMA instructions for package-level
functions and procedures. Two PRAGMA instructions can apply to either the whole package or
all functions in a package. The SERIALLY_REUSABLE precomplier instruction must be placed
in both the package specification and the body. The RESTRICT_REFERENCES precomplier
instruction applies to all functions when you use the keyword DEFAULT instead of a function name.

09-ch09.indd 364 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 9: Packages 365

The following precomplier instruction restricts the behavior of all functions in the package
and guarantees they can’t write any database state:

SQL> CREATE OR REPLACE PACKAGE financial IS
 2 FUNCTION fv
 3 (current NUMBER, periods NUMBER, interest NUMBER) RETURN NUMBER;
 4 FUNCTION pv
 5 (future NUMBER, periods NUMBER, interest NUMBER) RETURN NUMBER;
 6 PRAGMA RESTRICT_REFERENCES(DEFAULT, WNDS);
 8 END financial;
 9 /

Chapter 8 contains the implementation of the fv and pv functions declared in the package
specification. They don’t write data states, and their implementations would succeed in a package
body.

Review Section
This section has described the following points about the package specification:

 ■ Package specifications publish the public functions and procedures of the package,
but package specifications don’t publish the package’s user-defined public variables
and data types.

 ■ Package variables and user-defined data types aren’t visible without physically
inspecting the package specification stored in the data catalog.

 ■ You can use the CDB_, ALL_, DBA_, and USER_SOURCE administrative views to see
the source of any package’s specification, provided it isn’t wrapped (see Appendix F).

 ■ You can restrict package specifications by limiting the package to an edition or
by white listing which named blocks can call the package’s public functions and
procedures.

 ■ Packages are OOPL components. Packages let you overload functions and procedures,
and they maintain public variable state during the scope of a session or until they age
out of the database’s SGA.

 ■ You must use the SERIALLY_REUSABLE precompiler instruction to guarantee the
state of public variables and data types. (As a word of advice, it’s a bad practice in
OOPLs to declare public variables.)

Package Body
A package body contains both public and private parts. Public parts are defined in the package
specification. Private parts are declared and implemented only in the package body.

You must implement all public functions and procedures in a package body. Public functions
and procedures are those declared in the package specification as function and procedure
prototypes. When you implement a package body, you must guarantee that public function and
procedure signatures match exactly with their prototypes. That means that all the parameters in
the parameter list must match the variable name, data type, and any default value found in their
respective prototype.

09-ch09.indd 365 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

366 Oracle Database 12c PL/SQL Programming

Package bodies also include private variables, data types, functions, and procedures. You’re at
liberty to implement private functions and procedures as you like.

NOTE
When migrating an obsolete Oracle 9i database, you need to know
that formal parameters declared in the specification weren’t enforced
in the package body in Oracle 9i Database. This means you’ll need
to provide them manually to migrate old PL/SQL code forward to
supported versions of Oracle Database.

The next four subsections discuss the prototype features of a package body and how you can
implement variables, types, and components in your package bodies. They point out changes in
behavior between serially reusable packages and non–serially reusable packages. As mentioned,
packages are non–serially reusable by default. As in the “Package Specification” section earlier,
types are subdivided into structures, cursors, and collections.

Prototype Features
The package body prototype is very similar to the package specification prototype. The package
body can declare almost everything that the specification sets except two things. You can’t
reference the new Oracle Database 12c ACCESSIBLY BY clause inside the package body,
because it’s only allowed in the package specification. You can’t define PRAGMA instructions for
functions inside a package body. Any attempt raises a PLS-00708 error that says you must put
them in the package specification.

You can use EXCEPTION_INIT PRAGMA instructions for package-level exceptions, provided
they’re unique from those declared in your package specification. You can also override a variable
that is declared in the package specification. You do this by declaring the variable again in the
package body. When you do this, you make both copies of this variable inaccessible to your
package body. Any reference inside a package body to the doubly declared variable raises a
PLS-00371 exception when you attempt to compile the package body. The exception tells you
that at most one declaration for the variable is permitted. This exception indicates not only that
Oracle didn’t intend users to take advantage of this behavior, but that it may actually be a bug.

The prototype for a package body follows:

CREATE [OR REPLACE] PACKAGE package_name
 [EDITIONABLE | NONEDITIONABLE] IS
 [PRAGMA SERIALLY_REUSABLE;]
 [variable_name [CONSTANT] scalar_data_type [:= value];]
 [collection_name [CONSTANT] collection_data_type [:= constructor];]
 [object_name [CONSTANT] object_data_type [:= constructor];]

 [TYPE record_structure IS RECORD
 (field_name data_type
 [, field_name data_type
 [, ...]]);]

 [CURSOR cursor_name
 [(parameter_name data_type

09-ch09.indd 366 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 9: Packages 367

 [, parameter_name data_type
 [, ...]])] IS
 select_statement;]

 [TYPE ref_cursor IS REF CURSOR [RETURN { catalog_row | record_structure }];]

 [user_exception_name EXCEPTION;
 [PRAGMA EXCEPTION_INIT(user_exception_name,-20001);]]

 -- This is a forward-referencing stub to a function implemented later.
 [FUNCTION function_name
 [(parameter [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type
 [, parameter [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type
 [, ...)]
 RETURN { sql_data_type | plsql_data_type }
 [DETERMINISTIC | PARALLEL_ENABLED]
 [PIPELINED]
 [RESULT_CACHE [RELIES_ON (table_name)]];]

 -- This is a forward-referencing stub to a procedure implemented later.
 [PROCEDURE procedure_name
 [(parameter [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type
 [, parameter [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type
 [, ...)];]

 [FUNCTION function_name
 [(parameter [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type
 [, parameter [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type
 [, ...]])]
 RETURN { sql_data_type | plsql_data_type }
 [DETERMINISTIC | PARALLEL_ENABLED]
 [PIPELINED]
 [RESULT_CACHE [RELIES_ON (table_name)]] IS
 [PRAGMA AUTONOMOUS_TRANSACTION;] -- Check rules in Chapter 8.
 some_declaration_statement; -- Check rules in Chapter 8.
 BEGIN
 some_execution_statement; -- Check rules in Chapter 8.
 [EXCEPTION
 WHEN some_exception THEN
 some exception_handling_statement;] -- Check rules in Chapter 7.
 END [function_name];]

 [PROCEDURE procedure_name
 [(parameter [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type
 [, parameter [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type
 [, ...]])] IS
 [PRAGMA AUTONOMOUS_TRANSACTION;] -- Check rules in Chapter 8.
 some_declaration_statement; -- Check rules in Chapter 8.
 BEGIN
 some_execution_statement; -- Check rules in Chapter 8.

09-ch09.indd 367 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

368 Oracle Database 12c PL/SQL Programming

 [EXCEPTION
 WHEN some_exception THEN
 some exception_handling_statement;] -- Check rules in Chapter 7.
 END [procedure_name];]
END [package_name];
/

You must include the SERIALLY_REUSABLE PRAGMA (precomplier directive) in the package
body if the package specification uses it. This practice differs from the PRAGMA instructions
covered earlier.

Variables
Package-level variables declared in package bodies differ from those declared in package
specifications. You can’t access package-level variables outside of the package. That’s why they’re
sometimes called protected or private. Only functions and procedures published by the package
specification can access package-level variables. This makes these variable very much like
instance variables in an OOPL like Java, which would make them private variables. At least,
package-level variables retain their state from the point of the first call to the package until the
end of the session or they age out of the SGA.

Packages act like classes, and package functions and procedures act like methods in OOPL
classes. In that vein, published functions and procedures are public, package-level functions and
procedures are protected (or limited to the package scope), and local functions and procedures
are private. Package-level variables are called protected and private interchangeably by developers,
but they should be considered private to the package and protected to the functions and
procedures of the package.

The following package specification creates a function and a procedure. The get function
returns the value of a package body variable. The set procedure lets you reset a package body
variable’s value. This package is non–serially reusable, so it retains its variable values until the
package ages out of the SGA.

SQL> CREATE OR REPLACE PACKAGE package_variables IS
 2 /* Declare package components. */
 3 PROCEDURE set(value VARCHAR2);
 4 FUNCTION get RETURN VARCHAR2;
 5 END package_variables;
 6 /

Package specifications don’t know which private components exist in package bodies. The
implementation details of private components are not visible outside of the package body. Public
functions and procedures can access any private component, such as private variables, data types,
functions, and procedures. Other PL/SQL programs can also call any of the public functions and
procedures. At least, other programs can call them if the programs are granted the EXECUTE
privilege on the package or are included in the white list of authorized callers.

Package bodies declare private variables, data types, functions, and procedures. Any public
function or procedure can access and use any of the private components because they share
the same implementation scope. Private functions and procedures also can call other private
functions and procedures. In both cases, functions and procedures in a package body can call

09-ch09.indd 368 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 9: Packages 369

other functions and procedures without prepending the package name and component selector (.).
However, in some circles, it’s considered a good practice to include the package name before
calls to private functions and procedures. From my perspective, it certainly avoids ambiguity.
Likewise, you can use the package name and component selector to qualify local or private variables
and data types.

The package body implements the previous package specification as follows:

SQL> CREATE OR REPLACE PACKAGE BODY package_variables IS
 2 /* Declare package scope variable. */
 3 variable VARCHAR2(20) := 'Initial Value';
 4 /* Implement a public function. */
 5 FUNCTION get RETURN VARCHAR2 IS
 6 BEGIN
 7 RETURN variable;
 8 END get;
 9 /* Implement a public procedure. */
 10 PROCEDURE set(value VARCHAR2) IS
 11 BEGIN
 12 variable := value;
 13 END set;
 14 END package_variables;
 15 /

The get function returns the package-level variable. The set procedure resets the package-
level variable. After you compile the program, you can test the behavior by declaring a session-
level (bind) variable. Call the get function to return a value into the bind variable. You can then
query the bind variable:

SQL> VARIABLE outcome VARCHAR2(20)
SQL> CALL package_variables.get() INTO :outcome;
SQL> SELECT :outcome AS outcome FROM dual;

The output is

OUTCOME

Initial Value

Execute the set procedure to reset the variable’s value. Call the get function again before
you requery the bind variable. The test results are

SQL> EXECUTE package_variables.set('New Value');
SQL> CALL package_variables.get() INTO :outcome;
SQL> SELECT :outcome AS outcome FROM dual;

The output is

OUTCOME

New Value

09-ch09.indd 369 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

370 Oracle Database 12c PL/SQL Programming

If you rerun the package_variables get function in the same session, it works differently.
You would print “New Value” first, not “Initial Value,” because the package hasn’t aged out of
the SGA.

A CREATE OR REPLACE DDL command replaces a package specification only when there’s
a change between the original package specification and the new package specification. Otherwise,
the DDL command simply skips the process. You can change the package body’s implementation
without altering the status or definition of the package specification.

You can force a change and refresh variables by changing sessions, or by running an ALTER
command to recompile the package specification. After recompilation, all variables are returned
to their initial values. You can alter the package before rerunning the script and see the same
results shown previously.

The syntax to recompile only a package specification is

ALTER PACKAGE package_variables COMPILE SPECIFICATION;

Only local variables, those declared in functions and procedures, have a fresh value each
time you call them. That’s because they don’t retain their values in between calls.

If you change the package from non–serially reusable to serially reusable, the test results
change. Each call to a serially reusable package body gets a new copy of both the package
specification and the body. The package-level variable is always the same.

NOTE
You can’t call a serially reusable package from a SELECT statement.

As a rule, you should consider declaring packages as non–serially reusable libraries. If you
adopt that rule, you should avoid public variables. When you declare public variables, you invite
other programs to couple their behavior by using them.

If you must declare public variables (and I’d love to see the use case that supports this), you
should declare them only as constants in the package specification. If you want to make your
packages cohesive (independent) and avoid coupling (dependency), you should declare package
variables in the package body. Alternatively, you can declare local variables inside both public
and private functions and procedures.

Ultimately, all package variables should have protected or private access in packages.
Although PL/SQL doesn’t have formal access modifiers like those in C++, C#, and Java, variable
access is set by the following rules:

 ■ Variables declared in a package specification are public access, which means any other
PL/SQL code module may use them.

 ■ Variables declared in the package body are protected access, which means you limit the
scope of access to subroutines of the package.

 ■ Variables declared in the declaration block of the subroutines are local or private to the
subroutine where they’re declared, which means only that subroutine can access them.

Some developers who come from a business perspective of “let’s get it done quickly” don’t
adhere to these guidelines. Unfortunately, packages that don’t maximize cohesion and minimize
coupling are no better than stand-alone functions and procedures.

09-ch09.indd 370 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 9: Packages 371

Types
As with the package specification, you can declare dynamic or static data types in package bodies.
Data types are typically PL/SQL structures, collections, reference cursors, and cursors. You can
declare dynamic data types by anchoring them to row or column declarations, as outlined in the
“Attribute and Table Anchoring” section of Chapter 3. You declare static data types when types are
explicitly declared as SQL data types.

Package bodies are dependent on their package specification. They are also dependent on
other schema-level objects that they use in their implementation of components. The behaviors of
types in the package body are consistent with those of the package specification, with one exception:
PL/SQL blocks outside of the package body can’t access elements declared in the package body.

Components: Functions and Procedures
Components are implementations of published functions or procedures or they are declarations
or definitions of package-only functions or procedures. You can also declare local components
inside published or package-only functions or procedures.

Declaring something before the implementation is called forward referencing (or a prototype),
a complete example of which is provided in the sidebar “Forward Referencing” earlier in this
chapter. When you define local components, you provide both their declaration and their
implementation. Sometimes you need to declare a component before you’re ready to implement
it. You do this by providing a forward-referencing stub for a function or procedure.

Components can only specify whether they are autonomous transactions or local transactions.
Local transactions run inside a pre-existing transaction scope. Autonomous transactions run discretely
in their own transaction scope. By default, all functions and procedures are local transactions
unless you declare them as autonomous transactions. The AUTONOMOUS_TRANSACTION
precompiler directive declares a function or procedure as autonomous.

Singleton Design Pattern
A Singleton design pattern lets you construct only one instance of an object. It guarantees
any subsequent attempt to construct an instance fails until the original object instance is
discarded. This pattern is widely used in OOPLs, such as C++, C#, and Java.

You can guarantee a single instance of a package in any session, too. To do so, you simply
embed a call to a locally scoped function or procedure as the first step in all published
functions and procedures. The locally scoped function or procedure holds a local variable
that should match a package-level control variable. If the values match, the local function
or procedure changes the package-level variable to lock the package.

You also need another locally scoped function or procedure as the last step in all
published functions and procedures. The last step resets all package variables to their initial
state. The easiest way to accomplish this is to write a procedure that resets the default values
for package variables. You call the resetting procedure as the last statement in your published
function or procedure.

Don’t forget to reset the control variable with the other variables. If you forget to reset
the control variable, the package will be locked until the end of the session or until it ages
out of the SGA.

09-ch09.indd 371 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

372 Oracle Database 12c PL/SQL Programming

Only published functions or procedures can be called from PL/SQL blocks that are external
to the package. Package-level functions can be called from three types of components: published
components, package-level components, or local components. Local components are declared
and implemented (or defined) inside a published or package-level component. Another option is
to define a local component inside another local component. Chapter 8 covers the rules governing
how you declare and implement functions and procedures.

The components package specification declares only a getter function and a setter procedure.
A getter component simply gets something from the black box, while a setter component sets an
initial value or resets an existing value inside the black box. These are stock terms in OOP. As
you’ve discovered earlier in this chapter, they also apply well to PL/SQL packages that are declared
as non–serially reusable.

The components package specification is

SQL> CREATE OR REPLACE PACKAGE components IS
 2 PROCEDURE set (value VARCHAR2); -- Declare published procedure.
 3 FUNCTION get RETURN VARCHAR2; -- Declare published function.
 4 END components;
 5 /

Functions are almost always declared before procedures in PL/SQL, but their sequencing is
meaningless inside a package specification. It is meaningful when you declare them as local
functions and procedures because of forward-referencing possibilities.

The components package body adds a package-level function, a package-level procedure,
and two shared variables. One variable is provided to demonstrate how you would implement a
Singleton pattern in a PL/SQL package. The other variable contains a value that should always
have an initial value.

The components package body is

SQL> CREATE OR REPLACE PACKAGE BODY components IS
 2 -- Declare package scoped shared variables.
 3 key NUMBER := 0;
 4 variable VARCHAR2(20) := 'Initial Value';
 5 -- Define package-only function and procedure.
 6 FUNCTION locked RETURN BOOLEAN IS
 7 key NUMBER := 0;
 8 BEGIN
 9 IF components.key = key THEN
 10 components.key := 1;
 11 RETURN FALSE;
 12 ELSE
 13 RETURN TRUE;
 14 END IF;
 15 END locked;
 16 PROCEDURE unlock IS
 17 key NUMBER := 1;
 18 BEGIN
 19 IF components.key = key THEN
 20 components.key := 0; -- Reset the key.
 21 variable := 'Initial Value'; -- Reset initial value of shared variable.
 22 END IF;
 23 END unlock;

09-ch09.indd 372 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 9: Packages 373

 24 -- Define published function and procedure.
 25 FUNCTION get RETURN VARCHAR2 IS
 26 BEGIN
 27 RETURN variable;
 28 END get;
 29 PROCEDURE set (value VARCHAR2) IS
 30 BEGIN
 31 IF NOT locked THEN
 32 variable := value;
 33 dbms_output.put_line('The new value until release is ['||get||'].');
 34 unlock;
 35 END IF;
 36 END set;
 37 END components;
 38 /

The key action occurs in the set procedure. It locks the package to change, changes a shared
variable, gets a copy of the temporary value (also known as a transitive value) of the shared
variable, and unlocks the package. The unlock procedure resets the control key and resets the
shared package variable.

You can test this by first creating a session or bind variable:

SQL> VARIABLE current_content VARCHAR2(20)

After setting the bind variable, you call the function and return the value into the bind variable.
A SELECT statement lets you see the initial package value, as shown:

SQL> CALL components.get() INTO :current_content;
SQL> SELECT :current_content AS contents FROM dual;

It returns the following:

CONTENTS

Initial Value

The temporary value is printed to console when you call the set procedure. At least, it is
printed when you’ve enabled SERVEROUTPUT first.

SQL> SET SERVEROUTPUT ON SIZE UNLIMITED
SQL> EXECUTE components.set('New Value');

The output should look like this:

The new value until release is [New Value].

A subsequent call to the get function returns the original value of the package variable. The
components package implements a Singleton pattern for shared package variables.

The locked function and unlock procedure ensure that the package state is always the same.
You are able to call the set procedure to change a variable, and then see the change with a call
to the get function. This is not possible when the package is serially reusable. A call to the get
function inside the set function always grabs a new copy of the package when the package is
declared serially reusable.

09-ch09.indd 373 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

374 Oracle Database 12c PL/SQL Programming

The components package demonstrates an approach to managing shared package variables
between calls. In this example, the shared package variable behaves like an instance variable in a
user-defined object. As mentioned earlier in this chapter, Chapter 11 covers user-defined objects.
Clearly, this is a lot of work to share a variable and guarantee that the next call to the package
finds the same initial value.

You can add a package-level log procedure and make it autonomous by adding the following
at the bottom of the components package body:

 37 PROCEDURE log (value VARCHAR2) IS
 38 PRAGMA AUTONOMOUS_TRANSACTION; -- Set autonomous behavior.
 39 BEGIN
 40 /* Write the value in the log. */
 41 INSERT INTO logger VALUES (value);
 42 /* Commit the record in the autonomous session. */
 43 COMMIT;
 44 END;
 45 END components;

Line 38 designates the log procedure of the components package as an autonomous
transaction. That means its state is outside the rest of the package. After writing to the logger
table, the autonomous log procedure must commit its work on line 43 because its transaction
scope is outside of any other call to the components package.

Aside from showing you how to implement the Singleton pattern, this code demonstrates
how you call package-level components through published components. It also shows you how
to implement an autonomous procedure in a package. The package-level components are hidden
package-level components.

Review Section
This section has described the following points about the package body:

 ■ Package bodies implement public functions and procedures.

 ■ Package bodies can’t set the AUTHID and ACCESSIBLE BY clauses, which are only
set in the package specifications.

 ■ Private functions and procedures are only accessible through public functions and
procedures from external callers, or from other package functions and procedures.

 ■ Public and private package variables maintain state while the package remains in the SGA.

 ■ Public and private functions and procedures may be designated to run in the local
session, the default, or in a separate session. You must add an AUTONOMOUS_
TRANSACTION precompiler directive to make a function or procedure within the
package run in a separate session.

 ■ You can implement a package as a Singleton design pattern, but it would be better to
use an object type because that’s really the purpose of an object type in an ORDBMS
database.

 ■ Protected variables are declared at the package level, and private variables are
declared as local variables in individual functions and procedures.

 ■ Serially reusable packages can’t be called from a SELECT statement.

09-ch09.indd 374 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 9: Packages 375

Definer vs. Invoker Rights Mechanics
Earlier references have touched on the concepts of definer rights and invoker rights. These are
models of operation. The default model of operation for stored programs is definer rights. Definer
rights programs act on catalog objects that are declared in the same schema. They perform with
all the privileges of the schema owner.

A definer rights model does not dictate that all declared catalog objects must be owned by the
same schema as the package owner. Synonyms may point to catalog objects owned by another
user if that other user has granted privileges to their catalog objects. Catalog objects can be functions,
packages, procedures, materialized views, sequences, tables, or views. Figure 9-2 shows you a visual
representation of a definer rights model where all the catalog objects are owned by the same user.

A schema is a container of stored programs. The schema grants access to stored programs, or
black boxes, through privileges. External users may create synonyms to simplify call statements to
external programs. Synonyms only translate (resolve) when grants, stored programs, and catalog
objects are valid in the owning schema. The combination of synonyms and grants lets external
users call programs with inputs and retrieve output from stored program in another schema.

The definer rights model is ideal when you want to deploy a single set of stored programs
that act on local catalog objects. Alternatively, it also works when you want to have all access
centralized in a single schema. The centralized access model is a bit more complex because the
access schema may contain synonyms that point to stored programs in other schemas. The stored
programs in turn have definer rights on catalog objects in their own schema.

FIGURE 9-2. Definer rights model of operation with local catalog objects

Schema includes
component & data

Black
Box

De�ner Rights Model

Local
Schema

Input

Output

Input

Output

DDL/DML

GRANTSYNONYM

SYNONYM GRANT

09-ch09.indd 375 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

376 Oracle Database 12c PL/SQL Programming

Grants and Synonyms
Assume you have a package named manage_items declared and implemented as a definer
rights program in your video PDB schema. You want to create a second schema called
purchasing and let the purchasing user access the manage_items package. There are
two steps required to make access seamless to the manage_items package.

The first step requires you to connect as the video user and grant the EXECUTE privilege
on the manage_items package to the new purchasing schema. The following command
grants that privilege:

GRANT EXECUTE ON manage_items TO purchasing;

After you grant the EXECUTE privilege on the package, the purchasing user can
access the package. However, the purchasing user must prepend the video schema
name and a component selector to see the package, as follows:

SQL> DESCRIBE video.manage_items

TIP
You have limited privileges when grants are made through roles.
Functions and procedures that contain SQL statements may fail
at runtime when grants are not explicit privileges.

You can dispense with the schema name and component selector by creating a SYNONYM
in the purchasing schema. A SYNONYM translates an alias to a fully qualified reference,
like video.manage_items. You create a synonym using the same name as the package
as follows:

CREATE SYNONYM manage_items FOR video.manage_items;

After you create the synonym, you can describe the package by using the SYNONYM.
This lets you dispense with prepending the schema name and component selector to packages
or any other catalog object. You can grant the EXECUTE privilege to all other users by
substituting the schema name with PUBLIC. The following grants permissions to all other
database users:

GRANT EXECUTE ON manage_items TO PUBLIC;

Grants and synonyms are powerful tools. You can find GRANT definitions in the USER_
TAB_PRIVS administrative view. SYNONYM values are in the USER_SYNONYMS view.

09-ch09.indd 376 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 9: Packages 377

NOTE
A centralized access schema is exactly how the Oracle E-Business
Suite runs.

More or less, the definer rights model lets individual users act on subsets of data that are stored
in a common repository. You implement the definer rights model by having your stored programs
control access and authentication by using the dbms_application_info package to set the
client_info column in V$SESSION. The stored programs stripe the data by adding a column
that ties to the user’s organization or business entity.

The invoker rights model requires you to set the AUTHID value to CURRENT_USER in any
schema-level program. This approach requires that you identify all catalog objects that are
dependencies of invoker rights programs. After identifying the dependencies, you must replicate
those catalog objects to any schema that wants to call the invoker rights programs. This requirement
is due to the fact that invoker rights models resolve by using the caller’s privileges, not the definer’s
privileges.

NOTE
Database triggers and functions called from within views are always
executed with definer rights and run with the privileges of the user that
owns the triggering table or view.

You choose an invoker rights mode of operation to support distributed data repositories. A
single code repository can use grants and synonyms to bridge transactions across a network by
using a DB_LINK. A DB_LINK lets you resolve a network alias through the tnsnames.ora file
to find another Oracle database. Appendix A describes how to configure and use the tnsnames
.ora file.

The invoker rights model best supports data that is stored in a separate user schema. It is also
ideal for distributed database solutions when they’re running in the same instance. There are
significant limitations to remote calls when making remote procedure calls that use database links.

Review Section
This section has described the following points about the comparison of definer vs. invoker
rights mechanics:

 ■ Definer rights programs work with the data in their own schema generally, while
invoker rights programs work with local data.

 ■ Definer rights programs run in their own schema, and you must grant the EXECUTE
privilege to other users that you would like to allow to use a definer rights program.

 ■ A GRANT gives the privilege to run a definer rights package.

 ■ A SYNONYM puts the schema name and component selector in the data catalog and
gives the package a name in the context of another user’s schema.

09-ch09.indd 377 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

378 Oracle Database 12c PL/SQL Programming

Managing Packages in the Database Catalog
As databases grow, so do the stored programs that support them. Whether you choose to
implement a definer or invoker rights solution, understanding what you’ve added to your schema
is very important. The next three sections show you how to find, validate, and describe packages,
check their dependencies, and choose a validation method in the Oracle Database 12c database.

Remote Calls
Remote calls are made from one database instance to another. You make remote calls
through database links (DB_LINK). A user must have the CREATE DATABASE LINK
privilege to create a database link. You grant the privilege, as the SYSTEM user, by using the
following syntax:

GRANT CREATE DATABASE LINK TO schema_name;

After granting this to a schema, you can create a database link to another schema. The
prototype to create a DB_LINK is

CREATE DATABASE LINK db_link_name
CONNECT TO schema_name IDENTIFIED BY schema_password
USING 'tns_names_alias'

A database link is a static object in the database. It stores the schema name and
password to resolve a remote connection. You must update database links whenever the
remote database changes its schema’s password. Database links can reference other
database instances or a different schema of the same database.

The examples in this sidebar use a DB_LINK named loopback, which allows you to
reconnect to the same instance. You don’t need to change anything in the tnsnames.ora
file to make a loopback database link work. However, there are some rules on the calls
that you can make using a remote connection. You can call schema-level components
provided that they don’t require arguments.

For example, you call a remote status function by using the following syntax when
using the loopback database link:

SQL:

SELECT status@loopback FROM dual;

PL/SQL:

BEGIN
 dbms_output.put_line('Status ['||status@loopback||']');
END;
/

The remote schema-level component can contain DDL or DML statements. You cannot
return a handle to a LOB. Any attempt to do so raises an ORA-22992 exception that says
you can’t use a LOB locator selected from a remote table.

09-ch09.indd 378 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 9: Packages 379

Finding, Validating, and Describing Packages
The CDB_, ALL_, DBA_, and USER_OBJECTS administrative views let you find packages. They
also let you validate whether a package specification or body is valid or invalid. Rather than
create new code artifacts, the example in this section uses the pipelined package and pf
function created in the “PIPELINED Clause” section of Chapter 8.

The following query lets you check whether package specifications and bodies have been
created and are valid. The SQL*Plus column formatting ensures the output is readable in one
80-column screen.

COLUMN object_name FORMAT A10
SELECT object_name
, object_type
, last_ddl_time
, timestamp
, status
FROM user_objects
WHERE object_name IN ('PIPELINED','PF');

This query should return data like this:

OBJECT_NAME OBJECT_TYPE LAST_DDL_ TIMESTAMP STATUS
----------- ------------------- --------- ------------------- ------
PF FUNCTION 03-JAN-08 2008-01-03:22:50:23 VALID
PIPELINED PACKAGE 03-JAN-08 2008-01-03:22:50:19 VALID
PIPELINED PACKAGE BODY 03-JAN-08 2008-01-03:22:50:20 VALID

If you put an extraneous character in the pipelined package body, it will fail when you run
it. After attempting to compile an incorrect package body, requery the data and you should see
something like this:

OBJECT_NAME OBJECT_TYPE LAST_DDL_ TIMESTAMP STATUS
----------- ------------------- --------- ------------------- -------
PF FUNCTION 03-JAN-08 2008-01-03:22:50:23 VALID
PIPELINED PACKAGE 03-JAN-08 2008-01-03:22:50:19 VALID
PIPELINED PACKAGE BODY 03-JAN-08 2008-01-03:22:53:34 INVALID

The invalid package body does not invalidate the pf function because the pf function is
dependent on the package specification, not the package body. You should fix the pipelined
package body and recompile it before attempting the next step.

If you now put an extraneous character in the pipelined package specification, it fails
when you try to compile it. Requerying the data from the USER_SOURCE view tells you that the
dependent package body and pf function are also invalid:

OBJECT_NAME OBJECT_TYPE LAST_DDL_ TIMESTAMP STATUS
----------- ------------------- --------- ------------------- -------
PF FUNCTION 03-JAN-08 2008-01-03:22:50:23 INVALID
PIPELINED PACKAGE 03-JAN-08 2008-01-03:23:06:10 INVALID
PIPELINED PACKAGE BODY 03-JAN-08 2008-01-03:22:53:34 INVALID

09-ch09.indd 379 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

380 Oracle Database 12c PL/SQL Programming

You can rebuild the pipelined package by running the pipelined.sql script located on
the McGraw-Hill Professional website. You will find that the pf function is still invalid in the
database catalog after you recompile the package specification and body (which would not be the
case if you reran the script).

You can validate the pf function by an explicit compilation statement like

ALTER FUNCTION pf COMPILE;

Or, you can simply call the function as follows, which validates that its dependent objects
are valid before running the statement. This is known as a lazy compile but is actually called
automatic recompilation.

SELECT * FROM TABLE(pf);

You can describe the package like you would a table or view from SQL*Plus:

SQL> DESCRIBE pipelined

It returns the following:

FUNCTION PF RETURNS ACCOUNT_COLLECTION

You may notice that the record and collection type declared in the package specification
aren’t displayed. This is normal. As stated in the “Package Specification” section earlier in the
chapter, you must query the CDB_, ALL_, DBA_, or USER_SOURCE administrative view to find
the complete package declaration. Wrapped package bodies will be returned from that query as
gibberish that you should discard.

This section has shown you how to find, validate, and describe packages. The next section
explores checking dependencies.

Checking Dependencies
The CDB_, ALL_, DBA_, and USER_DEPENDENCIES administrative views let you examine
dependencies between stored programs. As done in the previous section, the example here uses
the pipelined package and pf function created in the “PIPELINED Clause” section of Chapter 8.

The following query lets you see the dependencies for the pf function. The SQL*Plus column
formatting ensures that the output is readable in one 80-column screen.

COLUMN name FORMAT A10
COLUMN type FORMAT A8
COLUMN referenced_name FORMAT A30
COLUMN referenced_type FORMAT A10
COLUMN dependency_type FORMAT A4
SELECT name
, type
, referenced_name
, referenced_type
, dependency_type
FROM user_dependencies
WHERE name = 'PF';

09-ch09.indd 380 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 9: Packages 381

The analyzed output from the returned user_dependencies table is displayed in the
following illustration. The pf function has a direct hard dependency on the pipelined package
and two direct hard dependencies on the contact and member tables. The two tables are
referenced in the FROM clause of the CURSOR declared in the pf function.

NAME TYPE REFERENCED_NAME REFERENCED DEPE
--
PF FUNCTION STANDARD PACKAGE HARD
PF FUNCTION SYS_STUB_FOR_PURITY_ANALYSIS PACKAGE HARD
PF FUNCTION PLITBLM SYNONYM HARD
PF FUNCTION CONTACT TABLE HARD
PF FUNCTION MEMBER TABLE HARD
PF FUNCTION PIPELINED PACKAGE HARD

6 rows selected. These dependencies are set
because of the cursor in the
function.

This dependency is on record type
found in the package speci�cation.

This section has shown you how to find the dependencies between stored programs. The
combination of the two sources should enable you to determine what your dependencies are and
their respective frequency.

Comparing Validation Methods: Timestamp vs. Signature
Stored programs are validated or invalidated by using a timestamp or signature method. The
timestamp method is the default for most Oracle databases. The timestamp method compares the
last_ddl_time column, which you can check in the CDB_, ALL_, DBA_, or USER_OBJECT
view. When the base object has a newer timestamp than that of the dependent object, the
dependent object will be recompiled.

Dates and timestamps always provide some interesting twists and turns. When you are working
in a distributed situation and the two database instances are in different time zones, the comparison
may be invalid. You may also encounter unnecessary recompilations when distributed servers are
in the same time zone. Dependent objects are compiled even when the change in the last_
ddl_time column didn’t result in a change of the base object.

Another complication with timestamp validation occurs when PL/SQL is distributed between
the server and Oracle Forms. In this case, a change in the base code can’t trigger recompilation
because it isn’t included in the runtime version of the Oracle Form.

The alternative to timestamp validation is the signature method. This method works by comparing
the signature of schema-level and package-level functions and procedures. You must alter the
database as a privileged user to convert the database to signature method validation. You would
use the following command syntax:

ALTER SYSTEM SET REMOTE_DEPENDENCIES_MODE = SIGNATURE;

NOTE
You must hold the ALTER SYSTEM privilege to issue this command.

09-ch09.indd 381 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

382 Oracle Database 12c PL/SQL Programming

This command changes the remote_dependencies_mode parameter in your spfile.ora
or pfile.ora configuration file. If you want the change to be permanent, you should change it
in your configuration file.

Signature method works by checking whether the base object signature changes between
compilation events. If there is a change, it will force compilation of dependent packages. You can
find the signature information in the CDB_, ALL_, DBA_, and USER_ARGUMENTS views.

NOTE
Remote procedure calls may raise an ORA-04062 exception when a
remote database uses timestamp mode rather than signature mode.

The timestamp method is ideal for centralized environments. The signature method is sometimes
more effective for centralized development environments but generally is a preferred solution in
distributed database applications.

Review Section
This section has described the following points about how you can manage packages in the
database catalog:

 ■ You can use the database catalog to discover the presence and status of functions,
procedures, and packages.

 ■ The DESCRIBE command lets you see the published functions and procedures of both
stand-alone packages and package units.

 ■ Oracle supports two validation methods for functions, procedures, and packages: the
timestamp method and the signature method.

 ■ The timestamp method of validation doesn’t work well when the servers use different
time zones, and you should switch to the signature method of validation when
working in a distributed situation.

Summary
This chapter has shown you why packages are the backbone of Oracle Database 12c application
development. You’ve learned how to group functions and procedures into libraries that include
overloading. You’ve also learned the difference between package and local variables, types, and
components, and you’ve seen how to plan and manage these features.

Mastery Check
The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix I for answers to
these questions.

09-ch09.indd 382 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 9: Packages 383

True or False:

1. ___Package specifications can define only functions and procedures.

2. ___Package bodies can define variables, data types, functions, and procedures.

3. ___You define functions or procedures in package specifications and implement them in
package bodies.

4. ___You define function stubs and provide their implementations in package bodies.

5. ___A forward reference is required for any function or procedure to avoid inadvertent use
before its implementation in the package body.

6. ___A grant of EXECUTE on a package lets a user in another schema run a definer rights
package against the definer’s local data.

7. ___A SYNONYM provides an alias for a privilege.

8. ___A package must contain all autonomous and non-autonomous functions and
procedures.

9. ___A package maintains a variable’s value until it’s aged out of the SGA or you issue a
FLUSH VARIABLE variable_name statement.

10. ___You can query a serially reusable package from a SELECT statement.

Multiple Choice:

11. Which of the following is a PRAGMA (precompiler directive) reserved to packages?
(Multiple answers possible)

A. AUTONOMOUS_TRANSACTION

B. AUTO_TRANSACTION

C. SERIALLY_REUSABLE

D. EXCEPTION_INIT

E. ACCESSIBLE_BY

12. Which of the following can be defined in a package specification? (Multiple answers
possible)

A. An object type

B. A record type

C. A function

D. A procedure

E. An autonomous function

13. Which of the following is a publically accessible variable? (Multiple answers possible)

A. A variable declared in a function of a package

B. A variable declared in a procedure of a package

C. A variable declared in a package specification

D. A variable declared in a package body outside of a function or procedure

E. All of the above

09-ch09.indd 383 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

384 Oracle Database 12c PL/SQL Programming

14. Which of the following support overloading? (Multiple answers possible)

A. Stand-alone functions

B. Stand-alone procedures

C. Functions declared in the package specification

D. Procedures declared in the package specification

E. Functions declared in the package body

15. Which of the following guarantees variables are fresh each time you call a package?
(Multiple answers possible)

A. A declaring the variables in an autonomous function

B. A declaring the variables in a local procedure

C. A declaring the variables in a local function

D. A declaring the variables outside a function or procedure in a package body

E. A declaring the variables outside a function or procedure in a package specification

09-ch09.indd 384 12/17/13 2:57 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

CHAPTER
10

Large Objects

10-ch10.indd 385 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

386 Oracle Database 12c PL/SQL Programming

Large objects (LOBs) are powerful data structures that let you store text, images, music, and
video in the database. Oracle Database 11g dramatically changed the LOB landscape by
reengineering how large objects work. Oracle Database 12c builds upon those changes by

optimizing the engines that support LOBs. They’re now faster and more secure (SecureFiles). You
can now define Binary LOB (BLOB), Character LOB (CLOB), or National Character LOB (NCLOB)
columns in SecureFiles when you create a table or alter it.

LOBs can hold up to a maximum of 8 to 128 terabytes, depending on how you configure your
database’s db_block_size parameter. Oracle Database 12c lets you set db_block_size to a
value of 2KB to 32KB. The values are multiples of two—2KB, 4KB, 8KB, 16KB, and 32KB. The
default value for db_block_size is 8KB. This formula sets the maximum size of large objects in
an instance:

Maximum size = (4GB – 1) * db_block_size

You can find your database instance’s maximum LOB size with a call to the dbms_lob
package’s get_storage_limit function. You can store these LOBs in BLOB or CLOB variables
or columns, or you can store them outside the database as BFILE (binary file) columns. BFILE
columns actually store a locator that points to the physical location of an external file. The “Large
Strings” section in Appendix B covers the storage syntax for LOBs. LOBs are stored in segments
within the database, which are effectively rows in specialized tables.

Oracle Database 11g, Release 2, added new methods to the dbms_lob package to support
SecureFiles. While this chapter focuses on LOB management, it limits the coverage of SecureFiles
to only the new methods in the dbms_lob package. You can read more about SecureFiles by
consulting the Oracle Database SecureFiles and Large Objects Developer’s Guide 12c Release.

This chapter explains how to use PL/SQL to work with the different LOB data types. It covers
these topics:

 ■ Working with internally stored large object types

 ■ Reading files into internally stored columns

 ■ Working with binary files (BFILEs)

 ■ Understanding the dbms_lob package

The concepts governing how you use BLOB, CLOB, and NCLOB data types are very similar.
That’s why you’ll examine how to work with internally stored large object types first. Then, you’ll
work with reading large files into internally stored CLOB and BLOB data types. CLOB and NCLOB
data types are covered first since they let you focus on managing transactions with large blocks
of text. The BLOB data type comes second because the concepts build on those presented for
character large objects. BLOBs store binary documents, like Adobe PDF (Portable Document
Format) files, images, and movies, inside the database. Access and display of the BLOB files is
supplemented by using the PHP programming language to render images in web pages.

After your introduction to internally managed LOBs, you’ll learn how to set up, configure,
read, and maintain BFILE data types. They require more effort in some ways because the catalog
only stores locator data, and you have to guarantee their physical presence in the file system. The
dbms_lob package is discussed last because not all the functions are necessary to show how to
use large objects. Each section builds on the former, but you should be able to use each section as
a quick reference, too.

10-ch10.indd 386 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 387

Working with Internally Stored LOB Types
The CLOB, NCLOB, and BLOB data types can define a column in a table or nested table. As
described, they have a maximum physical size between 8 and 128 terabytes, which is stored in
segments defined by the table’s STORAGE clause. The “Large Strings” section in Appendix B covers
the LOB storage clause.

The CLOB and NCLOB data types let you store large text files. The difference between them is
that the NCLOB must qualify the character set of the text. Large text data types serve many purposes,
such as holding a chapter in a book, a book in a library, or an XML fragment. The BLOB data type
lets you store large binary files, like images, music tracks, movies, or PDF files.

This section examines how you work with these LOB data types. XML types, a CLOB subclass,
aren’t covered here. You can refer to the Oracle XML DB Developer’s Guide 12c Release for
direction on using these types to support XML.

LOB Assignments Under 32K
CLOB, NCLOB, and BLOB columns are usually stored separately from the rest of the row in a table.
Only the descriptor or locator is physically stored in the column. The locator points to where the
physical contents of a LOB are stored and provides a reference to a private work area in the SGA.
This work area allows us to scroll through the content and write new chunks of data. Some of the
Oracle documentation for earlier versions of Oracle Database use descriptor to refer to the CLOB,
NCLOB, and BLOB locator, and use locator when referring to working with external BFILEs.
Oracle Database 12c documentation begins to consistently label both as locators.

The CLOB, NCLOB, and BLOB data types are object types. They require implicit or explicit
construction. Both SQL and PL/SQL support implicit and explicit construction of CLOB and
NCLOB data types from VARCHAR2 data types, NVARCHAR2 data types, or string literals. They also
support implicit and explicit construction of BLOB data types from hexadecimal string literals.
Neither SQL nor PL/SQL supports implicit assignment from a LONG data type to a CLOB or NCLOB
data type. For reference, the TO_CHAR function and SELECT-INTO statement also can’t convert a
LONG column value into a long string or convert a LONG RAW column value into a long binary
string. The “Converting a LONG to a CLOB” sidebar later in this chapter shows you how to use
the dbms_sql package to make the conversion from a LONG data type to a CLOB data type.

You can implicitly construct a CLOB or NCLOB variable by assigning a number or character
type. When assigning a number, the number is first cast to a character type and then converted to
a CLOB data type. Character conversion for CHAR, NCHAR, NVARCHAR2, and VARCHAR2 data
types is constrained by the SQL or PL/SQL environments. SQL restricts you to a 4,000-byte
conversion when the max_string_size parameter is set to STANDARD, whereas SQL with a
max_string_size parameter set to EXTENDED and PL/SQL let you convert 32,767 bytes of
character data.

While there is no direct constructor that lets you create a new CLOB instance with a physical
size greater than the 32,767-byte environment limit, you can use the dbms_lob package to do
so. The dbms_lob package provides two approaches to writing CLOB, NCLOB, and BLOB data
types. One approach writes the whole LOB at one time, and the other writes it piece by piece.
For example, you can initialize a new instance through the write procedure of the dbms_lob
built-in package, and then use the append procedure to add data. The package is available
within PL/SQL, Java, or any C-callable language. Java accesses the dbms_lob package through
the JDBC (Java Database Connectivity) library and accesses C-callable programs through the OCI
(Oracle Call Interface) libraries.

10-ch10.indd 387 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

388 Oracle Database 12c PL/SQL Programming

Small LOB Assignments
The next two subsections show you how to assign values to BLOB, CLOB, and NCLOB data types.
For the latter two data types, I’ve opted to show only the assignment to a CLOB because the
assignment to a CLOB and the assignment to an NCLOB work the same way.

CLOB or NCLOB PL/SQL Assignments The following anonymous block shows you how to
declare a CLOB variable in a PL/SQL program block, a refresher from material in Chapter 4:

SQL> DECLARE
 2 var1 CLOB; -- Declare a null reference to a CLOB.
 3 var2 CLOB := empty_clob(); -- Declare an empty CLOB.
 4 var3 CLOB := 'some_string'; -- Declare a CLOB with a string literal.
 5 BEGIN
 6 ...
 7 END;
 8 /

In a PL/SQL context, it’s possible to declare a CLOB with a null value, an initialized empty
CLOB, or with a string value in a SQL or PL/SQL scope. Line 2 assigns a null value to var1, line 3
assigns an empty CLOB object type to var2, and line 4 assigns a string literal to var3. It’s also
possible to make a left-to-right assignment with the SELECT-INTO statement in PL/SQL, or to read
a file directly into a LOB with the dbms_lob package. As mentioned earlier, the SELECT-INTO
statement doesn’t support the assignment of a LONG data type to a CLOB or NCLOB data type.

Unfortunately, only the dbms_lob package lets you assign strings that are longer than 32,767
bytes. You can assign very large strings (greater than 32,767 bytes) by using the manipulation
procedures of the dbms_lob package. The “Manipulation Methods” section later in this chapter
describes how you can write very large strings.

You also have the ability to read an external file and assign its contents to a CLOB or NCLOB
data type. The loadfromfile and loadclobfromfile procedures in the dbms_lob package
support a direct assignment from external files. Flip forward to the “Reading Files into Internally
Stored Columns” section of this chapter for more information on how to assign files to CLOB and
NCLOB data types.

Unfortunately, the SQL context isn’t as flexible. SQL doesn’t support a SELECT-INTO statement,
and SQL can’t work with the dbms_lob package’s manipulation procedures. That’s because SQL
can’t support a call to a pass-by-reference procedure, which only works in a PL/SQL, ODBC, OCI,
or JDBC context. In SQL, you have three options:

 ■ You can assign a string literal that is less than 32,767 bytes in length in the VALUES
clause of an INSERT statement or as a column value of a SELECT-list in an INSERT
statement.

 ■ You can assign an empty_clob constructor function call in the VALUES clause of an
INSERT statement or as a column value of a SELECT-list in an INSERT statement.

 ■ You can assign an initialized CLOB data type through a pass-by-value PL/SQL function or
PL/SQL function wrapper of a C-callable program in the VALUES clause of an INSERT
statement or as a column value of a SELECT-list in an INSERT statement.

10-ch10.indd 388 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 389

BLOB PL/SQL Assignments As with the CLOB and NCLOB data types, you have three ways to
declare a BLOB data type in a PL/SQL context. The following anonymous block shows you how to
declare a BLOB:

SQL> DECLARE
 2 var1 BLOB; -- Declare a null reference to a BLOB.
 3 var2 BLOB := empty_blob(); -- Declare an empty BLOB.
 4 var3 BLOB := '43'||'41'||'52'; -- Declare with hexadecimal values.
 5 BEGIN
 6 ...
 7 END;
 8 /

Declaring a BLOB with a null reference on line 2 mirrors the syntax for a CLOB or NCLOB.
Line 2 declares an empty BLOB with an empty_blob function call, rather than an empty_clob
function call. Although you can assign hexadecimal values to a BLOB, you’re unlikely to encounter
a scenario in which that’s called for. It’s also possible to assign a value from a RAW column, but
RAW columns are deprecated. RAW columns are small, at no more than 32,760 bytes, which is
generally too small for real binary streams.

SQL provides you three options that are similar to those you have when assigning very large
strings to CLOB and NCLOB data types. You can use a hexadecimal string sequence when the binary
stream is smaller than 32,767 bytes. You can use an empty_blob function call to initialize a column
or variable. You also can use a pass-by-value PL/SQL function when the binary stream is larger than
32,767 bytes, provided that the function returns an initialized large binary stream.

It’s much more likely that you’ll assign binary files to BLOB columns. That’s done with the
loadblobfromfile procedure in the dbms_lob package. This chapter covers that process in
the “Reading Local Files into BLOB Columns” section.

LOB Assignments over 32K
This section covers how you assign large strings and binary streams to CLOB, NCLOB, and BLOB
data types. The mechanics differ from those used for LOB assignments under 32K because the
limits of SQL*Plus restrict how you can insert or update them. The dbms_lob package makes it
possible for you to assign an initial chunk of data and then append other chunks data until you
have loaded all chunks of data for a long string or binary stream.

Initializing an Object
You declare a scalar variable by assigning a type and value. You call a function by passing
actual parameters. However, you declare an object instance by calling a specialized function
that initializes an object type. Initialized object types are objects or object instances.

The process of initializing an object type is known as constructing an object. Construction
occurs by calling a specialized function that typically shares the name of the object type. This
specialized function is called a constructor. Object-oriented programming lingo uses the terms
initializing and constructing interchangeably. They both mean giving life to an object type.

10-ch10.indd 389 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

390 Oracle Database 12c PL/SQL Programming

The CLOB, NCLOB, and BLOB columns differ from columns of scalar data types because
they’re not limited to NULL or NOT NULL states. CLOB, NCLOB, and BLOB data types are either
NULL, empty, or populated, as qualified in Table 10-1.

LOB Construction for Assignments Greater Than 32,767 Bytes
Inserting a string longer than 32,767 bytes directly into an uninitialized CLOB, NCLOB, or BLOB
column isn’t supported by the INSERT or UPDATE statement. As discussed, you can insert a very
large string into a CLOB or an NCLOB or insert a very large binary stream into a BLOB column (or
update the string or the stream). However, you need a PL/SQL function or procedure to insert a
very large string or a very large binary stream.

Writing a PL/SQL function is the easiest solution to this type of problem. You could write and
use a custom pass-by-value PL/SQL function to create a CLOB or NCLOB. The function would take
a table collection of 32,767-byte strings or binary streams and return an appropriate LOB data
type. Inside the function, you would use the RETURNING INTO clause with an INSERT or
UPDATE statement.

The RETURNING INTO clause has the following prototype (which is illustrated in Figure 10-1):

RETURNING call_locator INTO return_locator

The call locator identifies the LOB column, and the return locator provides a duplex (two-
way) pipe to write a very large string or binary stream in segments (or parts). Initially, you insert or
update with the empty_blob function for a BLOB and the empty_clob function for a CLOB or
NCLOB. The empty_blob or empty_clob function ensures the initial value is a LOB, and the
RETURNING INTO clause gives you a duplex pipe to write and append data to the LOB column.

You can write very large strings directly to CLOB or NCLOB columns with this approach with
the INSERT statement or UPDATE statement when the statement is enclosed in a transaction
scope. The INSERT or UPDATE statement starts a transaction, and a COMMIT or ROLLBACK
statement ends the transaction scope.

The following INSERT and UPDATE statement prototypes demonstrate a specialized approach
to managing LOB data types. They work inside PL/SQL functions or external programming
languages, like C, C++, C#, and Java. The RETURNING keyword of the RETURNING INTO clause
is awkward at first, but it means channeling out the column reference into a local variable.

State Description
NULL The column in a table row contains a null value.

Empty The column contains a LOB locator (or descriptor) that is an empty instance.
You can verify an empty LOB by calling the dbms_lob.getlength function.
The function returns a 0 value for an empty BLOB, CLOB, or NCLOB column.

Populated The column contains a LOB locator, and a call to dbms_lob.getlength
returns a positive integer value for a BLOB, CLOB, or NCLOB column.

TABLE 10-1. Possible CLOB, NCLOB, and BLOB Data States

10-ch10.indd 390 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 391

INSERT Statement for CLOBs or NCLOBs The INSERT statement initializes a CLOB column,
and then it returns the locator through the RETURNING INTO clause into a local variable. The
local variable is passed by reference and has an OUT mode of operation. You can check Chapter 3
for details on the OUT mode of operation, but essentially it disallows the submission of a value to
a formal parameter in a function signature. In the INSERT statement, the assignment inside the
VALUES clause acts as part of an IN mode operation. As mentioned, the INSERT statement starts
a transaction scope. You can add to or replace the contents pointed to by the locator during the
scope of this transaction.

The INSERT statement prototype is shown here:

Sets the initial
column value.

Sets the local
variable name.

Inherits data type
of the referenced

column.

INSERT INTO table_name

(column_name1 [, column_name2 [, column_name(n+1)]])

VALUES

(empty_clob() [, column_value2 [, column_value(n+1)]])

RETURNING column_value1 INTO local_variable;

FIGURE 10-1. The implicit LOB locator function architecture

Black
Box

Reference Input

Reference Output

Database

The RETURNING clause identi�es
the formal parameter by anchoring
it to a column name. It also sets the
mode of operation to IN and OUT
mode (or pass-by-reference).

The INTO clause assigns a local
variable as the actual parameter of
a function call to create a database
connection. The connection lets
you write data to a BLOB or CLOB
locator during a transaction.

Call Locator
Return Locator

10-ch10.indd 391 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

392 Oracle Database 12c PL/SQL Programming

UPDATE Statement for CLOBs or NCLOBs The UPDATE statement sets a CLOB column value
with the empty_clob function, and then it returns the column locator through the RETURNING
INTO clause into a local variable. The local variable is passed by reference and has an OUT mode
of operation. Like the INSERT statement, the UPDATE statement also starts a transaction scope.
You can add to or replace the contents pointed to by the locator during the scope of this transaction.

The UPDATE statement prototype is shown here:

UPDATE table_name

SET column_name1 = column_value1

[, column_name2 = empty_clob()

[, column_name(n+1) = column_value(n+1)]])

RETURNING column_value2 INTO local_variable;

Sets the initial
column value.

Sets the local
variable name.

Inherits data type
of the referenced

column.

The alternative for the BLOB data type is a mirror to what you’ve just seen with the CLOB and
NCLOB data types. The following sections show you prototypes for an INSERT statement and an
UPDATE statement.

INSERT Statement for BLOBs The INSERT statement initializes a BLOB column and then it
returns the locator through the RETURNING INTO clause into a local variable. The local variable
is passed by reference and has an OUT mode of operation. You can check Chapter 3 for details on
the OUT mode of operation, but essentially it disallows the submission of a value to a formal
parameter in a function signature. In the INSERT statement, the assignment inside the VALUES
clause acts as part of an IN mode operation. The INSERT statement also starts a transaction
scope. You can add to or replace the contents pointed to by the locator during the scope of this
transaction.

The INSERT statement prototype is shown here:

Inherits data type
of the referenced

column.

Sets the initial
column value.

Sets the local
variable name.

INSERT INTO table_name

(column_name1 [,column_name2 [, column_name(n+1)]])

VALUES

(empty_blob() [,column_value2 [,column_value(n+1)]])

RETURNING column_value1 INTO local_variable;

10-ch10.indd 392 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 393

UPDATE Statement for BLOBs The UPDATE statement assumes column_name2 is a BLOB
data type. It sets the BLOB column’s value, and then it returns the locator through the RETURNING
INTO clause to a local variable. The local variable is passed by reference and has an OUT mode of
operation. Like the INSERT statement, the UPDATE statement starts a transaction scope. You can
add to or replace the contents pointed to by the locator during the scope of this transaction.

The UPDATE statement prototype is shown here:

UPDATE table_name

SET column_name1 = column_value1

[, column_name2 = empty_blob()

[, column_name(n+1) = column_value(n+1)]])

RETURNING column_value2 INTO local_variable;

Sets the initial
column value.

Sets the local
variable name.

Inherits data type
of the referenced

column.

The initial assignment of an empty_blob or empty_clob function call is generally the most
effective way to manage inserting truly large LOB values. It’s the suggested approach made in the
Oracle Database Large Objects Developer’s Guide.

The following SQL INSERT statement inserts an empty_clob constructor in the item_desc
column of the item table:

SQL> INSERT INTO item VALUES
 2 (item_s1.nextval
 3 ,'ASIN: B00003CXI1'
 ...
 7 ,'Harry Potter and the Sorcerer''s Stone'
 8 ,'Two-Disc Special Edition'
 9 , empty_clob() -- item_desc column
 10 , empty_blob() -- item_blob column
 11 ,'PG'
 12 ,'MPAA'
 ...

Line 9 inserts an empty CLOB into the item_desc column, and line 10 inserts an empty
BLOB into the item_blob column. Once you’ve inserted an empty CLOB and BLOB, you can
update the columns with the dbms_lob package.

A basic UPDATE statement limits you to updating the CLOB or NCLOB column with a string up
to 4,000 or 32,767 bytes (depending on the value of the max_string_size parameter). At least,
it’s the limit if you try to assign the result of a VARCHAR2 or NVARCHAR2. The limit decreases
when you update a CLOB column with a LONG variable or a BLOB column with a LONG RAW
variable. That’s because they both have a limit of 32,760 bytes. You can eliminate the maximum
limit by writing a stored function that creates a CLOB, NCLOB, or BLOB variable and returns it as
its function result.

10-ch10.indd 393 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

394 Oracle Database 12c PL/SQL Programming

Converting a LONG to a CLOB
Converting a LONG data type column to a CLOB data type requires several steps. Converting
a LONG isn’t done too frequently because LONG columns exist only in Oracle tables. LONG
columns typically support view text and database trigger bodies.

Oracle has been warning through several releases of the database that LONG columns
will be deprecated. Although LONG columns exist in Oracle Database 12c, Oracle new
features don’t provide new tools for converting them. The to_char function doesn’t
support a call parameter of a LONG data type. The SELECT-INTO statement can’t assign the
value of a LONG column to a local variable. You still must use the dbms_sql package to
convert LONG values to ordinary strings.

A complete solution for converting a LONG to a CLOB is provided next. It wraps the
dbms_utility package’s new pass-by-reference expand_sql_text procedure, which
Oracle designed to take a view with dependencies on other views and return a query based
only on tables. Oracle’s design of the expand_sql_text procedure poses a hurdle
because views are currently stored in LONG columns, which are difficult to convert to other
string data types. Only the dbms_sql package (see Chapter 13) supports converting LONG
data types to VARCHAR2, CLOB, or NCLOB data types. The wrapping procedure takes a view
name, converts the LONG to a CLOB, calls the new procedure, and returns a CLOB data type
with final results.

The solution is a pass-by-value function, which means it can be embedded in a query. It
uses a local function to verify a view name because the dbms_assert package only lets
you verify a table or view name. There are several advanced tricks in this solution, and the
comments should help illustrate them for you. As mentioned, the function contains a
forward reference to dbms_sql material that’s covered in Chapter 13. Key code lines using
dbms_sql appear in bold text. Please check that material if you have any questions on the
use of dbms_sql to generate dynamic SQL statements.

SQL> CREATE OR REPLACE FUNCTION expand_sql_text
 2 (pv_view_name VARCHAR2)
 3 RETURN CLOB AS
 4
 5 /* Declare containers for views. */
 6 lv_input_view CLOB;
 7 lv_output_view CLOB;
 8
 9 /* Declare a variable, because of the limit of SELECT-INTO. */
 10 lv_long_view LONG;
 11
 12 /* Declare local variables for dynamic SQL. */
 13 lv_cursor INTEGER := dbms_sql.open_cursor;
 14 lv_feedback INTEGER; -- Acknowledgement of dynamic execution
 15 lv_length INTEGER; -- Length of string
 16 lv_return CLOB; -- Function output
 17 lv_stmt VARCHAR2(2000); -- Dynamic SQL statement
 18 lv_string VARCHAR2(32760); -- Maximum length of LONG data type
 19
 20 /* Declare user-defined exception. */
 21 invalid_view_name EXCEPTION;

10-ch10.indd 394 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 395

 22 PRAGMA EXCEPTION_INIT(invalid_view_name, -20001);
 23
 24 /* Declare a dynamic cursor. */
 25 CURSOR c (cv_view_name VARCHAR2) IS
 26 SELECT text
 27 FROM user_views
 28 WHERE view_name = cv_view_name;
 29
 30 FUNCTION verify_view_name
 31 (pv_view_name VARCHAR2)
 32 RETURN BOOLEAN AS
 33 /* Default return value. */
 34 lv_return_result BOOLEAN := FALSE;
 35
 36 /* Declare cursor to check view name. */
 37 CURSOR c (cv_view_name VARCHAR2) IS
 38 SELECT NULL
 39 FROM user_views
 40 WHERE view_name = cv_view_name;
 41 BEGIN
 42 FOR i IN c (pv_view_name) LOOP
 43 lv_return_result := TRUE;
 44 END LOOP;
 45
 46 RETURN lv_return_result;
 47 END verify_view_name;
 48 BEGIN
 49 /* Throw exception when invalid view name. */
 50 IF NOT verify_view_name(pv_view_name) THEN
 51 RAISE invalid_view_name;
 52 END IF;
 53
 54 /* Open, fetch, and close cursor to capture view text. */
 55 OPEN c(pv_view_name);
 56 FETCH c INTO lv_long_view; -- Fetched into a LONG variable.
 57 CLOSE c;
 58
 59 /* Create dynamic statement. */
 60 lv_stmt := 'SELECT text'||CHR(10)
 61 || 'FROM user_views'||CHR(10)
 62 || 'WHERE view_name = '''||pv_view_name||'''';
 63
 64 /* Parse and define a LONG column. */
 65 dbms_sql.parse(lv_cursor, lv_stmt, dbms_sql.native);
 66 dbms_sql.define_column_long(lv_cursor,1);
 67
 68 /* Only attempt to process the return value when fetched. */
 69 IF dbms_sql.execute_and_fetch(lv_cursor) = 1 THEN
 70 dbms_sql.column_value_long(
 71 lv_cursor
 72 , 1
 73 , LENGTH(lv_long_view) -- Size a LONG variable.
 74 , 0
 75 , lv_string -- Output the VARCHAR2 string.

(continued)

10-ch10.indd 395 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

396 Oracle Database 12c PL/SQL Programming

 76 , lv_length);
 77 END IF;
 78
 79 /* Check for an open cursor. */
 80 IF dbms_sql.is_open(lv_cursor) THEN
 81 dbms_sql.close_cursor(lv_cursor);
 82 END IF;
 83
 84 /* Create a local temporary CLOB in memory:
 85 - It returns a constructed lv_return_result.
 86 - It disables a cached version.
 87 - It sets the duration to 12 (the value of the dbms_lob.call
 88 package-level variable) when the default is 10. */
 89 dbms_lob.createtemporary(lv_input_view, FALSE, dbms_lob.CALL);
 90
 91 /* Append the LONG to the empty temporary CLOB. */
 92 dbms_lob.WRITE(lv_input_view, LENGTH(lv_long_view), 1, lv_string);
 93
 94 /* Send in the view text and receive the complete text. */
 95 dbms_utility.expand_sql_text(lv_input_view, lv_output_view);
 96
 97 /* Return the output CLOB value. */
 98 RETURN lv_output_view;
 99 EXCEPTION
100 WHEN invalid_view_name THEN
101 RAISE_APPLICATION_ERROR(-20001,'Invalid View Name.');
102 WHEN OTHERS THEN
103 RETURN NULL;
104 END expand_sql_text;
105 /

Lines 55 through 57 open, fetch, and close a cursor against the view. The fetch on line
56 puts the LONG column’s value into a local LONG variable. While you can’t directly read
the LONG variable’s value, the SQL LENGTH built-in lets us capture the length of the
variable. By knowing the length of the variable, we’re able to read the contents of the LONG
variable directly into a CLOB variable with only one call to the dbms_sql.column_
value_long procedure on lines 70 through 76.

Line 89 lets us create a temporary CLOB variable and is like using the empty_clob
function. The difference is that it opens a handle that lets us write directly into the local
CLOB variable, which we do on line 92. Line 95 holds the call to the new dbms_utility
procedure. The expand_sql_text procedure takes a view dependent on views and
transforms it to a query based on tables only.

If you wanted just the text of a view returned as a CLOB, you could change line 95 from
a call to the expand_sql_text procedure to a simple assignment between CLOB variables:

 95 lv_output_view := lv_input_view;

Since views are limited by the 32,760 maximum size of a LONG data type, you can also
rewrite this function to return a VARCHAR2 data type.

10-ch10.indd 396 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 397

The unfortunate reality of any function wrapping the creation of a LOB is that it will also be
limited by the available memory in the Oracle Database 12c SGA. While an UPDATE statement
by itself isn’t the optimal solution, here is how one would look updating the item_desc column
with a string literal value:

SQL> UPDATE item
 2 SET item_desc = 'Harry Potter is seemingly an ordinary eleven-year'
 3 WHERE item_title = 'Harry Potter and the Sorcerer''s Stone'
 4 AND item_type IN
 ...

This UPDATE statement sets the item_desc column on line 2 equal to a string value less
than 32,767 bytes. When LOBs are larger, you must use the writeappend procedure from the
dbms_lob package to append additional data after an initial write. The upcoming section
“Reading Local Files into CLOB or NCLOB Columns” demonstrates this approach.

It’s important to note that you can also assign values to a CLOB column through the VALUES
clause of an INSERT statement. That’s possible when you write that user-defined function
mentioned earlier. The next section covers how you can write such a function.

Using a PL/SQL Function to Assign a CLOB PL/SQL also provides you with a second choice
on how you can insert a string in a CLOB column. At least, you have a second choice when the
string is 32,767 or less bytes in length. While you only have one way to successfully assign a
string larger than 32,767 bytes, it’s nice to have options with smaller strings.

This option lets you insert a string into a CLOB column directly without first initializing the
column with a call to the empty_clob function. You can accomplish this by writing a pass-by-
value wrapper function. It would take any VARCHAR2 string with a value of 32,767 or less bytes.

A create_clob function takes a string as an input value. It then calls two pass-by-reference
procedures from the dbms_lob package to convert the string to a CLOB value. You implement a
create_clob function as shown:

SQL> CREATE OR REPLACE FUNCTION create_clob
 2 (pv_input_string VARCHAR2)
 3 RETURN CLOB AS
 4 /* Declare a local CLOB variable. */
 5 lv_return CLOB;
 6 BEGIN
 7 /* Create a temporary CLOB in memory for the scope of the call. */
 8 dbms_lob.createtemporary(lv_return, FALSE, dbms_lob.CALL);
 9
 10 /* Write the string to the empty temporary CLOB. */
 11 dbms_lob.WRITE(lv_return, LENGTH(pv_input_string), 1, pv_input_string);
 12
 13 /* Return a CLOB value. */
 14 RETURN lv_return;
 15 END create_clob;
 16 /

10-ch10.indd 397 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

398 Oracle Database 12c PL/SQL Programming

Line 8 creates a temporary CLOB variable. Line 11 evaluates the length of the string and converts
it to a CLOB variable. Line 14 returns the temporary CLOB and lets you embed it as a function call
in a VALUES clause. It works because it’s an assignment of an initialized CLOB to a CLOB column.
That means it requires no casting operation.

Review Section
This section has described the following points about working with LOBs:

 ■ Character Large Objects (CLOBs), National Character Large Objects (NCLOBs), and
Binary Large Objects (BLOBs) support character strings of 8 to 128 terabytes. Oracle
Database 12c lets you set db_block_size to a value of 2KB to 32KB.

 ■ The CLOB, NCLOB, and BLOB data types are object types, and Oracle doesn’t provide a
convenient SQL built-in function to construct a LOB.

 ■ The dbms_lob package contains functions and procedures that let you read, write,
and append data to CLOB variables and columns.

 ■ The terms descriptor and locator are sometimes used interchangeably, but Oracle
prefers locator to describe the pointer to the location of CLOBs stored in the database.

 ■ You have NULL, empty, or populated CLOB variables and columns.

 ■ Oracle supports direct writes of strings in a PL/SQL context but not in a SQL context.
This means you need to write a function that takes a string and returns a CLOB to pass
a string to the VALUES clause of an INSERT statement.

 ■ When inserting or updating data larger than 32,767 bytes, you need to initialize a
CLOB with a call to the empty_clob function. You pass the segments of data through
the locator in chunks no larger than 32,768 bytes.

Reading Files into Internally Stored Columns
The dbms_lob package provides all the tools required to load large objects directly when they
exceed the byte stream limitations of SQL or PL/SQL. The first step requires that you define a
virtual directory, an internal directory alias that points to a canonical or fully qualified path.

In this example, you create a virtual directory that points to your local temporary directory.
You must connect as the system user to define virtual directories. The following commands work
on your specific operating system:

Linux or Unix

SQL> CREATE DIRECTORY generic AS '/tmp';

Windows

SQL> CREATE DIRECTORY generic AS 'C:\Windows\temp';

10-ch10.indd 398 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 399

After you create the virtual directory, you need to grant read permissions on the directory to
the student CDB or PDB user. The syntax is

SQL> GRANT READ ON DIRECTORY generic TO student;

You have two available approaches to loading files, which the next two subsections discuss.
One runs as a PL/SQL stored procedure on the server, and the other uses an external
programming language. I’ve chosen PHP to demonstrate the external programming language.

Reading Local Files into CLOB or NCLOB Columns
The next steps are reading the file and writing the data to the CLOB column. While a couple of
small snippets could show the concepts adequately, a single working code example is provided
so that you can cut and paste it right into your applications. The example uses NDS (Native
Dynamic SQL). Check Chapter 13 if you’re curious about the mechanics of NDS.

The following load_clob_from_file procedure demonstrates how you do this:

SQL> CREATE OR REPLACE PROCEDURE load_clob_from_file
 2 (src_file_name IN VARCHAR2
 3 , table_name IN VARCHAR2
 4 , column_name IN VARCHAR2
 5 , primary_key_name IN VARCHAR2
 6 , primary_key_value IN VARCHAR2) IS
 7
 8 /* Declare local variables for DBMS_LOB.LOADCLOBFROMFILE procedure. */
 9 des_clob CLOB;
 10 src_clob BFILE := BFILENAME('GENERIC',src_file_name);
 11 des_offset NUMBER := 1;
 12 src_offset NUMBER := 1;
 13 src_size INTEGER;
 14 ctx_lang NUMBER := dbms_lob.default_lang_ctx;
 15 warning NUMBER;
 16
 17 /* Define local variable for Native Dynamic SQL. */
 18 stmt VARCHAR2(2000);
 19 BEGIN
 20 /* Opening source file is a mandatory operation. */
 21 IF dbms_lob.fileexists(src_clob) = 1 AND NOT
 22 dbms_lob.isopen(src_clob) = 1 THEN
 23 src_size := dbms_lob.getlength(src_clob);
 24 dbms_lob.open(src_clob,DBMS_LOB.LOB_READONLY);
 25 END IF;
 26
 27 /* Assign dynamic string to statement. */
 28 stmt := 'UPDATE '||table_name||' '
 29 || 'SET '||column_name||' = empty_clob() '
 30 || 'WHERE '||primary_key_name||' = '||''''||primary_key_value||''' '
 31 || 'RETURNING '||column_name||' INTO :locator';
 32
 33 /* Run dynamic statement. */
 34 EXECUTE IMMEDIATE stmt USING OUT des_clob;

10-ch10.indd 399 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

400 Oracle Database 12c PL/SQL Programming

 35
 36 /* Read and write file to CLOB and close source file. */
 37 dbms_lob.loadclobfromfile(dest_lob => des_clob
 38 , src_bfile => src_clob
 39 , amount => dbms_lob.getlength(src_clob)
 40 , dest_offset => des_offset
 41 , src_offset => src_offset
 42 , bfile_csid => dbms_lob.default_csid
 43 , lang_context => ctx_lang
 44 , warning => warning);
 45 dbms_lob.close(src_clob);
 46
 47 /* Test the exit criteria before committing the work. */
 48 IF src_size = dbms_lob.getlength(des_clob) THEN
 49 $IF $$DEBUG = 1 $THEN
 50 dbms_output.put_line('Success!');
 51 $END
 52 COMMIT;
 53 ELSE
 54 $IF $$DEBUG = 1 $THEN
 55 dbms_output.put_line('Failure.');
 56 $END
 57 RAISE dbms_lob.operation_failed;
 58 END IF;
 59 END load_clob_from_file;
 60 /

The procedure takes arguments that let you use it against any table that has a single CLOB
column and a one-column primary key. The bfilename function on line 10 returns the
canonical directory path from the database catalog and appends the filename. The open
procedure call on line 24 opens the external file and reads it into a BFILE data type. The
dynamic UPDATE statement sets the CLOB column to an empty_clob constructor. Then, the
UPDATE statement returns the designated column into an output variable. The :locator
bind variable is the output variable in the NDS statement. You assign the CLOB locator to the
des_clob variable when the NDS statement runs.

NOTE
An UPDATE statement that uses a RETURNING INTO clause changes
the target column value for all updated rows.

All the preceding actions read the source file and thread a CLOB column locator into the
program scope. With these two resource handlers, the call to the loadclobfromfile procedure
on lines 37 through 44 transfers the contents of the open file to the CLOB locator. This read-and-
write operation is not subject to the 32,767-byte handling limit of VARCHAR2 data types.

While this example loads the entire file in one operation, it’s likely that you may read only
chunks of large files directly into CLOB columns. The source file offset (src_offset) and
destination CLOB column offset (dest_offset) values let you parse chunks out of the file and
place them in the CLOB column. Adding the logic for a loop lets you load large files by chunks,
as opposed to a single read.

10-ch10.indd 400 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 401

You can test this stored procedure by running the following anonymous block program:

SQL> BEGIN
 2 FOR i IN (SELECT item_id
 3 FROM item
 4 WHERE item_title = 'The Lord of the Rings - Fellowship ...'
 5 AND item_type IN
 6 (SELECT common_lookup_id
 7 FROM common_lookup
 8 WHERE common_lookup_table = 'ITEM'
 9 AND common_lookup_column = 'ITEM_TYPE'
 10 AND REGEXP_LIKE(common_lookup_type
 11 ,'^(DVD|VHS)*'))) LOOP
 12
 13 -- Call reading and writing CLOB procedure.
 14 load_clob_from_file(src_file_name => 'LOTRFellowship.txt'
 15 , table_name => 'ITEM'
 16 , column_name => 'ITEM_DESC'
 17 , primary_key_name => 'ITEM_ID'
 18 , primary_key_value => TO_CHAR(i.item_id));
 19 END LOOP;
 20 END;
 21 /

The call to the load_clob_from_file procedure on lines 14 through 18 loads the same
value into every row where the surrogate primary key value, item_id, meets the business rule.
The business rule uses a regular expression search. The regular expression gets all DVD and VHS
rows where the item_title is “The Lord of the Rings – Fellowship of the Ring” and item_
type maps to a string value starting with a DVD or VHS substring. Appendix E explains further
how you can leverage regular expressions in your Oracle Database 12c PL/SQL code.

You can run the following formatting and query to confirm that the three rows now have
CLOB columns with data streams that are longer than 4,000 bytes:

SQL> -- Format column for output.
SQL> COL item_id FORMAT 9999
SQL> COL item_title FORMAT A50
SQL> COL size FORMAT 9,999,990
SQL> -- Query column size.
SQL> SELECT item_id
 2 , item_title
 3 , dbms_lob.getlength(item_desc) AS "SIZE"
 4 FROM item
 5 WHERE dbms_lob.getlength(item_desc) > 0;

It yields the following three rows:

 ITEM_ID ITEM_TITLE SIZE
---------- -- ------
 1037 The Lord of the Rings - Fellowship of the Ring 5,072
 1038 The Lord of the Rings - Fellowship of the Ring 5,072
 1039 The Lord of the Rings - Fellowship of the Ring 5,072

10-ch10.indd 401 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

402 Oracle Database 12c PL/SQL Programming

This section has shown you how to load directly from files into CLOB columns. The same rules
apply for NCLOBs. There’s a slight difference in how you handle BLOB columns. The difference is
covered in the next section. You have also learned how to use the dbms_lob package to read
external files. You should note that there are fewer security restrictions than those required to
process utl_file or external Java file I/O operations.

Reading Local Files into BLOB Columns
In this section you learn how to read the file and write its contents to a BLOB column. As in the
previous section, while a couple of small snippets could show the concepts adequately, a single
working code example is provided so that you can cut and paste it right into your applications.
The example uses NDS, which makes a forward reference to material covered in Chapter 13.

The following load_blob_from_file procedure demonstrates how you do this:

SQL> CREATE OR REPLACE PROCEDURE load_blob_from_file
 2 (src_file_name IN VARCHAR2
 3 , table_name IN VARCHAR2
 4 , column_name IN VARCHAR2
 5 , primary_key_name IN VARCHAR2
 6 , primary_key_value IN VARCHAR2) IS
 7 /* Declare variables for DBMS_LOB.LOADBLOBFROMFILE procedure. */
 8 des_blob BLOB;
 9 src_blob BFILE := BFILENAME('GENERIC',src_file_name);
 10 des_offset NUMBER := 1;
 11 src_offset NUMBER := 1;
 12 /* Declare a pre-reading size. */
 13 src_blob_size NUMBER;
 14 /* Declare local variable for Native Dynamic SQL. */
 15 stmt VARCHAR2(2000);
 16 BEGIN
 17 /* Opening source file is a mandatory operation. */
 18 IF dbms_lob.fileexists(src_blob) = 1 AND NOT
 19 dbms_lob.isopen(src_blob) = 1 THEN
 20 src_blob_size := dbms_lob.getlength(src_blob);
 21 dbms_lob.open(src_blob,DBMS_LOB.LOB_READONLY);
 22 END IF;
 23 /* Assign dynamic string to statement. */
 24 stmt := 'UPDATE '||table_name||' '
 25 || 'SET '||column_name||' = empty_blob() '
 26 || 'WHERE '||primary_key_name||' = '||''''||primary_key_value||''' '
 27 || 'RETURNING '||column_name||' INTO :locator';
 28 /* Run dynamic statement. */
 29 EXECUTE IMMEDIATE stmt USING OUT des_blob;
 30 /* Read and write file to BLOB. */
 31 dbms_lob.loadblobfromfile(dest_lob => des_blob
 32 , src_bfile => src_blob
 33 , amount => dbms_lob.getlength(src_blob)
 34 , dest_offset => des_offset
 35 , src_offset => src_offset);
 36 /* Close open source file. */
 37 dbms_lob.close(src_blob);

10-ch10.indd 402 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 403

 38 /* Commit write. */
 39 IF src_blob_size = dbms_lob.getlength(des_blob) THEN
 40 $IF $$DEBUG = 1 $THEN
 41 dbms_output.put_line('Success!');
 42 $END
 43 COMMIT;
 44 ELSE
 45 $IF $$DEBUG = 1 $THEN
 46 dbms_output.put_line('Failure.');
 47 $END
 48 RAISE dbms_lob.operation_failed;
 49 END IF;
 50 END load_blob_from_file;
 51 /

The procedure takes five arguments on lines 2 through 6 that let you use it against any table
that has a single BLOB column and a one-column surrogate primary key. The bfilename
function returns a canonical filename on line 9. After validating that the file exists and isn’t open
on lines 18 and 19, the dbms_lob.open procedure call opens the external file on line 21. The
dynamic UPDATE statement on lines 24 through 27 sets the BLOB column to an empty_blob
and then returns the column into an output variable. The :locator bind variable is the output
variable in the NDS statement. The program returns a BLOB locator and assigns it to the des_
blob variable when the NDS statement runs. The loadblobfromfile procedure call on lines
31 through 35 reads it into a BFILE data type. Line 39 compares the external file size against the
uploaded BLOB column before committing the transaction on line 43. When the external file size
isn’t the same as the BLOB column, the load_blob_from_file procedure raises an exception
on line 48. Conditional code blocks signal successful or unsuccessful completion of the
procedure when you test the procedure. Naturally, you need to set the PLSQL_CCFLAGS option
earlier in the session when you test the procedure, as qualified in Chapter 5.

All the preceding actions read the source file and destination BLOB column locator into the
program scope. With these two resource handlers, the call to loadblobfromfile procedure
transfers the contents of the open file to the BLOB locator. This read-and-write operation lets you
put large chunks of files directly into BLOB columns. The source file offset (src_offset) and
destination BLOB column offset (dest_offset) values let you parse chunks out of the file and
place them in the BLOB column. You can add a loop to approach the upload a chunk at a time for
very large binary files, like movies.

You can test this stored procedure by running the following anonymous block program:

SQL> BEGIN
 2 FOR i IN (SELECT item_id
 3 FROM item
 4 WHERE item_title = 'Harry Potter and the Sorcerer''s Stone'
 5 AND item_type IN
 6 (SELECT common_lookup_id
 7 FROM common_lookup
 8 WHERE common_lookup_table = 'ITEM'
 9 AND common_lookup_column = 'ITEM_TYPE'
 10 AND REGEXP_LIKE(common_lookup_type,'^(dvd|vhs)*','i'))) LOOP
 11 /* Call procedure for matching rows. */
 12 load_blob_from_file(src_file_name => 'HarryPotter1.png'

10-ch10.indd 403 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

404 Oracle Database 12c PL/SQL Programming

 13 , table_name => 'ITEM'
 14 , column_name => 'ITEM_BLOB'
 15 , primary_key_name => 'ITEM_ID'
 16 , primary_key_value => TO_CHAR(i.item_id));
 17 END LOOP;
 18 END;
 19 /

The call to the load_blob_from_file procedure is made for every item_id value that
meets the business rule, which is defined by the regular expression search. The regular expression
gets all DVD and VHS rows where the item_title is “Harry Potter and the Sorcerer’s Stone”
and the apostrophe is back-quoted to treat the embedded single quote as an embedded apostrophe.
The item_type maps to a string value starting with a DVD or VHS substring, which means that
images are loaded into all the target columns for any matching rows. Appendix E explains further
how regular expressions work in Oracle Database 12c.

You can run the following formatting and query to confirm that the two rows now have BLOB
columns with binary data streams:

SQL> -- Format column for output.
SQL> COL item_id FORMAT 9999
SQL> COL item_title FORMAT A50
SQL> COL size FORMAT 9,999,990
SQL> -- Query column size.
SQL> SELECT item_id
 2 , item_title
 3 , dbms_lob.getlength(item_blob) AS "SIZE"
 4 FROM item
 5 WHERE dbms_lob.getlength(item_blob) > 0;

It yields the following three rows:

 ITEM_ID ITEM_TITLE SIZE
---------- -- -------
 1021 Harry Potter and the Sorcerer's Stone 121,624
 1022 Harry Potter and the Sorcerer's Stone 121,624

This section has shown you how to load directly from files into BLOB columns. You have also
revisited how to use the dbms_lob package to read external files. You should note that there is less
security restriction than that required to perform utl_file or external Java file I/O operations.

Working with LOBs Through Web Pages
Like PL/SQL, external programming languages work with the same limitations for uploading and
writing CLOB or NCLOB columns. You must choose whether you enter small chunks (32,767 bytes)
or large chunks of 1MB or beyond. This section assumes you want to upload and write large chunks.

The PHP solution is a bit easier than deploying EJBs (Enterprise JavaBeans) because it has fewer
noticeably moving parts. You should note that this type of solution builds a PL/SQL procedure
that can support any external web programming language that works with the Oracle JDBC or
OCI8 libraries.

10-ch10.indd 404 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 405

PHP introduces you to the issue of uploading a file to the server. In the previous PL/SQL
solution, the file is already in the /tmp directory (magically done by the Oracle DBA). This
program example assumes you have a background in PHP. If you don’t have that background, you
can refer to Oracle Database 10g Express Edition PHP Web Programming (Oracle Press, 2006),
Oracle’s The Underground PHP and Oracle Manual, or Oracle’s Oracle Database 2 Day + PHP
Developer’s Guide. Only the critical components of the PHP code are displayed in the book, but
you can download the complete code from the McGraw-Hill Professional website.

NOTE
The OCI8 version that supports DRCP (Database Resident Connection
Pooling) feature in Oracle Database 11g or newer.

The preparation to implement this solution differs from what you did for a PL/SQL-only solution
(such as creating a virtual directory and granting read permissions). For the PHP solution, you
must install an Apache HTTP Server, Zend Core for Oracle, and then create a physical directory
in your DocumentRoot directory. You find the canonical directory path for DocumentRoot in
the Apache httpd.conf file.

The DocumentRoot canonical paths are typically

Linux or Unix

/var/www/html

Windows

C:\Program Files\Apache Group\Apache2\htdocs

After you download the files from the publisher’s website, add a temp directory in your
DocumentRoot directory. Then, copy the required files to the DocumentRoot directory. You
should also put the image and text files in a local client directory where you plan to run your
browser sessions.

Procedures to Upload CLOB, NCLOB, or BLOB Columns
This section requires that you create two stored procedures: one that manages CLOB or NCLOB
data types, and another that manages BLOB data types. Assuming you’re using the videodb PDB,
compile the following pass-by-reference procedure in that schema. The PHP programs use it to
secure a connection for uploading large text and image files.

SQL> CREATE OR REPLACE PROCEDURE web_load_clob_from_file
 2 (item_id_in IN NUMBER
 3 , descriptor IN OUT CLOB) IS
 4 BEGIN
 5 /* This a DML transaction.
 6 UPDATE item
 7 SET item_desc = empty_clob()
 8 WHERE item_id = item_id_in
 9 RETURNING item_desc INTO descriptor;
 10 END web_load_clob_from_file;
 11 /

10-ch10.indd 405 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

406 Oracle Database 12c PL/SQL Programming

This web_load_clob_from_file procedure lets you open a CLOB locator and access it
from a PHP library file. There are three key features in this procedure. First, the formal parameter on
line 3 is a CLOB locator with an IN OUT mode access. Second, the RETURNING INTO clause
on line 9 provides a local variable gateway into the SET clause’s column variable on line 7. Third,
the lack of a COMMIT in the stored procedure leaves the CLOB locked and DML transaction scope
open for the external web program.

Now, you need to compile the following stored procedure to manage the upload of BLOB
columns in the same video schema in your videodb PDB:

SQL> CREATE OR REPLACE PROCEDURE web_load_blob_from_file
 2 (item_id_in IN NUMBER
 3 , descriptor IN OUT BLOB) IS
 4 BEGIN
 5 -- A FOR UPDATE makes this a DML transaction.
 6 UPDATE item
 7 SET item_blob = empty_blob()
 8 WHERE item_id = item_id_in
 9 RETURNING item_blob INTO descriptor;
 10 END web_load_blob_from_file;
 11 /

The web_load_blob_from_file procedure mirrors the web_load_clob_from_file
procedure with one exception: the IN OUT mode variable is a BLOB, not a CLOB. While it would
be awesome if we could define a generic superclass, like LOB, for both BLOB and CLOB data types,
it’s not currently supported in the Oracle Database 12c database.

HTML and PHP Components for CLOB and BLOB Uploads
The first step in PHP is to upload the physical file from the client to the server. This requires an
HTML form and PHP script file. There are different HTML forms for the CLOB and BLOB data
types. Both of the HTML files can be found on the McGraw-Hill Professional website.

This is the important part of the UploadItemDescriptionForm.htm file:

<html>
<body>
<form id="uploadForm" action="UploadItemDesc.php"
 enctype="multipart/form-data" method="post">
 ...
</form>
</body>
</html>

The action name-value pair instructs the program which PHP file to call when you submit
the form. The CLOB upload calls the UploadItemDesc.php file. You can see the rendered page
in Figure 10-2, which helps you know what to expect when you test the code.

Figure 10-2 shows this form rendered with the inputs from Table 10-2. The canonical path
starts from a mount point in Linux or Unix. The program starts from a logical drive in Windows,
known as the htdocs folder. Regardless of your operating system implementation, the Browse
button takes you to your GUI file chooser dialog. After you select the file to upload in your file
chooser dialog, click the Submit button.

10-ch10.indd 406 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 407

The only difference between the BLOB and CLOB HTML forms is the action tag, so that’s all
that is displayed for the BLOB form:

<form id="uploadForm" action="UploadItemBlob.php"
 enctype="multipart/form-data" method="post">

You can see the rendered page in Figure 10-3, which helps you know what to expect when
you test the code.

Figure 10-3 shows the form with the inputs from Table 10-3. The canonical path starts from a
mount point in Linux or Unix. The program starts from a logical drive in Windows, known as the
htdocs folder. Regardless of your operating system implementation, the Browse button takes you
to your GUI file chooser dialog. After you select the file to upload in your file chooser dialog,
click the Submit button.

Both the UploadItemDesc.php and UploadItemBlob.php programs first call a PHP
process_uploaded_file function. This function stores the temporary file to the default
upload location, which is a temp folder you need to create in the htdocs folder.

After the program copies the file to its controlled location, the program then reads the file
contents into memory. It then writes the file content to the database.

FIGURE 10-2. UploadItemDescriptionForm.htm

Prompt Input

Item Number 1021

Item Title Harry Potter and the Sorcerer’s Stone

Select File {canonical_path}HarryPotterSocererStone.txt

TABLE 10-2. Inputs to UpdateItemDescriptionForm.htm

10-ch10.indd 407 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

408 Oracle Database 12c PL/SQL Programming

The PHP process_uploaded_file function is

 // Manage file upload and return file as string.
 function process_uploaded_file() {
 // Declare a variable for file contents.
 $contents = "";
 // Define the upload filename for Windows or Linux.
 if (ereg("Win32",$_SERVER["SERVER_SOFTWARE"]))
 $upload_file = getcwd()."\\temp\\".$_FILES['userfile']['name'];
 else
 $upload_file = getcwd()."/temp/".$_FILES['userfile']['name'];
 // Check for and move uploaded file.
 if (is_uploaded_file($_FILES['userfile']['tmp_name']))
 move_uploaded_file($_FILES['userfile']['tmp_name'],$upload_file);
 // Open a file handle and suppress an error for a missing file.
 if ($fp = @fopen($upload_file,"r")) {
 // Read until the end-of-file marker.
 while (!feof($fp))
 $contents .= fgetc($fp);
 // Close an open file handle.
 fclose($fp); }
 // Return file content as string.
 return $contents; }

FIGURE 10-3. UploadItemBlobForm.htm

Prompt Input

Item Number 1021

Item Title Harry Potter and the Sorcerer’s Stone

Select File {canonical_path}HarryPotter1.png

TABLE 10-3. Inputs to UpdateItemBlobForm.htm

10-ch10.indd 408 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 409

The function tests whether the server is a Windows machine before finding the target canonical
path for the uploaded file. The function puts the uploaded file in the temp directory and then it
reads the file contents into a string. The function returns the file contents as a string. You should
note that PHP strings can be much longer than the 32,767 bytes defined as the maximum PL/SQL
string length. In this case, the string is only 6,737 bytes.

After calling the process_uploaded_file function, the next step for the UploadItemDesc
.php is to call the web_load_clob_from_file procedure. The program binds the local
variables into this anonymous block and then executes the procedure. The :item_desc bind
(placeholder) variable passes a locator to the PHP program, and through that locator saves the data:

$rlob->save($item_desc);

A more complete excerpt follows (and the complete code can be found on the McGraw-Hill
Professional website):

<?php
 ...
 // Declare a PL/SQL execution command.
 $stmt = "BEGIN
 web_load_clob_from_file(:id,:item_desc);
 END;";
 // Strip special characters to avoid ORA-06550 and PLS-00103 errors.
 $stmt = strip_special_characters($stmt);

 // Parse a query through the connection.
 $s = oci_parse($c,$stmt);

 // Define a descriptor for a CLOB.
 $rlob = oci_new_descriptor($c,OCI_D_LOB);

 // Define a variable name to map to CLOB descriptor.
 oci_define_by_name($s,':item_desc',$rlob,SQLT_CLOB);

 // Bind PHP variables to the OCI types.
 oci_bind_by_name($s,':id',$id);
 oci_bind_by_name($s,':item_desc',$rlob,-1,SQLT_CLOB);

 // Execute the PL/SQL statement.
 if (oci_execute($s,OCI_DEFAULT)) {
 $rlob->save($item_desc);
 oci_commit($c);
 query_insert($id,$title); }

 // Disconnect from database.
 oci_close($c); }
 ...

10-ch10.indd 409 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

410 Oracle Database 12c PL/SQL Programming

The UploadItemBlob.php program differs from UploadItemDesc.php in four places.
The first difference is that it calls the web_load_blob_from_file procedure, like this:

 // Declare a PL/SQL execution command.
 $stmt = "BEGIN
 web_load_blob_from_file(:id,:item_blob);
 END;";

The next two differences involve binding the IN OUT mode parameter. It’s a BLOB in this
case, not a CLOB, so you must use this to define the column mapping:

 oci_define_by_name($s,':item_blob',$rlob,SQLT_BLOB);

And, you must use this to bind the column mapping:

 oci_bind_by_name($s,':item_blob',$rlob,-1,SQLT_BLOB);

The final difference deals with the column value being saved in the database:

 $rlob->save($item_blob);

This section has explained how you can load the CLOB and BLOB to the database. The next
section explains how you read them from the database.

HTML and PHP Components for Displaying CLOB and BLOB Columns
The query_insert function call comes after committing the CLOB or BLOB. The UploadItemBlob
.php program has the more complete version of the query_insert function. It queries the CLOB
value and reuses the surrogate primary item_id key to render the BLOB value.

The full query_insert function follows:

function query_insert($id,$title) {
 // Return successful attempt to connect to the database.
 if ($c = @oci_new_connect("video","video","video")) {
 // Declare a SQL SELECT statement returning a CLOB.
 $stmt = "SELECT item_desc FROM item WHERE item_id = :id";
 // Parse a query through the connection.
 $s = oci_parse($c,$stmt);
 // Bind PHP variables to the OCI types.
 oci_bind_by_name($s,':id',$id);
 // Execute the PL/SQL statement.
 if (oci_execute($s)) {
 // Return a LOB descriptor as the value.
 while (oci_fetch($s)) {
 for ($i = 1;$i <= oci_num_fields($s);$i++)
 if (is_object(oci_result($s,$i))) {
 if ($size = oci_result($s,$i)->size()) {
 $data = oci_result($s,$i)->read($size); }
 else
 $data = " "; }
 else {
 if (oci_field_is_null($s,$i))

10-ch10.indd 410 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 411

 $data = " ";
 else
 $data = oci_result($s,$i); }}
 // Free statement resources.
 oci_free_statement($s);
 // Format HTML table to display BLOB photo and CLOB description.
 $out = '<table border="1" cellpadding="5" cellspacing="0">';
 $out .= '<tr>';
 $out .= '<td align="center" class="e">'.$title.'</td>';
 $out .= '</tr>';
 $out .= '<tr><td class="v">';
 $out .= '<div>';
 $out .= '<div style="margin-right:5px;float:left">';
 $out .= '';
 $out .= '</div>';
 $out .= '<div style="position=relative;">'.$data.'</div>';
 $out .= '</div>';
 $out .= '</td></tr>';
 $out .= '</table>'; }
 // Print the HTML table.
 print $out;
 // Disconnect from database.
 oci_close($c); }
 else {
 // Assign the OCI error and format double and single quotes.
 $errorMessage = oci_error();
 print htmlentities($errorMessage['message'])."
"; }}

The oci_result($s,$i)->read($size) command lets you read a LOB column value
pointed to by a LOB locator. The example reads the entire CLOB value. It then displays the value
in the web page.

The image (img) HTML tag contains a call out to another PHP ConvertBlobToImage.php
program. It’s a specialized program that contains no exposed HTML. It returns only two key lines
after reading the content of the BLOB into a local variable. These two lines effectively let the
browser render the image as if it were a stored PNG (Portable Network Graphics) file on the
operating system.

Those lines call the header function and then a set of functions to convert the raw binary
stream recovered from the item_blob column into a resource and then image file, as shown:

header('Content-type: image/png');
imagepng(imagecreatefromstring($data));

This set of steps creates an image that the browser can read as an image. This graphics format
may require some additional configuration of your Apache server. You may need the exif and gd
extensions to work with the PNG images.

The query_insert function renders the page shown in Figure 10-4.
This section has demonstrated how you can upload and read large character and binary files

across the Web. You’ve seen how to write a PL/SQL procedure that keeps the transaction state
open so that remote programs can directly write CLOB, NCLOB, and BLOB data types.

10-ch10.indd 411 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

412 Oracle Database 12c PL/SQL Programming

Review Section
This section has described the following points about how you read and write from local files
into CLOB, NCLOB, and BLOB columns:

 ■ Virtual directories support the use of the bfilename function, which lets you find
external files.

 ■ The dbms_lob package’s loadclobfromfile procedure lets you read a character
file in its entirety or in chunks.

 ■ The dbms_lob package’s loadblobfromfile procedure lets you read a binary file
in its entirety or in chunks.

 ■ A pass-by-reference procedure enables a web-based program to open a locator value,
which lets the program upload large objects through the HTTP protocol. It does so by
providing access to a column’s locator value.

 ■ External programming languages open, access, and load large objects through pass-by-
reference stored procedures.

FIGURE 10-4. Rendered CLOB and BLOB column values

10-ch10.indd 412 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 413

Working with Binary Files (BFILEs)
The BFILE (binary file) data type works differently than its counterpart BLOB, CLOB, and NCLOB
data types. The largest differences are that BFILE values are read-only LOB data types and are
stored externally from the database. Unlike BLOB, CLOB, and NCLOB data types, the BFILE has a
maximum physical size set by the operating system.

The first subsection explores how you configure and use the database to leverage external
files that are referenced as BFILE columns. You will set up another virtual directory (like those in
the earlier sections), define a BFILE locator, and examine how virtual directories limit your
access to the canonical filenames of external BFILE source files. The second subsection shows
you how to extend the database catalog and read canonical filenames, which simplifies how you
call external files from server-side programs.

Creating and Using Virtual Directories
Virtual directories are like synonyms: they point to another thing—a physical directory on the
operating system. The virtual and physical directory names are stored in the database catalog and
are viewable in the dba_directories view. Database users can view them when they have been
granted the SELECT privilege on the view or the SELECT_CATALOG_ROLE role. By default, the
system user accesses the dba_directories view through the SELECT_CATALOG_ROLE role.

You typically create virtual directories as the system user or as another database user that
enjoys the DBA role privilege. Alternatively, the system user can grant the CREATE ANY
DIRECTORY privilege to a user. This alleviates a burden from the DBA but can lead to a
proliferation of virtual directories and potential naming conflicts. You should generally disallow
users other than the DBA to create virtual directories.

All virtual directories are actually owned by the sys user for a CDB and the ADMIN user for a
PDB. The physical directory is always the canonical path, which means a fully qualified directory
path. A Linux or Unix canonical path starts at a mount point and ends at the desired directory.
A Windows canonical file path starts at the physical drive letter and, as in Linux or Unix, ends at
the desired directory.

You should connect as the system user and define an image virtual directory. The following
commands work on your specific operating system:

Linux or Unix

CREATE DIRECTORY images AS '/var/www/html/images';

Windows

SQL> CREATE DIRECTORY images AS
 2 'C:\Program Files\Apache Group\Apache2\htdocs\images';

After you create the virtual directory, connect as the videoadm SYSDBA user of the PDB.
As that user, grant read permissions on the directory to the video PDB user. The syntax is

SQL> GRANT READ ON DIRECTORY images TO video;

10-ch10.indd 413 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

414 Oracle Database 12c PL/SQL Programming

The next steps typically involve creating a virtual alias and directory in your Apache httpd
.conf file. If you wish to configure the Apache virtual alias and directory, you can check the
“Creating an Apache Virtual Alias and Directory” sidebar. There are very good reasons to set
virtual aliases and directories in Apache. As a rule, you must mirror the definition of the Apache
alias and virtual directory with the configuration of the Oracle database virtual directory. The rule
exists (rumor has it) because the dbms_lob package filegetname procedure provides only the
base filename, and doesn’t provide a means to find canonical filenames. Canonical filenames are
the combination of canonical paths and base filenames.

As previously discussed, you can open a file in your PL/SQL block without knowing the
canonical path. This happens because the open procedure in the dbms_lob package resolves it
for you. When you read the file through the virtual directory by using the open procedure, you
must provide a separate module to render images in web pages. This is required because the file
has been converted into a raw byte stream when opened for reading. Whenever you read the file
as a byte stream, you must convert the file back into an image when rendering it in a web page.

You should copy the Raiders3.png file from the publisher’s website and put it in your
platform-specific physical directory that maps to your images virtual directory in the database.

Creating an Apache Virtual Alias and Directory
Two Apache configuration steps are required when you want to enable a new virtual
directory. You need to configure an alias and directory in your httpd.conf file, as follows
for your respective platform:

Linux or Unix:

Alias /images/ "/var/www/html/images"

<Directory "/var/www/html/images">
 Options None
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>

Windows:

Alias /images/ "C:/Program Files/Apache Group/Apache2/htdocs/images/"

<Directory "C:/Program Files/Apache Group/Apache2/htdocs/images">
 Options None
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>

After you make these changes in your Apache configuration file, you must stop and start
your Apache instance. You use the Apache service on a Windows system and the apachectl
shell script on a Linux or Unix system.

10-ch10.indd 414 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 415

You can find that physical system directory (or canonical path) by writing the following query as
the system user:

SQL> SELECT *
 2 FROM dba_directories
 3 WHERE directory_name = 'IMAGES';

After you’ve configured the virtual directory and put the Raiders3.png file in the correct
directory, you should insert a BFILE locator into a database column for testing. You can use the
following statement to update a column with a BFILE locator:

SQL> UPDATE item
 2 SET item_photo = BFILENAME('IMAGES','Raiders3.png')
 3 WHERE item_id = 1055;

You need to commit the update as follows. If you forget that step, later you may get a browser
error telling you the image can’t be displayed because it contains errors. This is the standard error
when the BFILE column returns a null or empty stream.

SQL> COMMIT;

You can verify that the file exists and the virtual directory resolves. Confirming the existence
of the file before attempting to open it provides your program with more control. The following
anonymous block lets you confirm the file existence and get its file size. Naturally, you must
enable SERVEROUTPUT in SQL*Plus to see any output.

SQL> DECLARE
 2 file_locator BFILE;
 3 BEGIN
 4 SELECT item_photo INTO file_locator FROM item WHERE item_id = 1055;
 5 /* Check for a valid locator. */
 6 IF dbms_lob.fileexists(file_locator) = 1 THEN
 7 dbms_output.put_line(
 8 'File is: ['||dbms_lob.getlength(file_locator)|| ']');
 9 ELSE
 10 dbms_output.put_line('No file found.');
 11 END IF;
 12 END;
 13 /

The dbms_lob.fileexists function was built to work in both SQL and PL/SQL. Since
SQL does not support a native Boolean data type, the function returns a 1 when it finds a file and
a 0 when it fails. The anonymous block should return the following:

File is: [126860]

If you’ve successfully added both the image alias and the virtual directory to your Apache
httpd.conf file, you should be able to display the file by using the following URL:

http://<hostname>.<domain_name>/images/Raiders3.png

Figure 10-5 depicts the image file found by the URL by itself.

10-ch10.indd 415 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

416 Oracle Database 12c PL/SQL Programming

While the database can read the file without an Apache alias and virtual directory, the reading
process converts it to a byte stream. This puts the complexity of making an image reference on par
with reading a BLOB column from the database. You will need to convert the byte stream back
into a file. This is true whether you’re using C, C++, C#, Java, or PHP to accomplish the task.

The ConvertFileToImage.php program only changes the column name of the query from
item_blob to item_photo, and that’s why it didn’t seem worth reprinting here. The program
can read a physical file from any virtual database directory because the program leverages the
database catalog to resolve the physical file location. It leverage the database catalog through the
BFILE locator.

Another approach to rending image files involves what’s known as structural coupling
between the virtual Apache and database directories. This means that you define the database
virtual directory as images when you also define the Apache alias as images. This lets you build a
relative path to the image file location in the src element of the img tag. It also avoids the issue
of converting a binary stream back into a file.

The first step in accomplishing this type of approach requires a wrapper function around the
filegetname procedure of the dbms_lob package. The get_bfilename function delivers
that wrapper. You may reuse this program for other tables because it uses NDS to query and return
the data. The encapsulation of the SELECT statement inside the anonymous block lets you
capture the return value easily. You will find more on NDS in Chapter 13.

SQL> CREATE OR REPLACE FUNCTION get_bfilename
 2 (table_name VARCHAR2
 3 , column_name VARCHAR2
 4 , primary_key_name VARCHAR2

FIGURE 10-5. PNG file rendered as an image

10-ch10.indd 416 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 417

 5 , primary_key_value VARCHAR2)
 6 RETURN VARCHAR2 IS
 7 /* Declare a locator. */
 8 locator BFILE;
 9 /* Declare alias and filename. */
 10 dir_alias VARCHAR2(255);
 11 directory VARCHAR2(255);
 12 file_name VARCHAR2(255);
 13 /* Declare local variable for Native Dynamic SQL. */
 14 stmt VARCHAR2(2000);
 15 delimiter VARCHAR2(1) := '/';
 16 /* Declare a local exception for size violation. */
 17 directory_num EXCEPTION;
 18 PRAGMA EXCEPTION_INIT(directory_num,-22285);
 19 BEGIN
 20 /* Use an anonymous block to create an OUT mode variable. */
 21 stmt := 'BEGIN '
 22 || 'SELECT '||column_name||' '
 23 || 'INTO :locator '
 24 || 'FROM '||table_name||' '
 25 || 'WHERE '||primary_key_name||' = '||''''||primary_key_value||''';'
 26 || 'END;';
 27 /* Return a scalar query result from a dynamic SQL statement. */
 28 EXECUTE IMMEDIATE stmt USING OUT locator;
 29 /* Check for available locator. */
 30 IF locator IS NOT NULL THEN
 31 dbms_lob.filegetname(locator,dir_alias,file_name);
 32 END IF;
 33 /* Return filename. */
 34 RETURN delimiter||LOWER(dir_alias)||delimiter||file_name;
 35 EXCEPTION
 36 WHEN directory_num THEN
 37 RETURN NULL;
 38 END get_bfilename;
 39 /

The dir_alias on line 34 is the virtual database directory name. The function returns the
dir_alias, a / (forward slash), and base filename. Assuming that you’re using the Raiders3
.png file, it should return

/images/Raiders3.png

The QueryRelativeBFILE.php program uses the get_bfilename return value as the
src element of the img tag. This works only when the Apache alias also points to the same
location. The query inside the PHP program makes a call to the get_bfilename function and
returns the value as the third element in the query. The PHP program assumes that the virtual path
is the only string returned with a leading / (forward slash). You probably want to explore other
alternatives when you can have more than one image location in a single row of data.

10-ch10.indd 417 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

418 Oracle Database 12c PL/SQL Programming

The QueryRelativeBFILE.php program follows:

<?php
 // Declare input variables.
 (isset($_GET['id'])) ? $id = (int) $_GET['id'] : $id = 1021;
 // Call the local function.
 query_insert($id);
 // Query results after an insert.
 function query_insert($id) {
 // Return successful attempt to connect to the database.
 if ($c = @oci_connect("video","video","video")) {
 // Declare a SQL SELECT statement returning a CLOB.
 $stmt = "SELECT item_title
 , item_desc
 , get_bfilename('ITEM','ITEM_PHOTO','ITEM_ID',:id)
 FROM item
 WHERE item_id = :id";
 // Parse a query through the connection.
 $s = oci_parse($c,$stmt);
 // Bind PHP variables to the OCI types.
 oci_bind_by_name($s,':id',$id);
 // Execute the PL/SQL statement.
 if (oci_execute($s)) {
 // Return a LOB descriptor as the value.
 while (oci_fetch($s)) {
 for ($i = 1;$i <= oci_num_fields($s);$i++)
 if (is_object(oci_result($s,$i))) {
 if ($size = oci_result($s,$i)->size())
 if (oci_field_type($s,$i) == 'CLOB')
 $data = oci_result($s,$i)->read($size);
 else
 $data = " "; }
 else {
 if (oci_field_is_null($s,$i))
 $title = " ";
 else
 if (substr(oci_result($s,$i),0,1) == '/')
 $photo = oci_result($s,$i);
 else
 $title = oci_result($s,$i); }
 } // End of the while(oci_fetch($s)) loop.
 // Free statement resources.
 oci_free_statement($s);
 // Format HTML table to display BLOB photo and CLOB description.
 $out = '<table border="1" cellpadding="5" cellspacing="0">';
 $out .= '<tr>';
 $out .= '<td align="center" class="e">'.$title.'</td>';
 $out .= '</tr>';
 $out .= '<tr><td class="v">';

10-ch10.indd 418 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 419

 $out .= '<div>';
 $out .= '<div style="margin-right:5px;float:left">';
 $out .= '';
 $out .= '</div>';
 $out .= '<div style="position=relative;">'.$data.'</div>';
 $out .= '</div>';
 $out .= '</td></tr>';
 $out .= '</table>'; }
 // Print the HTML table.
 print $out;
 // Disconnect from database.
 oci_close($c); }
 else {
 // Assign the OCI error and format double and single quotes.
 $errorMessage = oci_error();
 print htmlentities($errorMessage['message'])."
"; }}
?>

While QueryRelativeBFILE.php works for web-based solutions, it fails to work for
server-side programs that require the canonical filename, which is always an absolute value. It is
less expensive in terms of machine resources because it only reads the image file and serves it to
the Apache server. The problems with this approach are twofold. First, you have an administrative
duty to synchronize the two virtual directories. Second, any user can view the source and determine
some information about your physical file structure. As a security precaution, consuming a small
amount of overhead to obfuscate (hide) the location of files is a good thing. Likewise, eliminating
the job of synchronizing Apache and Oracle Database 12c virtual directories makes your application
less expensive to maintain. Figure 10-6 shows the output of this relative image query.

This section has shown you how to configure and use virtual directories to support external
BFILE locators. It has also compared the process of using Apache alias and virtual directories
to the process of using the database to resolve external file locations. The next section shows
you how to remake the rules, and how to access the canonical path and filenames stored in the
database catalog.

Reading Canonical Path Names and Filenames
This section demonstrates how you can modify the database catalog and enable your programs to
translate a BFILE locator to secure both the canonical path name and the canonical filename. You
must open permissions to secure the virtual directory information owned by the sys user. As a rule
of thumb, you should grant access to sys objects with care and allow only the minimum access
required when building your database applications. This generally translates to a two-step process.
First, you grant the privilege from sys to system. Second, you encapsulate the privilege by
writing a stored function or procedure (and don’t forget to wrap the source from prying eyes, too).

The data required for capturing canonical paths is found in the dba_directories view.
The system user for a CDB or the ADMIN user for a PDB only has privileges through the
SELECT_CATALOG_ROLE role, which limits the system user access to only viewing the dba_
directories view. Role privileges disallow a user to build a stored function or procedure that
queries the catalog view. Hence, the system user can’t accesses the dba_directories view
through only a SELECT_CATALOG_ROLE role.

10-ch10.indd 419 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

420 Oracle Database 12c PL/SQL Programming

You need to connect either as the privileged sys user for a CDB:

SQL> sqlplus '/ as sysdba'

or as the ADMIN user of the videodb PDB:

SQL> sqlplus videoadm@video AS SYSDBA

This will require the database administrator password. This is typically the same as the
system password. Sometimes the passwords differ because a company chooses to monitor the
gatekeeper more closely as a result of Sarbanes-Oxley compliance. After connecting as the sys
user, you should grant the minimum necessary privilege, which is SELECT on the specific view.

The grant command is this for a CDB:

SQL> GRANT select ON dba_directories TO system;

The grant command changes for a PDB. You should grant the privilege to the ADMIN
(videoadm) user of the PDB (videodb):

SQL> GRANT select ON dba_directories TO videoadm;

FIGURE 10-6. Rendered page from the QueryRelativeBFILE.php program

10-ch10.indd 420 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 421

Now, you should connect as the system user for a CDB or the ADMIN user for a PDB. The
videoadm user account is the ADMIN user for the PDB qualified in this chapter and Appendixes
A and B. After connecting, create the get_directory_path function, as follows:

SQL> CREATE OR REPLACE FUNCTION get_directory_path
 2 (virtual_directory IN VARCHAR2)
 3 RETURN VARCHAR2 IS
 4 /* Declare return variable. */
 5 directory_path VARCHAR2(256);
 6 /* Declare dynamic cursor. */
 7 CURSOR get_directory (virtual_directory VARCHAR2) IS
 8 SELECT directory_path
 9 FROM sys.dba_directories
 10 WHERE directory_name = virtual_directory;
 11 /* Declare a local exception for name violation. */
 12 directory_name EXCEPTION;
 13 PRAGMA EXCEPTION_INIT(directory_name,-22284);
 14 BEGIN
 15 OPEN get_directory (virtual_directory);
 16 FETCH get_directory
 17 INTO directory_path;
 18 CLOSE get_directory;
 19 /* Return filename. */
 20 RETURN directory_path;
 21 EXCEPTION
 22 WHEN directory_name THEN
 23 RETURN NULL;
 24 END get_directory_path;
 25 /

The get_directory_path function takes a virtual directory on line 2 as its only formal
parameter. It uses the virtual directory to find the canonical path. Lines 8 through 10 declare a
dynamic cursor against the sys.dba_directories view. That’s why you had to grant the
SELECT privilege earlier. Lines 16 and 17 fetch the canonical path into the local directory_
path variable. Line 20 returns a valid canonical path or line 23 returns a null value for the
canonical path.

The following query lets you test the get_directory_path function. You should test it in
the system schema for a CDB or the ADMIN schema for a PDB.

SQL> SELECT get_directory_path('IMAGES')
 2 FROM dual;

You also can use the filegetname procedure in the dbms_lob package to find the virtual
directory. It returns the canonical path and base filename for any BFILE locator into a pass-by-
reference call parameter. While a pass-by-reference call to the filegetname procedure is tightly
coupled, the get_directory_path function requires a virtual directory name and image
filename to be useful. You must discover the virtual directory name and image filename before
you can call the get_directory_path function.

The get_canonical_bfilename function uses NDS to return a BFILE column, and the
reference to the BFILE column provides you with the virtual directory name and image filename.
The get_canonical_bfilename function wraps (or hides) the virtual directory name and

10-ch10.indd 421 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

422 Oracle Database 12c PL/SQL Programming

image filename requirement. This way you write one function for any number of possible BFILE
columns. The only problem with this example is that it depends on a single-column primary key
for all target tables. Also, it is an invoker rights program. That’s because the table and data should
always exist in the caller’s schema.

You should compile the get_canonical_bfilename function in the system schema of a
CDB or the ADMIN schema of a PDB after you’ve compiled the get_directory_path function:

SQL> CREATE OR REPLACE FUNCTION get_canonical_bfilename
 2 (table_name IN VARCHAR2
 3 , bfile_column_name IN VARCHAR2
 4 , primary_key IN VARCHAR2
 5 , primary_key_value IN VARCHAR2
 6 , operating_system IN VARCHAR2 := 'WINDOWS')
 7 RETURN VARCHAR2 AUTHID CURRENT_USER IS
 8 /* Declare default delimiter. */
 9 delimiter VARCHAR2(1) := '\';
 10
 11 /* Declare statement variable. */
 12 stmt VARCHAR2(200);
 13
 14 /* Declare a locator. */
 15 locator BFILE;
 16
 17 /* Declare alias and filename. */
 18 dir_alias VARCHAR2(255);
 19 directory VARCHAR2(255);
 20 file_name VARCHAR2(255);
 21
 22 /* Declare a local exception for size violation. */
 23 directory_num EXCEPTION;
 24 PRAGMA EXCEPTION_INIT(directory_num,-22285);
 25 BEGIN
 26 /* Assign dynamic string to statement. */
 27 stmt := 'BEGIN '
 28 || ' SELECT '||bfile_column_name||' '
 29 || ' INTO :column_value '
 30 || ' FROM '||table_name||' '
 31 || ' WHERE '||primary_key||'='
 32 || ''''||primary_key_value||''''||';'
 33 || 'END;';
 34
 35 /* Run dynamic statement. */
 36 EXECUTE IMMEDIATE stmt USING OUT locator;
 37
 38 /* Check for available locator. */
 39 IF locator IS NOT NULL THEN
 40 dbms_lob.filegetname(locator,dir_alias,file_name);
 41 END IF;
 42
 43 /* Check operating system and swap delimiter. */
 44 IF operating_system <> 'WINDOWS' THEN

10-ch10.indd 422 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 423

 45 delimiter := '/';
 46 END IF;
 47
 48 /* Create a canonical filename. */
 49 file_name :=
 50 get_directory_path(dir_alias)||delimiter||file_name;
 51
 52 /* Return filename. */
 53 RETURN file_name;
 54 EXCEPTION
 55 WHEN directory_num THEN
 56 RETURN NULL;
 57 END get_canonical_bfilename;
 58 /

The last parameter on line 6 is optional, and it has a default value of Windows. It’s there to let
you designate the function to run on Windows or Linux/Unix operating systems. Line 7 defines
the function as an invoker rights program because the internal NDS statement requires local
schema access to the table and data. Lines 27 through 33 hold an NDS statement for a PL/SQL
anonymous block, which provides one outbound bind variable on line 29. Line 36 manages the
OUT mode parameter inside the USING clause.

Line 40 calls the filegetname procedure. The dir_alias (database virtual directory),
directory (canonical directory), and file_name (base filename) variables on line 50 must be
defined as 255-character strings before calling the filegetname procedure from the dbms_lob
package. The balance of the function concatenates (glues) the canonical path and base filename
together into a canonical filename.

While you may choose to grant this to only one or a select handful of schemas, you should
consider making it a public grant like this:

SQL> GRANT EXECUTE ON get_canonical_bfilename TO PUBLIC;

Assuming you’ll want to build a synonym because that’s how the example works, as the
system user you need to grant the CREATE SYNONYM privilege to the video user. The syntax is

SQL> GRANT CREATE SYNONYM TO video;

You also need to create synonyms for the get_canonical_bfilename because it’s owned
by the system user in a CDB or the ADMIN user in a PDB. Otherwise, you need to prepend the
schema name and a component selector before each call to the function.

This synonym can’t translate until the reciprocal grant is made, which you’ll make in a moment.
Reconnect as the video user:

SQL> connect video@video/video

and create the synonym for a CDB:

SQL> CREATE SYNONYM get_canonical_bfilename
 2 FOR system.get_canonical_bfilename;

or for a videoadm ADMIN user of a videodb PDB:

SQL> CREATE SYNONYM get_canonical_bfilename
 2 FOR videoadm.get_canonical_bfilename;

10-ch10.indd 423 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

424 Oracle Database 12c PL/SQL Programming

Now you can call the get_canonical_bfilename function and get the canonical
filename for the Raiders3.png file:

SQL> SELECT get_canonical_bfilename(
 2 table_name => 'ITEM'
 3 , bfile_column_name => 'ITEM_PHOTO'
 4 , primary_key => 'ITEM_ID'
 5 , primary_key_value => '1021') AS canonical_file_name
 6 FROM dual;

It returns the operating system–specific values (provided you’ve set it up earlier):

Linux or Unix

/var/www/html/images/Raiders3.png

Windows

C:\Program Files\Apache Group\Apache2\htdocs\images\Raiders3.png

This approach avoids configuring the Apache alias and virtual directory. It is also a handy
alternative in some organizations where control of virtual paths is strictly regulated and restricted.
However, it does still require you to read and convert the binary stream into an image or document.
At least this is true for web pages. Other server-side programs can leverage this mechanism to
read images directly from their physical location.

Two programs let you implement this type of solution much as you implemented a read of
both CLOB and BLOB columns in the earlier “Working with LOBs Through Web Pages” section in
this chapter. Before working through these steps, you should download the Raiders3.txt file
from the publisher’s website, and load it to the database with one of the tools introduced earlier
in this chapter.

The file upload is more complex than the previous examples because the file directory is no
longer guaranteed to be a subdirectory of the directory containing an uploading web page. Therefore,
we’ll focus on the two scripts that are required to read and display the externally stored BFILE
and internally stored CLOB description.

The QueryPhotoBFILE.php script reads the title and CLOB description from the item
table, and the script calls the ReadCanonicalFileToImage.php script inside a src element
of an img tag. The program follows:

<?php
 // Declare input variables.
 (isset($_GET['id'])) ? $id = (int) $_GET['id'] : $id = 1021;
 // Call the local function.
 query_insert($id);
 // Query results after an insert.
 function query_insert($id) {
 // Return successful attempt to connect to the database.
 if ($c = @oci_connect("video","video","video")) {
 // Declare a SQL SELECT statement returning a CLOB.
 $stmt = "SELECT item_title, item_desc FROM item WHERE item_id = :id";
 // Parse a query through the connection.
 $s = oci_parse($c,$stmt);
 // Bind PHP variables to the OCI types.

10-ch10.indd 424 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 425

 oci_bind_by_name($s,':id',$id);
 // Execute the PL/SQL statement.
 if (oci_execute($s)) {
 // Return a LOB descriptor as the value.
 while (oci_fetch($s)) {
 for ($i = 1;$i <= oci_num_fields($s);$i++)
 if (is_object(oci_result($s,$i))) {
 if ($size = oci_result($s,$i)->size())
 $data = oci_result($s,$i)->read($size);
 else
 $data = " "; }
 else {
 if (oci_field_is_null($s,$i))
 $title = " ";
 else
 $title = oci_result($s,$i); }}
 // Free statement resources.
 oci_free_statement($s);
 // Format HTML table to display BLOB photo and CLOB description.
 $out = '<table border="1" cellpadding="5" cellspacing="0">';
 $out .= '<tr>';
 $out .= '<td align="center" class="e">'.$title.'</td>';
 $out .= '</tr>';
 $out .= '<tr><td class="v">';
 $out .= '<div>';
 $out .= '<div style="margin-right:5px;float:left">';
 $out .= '';
 $out .= '</div>';
 $out .= '<div style="position=relative;">'.$data.'</div>';
 $out .= '</div>';
 $out .= '</td></tr>';
 $out .= '</table>'; }
 // Print the HTML table.
 print $out;
 // Disconnect from database.
 oci_close($c); }
 else {
 // Assign the OCI error and format double and single quotes.
 $errorMessage = oci_error();
 print htmlentities($errorMessage['message'])."
"; }}
?>

The program reads and assigns the CLOB column to the $data variable, and the item_
title column to the $title variable. You should note that there aren’t any changes required to
the Apache alias or virtual directory configuration for this solution.

The ReadCanonicalFileToImage.php program is

<?php
 // Return successful attempt to connect to the database.
 if ($c = @oci_new_connect("video","video","video")) {
 // Declare input variables.

10-ch10.indd 425 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

426 Oracle Database 12c PL/SQL Programming

 (isset($_GET['id'])) ? $id = $_GET['id'] : $id = 1021;
 // Declare a SQL SELECT statement returning a CLOB.
 $stmt = "SELECT get_canonical_bfilename('ITEM','ITEM_PHOTO','ITEM_ID',:id)
 FROM dual";
 // Parse a query through the connection.
 $s = oci_parse($c,$stmt);
 // Bind PHP variables to the OCI types.
 oci_bind_by_name($s,':id',$id);
 // Execute the PL/SQL statement.
 if (oci_execute($s)) {
 // Return a LOB descriptor and free resource as the value.
 while (oci_fetch($s)) {
 for ($i = 1;$i <= oci_num_fields($s);$i++)
 if ((!is_object(oci_result($s,$i))) && (!oci_field_is_null($s,$i)))
 $data = oci_result($s,$i);
 else
 $data = " "; }
 // Print the header first.
 header('Content-type: image/png');
 imagepng(imagecreatefromstring(file_get_contents($data))); }
 // Disconnect from database.
 oci_close($c); }
 else {
 // Assign the OCI error and format double and single quotes.
 $errorMessage = oci_error();
 print htmlentities($errorMessage['message'])."
"; }
?>

The ReadCanonicalFileToImage.php program renders the image by reading the canonical
filename. The program then uses the PHP file_get_contents function to read the file into a
binary string. The imagecreatefromstring function coverts the binary stream to a resource,
and the imagepng function converts the resource into a file. Refer back to Figure 10-6, which
shows the displayed image from this program.

In this section you have learned how to work with external files—BFILE data types. The
examples have taught you how to leverage the locator and extend the database catalog to secure
both canonical path names and filenames.

Review Section
This section has described the following points about working with BFILE types:

 ■ BFILEs are physically stored externally while they hold a reference descriptor or locator
that is stored in the column.

 ■ A BFILE relies on virtual directories.

 ■ Virtual directories are stored in the database catalog, and they hold the path resolution
to find external BFILEs.

 ■ You can architect a solution where you can discover the canonical path without hard-
coding it, but it requires special grants and synonyms to make it work.

10-ch10.indd 426 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 427

Understanding the DBMS_LOB Package
Discussions earlier in the chapter rely on elements of the dbms_lob package. These elements
include functions, procedures, and package specification constants. This section summarizes the
balance of the features in the dbms_lob package, and it is divided into seven subsections, which
cover, in order: package constants, package exceptions, opening and closing methods (a term that
encompasses functions and procedures), manipulation methods, introspection methods, BFILE
methods, and temporary LOB methods.

Package Constants
There are several package constants that you can use when working with functions and procedures
in the dbms_lob package. The general, option type, and option value constants for the dbms_
lob package are qualified in Table 10-4. The Database File System (DBFS) constants are qualified
in Table 10-8 in the “Security Link Methods” section at the end of this chapter.

Package Constant Classification Type Value
CALL General PLS_INTEGER 12

DEFAULT_CSID General INTEGER 0

DEFAULT_LANG_CTX General INTEGER 0

FILE_READONLY General BINARY_INTEGER 0

LOBMAXSIZE General INTEGER 1.84467 e 19

LOB_READONLY General BINARY_INTEGER 0

LOB_READWRITE General BINARY_INTEGER 1

NO_WARNING General INTEGER 0

SESSION General PLS_INTEGER 10

TRANSACTION General PLS_INTEGER 11

WARN_INCONVERTIBLE_CHAR General INTEGER 1

OPT_COMPRESS Option Type PLS_INTEGER 1

OPT_DEDUPLICATE Option Type PLS_INTEGER 4

OPT_ENCRYPT Option Type PLS_INTEGER 2

COMPRESS_OFF Option Value PLS_INTEGER 0

COMPRESS_ON Option Value PLS_INTEGER 1

ENCRYPT_OFF Option Value PLS_INTEGER 0

ENCRYPT_ON Option Value PLS_INTEGER 1

DEDUPLICATE_OFF Option Value PLS_INTEGER 0

DEDUPLICATE_ON Option Value PLS_INTEGER 1

TABLE 10-4. DBMS_LOB Package Constants

10-ch10.indd 427 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

428 Oracle Database 12c PL/SQL Programming

TABLE 10-5. Field Map of the BLOB_DEDUPLICATE_REGION Record Structure

Position Field Name Data Type
1 LOB_OFFSET INTEGER

2 LEN INTEGER

3 PRIMARY_LOB BLOB

4 PRIMARY_LOB_OFFSET NUMBER

5 MIME_TYPE VARCHAR2(80)

Position Field Name Data Type
1 LOB_OFFSET INTEGER

2 LEN INTEGER

3 PRIMARY_LOB CLOB

4 PRIMARY_LOB_OFFSET NUMBER

5 MIME_TYPE VARCHAR2(80)

TABLE 10-6. Field Map of the CLOB_DEDUPLICATE_REGION Record Structure

These constants have various uses inside the package. They should be used in lieu of their
numeric equivalents because, while unlikely, Oracle reserves the right to change the values.

There are also four package specification types. Two are structures. A structure is a list of
variables organized by position and data type. Structures act like rows of data. The other two types
are associative arrays of the base structures. Both the types and structures are limited to uses in
your PL/SQL blocks. They are covered next in pairs, the base structure and the associative array.

BLOB_DEDUPLICATE_REGION Record Structure
The BLOB_DEDUPLICATE_REGION type is a record composed of five fields, as qualified in
Table 10-5. The BLOB_DUPLICATE_REGION_TAB type is an associative array indexed by PLS_
INTEGER.

CLOB_DEDUPLICATE_REGION Record Structure
The CLOB_DEDUPLICATE_REGION type is a record composed of five fields, as qualified in
Table 10-6. The CLOB_DUPLICATE_REGION_TAB type is an associative array indexed by
PLS_INTEGER.

Package Exceptions
There are eight exceptions defined in the dbms_lob package. They are covered in Table 10-7.
You should try to leverage these exceptions where appropriate in your own code before you create
new user-defined exceptions.

10-ch10.indd 428 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 429

Opening and Closing Methods
The opening and closing methods apply to all LOB data types. You have a function to check
whether a file is already open, and procedures to open and close LOB data types.

CLOSE Procedure
You call the close procedure to close a LOB. This is a pass-by-reference procedure for the LOB
locator parameter. It requires that you define an appropriate LOB variable in the block where you
call the procedure. You can’t close a LOB unless it is already opened without raising an ORA-
22289 exception.

The overloaded procedure has the following prototypes:

CLOSE(file_loc => bfile_locator)
CLOSE(lob_loc => blob_locator)
CLOSE(lob_loc => clob_locator)

You can find examples of the close function in the load_clob_from_file.sql and
load_blob_from_file.sql files, which are available on the publisher’s website.

Exception Name Error Code Definition
ACCESS_ERROR ORA-22925 Occurs when you attempt to write more than the

maximum size allowed for a LOB column.
INVALID_ARGVAL ORA-21560 Occurs when you pass a null value or a value

outside of the 1–4GB range.
INVALID_LOCATOR ORA-22275 Occurs when you pass an invalid LOB locator value.
INVALID_DIRECTORY ORA-22287 Occurs when you attempt to read or write to a

virtual database directory that no longer translates
to a valid file system directory.

NOEXIST_DIRECTORY ORA-22285 Occurs when you attempt to read or write to a
virtual database directory that doesn’t exist.

NOPRIV_DIRECTORY ORA-22286 Occurs when you attempt to read or write to a
virtual database directory and you have not been
granted the appropriate access privilege.

OPEN_TOOMANY ORA-22290 Occurs when you attempt to open more files than
are allowed for the instance.

OPERATION_FAILED ORA-22288 Occurs when you attempt to access a file that
doesn’t exist, or a file to which the Oracle user
doesn’t have read or write privileges.

UNOPENED_FILE ORA-22289 Occurs when you try to perform operations on an
external file before you’ve opened it.

TABLE 10-7. DBMS_LOB Package Exceptions

10-ch10.indd 429 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

430 Oracle Database 12c PL/SQL Programming

ISOPEN Function
You call the isopen function to check if a LOB is already open. You should use this function instead
of the fileisopen function because fileisopen only checks for opened files using the input
BFILE locator. The function is written to run in both SQL and PL/SQL environments. It returns a 1
when successful and a 0 when unsuccessful because there aren’t any Boolean types in SQL.

The overloaded function has the following prototypes:

ISOPEN(file_loc => bfile_locator) RETURNS NUMBER
ISOPEN(lob_loc => blob_locator) RETURNS NUMBER
ISOPEN(lob_loc => clob_locator) RETURNS NUMBER

You can find examples of the isopen function in the load_clob_from_file.sql and
load_blob_from_file.sql files.

OPEN Procedure
You call the open procedure to open a LOB. This is a pass-by-reference procedure for the LOB
locator parameter. It requires that you define an appropriate LOB variable in the block where you
call the procedure. You can open BLOB, CLOB, or NCLOB files in read-only or read-write mode,
and open BFILEs in read-only mode. While you don’t have to use the constants, it is safer to do
so. You should use the lob_readonly or lob_readwrite constants for read-only or read-write
mode, respectively. The open mode uses a default of dbms_lob.lob_readonly, and the actual
parameter is optional.

The overloaded procedure has the following prototypes:

OPEN(file_loc => bfile_locator
 [,open_mode => open_mode])
OPEN(lob_loc => blob_locator
 [,open_mode => open_mode])
OPEN(lob_loc => clob_locator
 [,open_mode => open_mode])

You can find examples of the open function in the sections “Reading Local Files into CLOB
or NCLOB Columns” and “Reading Local Files into BLOB Columns” earlier in the chapter. You’ll
also find them in the load_clob_from_file.sql and load_blob_from_file.sql files.

Manipulation Methods
The manipulation methods are a collection of functions and procedures that allow you to read,
write, and alter the content of LOBs. Several new features were added in Oracle Database 11g
and carried forward to 12c, including compression, deduplication, and secure file encryption.

Many methods are overloaded to work with all LOB data types, while some only work with
BLOB, CLOB, and NCLOB data types. The following subsections cover these manipulation methods
and point out when a method is limited in scope.

You must create a transaction context by using an INSERT or UPDATE statement to use these
manipulation methods against LOB columns. The RETURNING INTO clause opens the transaction
scope and a COMMIT statement closes it. You use the locator returned by these statements as the
gateway to copying one LOB to another of equivalent type.

10-ch10.indd 430 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 431

APPEND Procedure
You call the append procedure to append to a BLOB, CLOB, or NCLOB data type. The append
procedure is a pass-by-reference procedure for the LOB locator parameter. It allows you to add
the contents of another LOB at the end of a LOB column. The writeappend procedure does the
same thing, except it accepts a RAW or VARCHAR2 stream to append to a BLOB or CLOB column,
respectively.

The overloaded procedure has the following prototypes:

APPEND(dest_lob => blob_locator
 ,src_lob => new_lob_stream)
APPEND(dest_lob => clob_locator
 ,src_lob => new_lob_stream)

CONVERTTOBLOB Procedure
You call the converttoblob procedure to convert a CLOB or NCLOB to a BLOB data type. The
converttoblob procedure is a pass-by-reference procedure for the destination_blob_
locator, source_blob_locator, destination_offset, source_offset, and
language_context parameters.

The procedure has the following prototype:

CONVERTTOBLOB(dest_lob => destination_blob_locator
 ,src_blob => source_blob_locator
 ,amount => amount
 ,dest_offset => destination_offset
 ,src_offset => source_offset
 ,blob_csid => blob_csid
 ,lang_context => language_context
 ,warning => warning)

CONVERTTOCLOB Procedure
You call the converttoclob procedure to convert a BLOB to a CLOB or NCLOB data type. The
converttoclob procedure is a pass-by-reference procedure for the LOB locator, destination
and source offset, and language context parameters.

The procedure has the following prototype:

CONVERTTOCLOB(dest_lob => destination_blob_locator
 ,src_clob => source_clob_locator
 ,amount => amount
 ,dest_offset => destination_offset
 ,src_offset => source_offset
 ,blob_csid => clob_csid
 ,lang_context => language_context
 ,warning => warning)

NOTE
The overloaded CONVERTTOCLOB procedure uses a blob_csid
parameter name, but it really should be a clob_csid parameter
name. While it’s been that way for several releases, the name will
probably change in a future release.

10-ch10.indd 431 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

432 Oracle Database 12c PL/SQL Programming

COPY Procedure
You call the copy procedure to copy a BLOB to another BLOB or a CLOB or NCLOB to another
equivalent character LOB data type. The copy procedure is a pass-by-reference procedure for the
destination LOB locator parameter.

The overloaded procedure has the following prototypes:

COPY(dest_lob => destination_blob_locator
 src_lob => source_blob_locator
 amount => amount
 dest_offset => destination_offset
 src_offset => source_offset)
COPY(dest_lob => destination_clob_locator
 src_lob => source_clob_locator
 amount => amount
 dest_offset => destination_offset
 src_offset => source_offset)

ERASE Procedure
You call the erase procedure to erase a chunk of a BLOB, a CLOB, or an NCLOB data type. The
erase procedure is a pass-by-reference procedure for the LOB locator and amount parameters.
The default offset is 1, and the offset is an optional parameter.

The overloaded procedure has the following prototypes:

ERASE(lob_loc => blob_locator
 ,amount => amount
 [,offset => offset])
ERASE(lob_loc => clob_locator
 ,amount => amount
 [,offset => offset])

FRAGMENT_DELETE Procedure
You call the fragment_delete procedure to delete a chunk of a BLOB, a CLOB, or an NCLOB
data type. The fragment_delete procedure is a pass-by-reference procedure for the LOB
locator parameter.

The overloaded procedure has the following prototypes:

FRAGMENT_DELETE(lob_loc => blob_locator
 ,amount => amount
 [,offset => offset])
FRAGMENT_DELETE(lob_loc => clob_locator
 ,amount => amount
 [,offset => offset])

FRAGMENT_INSERT Procedure
You call the fragment_insert procedure to insert a chunk of data (or a stream) to a BLOB, a
CLOB, or an NCLOB data type. This procedure is a pass-by-reference procedure for the LOB
locator parameter.

10-ch10.indd 432 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 433

The overloaded procedure has the following prototypes:

FRAGMENT_INSERT(lob_loc => blob_locator
 ,amount => amount
 ,offset => offset
 ,buffer => raw_buffer)
FRAGMENT_INSERT(lob_loc => clob_locator
 ,amount => amount
 ,offset => offset
 ,buffer => character_buffer)

FRAGMENT_MOVE Procedure
You call the fragment_move procedure to move a chunk of data (or a stream) to another
location in the same LOB. This function only works with BLOB, CLOB, or NCLOB data types. The
fragment_move procedure is a pass-by-reference procedure for the LOB locator parameter.

The overloaded procedure has the following prototypes:

FRAGMENT_MOVE(lob_loc => blob_locator
 ,amount => amount
 ,src_offset => source_offset
 ,dest_offset => destination_offset)
FRAGMENT_MOVE(lob_loc => clob_locator
 ,amount => amount
 ,src_offset => source_offset
 ,dest_offset => destination_offset)

FRAGMENT_REPLACE Procedure
You call the fragment_replace procedure to move a chunk of data (or a stream) to replace a
chunk of data in the same LOB. This function only works with BLOB, CLOB, or NCLOB data types.
The fragment_replace procedure is a pass-by-reference procedure for the LOB locator
parameter.

The overloaded procedure has the following prototypes:

FRAGMENT_REPLACE(lob_loc => blob_locator
 ,old_amount => old_amount
 ,new_amount => new_amount
 ,offset => offset
 ,buffer => buffer)
FRAGMENT_REPLACE(lob_loc => clob_locator
 ,old_amount => old_amount
 ,new_amount => new_amount
 ,offset => offset
 ,buffer => buffer)

ISSECUREFILE Function
You call the issecurefile function in Oracle Database 11g or newer to determine if a BLOB,
CLOB, or NCLOB is configured as a secure file. This function only works in a PL/SQL scope
because it returns a BOOLEAN data type, and it is a pass-by-value function.

10-ch10.indd 433 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

434 Oracle Database 12c PL/SQL Programming

The overloaded function has the following prototypes:

ISSECUREFILE(lob_loc => blob_locator) RETURNS BOOLEAN
ISSECUREFILE(lob_loc => clob_locator) RETURNS BOOLEAN

The following anonymous block demonstrates how to use this new function:

SQL> DECLARE
 2 audit_blob BLOB;
 3 CURSOR c IS
 4 SELECT NVL(item_blob,empty_blob)
 5 FROM item
 6 WHERE item_id = 1021;
 7 BEGIN
 8 OPEN c;
 9 FETCH c INTO audit_blob;
 10 IF dbms_lob.issecurefile(audit_blob) THEN
 11 dbms_output.put_line('A secure file.');
 12 ELSE
 13 dbms_output.put_line('Not a secure file.');
 14 END IF;
 15 CLOSE c;
 16 END;
 17 /

The issecurefile function requires that the BLOB column be initialized. If you attempt to
apply this function to an invalid LOB locator, it raises an ORA-22275 error. There is an opportunity
to find this error anytime a row leaves the BLOB column non-initialized or null. It is a good
coding practice to enclose it in an NVL function call providing an empty_blob or empty_clob
constructor. By so doing, you evaluate for SecureFiles without the risk of raising a null exception.
This approach ensures both nonsecure files and null values are managed by the ELSE clause. The
approach also lets you suppress runtime errors triggered by an invalid LOB locator exception.

LOADBLOBFROMFILE Procedure
You call the loadblobfromfile procedure to copy a physical file, treated as a BFILE, to a
BLOB data type. The loadblobfromfile procedure is a pass-by-reference procedure for the
destination LOB locator and the destination and source offset parameters. You must always call
the open procedure before this file, or you will raise an ORA-22889 for an unopened file.

The procedure has the following prototype:

LOADBLOBFROMFILE(dest_lob => destination_blob_locator
 ,src_bfile => source_bfile
 ,amount => amount
 ,dest_offset => destination_offset
 ,src_offset => source_offset)

LOADCLOBFROMFILE Procedure
You call the loadclobfromfile procedure to copy a physical file, treated as a BFILE, to a CLOB
data type. The loadclobfromfile procedure is a pass-by-reference procedure for the destination
LOB locator, the destination and source offset, and language context parameters. You must always
call the open procedure before this file, or you will raise an ORA-22889 for an unopened file.

10-ch10.indd 434 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 435

The procedure has the following prototype:

LOADCLOBFROMFILE(dest_lob => destination_clob_locator
 ,src_bfile => source_bfile
 ,amount => amount
 ,dest_offset => destination_offset
 ,src_offset => source_offset
 ,bfile_csid => bfile_csid
 ,lang_context => language_context
 ,warning => warning)

LOADFROMFILE Procedure
You call the loadfromfile procedure to copy a physical file, treated as a BFILE, to a BLOB,
CLOB, or NCLOB data type. The loadfromfile procedure is a pass-by-reference procedure for
the destination LOB locator parameter. You must always call the open procedure before this file,
or you will raise an ORA-22889 for an unopened file. The destination and source offset parameters
use a default value of 1, and are therefore optional parameters.

The overloaded procedure has the following prototypes:

LOADFROMFILE(dest_lob => destination_blob_locator
 ,src_lob => source_bfile
 ,amount => amount
 [,dest_offset => destination_offset
 [,src_offset => source_offset]])
LOADFROMFILE(dest_lob => destination_clob_locator
 ,src_lob => source_bfile
 ,amount => amount
 [,dest_offset => destination_offset
 [,src_offset => source_offset]])

While this procedure works, you should consider using the loadblobfromfile or
loadclobfromfile procedure first. They provide more control, and you can set language
context for CLOB columns.

SETOPTIONS Procedure
You call the setoptions procedure to override the storage option of SecureFiles, or BLOB,
CLOB, and NCLOB data types, in Oracle Database 12c. The setoptions procedure is a pass-by-
reference procedure for the LOB locator parameter. You must always create a transaction to access
a specific LOB locator.

The Oracle Database 12c documentation says you can change either the default column
compression or deduplication settings. The documentation did not say, at time of writing, that you
could override the default column encryption. However, encryption is one of three new constants
added to the dbms_lob package in Oracle Database 12c. Full utility of these features may await
a bug fix or the second release of Oracle Database 12c.

The overloaded procedure has the following prototypes:

SETOPTIONS(lob_loc => blob_locator
 ,option_types => option_type
 ,options => options)
SETOPTIONS(lob_loc => blob_locator

10-ch10.indd 435 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

436 Oracle Database 12c PL/SQL Programming

 ,option_types => option_type
 ,options => options)

TRIM Procedure
You call the trim procedure to trim unwanted content from CLOB, NCLOB, or BLOB data types.
The trim procedure is a pass-by-reference procedure for the LOB locator parameter and requires
a transaction context to change a LOB column value.

The overloaded procedure has the following prototypes:

TRIM(lob_loc => blob_locator
 ,newlen => new_length)
TRIM(lob_loc => clob_locator
 ,newlen => new_length)

WRITE Procedure
You call the write procedure to write data to a CLOB, NCLOB, or BLOB data type beginning at a
specified offset. The default offset is 1. Beginning in Oracle Database 11g, you should consider
using the fragment_insert or fragment_replace procedure instead of the write
procedure.

The overloaded procedure has the following prototypes:

WRITE(lob_loc => blob_locator
 ,amount => amount
 ,offset => offset
 ,buffer => raw_buffer)
WRITE(lob_loc => clob_locator
 ,amount => amount
 ,offset => offset
 ,buffer => character_buffer)

WRITEAPPEND Procedure
You call the writeappend procedure to append data to the end of a CLOB, NCLOB, or BLOB
data type. The overloaded procedure has the following prototypes:

WRITEAPPEND(lob_loc => blob_locator
 ,amount => amount
 ,buffer => raw_buffer)
WRITEAPPEND(lob_loc => clob_locator
 ,amount => amount
 ,buffer => character_buffer)

Introspection Methods
Introspection methods let you discover something about the value in the instance of a data type.
Some of these methods should look familiar because they’re staples in working with strings.

COMPARE Function
You call the compare function to check whether two LOBs of the same data type are equal or
two LOB fragments of the same data type are equal. The function is a pass-by-value module. It
works with BLOB, CLOB, NCLOB, or BFILE data types. The compare function works in both SQL
and PL/SQL environments. It returns a 0 when the two LOBs (or LOB fragments) are equal and a 1
when they’re not.

10-ch10.indd 436 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 437

The overloaded function has the following prototypes:

COMPARE(lob_1 => bfile_locator_1
 ,lob_2 => bfile_locator_2
 ,amount => amount
 [,offset_1 => offset_1
 [,offset_2 => offset_2]]) RETURNS NUMBER
COMPARE(lob_1 => blob_locator_1
 ,lob_2 => blob_locator_2
 ,amount => amount
 [,offset_1 => offset_1
 [,offset_2 => offset_2]]) RETURNS NUMBER
COMPARE(lob_1 => clob_locator_1
 ,lob_2 => clob_locator_2
 ,amount => amount
 [,offset_1 => offset_1
 [,offset_2 => offset_2]]) RETURNS NUMBER

You should notice from the prototypes that the size for comparison is optional for BLOB,
CLOB, and NCLOB but is required for BFILE data types. The simplest way to compare two values
is with a SQL statement, like

SQL> SELECT CASE
 2 WHEN DBMS_LOB.COMPARE(i1.item_blob,i2.item_blob) = 0 THEN
 3 THEN 'True'
 4 ELSE 'False'
 5 END AS compared
 6 FROM item i1 CROSS JOIN item i2
 7 WHERE i1.item_id = 1021 AND i2.item_id = 1022;

This statement returns true if you’ve uploaded the same image of Harry Potter to both rows (as
done in the load_blob_from_file.sql script). Otherwise, it returns false.

GETCHUNKSIZE Function
You call the getchunksize function to check the read and write chunk size. This is typically the
block size (as determined by the db_block_size database parameter) minus a handling value.
If your db_block_size is set to 8KB (8,192 bytes), then the chunk size will be 8,132 bytes. The
function works with BLOB, CLOB, or NCLOB data types.

The overloaded procedure has the following prototypes:

GETCHUNKSIZE(lob_loc => blob_locator) RETURNS NUMBER
GETCHUNKSIZE(lob_loc => clob_locator) RETURNS NUMBER

The simplest way to call this function is

SELECT DBMS_LOB.GETCHUNKSIZE(i1.item_blob)
FROM item i1
WHERE i1.item_id = 1021;

In most cases, it returns 8,132 bytes because the default db_block_size parameter value is
8,192 bytes. The query should work provided you inserted the Harry Potter image into the BLOB
column for this row.

10-ch10.indd 437 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

438 Oracle Database 12c PL/SQL Programming

GET_DEDUPLICATED_REGIONS Procedure
You call the get_deduplicated_regions procedure to check for deduplicated regions in
Oracle SecureFiles. This is a new procedure as of Oracle Database 11g. The function works with
BLOB, CLOB, or NCLOB data types. It is a pass-by-reference procedure for the associative array of
structures, which are implementations of the record structures covered earlier in the “Package
Constants” subsection of this chapter.

The overloaded procedure has the following prototypes:

GET_DEDUPLICATED_REGIONS(lob_loc => blob_locator
 ,region_table => blob_deduplicated_table)
GET_DEDUPLICATED_REGIONS(lob_loc => clob_locator
 ,region_table => clob_deduplicated_table)

GETLENGTH Function
You call the getlength function to get the length of a LOB. The function works with BLOB,
CLOB, NCLOB, or BFILE data types. It is a pass-by-value function and essential in many regards
for working with LOB columns.

The overloaded function has the following prototypes:

GETLENGTH(file_loc => bfile_locator) RETURNS NUMBER
GETLENGTH(lob_loc => blob_locator) RETURNS NUMBER
GETLENGTH(lob_loc => clob_locator) RETURNS NUMBER

GETOPTIONS Function
You call the getoptions function to examine the storage options of SecureFiles, which are
BLOB, CLOB, or NCLOB data types in Oracle Database 12c. This function is a pass-by-reference
function for the LOB locator parameter. You must always create a transaction to access a specific
LOB locator. Full utility of these features may await a bug fix or the second release of Oracle
Database 12c.

The overloaded function has the following prototypes:

GETOPTIONS(lob_loc => blob_locator
 ,option_types => option_type) RETURNS BINARY_INTEGER
GETOPTIONS(lob_loc => clob_locator
 ,option_types => option_type) RETURNS BINARY_INTEGER

GET_STORAGE_LIMIT Function
You call the get_storage_limit function to get the maximum storage length of a LOB. The
function works with BLOB, CLOB, or NCLOB data types. It is a pass-by-value function.

The overloaded function has the following prototypes:

GET_STORAGE_LIMIT(lob_loc => blob_locator) RETURNS NUMBER
GET_STORAGE_LIMIT(lob_loc => clob_locator) RETURNS NUMBER

INSTR Function
You call the instr function to find the position where a byte pattern begins in a LOB. The function
works with BLOB, CLOB, NCLOB, or BFILE data types. It is a pass-by-value function. The offset
and nth_occurrence parameters have a default value of 1, which makes them optional.

10-ch10.indd 438 12/17/13 2:58 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 439

The overloaded function has the following prototypes:

INSTR(file_loc => bfile_locator
 ,option_types => raw_byte_pattern
 [,offset => offset
 [,nth => nth_occurrence]]) RETURNS NUMBER
INSTR(lob_loc => blob_locator
 ,option_types => raw_byte_pattern
 [,offset => offset
 [,nth => nth_occurrence]]) RETURNS NUMBER
INSTR(lob_loc => clob_locator
 ,option_types => character_pattern
 [,offset => offset
 [,nth => nth_occurrence]]) RETURNS NUMBER

READ Procedure
You call the read procedure to read data from a CLOB, NCLOB, or BLOB data type beginning at a
specified offset. There is no default offset value, and it is a mandatory actual parameter.

The procedure is pass-by-reference for the locator and buffer. The overloaded procedure has
the following prototypes:

READ(file_loc => bfile_locator
 ,amount => amount
 ,offset => offset
 ,buffer => raw_buffer)
READ(lob_loc => blob_locator
 ,amount => amount
 ,offset => offset
 ,buffer => raw_buffer)
READ(lob_loc => blob_locator
 ,amount => amount
 ,offset => offset
 ,buffer => character_buffer)

SUBSTR Function
You call the substr function to read data from a CLOB, NCLOB, or BLOB data type beginning at
a specified offset. The default for the amount and offset is 1. This is a pass-by-value function that
returns a RAW data type for BFILE and BLOB data types and a VARCHAR2 data type for CLOB or
NCLOB data types. The function is subject to the character stream limits of the environment where
you use it. This means that the substr function can return a 4,000-byte or 32,767-byte string,
depending on the max_string_size database parameter setting.

The overloaded function has the following prototypes:

SUBSTR(file_loc => bfile_locator
 [,amount => amount
 [,offset => offset]) RETURNS RAW
SUBSTR(lob_loc => blob_locator
 [,amount => amount
 [,offset => offset]) RETURNS RAW

10-ch10.indd 439 12/17/13 2:59 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

440 Oracle Database 12c PL/SQL Programming

SUBSTR(lob_loc => clob_locator
 [,amount => amount
 [,offset => offset]) RETURNS VARCHAR2

You can find an example that uses the dbms_lob.substr procedure in the
“GETCONTENTTYPE Function” section later in this chapter. The optional offset parameter
lets you pick a starting point for a substring in the CLOB.

BFILE Methods
The BFILE methods only support external and read-only BFILE data types. Some of the BFILE
methods have recommended alternatives. Oracle hasn’t deprecated any methods in the dbms_
lob package but has superseded some methods by new dbms_lob methods. Recommendations
that you call alternative methods are noted in their respective subsections.

FILECLOSE Procedure
You call the fileclose procedure to close a BFILE. This is a pass-by-reference procedure for
the LOB locator parameter. It requires that you define an appropriate LOB variable in the block
where you call the procedure. You can’t close a LOB unless it is already opened without raising
an ORA-22289 exception. Oracle recommends you use the close procedure instead of the
fileclose procedure.

The procedure has the following prototype:

FILECLOSE(file_loc => bfile_locator)

FILECLOSEALL Procedure
You call the filecloseall procedure to close all open files. This function has no formal
parameter.

The procedure has the following prototype:

FILECLOSEALL

FILEEXISTS Function
You call the fileexists function to check if a file exists on the file system. It relies on the
virtual database directory translation to a physical directory on the file system. You can use this
function in SQL or PL/SQL environments, and it returns a 1 if true and a 0 if false.

The function has the following prototype:

FILEEXISTS(file_loc => bfile_locator) RETURNS NUMBER

FILEGETNAME Procedure
You call the filegetname procedure to finds the base filename in a BFILE locator. You must
call the procedure only after you initialize all three actual parameter values to VARCHAR2(255)
strings. The definition of space for declared variables is required because the virtual database
directory and base filename formal parameters are OUT mode variables, which must be sized
before calling a pass-by-reference function or procedure.

The procedure has the following prototype:

FILEGETNAME(file_loc => bfile_locator
 ,dir_alias => virtual_database_directory
 ,filename => base_file_name)

10-ch10.indd 440 12/17/13 2:59 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 441

For details of how to use the filegetname procedure, refer to the example of using get_
bfilename as a wrapper function around the filegetname procedure, presented in the
section “Creating and Using Virtual Directories” earlier in the chapter.

FILEISOPEN Function
The fileisopen function is used to check if a BFILE is already open. This function is provided
only for backward compatibility, so you should not use it. Instead, you should use the isopen
function. Like the isopen function, fileisopen is written to run in both SQL and PL/SQL
environments. It returns a 1 when successful and a 0 when unsuccessful because there aren’t any
Boolean types in SQL.

The function has the following prototype:

FILEISOPEN(file_loc => bfile_locator) RETURNS NUMBER

You can find examples in the load_clob_from_file.sql and load_blob_from_
file.sql files on the publisher’s website.

FILEOPEN Procedure
You call the fileopen procedure to open a BFILE. This is a pass-by-reference procedure for
the LOB locator parameter. It requires that you define an appropriate LOB variable in the block
where you call the procedure. Oracle recommends you use the open procedure instead of the
fileopen procedure. The optional open mode parameter has a default value of dbms_lob
.lob_readonly.

The procedure has the following prototype:

FILEOPEN(file_loc => bfile_locator
 [,open_mode => open_mode])

Temporary LOB Methods
Temporary LOB data types are not linked to a physical location in the database. The LOB locator
points to a memory location where the temporary LOB is written.

CREATETEMPORARY Procedure
You call the createtemporary procedure to create a temporary BLOB, CLOB, or NCLOB in
memory. Temporary LOBs are time-bound entities, and you should constrain their existence to
the smallest time slice possible. The optional duration parameter is bound by the dbms_lob
.session constant, which is the length of the session.

You must use the createtemporary procedure when you want to assemble a BLOB, CLOB,
or NCLOB in memory from a collection of pieces. The pieces are typically in the form of a
collection of raw byte or character segments. You typically create a temporary LOB inside a
pass-by-value function when you want to do either of the following:

 ■ Use a table collection of raw bytes or characters as the input parameter

 ■ Return the reference to the temporary LOB (generally larger than 32,767 bytes) as the
return value of a pass-by-value function inside a SQL statement or PL/SQL block

You also can use a pass-by-reference function or procedure to return a temporary BLOB,
CLOB, or NCLOB reference. An IN OUT or OUT-only mode parameter can return the temporary

10-ch10.indd 441 12/17/13 2:59 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

442 Oracle Database 12c PL/SQL Programming

LOB reference to the calling program’s scope. While this type of solution is possible, I don’t
recommend it. A pass-by-value function is a more portable and cohesive solution to return a LOB.
You can find an example of such a pass-by-value function in the “Converting a LONG to a CLOB”
sidebar earlier in this chapter.

The overloaded procedure has the following prototypes:

CREATETEMPORTY(lob_loc => blob_locator
 ,cache => cache
 [,dur => duration])
CREATETEMPORTY(lob_loc => clob_locator
 ,cache => cache
 [,dur => duration])

ISTEMPORARY Function
You call the istemporary function to free resources that held a temporary BLOB or CLOB
variable. This is an important function and should be used each time you manage a temporary
LOB. It works with BLOB, CLOB, or NCLOB data types. The istemporary function works in both
SQL and PL/SQL environments. It returns a 1 when successful and a 0 when not.

The overloaded function has the following prototypes:

ISTEMPORARY(lob_loc => blob_locator) RETURNS NUMBER
ISTEMPORARY(lob_loc => clob_locator) RETURNS NUMBER

FREETEMPORARY Procedure
You call the freetemporary procedure to free the memory consumed for a temporary BLOB,
CLOB, or NCLOB in memory. This is an important procedure and should be used each time you
manage a temporary LOB.

The overloaded procedure has the following prototypes:

FREETEMPORARY(lob_loc => blob_locator)
FREETEMPORARY(lob_loc => clob_locator)

This section has reviewed the methods of the dbms_lob package. Several new methods were
added in Oracle Database 11g, and there may yet be more added to simplify the access and
management of LOBs.

Security Link Methods
The security link methods were added in Oracle Database 11g Release 2. They’re designed to work
with the Database File System (DBFS). DBFS takes advantage of the SecureFiles storage features
introduced by Oracle Database 11g Release 1. You can find out how to use and configure the DBFS
package in Chapter 6 of the Oracle Database SecureFiles and Large Objects Developer’s Guide.

Chapter 4 of the Oracle Database SecureFiles and Large Object Developer’s Guide shows you
how to use DBFS. Several methods were added to the dbms_lob package to support DBFS. It’s
important to note that Oracle also added (in Oracle Database 11g Release 2) seven constants to
the dbms_lob package to support these new methods, as outlined in Table 10-8. The methods
also work with BasicFiles (nonencrypted files).

Understanding the security link methods is critical when working with Oracle SecureFiles.
The following subsections describe each in turn.

10-ch10.indd 442 12/17/13 2:59 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 443

COPY_DBFS_LINK Procedure
You call the copy_dbfs_link procedure to copy an existing DBFS link into a new BLOB, CLOB,
or NCLOB column. You can use the dbfs_link_cache or dbfs_link_nocache constant as a
flag parameter value. The dbfs_link_nocache constant is the default and the best choice
with large LOBs.

The overloaded procedure has the following prototypes:

COPY_DBFS_LINK(lob_loc_det => target_blob_locator
 ,lob_loc_src => source_blob_locator
 ,flags => caching_enabled_or_disabled)
COPY_DBFS_LINK(lob_loc_det => target_clob_locator
 ,lob_loc_src => source_clob_locator
 ,flags => caching_enabled_or_disabled)

COPY_FROM_DBFS_LINK Procedure
You call the copy_from_dbfs_link procedure to copy a LOB from the DBFS Hardware Security
Module (HSM) Store into the database. An HSM Store is a physical or software device that safeguards
and manages digital keys for storing authentication. It also provides cryptoprocessing without
revealing the decrypted data.

NOTE
Cryptoprocessing means cryptographic operations performed
by a computer.

The copy_from_dbfs_link procedure lets you copy a BLOB, CLOB, or NCLOB from the
HSM Store into the database. The overloaded procedure has the following prototypes:

COPY_FROM_DBFS_LINK(lob_loc => blob_locator_from_hsm_store)
COPY_FROM_DBFS_LINK(lob_loc => clob_locator_from_hsm_store)

DBFS_LINK_GENERATE_PATH Function
The dbfs_link_generate_path function returns a globally unique file pathname that you
can use for archiving CLOB, NCLOB, or BLOB columns. The globally unique file pathname is
guaranteed to be unique across all calls to this function for any CLOB, NCLOB, or BLOB column.

Package Constant Classification Type Value
DBFS_LINK_NEVER DBFS PLS_INTEGER 0

DBFS_LINK_YES DBFS PLS_INTEGER 1

DBFS_LINK_NO DBFS PLS_INTEGER 2

DBFS_LINK_CACHE DBFS PLS_INTEGER 1

DBFS_LINK_NOCACHE DBFS PLS_INTEGER 0

DBFS_LINK_PATH_MAX_SIZE DBFS PLS_INTEGER 1024

CONTENTTYPE_MAX_SIZE DBFS BINARY_INTEGER 128

TABLE 10-8. Database File System Constants in the dbms_lob Package

10-ch10.indd 443 12/17/13 2:59 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

444 Oracle Database 12c PL/SQL Programming

The overloaded procedure has the following prototypes:

DBFS_LINK_GENERATE_PATH(lob_loc => blob_locator
 ,storage_dir => virtual_directory) RETURNS VARCHAR2
DBFS_LINK_GENERATE_PATH(lob_loc => clob_locator
 ,storage_dir => virtual_directory) RETURNS VARCHAR2

GETCONTENTTYPE Function
The getcontenttype function returns a content type value previously set by the
setcontenttype procedure. The getcontenttype function returns a null value when no
content type has been set inside a CLOB, NCLOB, or BLOB column.

The overloaded procedure has the following prototypes:

GETCONTENTTYPE(lob_loc => blob_locator) RETURNS VARCHAR2
GETCONTENTTYPE(lob_loc => clob_locator) RETURNS VARCHAR2

The following code shows you how to use the getcontenttype function and
setcontenttype procedure:

SQL> DECLARE
 2 /* Declare a CLOB variable. */
 3 lv_clob CLOB;
 4 /* Declare a cursor. */
 5 CURSOR c
 6 (cv_weapon_id NUMBER) IS
 7 SELECT weapon_desc
 8 FROM weapon
 9 WHERE weapon_id = cv_weapon_id;
 10 BEGIN
 11 /* Open and fetch a cursor. */
 12 OPEN c (2);
 13 FETCH c INTO lv_clob;
 14 /* Set the content type of a CLOB. */
 15 dbms_lob.setcontenttype(lv_clob,'Medieval');
 16 /* Print the content of the CLOB and content type. */
 17 dbms_output.put_line(
 18 'Clob Variable: '||dbms_lob.substr(lv_clob,10)||CHR(10)||
 19 'Content Type: '||dbms_lob.getcontenttype(lv_clob));
 20 END;
 21 /

Line 15 sets the content of the local variable, which is actually a reference to a CLOB
column in the weapon table. That means when you set the content type of the local variable, you
actually set the content type of the weapon_desc column. Line 18 prints a string literal and the
first ten characters of a CLOB column. Line 19 prints the content type that you set on line 15.

GET_DBFS_LINK Function
The get_dbfs_link function links a SecureFile to a specified path name. It doesn’t copy the
data to the path.

The overloaded procedure has the following prototypes:

GET_DBFS_LINK(lob_loc => blob_locator) RETURNS VARCHAR2
GET_DBFS_LINK(lob_loc => clob_locator) RETURNS VARCHAR2

10-ch10.indd 444 12/17/13 2:59 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 445

GET_DBFS_LINK_STATE Procedure
The get_dbfs_link_state procedure links a SecureFile to a specified path name, and it
returns three OUT-only mode parameter values. The pass-by-reference parameters are storage_
path, state, and cached. The storage_path parameter returns the storage path where the
LOB is stored in the DBFS HSM Store. The state parameter returns one of the following three
constant values: DBFS_LINK_NEVER, DBFS_LINK_NO, or DBFS_LINK_YES. The cached
parameter returns a Boolean true or false.

The overloaded procedure has the following prototypes:

GET_DBFS_LINK_STATE(lob_loc => blob_locator
 ,storage_path => virtual_directory
 ,state => state_of_link
 ,cached => true_or_false)
GET_DBFS_LINK_STATE(lob_loc => clob_locator
 ,storage_path => virtual_directory
 ,state => state_of_link
 ,cached => true_or_false)

SETCONTENTTYPE Procedure
The setcontenttype procedure sets the content type for a BLOB, CLOB, or NCLOB column.
The “GETCONTENTTYPE Function” section earlier in this chapter has an example of using the
setcontenttype procedure.

The overloaded procedure has the following prototypes:

SETCONTENTTYPE(lob_loc => blob_locator
 ,contenttype => content_type)
SETCONTENTTYPE(lob_loc => clob_locator
 ,contenttype => content_type)

SET_DBFS_LINK Procedure
The set_dbfs_link procedure sets the storage path where the LOB is stored in the DBFS HSM
store. The overloaded procedure has the following prototypes:

SETCONTENTTYPE(lob_loc => blob_locator
 ,storage_path => virtual_directory)
SETCONTENTTYPE(lob_loc => clob_locator
 ,storage_path => virtual_directory)

Review Section
This section has qualified the following points about working with the dbms_lob package.

 ■ To understand how to use the dbms_lob package, you need to understand the key
package constants and exceptions.

 ■ Many of the procedures in the dbms_lob package are pass-by-reference, which
means you need to carefully wrap their behaviors in other program units.

10-ch10.indd 445 12/17/13 2:59 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

446 Oracle Database 12c PL/SQL Programming

Supporting Scripts
This section describes programs placed on the McGraw-Hill Professional website to support the book.

The LONG to CLOB Script
The expanding_view.sql program contains the stored function to convert a LONG column
from a view to a CLOB variable.

Manage LOBs from the File System
The load_blob_from_file.sql and load_clob_from_file.sql programs show you
how to load large objects from the file system.

Manage CLOB and BLOB LOBs Through the Web
The following SQL, HTML, and PHP files work collectively to show you how to load CLOB and
BLOB data types through web applications.

 ■ create_web_clob_loading.sql

 ■ create_web_blob_loading.sql

 ■ UploadItemBlobForm.htm

 ■ UploadItemDescriptionForm.htm

 ■ ConvertBlobToImage.php

 ■ UploadItemBlob.php

 ■ UploadItemDescription.php

Manage BFILE LOBs Through the Web
The following SQL and PHP files work collectively to show you how to load BFILE data types
through web applications. The SQL files require you to run them under different ownership and
with different privileges.

 ■ get_bfilename.sql

 ■ get_canonical_bfilename.sql

 ■ get_directory_path.sql

 ■ ConvertFileToImage.php

 ■ QueryRelativeBFILE.php

 ■ ReadCanonicalFileToImage.php

Summary
This chapter has covered how PL/SQL works with BLOB, CLOB, and NCLOB internally stored large
objects, and how to define these base types as SecureFiles. You have also seen how to use and
leverage internal locators to external BFILE files. Image retrieval has been demonstrated by using
the PHP programming language.

10-ch10.indd 446 12/17/13 2:59 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 10: Large Objects 447

Mastery Check
The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix I for answers to
these questions.

True or False:

1. ___CLOB and NCLOB data types are object types and require explicit construction in a
SQL context.

2. ___CLOB and NCLOB data types are subclasses to a generic LOB class.

3. ___The BLOB data type holds binary streams.

4. ___You can assign a string literal to a CLOB inside a VALUES clause of an INSERT statement.

5. ___A stored function can convert a LONG data type to a CLOB data type.

6. ___The empty_clob function supports the CLOB, NCLOB, and BLOB data types.

7. ___You can assign strings of hexadecimal values to BLOB variables in a PL/SQL context.

8. ___A BFILE depends on a virtual directory to find the external file.

9. ___A SELECT-INTO statement can assign a string to a CLOB variable.

10. ___A SELECT-INTO statement can assign a LONG column value to a CLOB variable.

Multiple Choice:

11. Which of the following are pass-by-reference procedures in the dbms_lob package?
(Multiple answers possible)

A. lob_readonly

B. write

C. lob_readwrite

D. writeappend

E. isopen

12. Which of the following are functions in the dbms_lob package? (Multiple answers possible)

A. open

B. isopen

C. converttoblob

D. unopened_file

E. issecurefile

13. Which of the following are exceptions in the dbms_lob package? (Multiple answers
possible)

A. OPEN_TOOMANY

B. NOPRIV_DIR

C. NOEXIST_DIRECTORY

10-ch10.indd 447 12/17/13 2:59 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

448 Oracle Database 12c PL/SQL Programming

D. UNINITIALIZED_BLOB

E. GETOPTIONS

14. Which of the following are LOBs in an Oracle Database 12c database? (Multiple answers
possible)

A. A BLOB

B. A CLOB

C. A NCLOB

D. A BFILE

E. All of the above

15. Which of the following are internally stored LOBs in Oracle Database 12c? (Multiple
answers possible)

A. A BLOB

B. A CLOB

C. A NCLOB

D. A BFILE

E. All of the above

10-ch10.indd 448 12/17/13 2:59 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

CHAPTER
11

Object Types

11-ch11.indd 449 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

450 Oracle Database 12c PL/SQL Programming

This chapter examines how you define, initialize, and use objects. It lays a foundation of
what PL/SQL object types are and how object-oriented programming (OOP) works by
covering the following topics:

 ■ Object basics

 ■ Declaring object types

 ■ Implementing object bodies

 ■ White listing object types

 ■ Getters and setters

 ■ Static member methods

 ■ Comparing objects

 ■ Inheritance and polymorphism

 ■ Declaring subclasses

 ■ Implementing subclasses

 ■ Type evolution

 ■ Implementing object type collections

 ■ Declaring object type collections

 ■ Implementing object type collections

Procedural programming functions perform well-defined tasks, and they hide the details of
their operation. A collection of functions can be grouped together to perform a task that requires
a set of functions. Organized groups of functions are modules, and the process of grouping them
together is modularization. Modules are stored in PL/SQL packages.

Packages, like functions and procedures, hide their complexity through a predefined
application programming interface (API). While you can access global variables and constants
that are declared in package specifications, you can’t guard against their external change without
implementing a Singleton pattern. The sidebar “Singleton Design Pattern” in Chapter 9 explains
how you can control access with a Singleton pattern. Functions and procedures present different
problems because they control all operations on their runtime variables.

Object-oriented programming solutions fix some of the shortcomings of functions, procedures,
and packages because they maintain the operational state of their variables. Object types define
how to store data and define API operations, also known as MEMBER functions or MEMBER
procedures. Operations are generally described as methods in OOP languages (OOPLs), but they
are implemented as class member functions or procedures in PL/SQL.

Exploring where OOP started helps explain why maintaining object state is important. The
idea for OOPLs comes from the Simula language developed in Norway in the 1960s. The concept
of an object evolved from the idea that simulated events pass through many small software
factories, known as “finite-state” or “state” machines. State machines are miniature applications
that simulate real-world events.

11-ch11.indd 450 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 451

An object that moves through a series of state machines in software is analogous to a ball in a
physical pinball machine (where the software “ball” is the object). The software “ball” isn’t really
moving in response to mechanical devices but in response to state machines that simulate bumpers,
bats, and other physical objects. The velocity, spin, and direction of the software ball are its internal
state, which must be known and tracked to determine where it will strike and at what speed and
spin. These factors determine how the next bumper, or state machine, will impact the software ball.

The possible characteristics and behaviors of the software ball are its attributes and operations.
Since each ball starts with the same characteristics and behaviors, you can define a single piece
of code to contain these attributes, as a blueprint would implement them. The blueprint qualifies
the name and data types of attributes, and the name, formal parameter lists, and return types of
methods. In OOPLs, the blueprint is called an abstract class. The single piece of code implements
the blueprint as an object type. Each creation of a runtime unit of this code is an instantiation, or
creation of an object.

Objects are also state machines. They are defined by variables that have known and unknown
values, and these variables enable or constrain the operations of real-time instances. Object type
instances are objects, though realistically this formalism seems lost more often than not. Object
types and objects are also known as classes in many OOPLs. This book uses the following key
terms when describing object types, objects, and object instances:

 ■ Abstract class describes an object type because the attributes defined by the object type
must be implemented by the object body.

 ■ Object type and class interchangeably describe the implementation of an object type or
an object body.

 ■ Object and class instance interchangeably describe a runtime instance of an object body
or class instance.

NOTE
While an abstract class isn’t a prefect corollary, it’s the closest
available.

To state it in PL/SQL terms, an object type (or abstract class) mirrors the behavior of a package
specification, and an object body (or class) implements the object type (or abstract class) much
the same as a package body implements a package specification. The difference is that you’re
guaranteed to get a fresh class instance each time without using a serially reusable precompiler
directive, which is an improvement over serially reusable packages covered in Chapter 9.

Inside of these object types and class instances you have hidden data and operations. The
process of hiding data storage and operations is described by two words in object-oriented
programming. The first is encapsulation—the process of hiding the operational details; and the
second is abstraction—the process of using generalization to mask task complexity. The internal
aspects of object types are wrapped, as a birthday present is wrapped by colorful paper. The
wrappers access the hidden components through published operations, which is similar to the
package architecture described in Chapter 9.

These hidden operations and data plus their wrapper operations require OO programmers to
take some time to work out what should be an object and then to define the object type. This
analysis and design process is called object-oriented analysis and design (OOAD). OOAD
evolved from concepts in systems engineering and business process modeling. It has gone

11-ch11.indd 451 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

452 Oracle Database 12c PL/SQL Programming

through several variations from the 1960s, including symbolic representation models like Booch
and object-modeling technique (OMT). These models were merged into the Unified Modeling
Language (UML) in the 1990s.

The current method for visually representing object types is generally done in UML. Object
types are represented by a rectangle divided into three rectangular sections. The topmost section
contains the object type name. The middle section contains the list of attributes, which are
variables used in the object type. The bottom section contains the list of methods that describes
the API to the object type or object. Figure 11-1 contains a sample UML diagram describing the
SomeClass object type.

OOP has two types of APIs in object types: static and instance. Static methods allow you to
access object type variables and methods without creating an instance of a class. Static variables
aren’t available in PL/SQL. You can only implement static methods in PL/SQL, such as package
functions and procedures.

Instance methods let you access object variables and methods of an instance of a class. They
are not static and they are only available after you create an instance of an object type. Then, they
are capable of managing class events.

The static area of objects is generally limited to variables and functions that are common
features across all class instances. You can use static functions to return a copy of an instantiated
class, which implements the OOP Concrete Builder pattern. Likewise, you can use static member
functions or procedures to return what would otherwise be an instance variable. The section
“Static Member Methods” later in this chapter contains an example of returning an instance as a
return type. That example shows you how to implement a Concrete Factory design pattern in
PL/SQL.

Oracle Database 12c, like its predecessors since Oracle 9i Database, lets you create object
types and bodies as SQL data types. You can use these object types as SQL data types in four
situations: as a column data type when you define a table, as the data type of an object attribute
when you declare an object type, as a formal parameter data type in the signature of a function or
procedure, and as a return type for a function.

Oracle Database 12c qualifies objects as either persistent or transient. The qualification is
made by assessing the lifetime of the objects.

Persistent objects are further qualified by dividing them into stand-alone objects and embedded
objects. Stand-alone objects are stored in a database table and have a unique object identifier.
Embedded objects are not stored in a database table but rather are embedded in another Oracle

#MEMBER_FUNCTION() : VARCHAR2
#MEMBER_PROCEDURE() : VARCHAR2
#STATIC_FUNCTION() : VARCHAR2
#STATIC_PROCEDURE() : VARCHAR2

#Attribute1 : VARCHAR2
#Attribute2 : VARCHAR2

SomeClass You list the class name in title case.

You list class attributes in case sensitive
text, followed by a colon and their datatype.

You list class methods in case sensitive
text, followed by a colon and their datatype.

FIGURE 11-1. UML class diagram

11-ch11.indd 452 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 453

structure, like another object type, package, function, or procedure. Embedded objects have a
lifetime limited to the runtime of the programming unit where they’re deployed. You don’t have an
object identifier for embedded objects, which makes using them through the OCI difficult. Refer
to the Appendix B sections “Object Data Type,” “Object Types,” and “Nested Collection Types”
for more information about persistent objects. You can also find more details about persistent objects
in the Oracle Database Object-Relational Developer’s Guide 12c Release. Persistent objects have an
indefinite lifetime because they exist as long as they’re stored in the database as column values.

Transient objects are instances of objects that aren’t stored in the database. They have a lifetime
limited to the duration of their use in a PL/SQL block. These are the primary type of objects you’ll
learn about in this chapter.

You will now learn how to define and implement objects in PL/SQL. While the sections can
be read independently for reference purposes, they are positioned to be read sequentially.

Object Basics
The same naming requirements as those used with other objects in the database apply to objects.
Object type names in PL/SQL must start with an alphabetical character and consist of only
alphabetical characters, numbers, or underscores. Object names share the same name space as
all other objects except database triggers.

Scope for object types is the same as for other stand-alone functions or procedures, and
package functions and procedures. It is also limited to the defining schema. You must grant the
EXECUTE privilege on an object type if you want another schema to be able to use it.

Classes, unlike functions, cannot have return types. Class instantiation returns a copy or
instance of a class. While object construction generally occurs as the source operand on the right
side of an assignment operator, you can dynamically construct an object instance as an actual
parameter to a function, or as a member of a collection. The existence of object instances is
limited to the duration of the call, or its membership as a component of a collection.

You will find that objects are similar to those in many other languages but different enough
that you may want to review the PL/SQL object operators at this point. Table 4-1 in Chapter 4
provides you with a list of PL/SQL delimiters that also support example programs in this chapter.

Having met the general concepts, you will now work through the specifics of implementing
transient object types in PL/SQL. You will begin by learning how to declare, implement, instantiate,
and white list objects. Then, you’ll examine good OOP techniques, such as using getters, setters,
static methods, and comparative class methods.

Declaring Objects Types
PL/SQL object types, like package specifications, have a prototype definition, which includes
three specialized functions—CONSTRUCTOR, MAP, and ORDER. A CONSTRUCTOR function lets
you create an instance of an object. The MAP and ORDER functions allow you to sort objects inside
SQL statements, or sort object instances inside a varray or table collection.

You can implement one or more CONSTRUCTOR functions, but the signatures must follow the
overloading rules qualified in the “Overloading” sidebar in Chapter 9 plus one additional rule:
any parameter name in a CONSTRUCTOR function must match an attribute name and data type as
declared by the object type’s definition. CONSTRUCTOR functions return an instance of the object
type, which is known in PL/SQL as SELF, not the Java this. Like other keywords in PL/SQL,

11-ch11.indd 453 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

454 Oracle Database 12c PL/SQL Programming

SELF isn’t case sensitive like Java’s this. CONSTRUCTOR functions can also use PRAGMA instructions
to restrict their behaviors. As for the MAP and ORDER functions, you can only implement one or
the other in any object type.

You can define functions with a CONSTRUCTOR, MEMBER, or STATIC keyword. A MEMBER
function or procedure works with instance data, while a STATIC function or procedure works
without instantiating an instance of the object. Parameter lists for MEMBER or STATIC functions
and procedures follow the same rules as those for stand-alone functions and procedures, as
qualified in Chapter 6.

Attributes (instance variables) and methods are listed in a single parameter list that applies to
the object type. You can’t declare object type variables as you can package variables. All attributes
are instance-only variables, which means you can access them only after you construct an object
instance.

You need to list elements in the following order: attributes, constructors, functions, procedures,
and the MAP or ORDER function. If you try to put an attribute at the end of the list, you’ll receive
a PLS-00311 error telling you that the declaration of the object type is malformed because you
have elements out of sequence.

The prototype for object types is

CREATE [OR REPLACE] OBJECT TYPE object_name [UNDER parent_object_type]
[EDITIONABLE | NONEDITIONABLE]
[AUTHID {DEFINER | CURRENT_USER}]
[ACCESSIBLE BY
({FUNCTION | PROCEDURE | PACKAGE | TYPE} [schema.]unit_name)
[,[{FUNCTION | PROCEDURE | PACKAGE | TYPE}] [schema.]unit_name)]
[,...]])] IS OBJECT
([instance_variables {sql_datatype | plsql_datatype}]
, [CONSTRUCTOR FUNCTION constructor_name
 [(parameter_list)] RETURN RESULT AS SELF
, [{[OVERRIDING] MEMBER | STATIC} FUNCTION function_name
 [(parameter_list)] RETURN { sql_data_type | plsql_data_type }
, [{[OVERRIDING] MEMBER | STATIC} PROCEDURE procedure_name
 [(parameter_list)]
,{[MAP FUNCTION map_name RETURN { CHAR | DATE | NUMBER | VARCHAR2 } |
 [ORDER FUNCTION order_name RETURN { sql_data_type | plsql_data_type }}])
[NOT] INSTANTIABLE [NOT] FINAL;
/

NOTE
The OR REPLACE clause is very important because without it you
must drop the object type before attempting to redeclare it.

Oracle object types are EDITIONABLE from Oracle Database 11g, Release 2 forward. The
EDITIONABLE clause lets you create concurrent versions of object types. With concurrent
versions of object types you can support current and future software requirements. Together, they
let you concurrently test and migrate users from the old edition to the new edition by simply
switching editions.

11-ch11.indd 454 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 455

The ACCESSIBLE BY clause, which is new to Oracle Database 12c, lets you white list the
callers of the object type. The “White Listing Object Types” section later in this chapter shows you
how to white list your object types.

Any MEMBER or STATIC function can return a scalar or composite data type. The composite
data types can be any object type or SQL collection data type. A MEMBER or STATIC function
can’t return a collection of a PL/SQL record type.

The INSTANTIABLE clause is the default behavior. The INSTANTIABLE clause makes it
possible for you to create instances of an object type. You limit an object type to only STATIC
functions and STATIC procedures when you make an object type NOT INSTANTIABLE.

Objects also are FINAL by default. You can’t subclass a FINAL object type. That’s why all the
object type examples use a NOT FINAL clause, which makes object types subclassable.

You can build an object type with the following statement:

A MEMBER function works
only for a class instance.

Attributes are declared as
privately scoped class

instance variables.

CREATE OR REPLACE TYPE hello_there IS OBJECT

(who VARCHAR2(20)

, CONSTRUCTOR FUNCTION hello_there

RETURN SELF AS RESULT

, CONSTRUCTOR FUNCTION hello_there
 (who VARCHAR2)

RETURN SELF AS RESULT

, MEMBER PROCEDURE to_string)
INSTANTIABLE NOT FINAL;

/

Constructor functions
can be overloaded,
but they must have
the same name as
the name of the
Object Type.

Constructor
functions

always return
an instance

of an object.

The hello_there basic class has two CONSTRUCTOR functions and only the to_string
instance method. CONSTRUCTOR function names must match the object type name, like Java
classes. One CONSTRUCTOR function creates an instance of the object without actual call
parameters, while the other requires a mandatory parameter to create an instance of the object
type. If you changed the mandatory parameter in the CONSTRUCTOR function to an optional
parameter, you could trigger a PLS-00307 exception at runtime. This happens because the
signature of a no-parameter CONSTRUCTOR function and that of a CONSTRUCTOR function with
one optional parameter are equal at runtime when you don’t supply a value. A call made with a
parameter would resolve and construct an object instance.

NOTE
The compiler raises a PLS-00658 error when you forget to match
your CONSTRUCTOR function to the name of the object type.

11-ch11.indd 455 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

456 Oracle Database 12c PL/SQL Programming

The MEMBER procedure is only accessible once you’ve created an object instance. This object
is instantiable (capable of creating an object instance) and NOT FINAL (capable of being
extended or subtyped). Subtypes of object types are also called type dependents by the Oracle
documentation. All object type variables are instance variables. As such, they are not available
through static functions and procedures.

After you create an object type, you examine it by using the DESCRIBE command, like

SQL> describe HELLO_THERE

You get the following back to your console:

HELLO_THERE is NOT FINAL
 Name Null? Type
 --- -------- -------------------
 WHO VARCHAR2(20)
METHOD

 FINAL CONSTRUCTOR FUNCTION HELLO_THERE RETURNS SELF AS RESULT
METHOD

 FINAL CONSTRUCTOR FUNCTION HELLO_THERE RETURNS SELF AS RESULT
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 WHO VARCHAR2 IN
 MEMBER PROCEDURE TO_STRING

The output is different from what you get describing a table, view, function, procedure, or
package. You get a list of all instance variables, class CONSTRUCTOR functions, and member
functions and procedures.

The next section shows you how to implement this declaration. You’ll also see how to
construct an instance and use it in a PL/SQL block.

Implementing Object Bodies
PL/SQL object bodies, like package bodies, must implement their declarations exactly. This means
you must provide an implementation in the object body for everything you have in the object
type. Unlike when implementing declarations for package bodies, you can’t add private methods
known only to the object body. Nor can you add the equivalent of package-level variables inside
an object body implementation. The only attributes, functions, and procedures in object bodies
are those declared in the object type. This will become clearer later in this chapter when we
discuss how you create subtypes or specializations of your object types.

NOTE
Unlike the object types in some OOPLs, Oracle Database 12c object
types don’t support inner classes.

11-ch11.indd 456 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 457

Inside of functions and procedures, you can define named functions and procedures in the
declaration block and define anonymous block programs in the execution block. You address
the attributes of object types by prefacing them with SELF, a component selector (.), and the
attribute name.

The following is the prototype for implementing an object body:

CREATE [OR REPLACE] OBJECT TYPE object_name
[AUTHID {DEFINER | CURRENT_USER}] IS
([CONSTRUCTOR FUNCTION constructor_name
 [(parameter_list)] RETURN RESULT AS SELF IS
 BEGIN
 execution_statements;
 END [constructor_name];
 [{MEMBER | STATIC} FUNCTION function_name
 [(parameter_list)] RETURN { sql_data_type | plsql_data_type } IS
 BEGIN
 execution_statements;
 END [function_name];
 [{MEMBER | STATIC} PROCEDURE procedure_name IS
 [(parameter_list)]
 BEGIN
 execution_statements;
 END [procedure_name];
 {[MAP FUNCTION map_name RETURN { CHAR | DATE | NUMBER | VARCHAR2 } IS
 BEGIN
 execution_statements;
 END [procedure_name]; |
 [ORDER FUNCTION order_name RETURN { sql_data_type | plsql_data_type } IS
 BEGIN
 execution_statements;
 END [procedure_name];}])
END [object_name];

An object body implementation is very similar to a package body implementation, except it
excludes local variables and components. As mentioned earlier, the MAP and ORDER functions
are specialized units, and you can only implement whichever one was declared in the object type.

TIP
Exclude the object name at the end of the object body, because it
sometimes suppresses meaningful errors and causes compilation
failure.

There are a few subtle changes between traditional functions and procedures and object
bodies. The least subtle is the idea of an object instance. An object instance is represented inside
the object body as SELF. SELF is a departure from the traditional this keyword from Java and
other OOPLs. Object instance attributes are elements of SELF, just as field values are elements of

11-ch11.indd 457 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

458 Oracle Database 12c PL/SQL Programming

a record structure. The same syntax rules apply for assigning and retrieving values, as shown in
the hello_there object body.

Construct a class instance by
calling the overriding constructor
with an actual parameter.

CREATE OR REPLACE TYPE BODY hello_there IS

 CONSTRUCTOR FUNCTION hello_there --Default constructor.
 RETURN SELF AS RESULT IS

hello HELLO_THERE := hello_there('Generic Object');

 BEGIN

self := hello;

 RETURN;

 END hello_there;

 CONSTRUCTOR FUNCTION hello_there --Overriding constructor.

 (who VARCHAR2) RETURN SELF AS RESULT IS

 BEGIN

self.who := who;

 RETURN;

 END hello_there;

 MEMBER PROCEDURE to_string IS

 BEGIN

 dbms_output.put_line('Hello '||self.who||'.');

 END to_string;
END hello_there;

/

Assign the local class instance to
the internal SELF instance.

Assign the actual parameter to the class instance variable.

Read the class
instance variable.

The parameter_list element of an object body is deceptively simple. The parameters in
the parameter list of an object body must match the attributes in the attribute list of an object
type. This means that you can’t define a CONSTRUCTOR function in an object body that uses any
parameter name that isn’t also an attribute name in the object type. If you do so, your object body
will fail to parse correctly, and will fail compilation with a PLS-00307 exception. The exception
message tells you that “too many declarations of 'object_type_name' match this call.” The “too
many declarations” exception message means that you have at least one CONSTRUCTOR function
that uses a parameter value not found in the list of object type attributes.

When you define an object type, you can create a CONSTRUCTOR function with a parameter
name that is not found in the list of attributes. However, you shouldn’t do so, because although
the object type parses and compiles successfully, any attempt to implement that design as an
object body fails.

Object types should generally provide a default CONSTRUCTOR function. Default CONSTRUCTOR
functions typically have no formal parameters. In objects where the formal parameters are
required to make instances useful, the default CONSTRUCTOR function calls the CONSTRUCTOR
function with default parameters. This is done in an object body by four steps. First, you create a
local variable of the object type. Second, you instantiate the local (internal) class with default
actual parameters. Third, you assign the transient local object to the instance itself. Fourth, you
return a handle to the current object. The RETURN statement works differently in an object than it
does in a stand-alone function. It never takes an argument, because it is returning a copy of the
object type.

11-ch11.indd 458 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 459

The behavior of managing a default CONSTRUCTOR function can be tricky, but they simplify
the construction of object instances. The default CONSTRUCTOR function hides (from the eyes of
the consuming developer) the details of creating an object instance. The overriding CONSTRUCTOR
function provides the values to build an object instance but hides the details of how to do so.

Object Type Arguments and CONSTRUCTOR Functions Must Agree
As mentioned, the names of CONSTRUCTOR function parameters must match the names and
data types defined in the object type’s CONSTRUCTOR function prototype. Let’s say you violate
this rule when you define the object type, like this change to the example shown in the
previous illustration:

SQL> CREATE OR REPLACE TYPE hello_there IS OBJECT
 2 (who VARCHAR2(20)
 3 , CONSTRUCTOR FUNCTION hello_there
 4 RETURN SELF AS RESULT
 5 , CONSTRUCTOR FUNCTION hello_there
 6 (bad VARCHAR2)
 7 RETURN SELF AS RESULT
 ...
 11 INSTANTIABLE NOT FINAL;
 12 /

Line 2 defines who as the only attribute of the hello_there object type. Line 6
violates the rule of name agreement between object type attributes and CONSTRUCTOR
function parameter names. Oddly, it compiles without a problem. Personally, I believe this
behavior should be considered a bug, but it’s been the same through several Oracle
Database releases. The hello_there object type compiles successfully.

You get a compilation error when you breach the rule of name agreement between
object type attributes and CONSTRUCTOR function parameter names. Let’s say you try to
write a CONSTRUCTOR function that uses parameter name that violates the rule of name
agreement, like:

SQL> CREATE OR REPLACE TYPE BODY hello_there IS
 ...
 10 CONSTRUCTOR FUNCTION hello_there
 11 (bad VARCHAR2) RETURN SELF AS RESULT IS
 12 BEGIN
 13 self.who := bad;
 14 RETURN;
 15 END hello_there;
 ...
 32 END;
 33 /

(continued)

11-ch11.indd 459 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

460 Oracle Database 12c PL/SQL Programming

Lines 10 and 11 declare the CONSTRUCTOR function with a bad parameter name,
which is also bad because it doesn’t agree with the one who attribute of the hello_there
object type. It raises the following error at compilation time:

LINE/COL ERROR
-------- ---
--
4/11 PL/SQL: Item ignored
4/26 PLS-00307: too many declarations of 'HELLO_THERE' match this
call
6/5 PL/SQL: Statement ignored
6/13 PLS-00320: the declaration of the type of this expression is
 incomplete or malformed

The key error occurs on line 11, which is where the bad parameter name occurs. The
second meaningful error occurs on line 26. Its meaning is less clear. It’s raised when the
parsing gets to the end of the list of functions and procedures. The error tells you that there
are too many declarations of the hello_there object type’s CONSTRUCTOR function.
That’s true because Oracle Database 11g forward creates an implicit CONSTRUCTOR
function with the who argument when one isn’t found during parsing. Since the code
provides one CONSTRUCTOR function with a bad parameter name and Oracle provides
another with the who parameter name, there are two CONSTRUCTOR functions with the
same signature. Now you can avoid a tedious and less obvious error that can waste
developer time.

The to_string procedure lets you see the contents of the constructed class. You can test the
class by calling the default CONSTRUCTOR function, as shown

SQL> SET SERVEROUTPUT ON SIZE 1000000
SQL> DECLARE
 2 hello HELLO_THERE := hello_there; -- hello_there() works too!
 3 BEGIN
 4 hello.to_string();
 5 END;
 6 /

Line 2 constructs an instance of the hello_there object type by using the default
CONSTRUCTOR function. You also can construct an instance with or without empty parentheses,
like function and procedure calls in PL/SQL blocks. You call the member procedure just as you
would a package procedure.

Line 4 calls a member procedure of a hello_there instance and prints

Hello Generic Object.

11-ch11.indd 460 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 461

The next anonymous block calls the overriding CONSTRUCTOR function. This provides a
non-default parameter to the instance. The code is

SQL> DECLARE
 2 hello HELLO_THERE := hello_there('Overriding Object');
 3 BEGIN
 4 hello.to_string();
 5 END;
 6 /

Line 2 constructs an instance of the hello_there object type with a static string. As a rule,
you shouldn’t construct an instance in the declaration block unless it’s with a string literal. Line 4
calls the same to_string() member procedure as the prior example. This time it prints

 Hello Overriding Object.

This section has shown you how to implement object bodies. You have also learned how to
construct an object instance, and how to distinguish between a default CONSTRUCTOR function
and an overriding CONSTRUCTOR function.

White Listing Object Types
As introduced in Chapter 2 and expanded upon in Chapters 8 and 9, white listing is a new
capability in Oracle Database 12c that enables you to qualify who can call a function, procedure,
package, or object type.

The following defines a hello_there object type that white lists only a sorter function. Any
other caller that attempts to instantiate a hello_there object type fails because they have
insufficient privileges.

SQL> CREATE OR REPLACE TYPE hello_there
 2 ACCESSIBLE BY (FUNCTION white_hat) IS OBJECT
 3 (who VARCHAR2(20)
 4 , CONSTRUCTOR FUNCTION hello_there
 5 RETURN SELF AS RESULT
 6 , CONSTRUCTOR FUNCTION hello_there
 7 (who VARCHAR2)
 8 RETURN SELF AS RESULT
 9 , MEMBER FUNCTION get_who RETURN VARCHAR2
 10 , MEMBER PROCEDURE set_who (who VARCHAR2)
 11 , MEMBER FUNCTION to_string RETURN VARCHAR2)
 12 INSTANTIABLE NOT FINAL;
 13 /

Line 2 uses the ACCESSIBLE BY clause to white list the white_hat function. You create
only object types with the ACCESSIBLE BY clause because object bodies inherit the behavior
from the object type. Line 11 changes a to_string procedure to a to_string function,
which I’m doing to support my testing of the object type.

11-ch11.indd 461 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

462 Oracle Database 12c PL/SQL Programming

The illustration in the previous section provides the hello_there object body, but it doesn’t
show the new to_string function:

 27 MEMBER FUNCTION to_string RETURN VARCHAR2 IS
 28 BEGIN
 29 RETURN 'Hello '||self.who;
 30 END to_string;

Line 27 implements the to_string function from the object type. Line 29 returns a
“Hello Whomever” (italic for the placeholder only) salutation.

The next anonymous block calls the now white-listed overriding CONSTRUCTOR function,
like it did before it was white listed. The block’s code is

SQL> DECLARE
 2 hello HELLO_THERE := hello_there('Overriding Object');
 3 BEGIN
 4 hello.to_string();
 5 END;
 6 /

It fails with the following error:

 hello HELLO_THERE := hello_there('Overriding Object');
 *
ERROR at line 2:
ORA-06550: line 2, column 9:
PLS-00904: insufficient privilege to access object HELLO_THERE

Line 2 can’t construct an instance of the hello_there object type because it isn’t white
listed with privileges. Now, let’s create the white_hat function, because it’s white listed in the
hello_there object type:

SQL> CREATE OR REPLACE FUNCTION white_hat
 2 (pv_string VARCHAR2) RETURN VARCHAR2 IS
 3 hello HELLO_THERE;
 4 BEGIN
 5 /* Instantiate a new instance of hello_there. */
 6 hello := hello_there(NVL(pv_string,'Overriding Object'));
 7 RETURN hello.to_string();
 8 EXCEPTION
 9 WHEN OTHERS THEN
 10 RETURN NULL;
 11 END;
 12 /

Changing the calling program from an anonymous block to a named block lets us parameterize
the white_hat function. Line 3 now declares a hello variable of the hello_there object type,
but the declaration line no longer initializes an instance of the hello_there object type. That’s
true because the input parameter to the CONSTRUCTOR function is now a dynamic value, and as
qualified in the section “Anonymous Blocks” in Chapter 3, the assignment should be made only in

11-ch11.indd 462 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 463

an execution block. Line 6 initializes the hello_there object type in the execution block and
uses an NVL built-in as a precaution against a null value input.

Now, you can call the white_hat function with the following query:

SQL> SELECT white_hat('the Lone Ranger') AS "Result"
 2 FROM dual;

This time it prints

Result

 Hello the Lone Ranger.

Let’s look at how the white_hat function’s error handling works for dynamic inputs. We can
do that by changing the short string literal of “the Lone Ranger” to one longer than the maximum
size of the hello_there object type’s who attribute. Realistically, the object body should have
its own exception handling, but the exception blocks were left out to keep the examples as short
as possible.

The following query causes an exception in the CONSTRUCTOR function of the hello_there
object type, which is caught by an exception block of the white_hat function:

SQL> SELECT white_hat('the Long Ranger and Tonto') AS "Result"
 2 FROM dual;

The query prints a null result because the exception block returns a null value.
This section has shown you how to white list object types. It also has shown you how you can

call an object type inside a stored function while passing a dynamic value to the object type’s
CONSTRUCTOR function.

Getters and Setters
Getters and setters are common OOP terms indicating that you get or set a class instance variable.
In PL/SQL you need to write an individual get_variable_name() function and set_
variable_name() function for each class attribute.

The following modified hello_there object type extends the previous hello_there
object type by adding a get_who() member function and a set_who() member procedure.
There’s no magic in choosing a function for the getter because you want to take something out of
the object instance. Functions return expressions, as you’ll find in Chapter 6. The setter can be
either a function or a procedure, but more often than not it’s a procedure. Setter method calls
don’t generally return a value. In most OOPLs, you implement setters as functions with a void
return type.

The modified hello_there object type is

SQL> CREATE OR REPLACE TYPE hello_there IS OBJECT
 2 (who VARCHAR2(20)
 3 , CONSTRUCTOR FUNCTION hello_there
 4 RETURN SELF AS RESULT
 5 , CONSTRUCTOR FUNCTION hello_there
 6 (who VARCHAR2)
 7 RETURN SELF AS RESULT

11-ch11.indd 463 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

464 Oracle Database 12c PL/SQL Programming

 8 , MEMBER FUNCTION get_who RETURN VARCHAR2
 9 , MEMBER PROCEDURE set_who (pv_who VARCHAR2)
 10 , MEMBER PROCEDURE to_string)
 11 INSTANTIABLE NOT FINAL;
 12 /

The implementation of these two member methods is straightforward. The setter on line 9
passes a new value for who, while the getter on line 8 retrieves the current value.

The hello_there object body is

SQL> CREATE OR REPLACE TYPE BODY hello_there IS
 2 CONSTRUCTOR FUNCTION hello_there RETURN SELF AS RESULT IS
 3 /* Declare an instance if called without a parameter. */
 4 hello HELLO_THERE := hello_there('Generic Object');
 5 BEGIN
 6 /* Instantiate this object type. */
 7 self := hello;
 8 RETURN;
 9 END hello_there;
 10 CONSTRUCTOR FUNCTION hello_there
 11 (who VARCHAR2) RETURN SELF AS RESULT IS
 12 BEGIN
 13 /* Instantiate this object type. */
 14 self.who := who;
 15 RETURN;
 16 END hello_there;
 17 MEMBER FUNCTION get_who RETURN VARCHAR2 IS
 18 BEGIN
 19 /* Return an instance variable. */
 20 RETURN self.who;
 21 END get_who;
 22 MEMBER PROCEDURE set_who (pv_who VARCHAR2) IS
 23 BEGIN
 24 /* Set an instance variable. */
 25 self.who := pv_who;
 26 END set_who;
 27 MEMBER PROCEDURE to_string IS
 28 BEGIN
 29 /* Print an identifying statement. */
 30 dbms_output.put_line('Hello '||self.who||'.');
 31 END to_string;
 32 END;
 33 /

The setter on lines 22 through 26 assigns a new value from the actual parameter, and the
getter on lines 17 through 21 grabs the current class instance value. The following anonymous
block demonstrates calling these new member methods:

SQL> DECLARE
 2 hello HELLO_THERE := hello_there('Overriding Object');
 3 BEGIN

11-ch11.indd 464 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 465

 4 hello.to_string();
 5 hello.set_who('Newbie Object');
 6 dbms_output.put_line(hello.get_who);
 7 hello.to_string();
 8 END;
 9 /

Line 2 instantiates a local instance of the hello_there object type. Line 5 calls the set_who
setter procedure, and line 6 calls the get_who getter function. The anonymous block successfully
resets and gets the values as shown:

Hello Overriding Object.
Newbie Object.
Hello Newbie Object.

This section has shown you how to implement and use getters and setters.

Static Member Methods
The static functions and procedures let you use an object type like a standard package. Static
methods can create instances of their object type, but they are limited to working with instances
of the object like external PL/SQL blocks.

The nice thing about static methods is that they can provide developers with a standard look
and feel of procedural programming. You can write static methods to perform standard programming
tasks, or to return an instance of their class. Writing a function that returns a class instance can
simplify how you use objects because you don’t have to worry about long parameter lists in the
CONSTRUCTOR functions.

The following declares an object type that includes a static function:

SQL> CREATE OR REPLACE TYPE item_object IS OBJECT
 2 (item_title VARCHAR2(60)
 3 , item_subtitle VARCHAR2(60)
 4 , CONSTRUCTOR FUNCTION item_object
 5 RETURN SELF AS RESULT
 6 , CONSTRUCTOR FUNCTION item_object
 7 (item_title VARCHAR2
 8 , item_subtitle VARCHAR2) RETURN SELF AS RESULT
 9 , STATIC FUNCTION get_item_object (pv_item_id NUMBER) RETURN ITEM_OBJECT
 10 , MEMBER FUNCTION to_string RETURN VARCHAR2)
 11 INSTANTIABLE NOT FINAL;
 12 /

The static function get_item_object on line 9 takes one parameter, pv_item_id. The
parameter doesn’t map to the parameter lists in the CONSTRUCTOR functions, but the static function
returns an instance of the item_object object type. This means that the static function must
create an instance of the object type as a local variable before it can return one to a calling program.

External programs create an instance of the object type before they can act on it. The static
get_item_object function lets you initialize an object instance without calling the CONSTRUCTOR
function. In fact, you can assign the result from the get_item_object function to a variable
declared as the same object type. The result is an active transient object instance.

11-ch11.indd 465 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

466 Oracle Database 12c PL/SQL Programming

The following implements the object body of the item_object class:

SQL> CREATE OR REPLACE TYPE BODY item_object IS
 2 CONSTRUCTOR FUNCTION item_object
 3 RETURN SELF AS RESULT IS
 4 /* Declare an instance if called without a parameter. */
 5 item ITEM_OBJECT :=
 6 item_object('Generic Title','Generic Subtitle');
 7 BEGIN
 8 /* Instantiate this object type. */
 9 self := item;
 10 RETURN;
 11 END item_object;
 12 CONSTRUCTOR FUNCTION item_object
 13 (item_title VARCHAR2
 14 , item_subtitle VARCHAR2) RETURN SELF AS RESULT IS
 15 BEGIN
 16 /* Instantiate by attribute. */
 17 self.item_title := item_title;
 18 self.item_subtitle := item_subtitle;
 19 RETURN;
 20 END item_object;
 21 STATIC FUNCTION get_item_object
 22 (pv_item_id NUMBER) RETURN ITEM_OBJECT IS
 23 /* Create a local item_object instance. */
 24 item ITEM_OBJECT;
 25 /* Create a dynamic cursor. */
 26 CURSOR c (cv_item_id NUMBER) IS
 27 SELECT i.item_title, i.item_subtitle
 28 FROM item i
 29 WHERE i.item_id = cv_item_id;
 30 BEGIN
 31 /* Read one row into the object type. */
 32 FOR i IN c (pv_item_id) LOOP
 33 item := item_object(i.item_title,i.item_subtitle);
 34 END LOOP;
 35 RETURN item;
 36 END get_item_object;
 37 MEMBER FUNCTION to_string RETURN VARCHAR2 IS
 38 BEGIN
 39 /* Print an identifying statement. */
 40 RETURN '['||self.item_title||']['||self.item_subtitle||']';
 41 END to_string;
 42 END;
 43 /

Lines 21 through 36 list the implementation of the get_item_object STATIC function.
The get_item_object STATIC function uses a single formal parameter that finds a unique
row in the item table. The static function uses the values from the local c cursor to construct an
instance of the item_object object type. It then returns the local item instance variable as its
return value.

11-ch11.indd 466 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 467

You can test the static method by using the following anonymous block program:

BEGIN

 dbms_output.put_line(item_object.get_item_object(1050).to_string);

END;
/

The STATIC function is chained as an attribute of
the object type. You call it without �rst declaring a
class instance variable. It returns an instance of
the class (or object type).

Object Type STATIC function

The to_string function is an
instance only function. It runs
on the returned instance of the
item_object type.

The call to the object involves a couple of component selectors. Oracle refers to this process
of connecting multiple pieces together with periods as attribute chaining. You call the static
get_item_object function by referencing the schema-level item_object object type. The
result of the static function call is a valid instance of the object type. You can then add a period
and a call to the to_string instance function.

NOTE
The to_string function call works with or without parentheses, like
ordinary stand-alone and package functions.

It prints

[Pirates of the Caribbean][The Curse of the Black Pearl]

This section has shown you how to declare and implement a static function. You can use this
approach to accomplish building other static methods that let you leverage object types in your
database.

Comparing Objects
Comparing object instances is very important in OOP. In the Java programming language, an
equals method is provided for the root node of its single object hierarchy. Good programming
practice dictates that you should override it when you implement your own classes that extend
the behavior of a base object type class.

Oracle object types don’t have a root node that you extend in the same way as you can
extend the Java root node. You have a master template that you implement through SQL DDL
syntax. Oracle does provide two predefined member functions, MAP and ORDER. You can
implement only one MAP or ORDER function in any object type. If you attempt to define both, the
object type specification raises a PLS-00154 error during compilation. The error states that “An
object type may have only 1 MAP or 1 ORDER method.” The MAP member function doesn’t take a
formal parameter, and can only return a scalar type of CHAR, DATE, NUMBER, or VARCHAR2.

11-ch11.indd 467 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

468 Oracle Database 12c PL/SQL Programming

TIP
Subclasses can’t override the MAP or ORDER functions found in a
parent class.

The benefit of a MAP member function is limited. It limits you to testing for equality based on
a single number that identifies a class instance. The ORDER member function is more flexible
because it can take parameters of any SQL data type. However, the ORDER member function only
returns a NUMBER data type. The parameter is the advantage, and the return type really isn’t a
disadvantage. You may recall that many built-in functions return a number so that you can use
them in SQL and PL/SQL. If the ORDER member function returned a BOOLEAN data type, it would
only let you compare objects in PL/SQL.

The next two subsections demonstrate comparing objects with MAP and ORDER member
functions. You’ll have to choose what works best for you, but the ORDER member function is
recommended as the better option.

Comparing with the MAP Member Function
As discussed, the MAP member function validates against a scalar type of CHAR, DATE, NUMBER,
or VARCHAR2 data type. The MAP member function works best when a single attribute value of
a class instance determines whether it is equal to or greater than another object instance. When
more than one attribute, or a relationship of attributes, determines ordering, the MAP member
function fails to allow you to sort objects easily.

You can accomplish a barebones example by declaring only CONSTRUCTOR and MAP member
functions. The following declares the map_comparison object type:

SQL> CREATE OR REPLACE TYPE map_comp IS OBJECT
 2 (who VARCHAR2(20)
 3 , CONSTRUCTOR FUNCTION map_comp
 4 (who VARCHAR2) RETURN SELF AS RESULT
 5 , MAP MEMBER FUNCTION equals RETURN VARCHAR2)
 6 INSTANTIABLE NOT FINAL;
 7 /

MAP is a keyword designating the function for sorting operations. MAP precedes the definition
of an instance function, as shown on line 5. The implementation of the map_comp object type is

SQL> CREATE OR REPLACE TYPE BODY map_comp IS
 2 CONSTRUCTOR FUNCTION map_comp
 3 (who VARCHAR2) RETURN SELF AS RESULT IS
 4 BEGIN
 5 self.who := who;
 6 RETURN;
 7 END map_comp;
 8 MAP MEMBER FUNCTION equals RETURN VARCHAR2 IS
 9 BEGIN
 10 RETURN self.who;
 11 END equals;
 12 END;
 13 /

11-ch11.indd 468 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 469

Lines 8 through 11 show the MAP function, which simply returns the single attribute of the
MAP_COMP object type. The test program creates a collection of object types in mixed alphabetical
order, and then runs the items through a bubble sort operation to put them in ascending order.
The code follows:

SQL> DECLARE
 2 /* Declare a collection of an object type. */
 3 TYPE object_list IS TABLE OF MAP_COMP;
 4 /* Initialize four objects in mixed alphabetical order. */
 5 lv_obj1 MAP_COMP := map_comp('Ron Weasley');
 6 lv_obj2 MAP_COMP := map_comp('Harry Potter');
 7 lv_obj3 MAP_COMP := map_comp('Luna Lovegood');
 8 lv_obj4 MAP_COMP := map_comp('Hermione Granger');
 9 /* Define a collection of the object type. */
 10 lv_objs OBJECT_LIST := object_list(lv_obj1,lv_obj2,lv_obj3,lv_obj4);
 11 /* A local procedure that swaps A and B. */
 12 PROCEDURE swap (a IN OUT MAP_COMP, b IN OUT MAP_COMP) IS
 13 c MAP_COMP;
 14 BEGIN
 15 c := b;
 16 b := a;
 17 a := c;
 18 END swap;
 19 BEGIN
 20 /* A bubble sort. */
 21 FOR i IN 1..lv_objs.COUNT LOOP
 22 FOR j IN 1..lv_objs.COUNT LOOP
 23 IF lv_objs(i).equals = LEAST(lv_objs(i).equals,lv_objs(j).equals) THEN
 24 swap(lv_objs(i),lv_objs(j));
 25 END IF;
 26 END LOOP;
 27 END LOOP;
 28 /* Print reorderd objects. */
 29 FOR i IN 1..lv_objs.COUNT LOOP
 30 dbms_output.put_line(lv_objs(i).equals);
 31 END LOOP;
 32 END;
 33 /

Lines 12 through 18 define a local pass-by-reference swap procedure. The swap procedure
performs a bubble sort. The anonymous block produces the following output:

Harry Potter
Hermione Granger
Luna Lovegood
Ron Weasley

The LEAST function determines whether the outer loop element MAP member function result
is less than the inner loop element. When the result is less, the LEAST function swaps the values
until the least of the entire set is the first element in the collection, and the rest are in ascending

11-ch11.indd 469 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

470 Oracle Database 12c PL/SQL Programming

order. While bubble sorts are inefficient, they’re nice tools for demonstrating concepts. Changing
the comparison operation on line 23 to not equal (<>) would print a descending list.

This section has demonstrated how you can sort by using the MAP member function. As you
can see, the logic for the comparison lies largely outside of the object type. This means the sorting
isn’t hidden and the logic isn’t encapsulated.

Trick-or-Treating with Persistent Object Types
While the chapter is about transient objects in the scope of your PL/SQL programs, it seems
only fair to not leave you in a lurch regarding persistent object types. You could find some
interesting trick or treat behavior when you try reading objects from the database.

The following is a quick example that helps you understand how to read your stored
objects from the database. The first step is to create a persistent_object table and
persistent_object_s1 sequence as follows:

SQL> CREATE TABLE persistent_object
 2 (persistent_object_id NUMBER
 3 , mapping_object MAP_COMP);
SQL> CREATE SEQUENCE persistent_object_s1;

Second, you’ll insert the nine companions in the Fellowship of the Ring. The syntax is
the same for each but you’ll need to switch the names in the CONSTRUCTOR function:

SQL> INSERT INTO persistent_object
 2 VALUES (persistent_object_s1.nextval,map_comp('Frodo Baggins'));

You can select these natively, in which case you’ll see return values like

MAPPING_OBJECT(WHO)

MAP_COMP('Frodo Baggins')

This type of query doesn’t let you apply instance methods. You might start to think that
these object types have little use. The trick is the TREAT function. The TREAT function takes
a column return and treats it as the object type you designate.

The column formatting ensures it displays well for you. The following query allows you
to query the column values as object instances and sort them with their own equals
function:

SQL> COLUMN primary_key FORMAT 9999999 HEADING "Primary|Key ID"
SQL> COLUMN fellowship FORMAT A30 HEADING "Fellowship Member"
SQL> SELECT persistent_object_id AS primary_key
 2 , TREAT(mapping_object AS map_comp).equals() AS fellowship
 3 FROM persistent_object
 4 WHERE mapping_object IS OF (map_comp)
 5 ORDER BY 2;

The TREAT function works with object types or subclasses of object types, as explained
in the section “Inheritance and Polymorphism” later in this chapter.

11-ch11.indd 470 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 471

Comparing with the ORDER Member Function
The ORDER member function allows you to pass an object instance into another object and
compare whether they’re equal. You can also build it to judge whether one object instance is
greater or smaller than another. While the MAP member function works best with single-attribute
class instances, the ORDER member function supports internal validation when more than one
attribute indexes an object instance.

You can accomplish a barebones example by declaring two attributes, a CONSTRUCTOR
function and an ORDER member function. The MAP member function required that you implement
the matching code externally from the object type. ORDER member functions require that you
resolve whether or not to sort into a single number.

The following declares the order_comp object type:

CREATE OR REPLACE TYPE order_comp IS OBJECT

(who VARCHAR2(20)

, movie VARCHAR2(20)

, CONSTRUCTOR FUNCTION order_comp
 (who VARCHAR2, movie VARCHAR2)
 RETURN SELF AS RESULT

, MEMBER FUNCTION to_string RETURN VARCHAR2

, ORDER MEMBER FUNCTION equals

 (object ORDER_COMP) RETURN NUMBER)

INSTANTIABLE NOT FINAL;

/

You can reference an object type name
inside a type de�nition because the
DDL statement registers an object type
name before creating the object type.

ORDER is a key word designating the
function for sorting operations.

Two attribute index
for sort operations.

The order_comp function takes a parameter of its own object type. This mimics the
equivalent behavior in Java for the equals method. The idea is to pass an object instance inside
another of the same type because the object type should contain the validation of whether two
instances are equal or not. A to_string function is also declared, which will let you examine
the contents of object instances.

The following implements the object body:

SQL> CREATE OR REPLACE TYPE BODY order_comp IS
 2 CONSTRUCTOR FUNCTION order_comp
 3 (who VARCHAR2, movie VARCHAR2) RETURN SELF AS RESULT IS
 4 BEGIN
 5 self.who := who;
 6 self.movie := movie;
 7 RETURN;
 8 END order_comp;
 9 MEMBER FUNCTION to_string RETURN VARCHAR2 IS
 10 BEGIN
 11 RETURN '['||self.movie||']['||self.who||']';
 12 END to_string;

11-ch11.indd 471 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

472 Oracle Database 12c PL/SQL Programming

 13 /* Implement ORDER function. */
 14 ORDER MEMBER FUNCTION equals
 15 (object order_comp) RETURN NUMBER IS
 16 BEGIN
 17 IF self.movie < object.movie THEN
 18 RETURN 1;
 19 ELSIF self.movie = object.movie AND self.who < object.who THEN
 20 RETURN 1;
 21 ELSE
 22 RETURN 0;
 23 END IF;
 24 END equals;
 25 END;
 26 /

The primary sort operation on line 17 determines if the current object instance’s movie
attribute is less than the value of the external instance. The function returns 1 when that’s true.
The secondary sort operation on line 19 runs only when the first attributes match. It determines if
the current object instance’s who attribute is less than the external instance. The ORDER member
function also returns 1 when the secondary sort finds the combination of values less than the
values of the external object instance. All other value comparisons are rejected, and the ORDER
member function returns 0.

The equals function returns 1 as the true outcome, which means you should sort the instance
passed as an actual parameter before the base instance. When the equals function returns 0 as
the false outcome, the base instance should remain in its current position in a list.

The test program is a bit larger for this comparison but straightforward. Like the program that
tested the MAP member function, this program creates a collection, initializes eight object instances,
and initializes the collection. You should notice that the only change to the swap procedure is a
change of data type in the formal parameters.

Equals or Not Comparison
While the example does more than a standard equals method, you could implement a direct
equality comparison by changing the IF block to

 17 IF self.movie = object.movie AND self.who = object.who THEN
 18 RETURN 1;
 19 ELSE
 20 RETURN 0;
 21 END IF;

This IF block would then return 1 when both objects are equal, and return 0 when
they’re not. It doesn’t provide you with a sorting key, but you could implement another
sorting_hat method for that.

11-ch11.indd 472 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 473

It follows:

SQL> DECLARE
 2 -- Declare a collection of an object type.
 3 TYPE object_list IS TABLE OF ORDER_COMP;
 4
 5 -- Initialize four objects in mixed alphabetical order.
 6 lv_obj1 ORDER_COMP := order_comp('Ron Weasley','Harry Potter 1');
 7 lv_obj2 ORDER_COMP := order_comp('Harry Potter','Harry Potter 1');
 8 lv_obj3 ORDER_COMP := order_comp('Luna Lovegood','Harry Potter 5');
 9 lv_obj4 ORDER_COMP := order_comp('Hermione Granger','Harry Potter 1');
 10 lv_obj5 ORDER_COMP := order_comp('Hermione Granger','Harry Potter 2');
 11 lv_obj6 ORDER_COMP := order_comp('Harry Potter','Harry Potter 5');
 12 lv_obj7 ORDER_COMP := order_comp('Cedric Diggory','Harry Potter 4');
 13 lv_obj8 ORDER_COMP := order_comp('Severus Snape','Harry Potter 1');
 14
 15 -- Define a collection of the object type.
 16 lv_objs OBJECT_LIST := object_list(lv_obj1,lv_obj2,lv_obj3,lv_obj4
 17 ,lv_obj5,lv_obj6,lv_obj7,lv_obj8);
 18
 19 -- Swaps A and B.
 20 PROCEDURE swap (a IN OUT ORDER_COMP, b IN OUT ORDER_COMP) IS
 21 c ORDER_COMP;
 22 BEGIN
 23 c := b;
 24 b := a;
 25 a := c;
 26 END swap;
 27
 28 BEGIN
 29 -- A bubble sort.
 30 FOR i IN 1..lv_objs.COUNT LOOP
 31 FOR j IN 1..lv_objs.COUNT LOOP
 32 IF lv_objs(i).equals(lv_objs(j)) = 0 THEN
 33 swap(lv_objs(i),lv_objs(j));
 34 END IF;
 35 END LOOP;
 36 END LOOP;
 37 -- Print reordered objects.
 38 FOR i IN 1..lv_objs.COUNT LOOP
 39 dbms_output.put_line(lv_objs(i).to_string);
 40 END LOOP;
 41 END;
 42 /

You should gain better use of the ORDER member function by consistently labeling it as equals
because that mimics Java. It is a recommended solution to standardize how you deploy transient
objects in your code.

11-ch11.indd 473 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

474 Oracle Database 12c PL/SQL Programming

The anonymous block program simply passes a copy of one instance to the other on line 32.
This is the preferred approach when you write OO programs. You swap them when the equals
function returns 1 (which means true). The function returns true when the actual parameter isn’t
greater than the base instance. This sorts the instances in ascending order.

You get the following output:

[Harry Potter 1][Harry Potter]
[Harry Potter 1][Hermione Granger]
[Harry Potter 1][Ron Weasley]
[Harry Potter 1][Severus Snape]
[Harry Potter 2][Hermione Granger]
[Harry Potter 4][Cedric Diggory]
[Harry Potter 5][Harry Potter]
[Harry Potter 5][Luna Lovegood]

If you change the IF block to check for 0 (or false), like this

 32 IF objects(i).equals(objects(j)) = 0 THEN
 33 swap(objects(i),objects(j));
 34 END IF;

you get a descending sort like

[Harry Potter 5][Luna Lovegood]
[Harry Potter 5][Harry Potter]
[Harry Potter 4][Cedric Diggory]
[Harry Potter 2][Hermione Granger]
[Harry Potter 1][Severus Snape]
[Harry Potter 1][Ron Weasley]
[Harry Potter 1][Hermione Granger]
[Harry Potter 1][Harry Potter]

This section has demonstrated how to compare objects by using the MAP member function or
ORDER member function. You’ve seen how to leverage both while working with transient object
instances.

Review Section
This section has described the following points about the basics of using objects.

 ■ Oracle Database 12c qualifies object types as persistent objects or transient objects,
and further qualifies persistent objects as stand-alone objects or embedded objects.
You deploy stand-alone objects in tables, embedded objects in other object types,
and transient objects in PL/SQL blocks.

 ■ Only persistent object types have unique object identifiers.

 ■ Object types share the same name space as tables, views, synonyms, functions,
procedures, and packages. Only database triggers have a separate name space.

11-ch11.indd 474 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 475

Inheritance and Polymorphism
Object-oriented programming languages demand a change in thinking, but sometimes you may
find yourself asking why they demand a change in thinking. I believe inheritance and polymorphism
are the reasons why you need to think differently. The foregoing part of this chapter explains the
mechanics of building object types as libraries. You can also build packages by developing a
collection of functions and procedures. While building libraries of object types requires more effort
and design than building packages, the return on your investment of time is their extensibility.

Objects are extensible because you can add to their capabilities by building subclasses.
Subclasses inherit the behaviors of other classes, which become known as superclasses. Subclasses
can also override the behaviors of their superclass by creating methods to replace superclass
members. The idea that subclasses extend and change behaviors of their superclasses is termed
morphing. Polymorphing is the process of multiple subclasses inheriting the behaviors of superclasses.

The classic example of polymorphism is a generalized class that defines a vehicle. You can
develop specializations of the vehicle class by building car, motorcycle, truck, and van subclasses.
These subclasses extend the general attributes and methods provided by the vehicle class and, in
some cases, provide overriding methods. The specialized methods manage the differences between
driving a car or riding a motorcycle, and they serve as an example of why you develop subclasses.
When the vehicle class is subclassed, the vehicle class is promoted and called a superclass.

Objects inherit and polymorph behaviors by extending base behaviors in an organized tree
called an object hierarchy. Object hierarchies contain libraries of object types, which are reusable
programming units (or, in the OOP lexicon, reusable code artifacts).

 ■ You declare an object type like a package with prototype functions and procedures,
but object types have three specialized functions—CONSTRUCTOR, MAP, and ORDER.

 ■ Object type CONSTRUCTOR functions may have parameters, but they must use both
the name and data type of the object type’s attributes, and they return an instance of
the object type.

 ■ You can create instances of an object type when you append the INSTANTIABLE
clause.

 ■ You can create a type dependent of an object type when you append the NOT FINAL
clause to it; otherwise, you can’t create type dependents or subtypes.

 ■ The current instance is known by the case-insensitive SELF keyword, which is equivalent
to case-sensitive this in Java.

 ■ Object types can contain only MEMBER (instance) and STATIC functions and procedures.

 ■ You can white list object types with Oracle Database 12c’s new ACCESSIBLE BY clause.

 ■ You implement an object type with an object body, and an object body can contain
only MEMBER and STATIC functions and procedures.

 ■ You should implement getters to retrieve attribute values and setters to set and/or
modify attribute values.

 ■ You can use either a MAP function or an ORDER function for object instance equality
comparisons, but the ORDER function is the preferred and most OOPL-like solution.

11-ch11.indd 475 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

476 Oracle Database 12c PL/SQL Programming

Reusability has many facets. Using static functions and procedures to exchange information
between class instances enables you to position reusable class components. These static structures
have general use across all or many class instances and support sharing function and variable states.

Subclasses are created according to two patterns: single inheritance and multiple inheritance.
Single-tree OOPLs, such as Java, support the single-inheritance model. C++ supports a multiple-
inheritance model. PL/SQL uses a single-inheritance model. Figure 11-2 shows you conceptually
what the single-inheritance model looks like.

While the semantics of Java and PL/SQL support only the single-inheritance model, you can
use the OOP principle of aggregation to overcome this limitation. Inheritance is a specialized
form of aggregation, which you can implement without much effort. Ordinary aggregation is more
complex and requires you to

 ■ Declare a class variable of another class

 ■ Instantiate an instance of the embedded other class

 ■ Develop method wrappers that redirect action to the embedded class instance methods

You can implement inheritance and aggregation in the same class. Together, they mimic the
multiple-inheritance model.

Inheritance means that you define a class as a child of a parent class—a subclass of a class.
When you create an instance of the subclass, you get an instance that has the behaviors of the
parent class and subclass. If a subclass provides a method that has the same name as a parent
class method, the subclass method overrides the parent class method. This means that when
you call the method (function or procedure), it will implement the subclass method, not the
parent class method.

The power of OOP exists in extending generalized behaviors and organizing variables and
functions into real-world object types. You have learned how to build and access object types and
instances of objects. In the next sections, you will learn how to extend general classes into subclasses.

FIGURE 11-2. Single-inheritance UML model

#MEMBER_FUNCTION() : VARCHAR2
#MEMBER_PROCEDURE() : VARCHAR2

#Attribute1 : VARCHAR2
#Attribute2 : VARCHAR2

MyGeneralizedClass

#MEMBER_OVERRIDE_FUNCTION()
#MEMBER_OVERRIDE_PROCEDURE()

#Attribute1 : VARCHAR2
#Attribute2 : VARCHAR2

MySpecializedClass1

#MEMBER_OVERRIDE_FUNCTION()
#MEMBER_OVERRIDE_PROCEDURE()

#Attribute1 : VARCHAR2
#Attribute2 : VARCHAR2

MySpecializedClass2

11-ch11.indd 476 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 477

Declaring Subclasses
Subclasses require a bit of new and very specific Oracle vocabulary. Unlike the Java programming
language, where a subclass extends behavior, Oracle object types develop their implementation
under the superclass. This really means the same thing—subclasses extend behavior. The UNDER
keyword is consistent with the mental image you may have formed from Figure 11-2.

You must state that a member method is an overriding behavior by putting the OVERRIDING
keyword in front of the MEMBER (or instance) function or procedure. While this is also a departure
from how you override methods in Java, it does improve the clarity of definition. This is especially
true when you inspect the declaration of an object type in the database catalog. If you started
with Java, the syntax may require an adjustment.

There are several restrictions that apply to subtypes. You can’t override type attributes, which
means you don’t list them when you declare the subtype. If you forget the rule, the compiler
reminds you with a PLS-00410 error. The PLS-00410 error is adequate but was really developed
for duplication when you create a record type. The message is “duplicate fields in RECORD,
TABLE or argument list are not permitted.” The error means that an object type and all subtypes
share a formal parameter list (aka argument list). Subtypes can implement the same attributes
implemented by sibling subtypes but not the same attributes implemented by the parent class.
A sibling subtype is one that is directly subclassed from the same parent class.

The MAP and ORDER member functions are elements of the formal parameter list. They are only
implemented in the object type. This limitation means that you must kludge comparative validation
of subtypes by implementing another member function for comparisons. Alternatively, you can
couple the parent MAP or ORDER function to all subtypes. This type of coupling requires that you
maintain both when changing either. Subtypes call the MAP or ORDER member function for base
object comparison and then the member function performs a supplemental subtype comparison.

The compiler raises a PLS-00154 error when you attempt to put a MAP or ORDER function in
a subtype where the parent already has one. This error is also triggered because of the shared
formal parameter list.

The example shown next extends the behavior of the order_comp object presented in the
section “Comparing with the ORDER Member Function” earlier in this chapter. It is critical that
you confirm that the parent object type is declared and valid in your schema before you try to
create a subclass. Next, you will see how to create a subclass and override a method, which in
this case is a member function.

You declare the order_subcomp object type as follows:

You can add new attributes to subtypes
provided they’re not in the parent type.

CREATE OR REPLACE TYPE order_subcomp UNDER order_comp

(subtitle VARCHAR2(20)

, CONSTRUCTOR FUNCTION order_subcomp

 (who VARCHAR2, movie VARCHAR2, subtitle VARCHAR2)

 RETURN SELF AS RESULT

, OVERRIDING MEMBER FUNCTION to_string RETURN VARCHAR2)

INSTANTIABLE FINAL;

/

The subtype name must match the
constructor function name.

UNDER is a keyword
designating a subtype
extends a type.

The subtype adds a new
parameter to the list.

OVERRIDING is a keyword designating
a subtype speci�c functional behavior.

11-ch11.indd 477 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

478 Oracle Database 12c PL/SQL Programming

This order_subcomp subtype is deployed under the order_comp subtype. It extends the
behavior of the type and inherits all behaviors that are not overridden. The subtype adds a new
parameter to the list and reflects the parameter list change in the CONSTRUCTOR function. It also
overrides the to_string function of the parent subtype.

After you subtype an object type, the parent type has dependents. You can’t replace the object
type without invalidating the children and then you can only do it by adding the FORCE clause to
the DDL DROP TYPE statement. This means there is some significant linkage that you’ll need to
account for in your deployment and maintenance scripts. It is known as type evolution, and you
can find a discussion of it in the section “Type Evolution” later in this chapter.

Implementing Subclasses
The process of implementing subclasses is closer to the generic process for implementing a base
object type. Unlike the object type declaration, the object body doesn’t actually reference the
object type.

You can implement this function by applying the principles covered earlier in this chapter.
The implementation of the object body is shown here:

CREATE OR REPLACE TYPE BODY order_subcomp IS

 CONSTRUCTOR FUNCTION order_subcomp

 (who VARCHAR2, movie VARCHAR2, subtitle VARCHAR2)

 RETURN SELF AS RESULT IS

 BEGIN

 self.who := who;

 self.movie := movie;

 self.subtitle := subtitle;

 RETURN;

 END order_subcomp;

OVERRIDING MEMBER FUNCTION to_string RETURN VARCHAR2 IS

 BEGIN

 RETURN (self as order_comp).to_string||'['||self.subtitle||']';

 END to_string;

END;

/

The parenthetical call is a generalized
invocation because it calls to a parent
object type. It places its data inside a
copy of the parent class, and runs
methods as if it is the parent class.

OVERRIDING is a key word designating the
subtype runs this copy of a function that must
also exist in the parent.

The attributes are declared in the parent
or supertype (also superclass).

Only the overriding constructor is
implemented in a subtype because
they have native access to their
parent class constructors.

The to_string() method call
acts on the superclass method
that the subclass overrides.

The implementation shows that you construct an instance of the subtype with three parameters.
You should note that the CONSTRUCTOR function assigns values to the who and movie attributes,
which are declared by the base object type. While you can write to those variables inside the
constructor, you cannot write to or read them in other methods of the subtype object. If you want
to access them, you’ll need to write getters and setters in the superclass to make it possible. Any
attempt to directly access them in a subclass raises a PLS-00671 error.

The OVERRIDING member function presents a new syntax. The syntax lets you call to the
parent class and execute any method. The overriding to_string function calls the superclass
to_string function and treats the return value as an expression:

(self as order_comp).to_string

11-ch11.indd 478 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 479

You cannot gain access to parent class attributes because there aren’t any. Your subclass
initializes superclass attributes as instance attributes inside the subclass. When you call a superclass
function or procedure, it operates on the instance class variables in the subtype. It doesn’t matter
whether they were declared in the superclass.

The anonymous block that tests this subtype is a modified version of the one in the section
“Comparing with the ORDER Member Function.” The only change is that one of the eight object
instances is now a subtype, and the subtype works in the context of the collection of the base
object type.

The program is

SQL> DECLARE
 2 /* Declare a collection of an object type. */
 3 TYPE object_list IS TABLE OF ORDER_COMP;
 4
 5 /* Initialize one subtype. */
 6 lv_obj1 ORDER_SUBCOMP := order_subcomp('Ron Weasley','Harry Potter 1'
 7 ,'Sorcerer''s Stone');
 8 /* Initialize seven types. */
 9 lv_obj2 ORDER_COMP := order_comp('Harry Potter','Harry Potter 1');
 10 lv_obj3 ORDER_COMP := order_comp('Luna Lovegood','Harry Potter 5');
 11 lv_obj4 ORDER_COMP := order_comp('Hermione Granger','Harry Potter 1');
 12 lv_obj5 ORDER_COMP := order_comp('Hermione Granger','Harry Potter 2');
 13 lv_obj6 ORDER_COMP := order_comp('Harry Potter','Harry Potter 5');
 14 lv_obj7 ORDER_COMP := order_comp('Cedric Diggory','Harry Potter 4');
 15 lv_obj8 ORDER_COMP := order_comp('Severus Snape','Harry Potter 1');
 16
 17 /* Declare a collection of the object type. */
 18 lv_objs OBJECT_LIST := object_list(lv_obj1,lv_obj2,lv_obj3,lv_obj4
 19 ,lv_obj5,lv_obj6,lv_obj7,lv_obj8);
 20
 21 /* Swaps A and B. */
 22 PROCEDURE swap (a IN OUT ORDER_COMP, b IN OUT ORDER_COMP) IS
 23 c ORDER_COMP;
 24 BEGIN
 25 c := b;
 26 b := a;
 27 a := c;
 28 END swap;
 29
 30 BEGIN
 31 -- A bubble sort.
 32 FOR i IN 1..lv_objs.COUNT LOOP
 33 FOR j IN 1..lv_objs.COUNT LOOP
 34 IF lv_objs(i).equals(lv_objs(j)) = 1 THEN
 35 swap(lv_objs(i),lv_objs(j));
 36 END IF;
 37 END LOOP;
 38 END LOOP;
 39 /* Print reordered objects. */
 40 FOR i IN 1..lv_objs.COUNT LOOP

11-ch11.indd 479 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

480 Oracle Database 12c PL/SQL Programming

 41 dbms_output.put_line(lv_objs(i).to_string);
 42 END LOOP;
 43 END;
 44 /

The anonymous block prints the following to console:

[Harry Potter 1][Harry Potter]
[Harry Potter 1][Hermione Granger]
[Harry Potter 1][Ron Weasley][Sorcerer's Stone]
[Harry Potter 1][Severus Snape]
[Harry Potter 2][Hermione Granger]
[Harry Potter 4][Cedric Diggory]
[Harry Potter 5][Harry Potter]
[Harry Potter 5][Luna Lovegood]

The object1 instance variable is constructed by calling the subtype. The subtype instance
is then added to the collection of the base type. It is also passed as an actual argument to the base
type ORDER member function and the local swap procedure. In both cases the subtype masqueraded
as the base object type.

Subtypes are a combination of the base class code and subclass code. The base object body
code acts on the subclass attributes when a subclass initializes them. The subclass-specific methods
act on the subclass-only components. You can also call any method from your parent class to work
with attributes stored there. Together you get the attributes and behaviors of the base class and
subclass. You isolate subtypes by using the IS OF (object) in an IF block.

The anonymous block implicitly treats all elements of the nested table as their native type.
This is more or less what you accomplish by calling the TREAT function in a query. The TREAT
function constructs a transient object instance from a persistent object CONSTRUCTOR function.
You create the CONSTRUCTOR function when you store the object in a table. Reading the object
from the table requires you to create an instance of the object at runtime, as shown in the sidebar
“Trick-or-Treating with Persistent Object Types” earlier in the chapter.

Subtypes are implicitly cast at runtime. This means they behave the same as transient object
types. The following creates a table using the ORDER_COMP supertype:

SQL> CREATE TABLE harry_potter
 2 (harry_potter_id NUMBER
 3 , character_role ORDER_COMP);

You can then insert both a superclass and a subclass into the harry_potter table:

SQL> INSERT INTO harry_potter VALUES
 2 (1, order_subcomp('Ron Weasley','Harry Potter 1','Sorcerer''s Stone'));
SQL> INSERT INTO harry_potter VALUES
 2 (1, order_comp('Hermione Granger','Harry Potter 1'));

These insert the following raw data, which you can query with

SQL> COLUMN character_role FORMAT A68
SQL> SELECT character_role
 2 FROM harry_potter;

11-ch11.indd 480 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 481

It shows

CHARACTER_ROLE(WHO, MOVIE)
--
ORDER_SUBCOMP('Ron Weasley', 'Harry Potter 1', 'Sorcerer''s Stone')
ORDER_COMP('Hermione Granger', 'Harry Potter 1')

The column title for the query appends the CONSTRUCTOR function for the object superclass.
One row stores a call to the subclass CONSTRUCTOR function, and the other stores a call to the
superclass CONSTRUCTOR function.

You can select the object contents by using the TREAT function. The TREAT function actually
constructs an instance of the object by calling recursively for each row the CONSTRUCTOR
function stored in the table.

With the SQL*Plus formatting, the query returns the results of the to_string instance function:

SQL> COLUMN character_role FORMAT A50
SQL> SELECT TREAT(character_role AS ORDER_COMP).to_string() AS character
 2 FROM harry_potter;

You must include the parentheses when calling the instance method in a SQL statement. This
statement returns the following:

CHARACTER
--
[Harry Potter 1][Ron Weasley][Sorcerer's Stone]
[Harry Potter 1][Hermione Granger]

As you can see, the TREAT function constructs an instance of the supertype or subtype. It
determines which to call by reading the CONSTRUCTOR function call that is stored in the column.
You should always declare columns with the supertype. If you forget and declare a column that
uses the subtype, the database lets you insert superclass CONSTRUCTOR functions, but they fail at
runtime. This behavior should really raise an ORA-00932 error, which explains that inconsistent
data types are disallowed. You receive an ORA-00932 error when you attempt to enter another
unrelated object type CONSTRUCTOR function.

The rule is simple: always declare object data types with the topmost class in a hierarchy.
Leave the subtyping to the database, unless you’re querying. Queries use the TREAT function.

This section has shown you how to build subclasses, override methods, and call superclass
methods.

Type Evolution
Object type evolution refers to changes in object types when they have dependents. This is a
concern when using transient objects but is a critical issue when you actually store data in
persistent objects in the database. Oracle fixes this in Oracle Database 12c, and now object types
can readily evolve. I think this is one of the coolest features in the new release! You can read
about it in the “Evolving an Object Type” section of Appendix B.

In Oracle Database releases prior to 12c, type evolution was a concern when using transient
objects and was a critical issue when actually storing data in persistent objects in the database.
Therefore, you had to guarantee that you were one hundred percent sure of the requirements
before you used object types in database tables, which realistically is never! Your only alternative

11-ch11.indd 481 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

482 Oracle Database 12c PL/SQL Programming

prior to Oracle Database 12c required you to develop a migration strategy to move the contents
of older persistent object types into new ones.

Prior to Oracle Database 12c, any attempt to add an attribute to a base object type like order_
comp when order_subcomp already existed in the database would raise an ORA-02303 error,
which states that you can’t “drop or replace a type with type or table dependents.” The type refers
to transient objects, or programming components only. Table dependents are columns that use the
object type as their data type. The natural fix to this problem is to upgrade to Oracle Database 12c.

NOTE
At the time of writing, type evolution only works in CDB schemas,
not in PDB schemas. I imagine this may be fixed by the time this
book prints. If not, implement object types in CDB schemas and grant
privileges to them.

An all too familiar complaint about Oracle’s object types that I hear (principally from
Microsoft SQL Server–inclined folks) is, “You can’t migrate the data to relational tables once you
put the data into object types!” While I understand the inclination to see Oracle’s implementation
of object types as a lock-in marketing strategy, it isn’t. Oracle doesn’t do that! Oracle looks for the
best of breed, and as a result, it sometimes acquires and integrates technology while throwing out
the stuff it had previously. You can implement object types as tables or object columns, and you
can migrate the object data through a collection of SQL built-in functions. All you need to know
is how to do it, and you can find a complete example in the “Migrate from Objects to a Relational
Table” section of Appendix B.

Review Section
This section has described the following points about the basics of inheritance and polymorphism
with Oracle object types:

 ■ Oracle Database 12c PL/SQL implements a single-hierarchy object tree, which means
a subclass can inherit the behaviors of only one other object type.

 ■ You can create a subclass of an object type when the base object type has a NOT
FINAL clause. The NOT FINAL clause means a class can be specialized by a subclass.

 ■ The UNDER keyword designates an object subtype of another object type.

 ■ You can override the behavior of a parent class by putting the OVERRIDING keyword
in front of a MEMBER (or instance) function or procedure.

 ■ You can’t override the behavior of a MAP or ORDER function or procedure.

 ■ An object subtype lets you access a MEMBER function or procedure of the parent class
by using the (self as object_type_name) before a function or procedure call.
You use the syntax inside any overriding MEMBER function or procedure, as qualified
in the “Implementing Subclasses” section of this chapter.

 ■ The TREAT SQL built-in function lets you instantiate an object instance.

 ■ Oracle Database 12c now supports type evolution, which means when you change
an object type with object type dependents, the change then cascades through all the
object type dependents.

11-ch11.indd 482 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 483

Implementing Object Type Collections
Declaring object type collections is fairly easy because you simply declare a varray or table of the
object type. Collections are a specialized object type, as covered in Chapter 6.

Since collections don’t inherit any of the behaviors from their base element data type, you
must wrap a collection type inside another object type if you want to access those behaviors. The
wrapping object type can let you manage a list or array of the base object type. Arrays limit the
number of elements to a fixed size, while nested tables are open-ended lists. You should generally
implement lists, not arrays, when you build collections of object types.

The next two sections show you how to declare and implement an object type collection.
You should read them in sequence because you need to understand the declaration before the
implementation.

Declaring Object Type Collections
Object type collections require a base object type and a collection of the base object type. After
you create those, you can build an object type collection. This section leverages the item_object
type created in the section “Static Member Methods” earlier in the chapter.

You create the collection of the item_object type with the following syntax:

SQL> CREATE OR REPLACE TYPE
 2 item_table IS TABLE OF item_object;
 3 /

The wrapper to the collection should define at least one instance variable. The instance variable
should have the item_table collection data type. You should provide a default CONSTRUCTOR
function that creates a collection by querying the database, and provide a CONSTRUCTOR function
that takes a collection of the base object type.

The declaration of an object type collection of the item_table is

SQL> CREATE OR REPLACE TYPE items_object IS OBJECT
 2 (items_table ITEM_TABLE
 3 , CONSTRUCTOR FUNCTION items_object
 4 RETURN SELF AS RESULT
 5 , CONSTRUCTOR FUNCTION items_object
 6 (items_table ITEM_TABLE) RETURN SELF AS RESULT
 7 , MEMBER FUNCTION get_size RETURN NUMBER
 8 , STATIC FUNCTION get_items_table RETURN ITEM_TABLE)
 9 INSTANTIABLE NOT FINAL;
 10 /

The item_table attribute on line 2 is a nested table of the base item_object type variable.
Oracle lets you declare user-defined object types with attributes that are any type of scalar or
composite data type. You also have a static get_items_table function on line 8 that lets you
generate and return a collection of the base item_object object type.

Implementing Object Type Collections
This section shows you how to implement the object type collection that you have declared. It
also implements another concrete factory pattern by constructing a collection through a static
function call.

11-ch11.indd 483 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

484 Oracle Database 12c PL/SQL Programming

The object body implements the following:

SQL> CREATE OR REPLACE TYPE BODY items_object IS
 2 CONSTRUCTOR FUNCTION items_object
 3 RETURN SELF AS RESULT IS
 4 /* Declare local constructor variables. */
 5 c NUMBER := 1; -- Counter for table index.
 6 item ITEM_OBJECT;
 7 items_table ITEM_TABLE := item_table();

Concrete Factory Pattern
A concrete factory pattern is derived from an abstract factory pattern. It provides a design
approach to build object instances. There are many ways to implement this OO design
pattern, as is true for most design patterns. The get_item_table function in the “Static Member
Methods” section of this chapter uses a static member function as the factory. The static
member function creates an instance of item_object and returns it to the calling program.

The object type declares the interface for the factory and object type. The static get_
item_object function returns an object type. A static function is a factory when it returns
an instance of an object.

+GET_ITEM_OBJECT() : ITEM_OBJECT

«interface»
ITEM_OBJECT

+GET_ITEM_OBJECT() : ITEM_OBJECT
+TO_STRING() : VARCHAR2

«interface»
ITEM_OBJECT

#TO_STRING() : VARCHAR2

#ITEM_TITLE : VARCHAR2
#ITEM_SUBTITLE : VARCHAR2

ITEM_OBJECT

#GET_ITEM_OBJECT() : ITEM_OBJECT

STATIC_ITEM_FACTORY

Abstract
Factory
Pattern

Application

The item_object instance in the illustration represents only the instance components.
The static component has been abstracted from the instance into a separate class in the drawing.
It illustrates the role of the static function as a factory.

11-ch11.indd 484 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 485

 8
 9 /* Static cursor for table contents. */
 10 CURSOR get_item IS
 11 SELECT item_title, item_subtitle FROM item;
 12 BEGIN
 13 /* Dynamically read the table contents into an item_object collection. */
 14 FOR i IN get_item LOOP
 15 item := item_object(i.item_title,i.item_subtitle);
 16 items_table.EXTEND;
 17 items_table(c) := item; /* Must use unrelated index. */
 18 c := c + 1; /* Increment index. */
 19 END LOOP;
 20 /* Assign the constructed collection to the instance variable. */
 21 self.items_table := items_table;
 22 RETURN;
 23 END items_object;
 24
 25 CONSTRUCTOR FUNCTION items_object
 26 (items_table ITEM_TABLE) RETURN SELF AS RESULT IS
 27 BEGIN
 28 self.items_table := items_table;
 29 RETURN;
 30 END items_object;
 31 MEMBER FUNCTION get_size RETURN NUMBER IS
 32 BEGIN
 33 RETURN self.items_table.COUNT;
 34 END get_size;
 35 STATIC FUNCTION get_items_table RETURN ITEM_TABLE IS
 36 /* Declare local constructor variables. */
 37 c NUMBER := 1; -- Counter for table index.
 38 item ITEM_OBJECT;
 39 items_table ITEM_TABLE := item_table();
 40
 41 /* Static cursor for table contents. */
 42 CURSOR get_item IS
 43 SELECT item_title, item_subtitle FROM item;
 44 BEGIN
 45 /* Dynamically read the table contents into an item_object collection. */
 46 FOR i IN get_Item LOOP
 47 item := item_object(i.item_title,i.item_subtitle);
 48 items_table.EXTEND;
 49 items_table(c) := item; /* Must use unrelated index. */
 50 c := c + 1; /* Increment index. */
 51 END LOOP;
 52 RETURN items_table;
 53 END get_items_table;
 54 END;
 55 /

11-ch11.indd 485 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

486 Oracle Database 12c PL/SQL Programming

The default CONSTRUCTOR function on lines 2 through 23 builds a list of all qualifying rows
from the item table and assigns the local collection to a nested item_table collection on line 21.
The following syntax creates an items_object by calling the default CONSTRUCTOR function:

SQL> DECLARE
 2 lv_items ITEMS_OBJECT;
 3 BEGIN
 4 lv_items := items_object();
 5 dbms_output.put_line(lv_items.get_size);
 6 END;
 7 /

The overriding CONSTRUCTOR function takes an item_table collection as its only parameter.
The local c variable provides the index value because you can’t construct object type collections
by using the i (iterator) of the for-loop. You can call the overriding CONSTRUCTOR function with
the result of the STATIC get_items_table function.

The get_items_table function does virtually the same thing as the default CONSTRUCTOR
function on lines 35 through 53 of the items_object. The difference between the
CONSTRUCTOR function and the STATIC get_items_table function is what they return.
The CONSTRUCTOR function returns an instance of the items_object object type, which
has an attribute that holds a nested collection of item_object instances. The STATIC get_
items_table function returns a collection of item_object instances. Any STATIC function
can return any type of scalar or composite variable, like a varray or table collection.

You can use results from the static get_items_table function to initialize the items_
object collection by calling the overriding CONSTRUCTOR function. The following anonymous
block shows you how:

SQL> DECLARE
 2 lv_items ITEMS_OBJECT;
 3 BEGIN
 4 /* Call the override CONSTRUCTOR function with the result
 5 from the STATIC get_items_table function. */
 6 lv_items := items_object(items_object.get_items_table);
 7 dbms_output.put_line(lv_items.get_size);
 8 END;
 9 /

The overriding items_object CONSTRUCTOR function takes a call from the static function
as its actual parameter on line 6. Line 7 calls the get_size instance function to verify how many
elements exist in the nested items_table collection.

You can also use the static function to retrieve the collection of item_object instances.
Once you construct the instance of a collection of items_object object types, you can print
the contents of the individual elements by calling the base object’s to_string function.

The following demonstrates this functionality:

SQL> DECLARE
 2 lv_items ITEM_TABLE;
 3 BEGIN
 4 lv_items := items_object.get_items_table;

11-ch11.indd 486 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 487

 5 FOR i IN 1..lv_items.COUNT LOOP
 6 dbms_output.put_line(lv_items(i).to_string);
 7 END LOOP;
 8 END;
 9 /

This section has shown you how to declare an object type collection. You have also declared
a static method that you can implement as a concrete factory. The static method allows you to
grab an instance object type collection without explicitly constructing it in your stand-alone
PL/SQL blocks.

Review Section
This section has described the following points about the basics of implementing object type
collections:

 ■ You can create an array of any object type, provided you define it as a SQL varray or
table collection first and then as an attribute of an object type.

 ■ You can instantiate a varray or table collection as an attribute of an object type inside a
CONSTRUCTOR function.

 ■ You can instantiate a varray or table collection as an attribute of an object type inside a
STATIC function that returns the collection type.

 ■ The index value of a collection inside an object type must be a different integer value
than the index of a range FOR loop.

Supporting Scripts
This section describes programs placed on the McGraw-Hill Professional website to support this
chapter.

 ■ The basic_objects.sql program contains examples that support the basic hello_
there object type and the getters and setters examples.

 ■ The static_methods.sql program contains examples that support the use of STATIC
methods.

 ■ The map_compare.sql and order_compare.sql programs contain examples that
use MAP and ORDER functions and procedures.

 ■ The overriding_objects.sql program contains examples that use subtypes and
overriding functions and procedures.

Summary
This chapter has examined how you define, initialize, and use objects. You should now have a
foundational understanding of what objects are and how you can use them in your PL/SQL
applications.

11-ch11.indd 487 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

488 Oracle Database 12c PL/SQL Programming

Mastery Check
The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix I for answers to
these questions.

True or False:

1. ___Object types are instantiable by default.

2. ___Object types are extensible by default.

3. ___The this keyword references an instance of an object type inside an object body.

4. ___You can have a MAP function and an ORDER function in the same object type.

5. ___You can have a MAP procedure and an ORDER procedure in the same object type.

6. ___CONSTRUCTOR functions require the name and data type to be the same as the
attributes of the object type.

7. ___Getters always should be implemented as MEMBER functions.

8. ___Setters always should be implemented as MEMBER procedures.

9. ___The UNDER clause designates a superclass.

10. ___The OVERRIDING clause lets a subtype override a STATIC function or procedure.

Multiple Choice:

11. Which of the following are keywords in object types? (Multiple answers possible)

A. The MAP keyword

B. The OVERRIDE keyword

C. The OVERRIDING keyword

D. The NONSTATIC keyword

E. The MEMBER keyword

12. Which of the following are valid types of functions in object types? (Multiple answers
possible)

A. An ORDER function

B. An OVERRIDE function

C. A MEMBER function

D. An UNDER function

E. A STATIC function

13. Which of the following are valid types of procedures in object types? (Multiple answers
possible)

A. An ORDER procedure

B. A MAP procedure

C. An UNDER procedure

11-ch11.indd 488 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 11: Object Types 489

D. A MEMBER procedure

E. A STATIC procedure

14. Which of the following require an instance of the object type? (Multiple answers possible)

A. A STATIC function

B. A STATIC procedure

C. A CONSTRUCTOR function

D. A MEMBER function

E. A MEMBER procedure

15. Which of the following can be a function return type (or normalized table with a surrogate
key for its single-column primary key)? (Multiple answers possible)

A. A VARCHAR2 data type

B. A NUMBER data type

C. A varray or table collection data type

D. A RECORD data type

E. An OBJECT data type

11-ch11.indd 489 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

11-ch11.indd 490 12/14/13 9:14 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

CHAPTER
12

Triggers

12-ch12.indd 491 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

492 Oracle Database 12c PL/SQL Programming

Database triggers are specialized stored programs. They are not called directly but are
triggered by events in the database. They run between the time you issue a command
and the time you perform the database management system action. This time interval is

the transaction lifecycle. You can read more about the transaction lifecycle in the “Data Transactions”
section of Appendix A. Appendix A also discusses ACID-compliant transactions and the two-phase
commit (2PC) processes, in the section “Data Transactions.” Together, they support the Oracle
Database implementation of MVCC.

Triggers on INSERT, UPDATE, and DELETE statements run during the first phase of the
transaction lifecycle. Other triggers run on immediate events, which occur when you create or
change things in the database, or you connect or disconnect from the database.

You can write triggers in PL/SQL or Java. Triggers can capture events that create, modify, or
drop objects, and they can capture inserts to, updates of, and deletes from tables or views. They
can also monitor changes in the state of the database or schema, and the actions of users.

This chapter covers the following:

 ■ Introduction to triggers

 ■ Database trigger architecture

 ■ Data Definition Language (DDL) triggers

 ■ Data Manipulation Language (DML) triggers

 ■ Compound triggers

 ■ INSTEAD OF triggers

 ■ System and database event triggers

 ■ Trigger restrictions

The sections of this chapter lay a foundation and develop ideas sequentially. They should
also serve as a quick reference if you want to focus on writing a specific trigger type quickly. For
example, you can go to the section “Data Manipulation Language Triggers” to learn how to write
triggers for INSERT, UPDATE, and DELETE statements.

Introduction to Triggers
As mentioned, database triggers are specialized stored programs. As such, they are defined by
very similar DDL rules. Likewise, triggers can call SQL statements and PL/SQL functions and
procedures. You can choose to implement triggers in PL/SQL or Java.

Database triggers differ from stored functions and procedures because you can’t call them
directly. Database triggers are fired when a triggering event occurs in the database. This makes
them very powerful tools in your efforts to manage the database. You are able to limit or redirect
actions through triggers.

You can do the following with triggers:

 ■ Control the behavior of DDL statements, such as altering, creating, or renaming objects

 ■ Control the behavior of DML statements, like INSERT, UPDATE, and DELETE statements

 ■ Control the sequence of and synchronize calls to triggers

12-ch12.indd 492 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 493

 ■ Enforce referential integrity, complex business rules, and security policies

 ■ Control and redirect DML statements when they change data in a view

 ■ Audit information of system access and behavior by creating transparent logs

Prior to Oracle Database 11g, sequencing and synchronizing calls to triggers wasn’t possible.
Oracle Database 11g introduced the FOLLOWS clause, which lets you sequence the execution of
DML database triggers. Oracle Database 11g also introduced compound triggers to help you
manage larger events, like those triggering events that you would sequence.

Using triggers has some risks. The risks are complex because not only do SQL statements fire
triggers, triggers call SQL statements. A trigger can call a SQL statement that in turn fires another
trigger. The subsequent trigger could repeat the behavior and fire another trigger. This creates
cascading triggers. Oracle Database 12c and earlier releases limit the number of cascading
triggers to 32, after which an exception is thrown.

The following is a summary of the five types of triggers and their uses:

 ■ Data Definition Language (DDL) triggers These triggers fire when you create, change,
or remove objects in a database schema. They are useful to control or monitor DDL
statements. An instead of create table trigger provides you with a tool to ensure table
creation meets your development standards, like including storage or partitioning
clauses. You can also use them to monitor poor programming practices, such as when
programs create and drop temporary tables rather than use Oracle collections. Temporary
tables can fragment disk space and degrade database performance over time.

 ■ Data Manipulation Language (DML) triggers These triggers fire when you insert, update,
or delete data in a table. You can fire them once for all changes on a table, or for each row
change, using statement- or row-level trigger types, respectively. DML triggers are useful
to control DML statements. You can use these triggers to audit, check, save, and replace
values before they are changed. In Oracle Database 11g databases, automatic numbering
of numeric primary keys is frequently done by using a row-level DML trigger. This is no
longer the case in Oracle Database 12c because of the introduction of identity columns.

 ■ Compound triggers These triggers act as both statement- and row-level triggers when
you insert, update, or delete data in a table. You can declare variables in a global trigger
state in a compound trigger. The compound trigger also lets you capture information at
four timing points: (a) before the firing statement, (b) before each row change from the
firing statement, (c) after each row change from the firing statement, and (d) after the firing
statement. You can use these types of triggers to audit, check, save, and replace values
before they are changed when you need to take action at both the statement and row
event levels.

 ■ INSTEAD OF triggers These triggers enable you to stop performance of a DML statement
and redirect the DML statement. INSTEAD OF triggers are often used to manage how
you write to nonupdatable views. The INSTEAD OF triggers apply business rules and
directly insert, update, or delete rows in tables that define updatable views. Alternatively,
the INSTEAD OF triggers insert, update, or delete rows in designated tables unrelated to
the view. You also have an instead of create table trigger that lets you automate appending
storage or partitioning clauses.

12-ch12.indd 493 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

494 Oracle Database 12c PL/SQL Programming

 ■ System event and database event triggers These triggers fire when a system activity
occurs in the database, like the logon and logoff event triggers. They are useful for
auditing information of system access. These triggers let you track system events and map
them to users.

Triggers have some restrictions that are important to note. The largest one is that the trigger
body can be no longer than 32,760 bytes, because trigger bodies are stored in LONG data type
columns. This means you should consider keeping your trigger bodies small. You do that by
placing the coding logic in other schema-level components, like functions, procedures, and
packages. Another advantage of moving the coding logic out of the trigger body is that you can’t
wrap it when it’s in trigger bodies (the process of wrapping code is explained in Appendix F).

You can capture the logic of your database triggers by querying them from the data catalog.
Trigger bodies are stored as anonymous blocks. With Oracle Database 12c’s new multitenant
architecture, you can find the trigger body, or code logic, in four versions of three views. The data
catalog views are

 ■ The CDB_, DBA_, ALL_, and USER_TRIGGERS views

 ■ The CDB_, DBA_, ALL_, and USER_TRIGGER_COLS views

 ■ The CDB_, DBA_, ALL_, and USER_TRIGGER_ORDERING views

While displaying the values from LONG columns isn’t difficult with SQL*Plus or SQL Developer,
converting the logic from a LONG column to a CLOB or VARCHAR2 data type is complex. Converting
the LONG data type is complex because you need to perform that by using the dbms_sql package.
Chapter 10 provides you with complete code to convert a LONG to a CLOB in the “Converting a
LONG to a CLOB” sidebar. You also can learn how to convert a LONG to a VARCHAR2 data type in
the “NDS Is the Key to Converting LONG Data Types” section of Chapter 13.

Each of these triggers has a set of rules that govern its use. We will cover all five triggers in
their respective sections. The next section describes the architecture of database triggers.

Privileges Required to Use Triggers
You must have the CREATE TRIGGER system privilege to create a trigger on an object that
you own. If the object is owned by another user, you’ll need that user to grant you the
ALTER privilege on the object. Alternatively, the privileged user can grant a power user the
ALTER ANY TABLE and CREATE ANY TRIGGER privileges.

You have definer permissions on your own schema-level components, but you must
have EXECUTE permission when you call a schema-level component owned by another
user. You should document any required privileges during development to streamline
subsequent implementation.

12-ch12.indd 494 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 495

Review Section
This section has described the following points in the introduction to Oracle Database 12c
triggers:

 ■ Oracle Database 12c supports five types of database triggers: DDL, DML, compound,
INSTEAD OF, and system or database event triggers.

 ■ DDL triggers let you capture events that create, modify, or drop objects.

 ■ DML triggers let you capture changes in data caused by INSERT, UPDATE, and
DELETE statements. You can write these triggers to run as statement- or row-level
triggers before or after the insert, update, or delete event.

 ■ You can sequence the execution of DML triggers by using the FOLLOWS clause.

 ■ Compound triggers let you capture changes in data from the perspective of four
different timing events for INSERT, UPDATE, and DELETE statements.

 ■ INSTEAD OF triggers work on views typically, and let you engineer the logic to insert,
update, or delete data in views that may not otherwise be writable. INSTEAD OF
triggers also let you automate adding storage or partitioning clauses.

 ■ System or database event triggers let you manage the database environment.

Database Trigger Architecture
Database triggers are defined in the database in much the same way as packages are defined.
They’re composed of two pieces: the database trigger declaration and the body. The declaration
states how and when a trigger is called. You can’t call a trigger directly. They are triggered (called)
by a firing event. Firing events are DDL or DML statements or database or system events.
Database triggers implement an object-oriented analysis and design (OOAD) Observer pattern,
which means they listen for an event and then take action when the event occurs. The trigger
body is an anonymous block PL/SQL program unit and it’s stored in a LONG column within the
data catalog.

Trigger declarations consist of four parts: a trigger name, a statement, a restriction, and an
action. The first three define the trigger declaration, and the last defines the trigger body. A trigger
name must be unique among triggers but can duplicate the name of any other object in a schema
because triggers have their own namespace. A namespace is a list of identifiers, and in this case
the namespace of database triggers determines a unique list for database trigger names.

A trigger statement identifies the event or statement type that fires the trigger. A trigger
restriction, such as a WHEN clause or an INSTEAD OF clause, limits when the trigger runs. A
trigger action is a trigger body.

NOTE
A namespace is a unique list of identifiers maintained in the database
catalog.

12-ch12.indd 495 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

496 Oracle Database 12c PL/SQL Programming

A database trigger declaration is valid unless you remove the object that it observes. A database
trigger declaration also creates a runtime process when an event fires it. The trigger body is not as
simple. A trigger body can depend on other tables, views, or stored programs. This means that you
can invalidate a trigger body by removing a dependency. Dependencies are local schema objects,
but those include synonyms that may resolve across the network. You invalidate a trigger when
the trigger body becomes invalid. Trigger bodies are specialized anonymous block programs. You
can call and pass them parameters only through the trigger declaration.

The linkage becomes acute when you define a DDL trigger on the CREATE event. As discussed
in the next section, “Data Definition Language Triggers,” an invalid trigger body for a CREATE
trigger disables your ability to re-create the missing dependency. Similar behaviors occur for other
DDL events, like ALTER and DROP.

You can recompile triggers after you can replace any missing dependencies. The syntax is

ALTER TRIGGER trigger_name COMPILE;

Triggering events communicate directly with the trigger. You have no control over or visibility
into how that communication occurs, other than what you can access by calling event attribute
functions. The “Event Attribute Functions” section later in this chapter shows you how to use them
in triggers.

DDL, statement-level DML, and system or database event triggers occur once for an event or
for a series of rows that may change. You have no ability to change or access the data changed by
these types of database triggers. However, row-level DML triggers do provide you with direct
access to the data your INSERT, UPDATE, or DELETE statements touch. You can define database
triggers that run inside or outside of the transaction scope of their firing event. The default behavior
is to run inside the transaction scope. The alternative runs outside the transaction scope by spawning
a separate transaction scope. You create an independent transaction scope by including the
AUTONOMOUS_TRANSACTION precompiler directive inside the declaration block of the trigger body.

NOTE
A MERGE statement is both an INSERT statement and an UPDATE
statement, and you must write INSERT and UPDATE statement
triggers for MERGE statements.

You gain access to the data changes in row-level DML triggers through the new and old
pseudo-record types. You also gain the same access to data changes in INSTEAD OF triggers. The
structure of these types is dynamic and defined at runtime. The trigger declaration inherits the
declaration of these values from the DML statement that fires it.

The way in which DML row-level and INSTEAD OF triggers call their trigger bodies is
different from how statement-level triggers call their trigger bodies. When an event fires this type
of trigger, the trigger declaration spawns a runtime program unit, which is the real “trigger” in this
process. The trigger makes available new and old pseudo-record structures by communicating
with the DML statement that fired it. The trigger code block can access these pseudo-record
structures by calling them as bind variables. The trigger code block is an anonymous PL/SQL
block that is only accessible through a trigger declaration.

You also have the ability to replace the new and old pseudo-record structures with user-
defined names of your own choosing. That’s done with the following prototype:

REFERENCING new AS myNew old AS myOld

12-ch12.indd 496 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 497

As discussed in Chapter 4, Table 4-1, under the host variable indicator, bind variables allow
you to reach outside of a program’s scope. You can access variables defined in the calling program’s
scope. The :in and :out variables are bind variables inside trigger bodies, or :myNew and
:myOld user-defined pseudo-record structures. The pseudo-record structure lets your trigger code
block communicate with your trigger session. Only row-level triggers can reference these pseudo-
record structure bind variables. Row-level trigger code blocks can read and write through these
bind variables, as shown in Figure 12-1.

You can also call external stand-alone or package functions and procedures from trigger
bodies. When you call programs from the trigger body, the called programs are black boxes. This
means that external stored programs can’t access the :new and :old bind variables. You do have
the option to pass them by value or reference to other stored functions and procedures.

Oracle Database 11g introduced compound triggers. The compound trigger changes the
landscape of writing triggers by introducing timing blocks and a global trigger state. The timing
blocks mimic the four types of DML triggers, but the global trigger state lets you coordinate the
exchange of information between the timing events. Inside the global trigger state, you can
declare variables, types, and cursors that each of the timing events can read and write to.

Table collections are probably the most useful structure that you can define in the global
trigger state. That’s because you can write data collected inside the BEFORE EACH ROW and
AFTER EACH ROW timing events. Collections like these let you perform bulk writes to logging
tables in the AFTER STATEMENT timing event.

BEFORE STATEMENT The code in this timing event runs before the DML statement. It executes
just like a before statement-level trigger. You can collect before statement data and write it to the
global trigger state variables.

FIGURE 12-1. Trigger architecture

Trigger
Body

:n
ew

:o
ld

Trigger

External
Component

O
U

T

IN

Triggering Statement

12-ch12.indd 497 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

498 Oracle Database 12c PL/SQL Programming

BEFORE EACH ROW The code in this timing event runs before each row. Here, you capture
the before and after state values of any column in the target table. You can also read values set by
the before statement timing event and write values to any global trigger state variables.

AFTER EACH ROW The after each row timing event lets you capture column values set by the
DML statement or overridden by the before each row timing event.

AFTER STATEMENT The after statement is the last timing event. It’s where you can perform
bulk inserts to logging tables…at least that’s true when you’ve gathered data from the before and
after each row timing events into table collections. (It’s possible to use varray collections, but, as
mentioned in Chapter 6, using table collections is more flexible.)

You can define multiple triggers on any object or event. Oracle Database 10g and prior
releases didn’t provide any way to sequence the order of how triggers fired. This limit existed
because triggers were interleaved, meaning that programs worked independently as discrete
processes. Oracle Database 11g and forward eliminates this limitation. Oracle Database 11g
added the FOLLOWS clause to trigger definitions. The FOLLOWS clause guarantees that a trigger
fires following another trigger. A trigger without the FOLLOWS clause fires first, provided all other
triggers use the FOLLOWS clause.

Review Section
This section has described the following points about the Oracle Database 12c database trigger
architecture:

 ■ Database triggers are like packages because they have a trigger declaration and trigger
body.

 ■ The trigger declarations consist of four parts: a trigger name, a statement, a restriction,
and an action.

 ■ The trigger body is an anonymous block PL/SQL program unit. As an anonymous
block, you must implement the execution block. You may implement a declaration and
exception block.

 ■ Database triggers listen for an event and then take action when the event occurs. This
is an implementation of the object-oriented analysis and design (OOAD) Observer
pattern.

 ■ Database triggers have their own namespace, which means you can have the same
name for a table as you have for a database trigger.

 ■ Database triggers may become invalid when dependencies in the trigger body are
removed.

 ■ You can use the alter trigger command to recompile a trigger after a dependency of the
trigger body has been restored.

12-ch12.indd 498 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 499

Data Definition Language Triggers
Data Definition Language triggers fire when you create, change, or remove objects in a database
schema. They are useful to control or monitor DDL statements. Table 12-1 lists the DDL events
that work with DDL triggers. These triggers support both BEFORE and AFTER event triggers and
work at the database or schema level.

You often use DDL triggers to monitor significant events in the database. Sometimes you use
them to monitor errant code. Errant code can perform activities that corrupt or destabilize your
database. More often, you use DDL triggers in development, test, stage, and production systems
to understand and monitor the dynamics of database activities. The following list describes the
purpose of each of these different environments and how DDL triggers are used in each:

 ■ Development systems Support white box and black box testing of code modules. These
tests include letting you or other developers create, alter, and drop different database
objects. Concurrent testing of different modules can lead to confusion and errors. DBAs
need to use DDL triggers to monitor the code components that developers put into the
development system. As a DBA, you use information from DDL triggers to diagnose and
fix code components. Without DDL triggers to capture information, it becomes more
difficult to find and fix problems with the database instance.

 ■ Test systems Support integration testing, which lets you examine how individual
modules interact with one another. The development staff and your company’s technical
business users work on these test systems. The staff performs regression and load testing.
They use DDL triggers to check the effectiveness of how modules work with one another.

 ■ Stage systems Support alpha and beta testing by technical business users. Stage systems
are engineered to mimic production servers. Stage systems use DDL triggers to ensure
control rules limit changes on the server.

 ■ Production systems Support the operation of small to large corporations. You use DDL
triggers to manage business application rules and enforce security protocols. These DDL
triggers help you identify, log, and control activities in the production instance.

 ■ DDL, statement-level DML, and system or database triggers have no access to the data
they impact (an exception occurs when you alter or drop a column in a DDL trigger).

 ■ Row-level DML triggers have access to the data they impact through the new and old
pseudo-record structures.

 ■ You can override the new and old pseudo-record structure names when you define
the database trigger.

 ■ DML statement-level triggers have before and after statement timing events.

 ■ DML row-level triggers have before statement, before each row, after each row, and
after statement timing events.

 ■ You can synchronize triggers by using the FOLLOWS clause when you define database
triggers.

 ■ Compound database triggers have a global trigger state and the same four timing events
as a DML row-level trigger.

12-ch12.indd 499 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

500 Oracle Database 12c PL/SQL Programming

DDL Event Description
ALTER You change something about objects, like their constraints, names, storage

clauses, or structure.
ANALYZE You compute object statistics for the cost optimizer.
ASSOCIATE
STATISTICS

You link a statistic type to a column, function, package, type, domain index, or
index type.

AUDIT You enable auditing on an object or system.
COMMENT You document the purpose of columns or tables.
CREATE You create objects in the database, like objects, privileges, roles, tables, users,

and views.
DDL You use the DDL event to represent any of the primary DDL events. It

effectively represents any DDL event acting on anything.
DISASSOCIATE
STATISTICS

You unlink a statistic type to a column, function, package, type, domain index,
or index type.

DROP You remove objects from the database, like objects, privileges, roles, tables,
users, and views.

GRANT You grant privileges or roles to users in the database. The privileges enable a
user to act on objects, like objects, privileges, roles, tables, users, and views.

NOAUDIT You disable auditing on an object or system.
RENAME You rename objects in the database, like columns, constraints, objects,

privileges, roles, synonyms, tables, users, and views.
REVOKE You revoke privileges or roles from users in the database. The privileges enable

a user to act on objects, like objects, privileges, roles, tables, users, and views.
TRUNCATE You truncate tables, which drops all rows from a table and resets the high-

water mark to the original storage clause initial extent value. Unlike the DML
DELETE statement, the truncate command can’t be reversed by a rollback
command. You can use the new flashback to undo the change.

TABLE 12-1. Available DDL events

DDL triggers are very useful when you patch your application code. They can let you find
potential changes between releases. You can also use the INSTEAD OF CREATE trigger during an
upgrade to enforce table creation storage clauses or partitioning rules.

CAUTION
The overhead of these types of triggers should be monitored carefully
in production systems.

These triggers can also track the creation and modification of tables by application programs
that lead to database fragmentation. They are also effective security tools when you monitor
GRANT and REVOKE privilege statements. The following sections list and describe in detail the
event attribute functions you can use to supplement your DDL triggers.

12-ch12.indd 500 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 501

Event Attribute Functions
The following is a list of system-defined event attribute functions:

 ■ ORA_CLIENT_IP_ADDRESS

 ■ ORA_DATABASE_NAME

 ■ ORA_DES_ENCRYPTED_
PASSWORD

 ■ ORA_DICT_OBJ_NAME

 ■ ORA_DICT_OBJ_NAME_LIST

 ■ ORA_DICT_OBJ_OWNER

 ■ ORA_DICT_OBJ_OWNER_LIST

 ■ ORA_DICT_OBJ_TYPE

 ■ ORA_GRANTEE

 ■ ORA_INSTANCE_NUM

 ■ ORA_IS_ALTER_COLUMN

 ■ ORA_IS_CREATING_NESTED_
TABLE

 ■ ORA_IS_DROP_COLUMN

 ■ ORA_IS_SERVERERROR

 ■ ORA_LOGIN_USER

 ■ ORA_PARTITION_POS

 ■ ORA_PRIVILEGE_LIST

 ■ ORA_REVOKEE

 ■ ORA_SERVER_ERROR

 ■ ORA_SERVER_ERROR_DEPTH

 ■ ORA_SERVER_ERROR_MSG

 ■ ORA_SERVER_ERROR_NUM_PARAMS

 ■ ORA_SERVER_ERROR_PARAM

 ■ ORA_SQL_TXT

 ■ ORA_SYSEVENT

 ■ ORA_WITH_GRANT_OPTION

 ■ SPACE_ERROR_INFO

Each of the following subsections has a brief description and basic examples of how to use the
specific event attribute function. You should note that these functions are designed to work in the
context of a DDL trigger. The event attribute functions return null values outside of a database
trigger context. You should recall from the “Database Trigger Architecture” section earlier in this
chapter that trigger bodies are anonymous PL/SQL blocks. That’s why I show most of the examples
that follow without line numbers. There are two exceptions to this rule. One example shows you
how to implement a system trigger with an event attribute, and the other shows you how to
implement a DDL trigger with an event attribute. The “ORA_CLIENT_IP_ADDRESS” section
demonstrates the system trigger, and the “ORA_IS_DROP_COLUMN” section demonstrates the
DDL trigger.

Trigger Logging Table
A trigger logging table can be many things and serve many purposes. This logging table
is designed to support DDL triggers that alter or drop a column. It leverages the concept of
nested tables of object types, which are discussed in the “Nested Collection Types” section
of Appendix B. The logging table requires that you create two base object types, which
act like SQL record types, and two collections of the base object types.

(continued)

12-ch12.indd 501 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

502 Oracle Database 12c PL/SQL Programming

The object types and collections of object types are defined by these SQL statements:

SQL> /* Base Object Type for Surrogate Keys. */
SQL> CREATE OR REPLACE
 2 TYPE who_audit_key IS OBJECT
 3 (row_id CHAR(18) -- Convert to character string.
 4 , row_value NUMBER);
 5 /
SQL> /* Collection of Base Object Type for Surrogate Keys. */
SQL> CREATE OR REPLACE
 2 TYPE who_audit_key_table IS TABLE OF who_audit_key;
 3 /
SQL> /* Base Object Type for Surrogate Keys. */
SQL> CREATE OR REPLACE
 2 TYPE who_audit_value IS OBJECT
 3 (row_id CHAR(18) -- Convert to character string.
 4 , row_value DATE);
 5 /
SQL> /* Collection of Base Object Type for Surrogate Keys. */
SQL> CREATE OR REPLACE
 2 TYPE who_audit_value_table IS TABLE OF who_audit_value;
 3 /

The row_id field value in the who_audit_key and who_audit_value collections
must be explicitly converted to a character string because you can’t put a ROWID data type
in an object type. The who_audit_key_table and who_audit_value_table
collections are table collections. Table collections are effective when you don’t know how
many rows might exist when you drop or alter a column in a table, which is always.

The following creates the logging table to hold information from our database trigger
example:

SQL> CREATE TABLE logging
 2 (logging_id NUMBER GENERATED ALWAYS AS IDENTITY
 3 , message VARCHAR2(266)
 4 , user_ids WHO_AUDIT_KEY_TABLE
 5 , user_timestamps WHO_AUDIT_VALUE_TABLE
 6 , CONSTRAINT logging_pk PRIMARY KEY (logging_id))
 7 NESTED TABLE user_ids STORE AS who_audit_id
 8 , NESTED TABLE user_timestamps STORE AS who_audit_timestamp;

The logging table implements an identity column on line 2 as a surrogate key. The
identity column’s name is the table name plus an _id suffix. The message column stores
the trigger’s raised error message in the logging table. The user_ids column and
user_timestamps columns are nested tables that would hold any data dropped or
altered by a DDL statement. Lines 7 and 8 designate two parallel nested tables, which you
should know based on the comma delimiting them on line 8.

You would embed a Native Dynamic SQL (NDS) or dbms_sql operation to capture the
data from a table name discovered at runtime. You could then query the data before altering
or dropping a table’s column. Both NDS and dbms_sql are covered in Chapter 13.

12-ch12.indd 502 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 503

Some examples require full illustration, and a couple of them write results gathered during
trigger execution to a logging table. You can find the full definition of that table in the “Trigger
Logging Table” sidebar in this chapter.

ORA_CLIENT_IP_ADDRESS
The ORA_CLIENT_IP_ADDRESS function takes no formal parameters. It returns the client IP
address as a VARCHAR2 data type.

The following is an example of a system trigger using an event attribute function. It requires
you to connect as the system user of the CDB or the ADMIN user of the PDB, and then create the
following table.

SQL> CREATE TABLE logon_ip
 2 (logon_ip_id NUMBER GENERATED ALWAYS AS IDENTITY
 3 , logon_ip_address VARCHAR2(15));

Realistically, you’d capture more information, but this shows you how to capture an IP address.
IP addresses have at most four three-digit numbers between 0 and 255, and three periods or dots,
which is why I sized the logon_ip_address column at 15 characters.

You can use it like this in a real system trigger:

SQL> CREATE OR REPLACE TRIGGER connecting_trigger
 2 AFTER LOGON ON DATABASE
 3 DECLARE
 4 ip_address VARCHAR2(15);
 5 BEGIN
 6 IF ora_sysevent = 'LOGON' THEN
 7 /* Capture the IP address to a local variable. */
 8 ip_address := ora_client_ip_address;
 9
 10 /* Write the logon IP address to a table. */
 11 INSERT INTO logon_ip
 12 (logon_ip_address)
 13 VALUES
 14 (ip_address); -- Could use ora_client_ip_address function call.
 15 END IF;
 16 END;
 17 /

Line 4 declares a local ip_address variable. Line 8 captures the value from the ORA_
CLIENT_IP_ADDRESS function and assigns it to the local variable. The INSERT statement uses
the local ip_address variable in the VALUES clause. While you don’t really need to create a
local variable in this simple trigger, a fine-grain auditing solution could benefit from a local
variable. A fine-grain auditing solution would compare the return value against an internal white
list of IP addresses and rules.

ORA_DATABASE_NAME
The ORA_DATABASE_NAME function takes no formal parameters. It returns the database name as
a VARCHAR2 data type.

12-ch12.indd 503 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

504 Oracle Database 12c PL/SQL Programming

You can use it like this:

DECLARE
 database VARCHAR2(50);
BEGIN
 database := ora_database_name;
END;

ORA_DES_ENCRYPTED_PASSWORD
The ORA_DES_ENCRYPTED_PASSWORD function takes no formal parameters. It returns the DES-
encrypted password as a VARCHAR2 data type. This is equivalent to the value in the sys.user$
table password column in Oracle Database 12c. Passwords are no longer accessible in the
DBA_USERS or ALL_USERS views.

You can use it like this:

DECLARE
 password VARCHAR2(60);
BEGIN
 IF ora_dict_obj_type = 'USER' THEN
 password := ora_des_encrypted_password;
 END IF;
END;

ORA_DICT_OBJ_NAME
The ORA_DICT_OBJ_NAME function takes no formal parameters. It returns an object name as a
VARCHAR2 data type. The object name represents the target of the DDL statement.

You can use it like this:

DECLARE
 database VARCHAR2(50);
BEGIN
 database := ora_dict_obj_name;
END;

ORA_DICT_OBJ_NAME_LIST
The ORA_DICT_OBJ_NAME_LIST function takes one formal parameter. The formal parameter is
also returned because it is passed by reference as an OUT mode list of VARCHAR2 variables. The
formal parameter data type is defined in the dbms_standard package as ora_name_list_t.
The ora_name_list_t is a table of VARCHAR2(64) data types. The function returns the
number of elements in the list as a PLS_INTEGER data type. The name_list contains the list of
object names touched by the triggering event.

You can use it like this:

DECLARE
 name_list DBMS_STANDARD.ORA_NAME_LIST_T;
 counter PLS_INTEGER;
BEGIN
 IF ora_sysevent = 'ASSOCIATE_STATISTICS' THEN
 counter := ora_dict_obj_name_list(name_list);
 END IF;
END;

12-ch12.indd 504 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 505

ORA_DICT_OBJ_OWNER
The ORA_DICT_OBJ_OWNER function takes no formal parameters. It returns an owner of the
object acted upon by the event as a VARCHAR2 data type.

You can use it like this:

DECLARE
 owner VARCHAR2(30);
BEGIN
 database := ora_dict_obj_owner;
END;

ORA_DICT_OBJ_OWNER_LIST
The ORA_DICT_OBJ_OWNER_LIST function takes one formal parameter. The formal parameter is
also returned because it is passed by reference as an OUT mode list of VARCHAR2 variables. The
formal parameter data type is defined in the dbms_standard package as ora_name_list_t.
The ora_name_list_t is a table of VARCHAR2(64) data types. The function returns the
number of elements in the list indexed by a PLS_INTEGER data type.

In the example, the owner_list contains the list of object owners where their statistics were
analyzed by a triggering event. You can use it like this:

DECLARE
 owner_list DBMS_STANDARD.ORA_NAME_LIST_T;
 counter PLS_INTEGER;
BEGIN
 IF ora_sysevent = 'ASSOCIATE_STATISTICS' THEN
 counter := ora_dict_obj_owner_list(owner_list);
 END IF;
END;

ORA_DICT_OBJ_TYPE
The ORA_DICT_OBJ_TYPE function takes no formal parameters. It returns the data type of the
dictionary object changed by the event as a VARCHAR2 data type.

You can use it like this:

DECLARE
 type VARCHAR2(19);
BEGIN
 database := ora_dict_obj_type;
END;

ORA_GRANTEE
The ORA_GRANTEE function takes one formal parameter. The formal parameter is also returned
because it is passed by reference as an OUT mode list of VARCHAR2 variables. The formal
parameter data type is defined in the dbms_standard package as ora_name_list_t. The
ora_name_list_t is a table of VARCHAR2(64) data types. The function returns the number of
elements in the list indexed by a PLS_INTEGER data type. The user_list contains the list of
users granted privileges or roles by the triggering event.

12-ch12.indd 505 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

506 Oracle Database 12c PL/SQL Programming

You can use it like this:

DECLARE
 user_list dbms_standard.ora_name_list_t;
 counter PLS_INTEGER;
BEGIN
 IF ora_sysevent = 'GRANT' THEN
 counter := ora_grantee(user_list);
 END IF;
END;

ORA_INSTANCE_NUM
The ORA_INSTANCE_NUM function takes no formal parameters. It returns the current database
instance number as a NUMBER data type.

You can use it like this:

DECLARE
 instance NUMBER;
BEGIN
 instance := ora_instance_num;
END;

ORA_IS_ALTER_COLUMN
The ORA_IS_ALTER_COLUMN function takes one formal parameter, which is a column name.
The function returns a true or false value as a BOOLEAN data type. It is true when the column has
been altered, and it is false when it hasn’t been changed. This function worked with the traditional
uppercase catalog information, but in Oracle Database 12c you need to match the catalog case if
you opted to save any tables in a case-sensitive format. The example uses a case-insensitive string
as an actual parameter.

You can use it like this:

SQL> CREATE OR REPLACE TRIGGER dropping_column
 2 BEFORE ALTER ON SCHEMA
 3 DECLARE
 4 /* Column length has grown in Oracle 12c to 128. */
 5 TYPE column_table IS TABLE OF VARCHAR2(128);
 6
 7 /* Identify the list of columns to monitor. */
 8 lv_column_table COLUMN_TABLE := column_table('CREATED_BY'
 9 ,'CREATION_DATE'
 10 ,'LAST_UPDATED_BY'
 11 ,'LAST_UPDATE_DATE');
 12 BEGIN
 13 /* Check for altering a table when you want to capture
 14 dropping a column. */
 15 IF ORA_SYSEVENT = 'ALTER' AND ORA_DICT_OBJ_TYPE = 'TABLE' THEN
 16 /* Read through the list of monitored columns. */
 17 FOR i IN 1..lv_column_table.COUNT LOOP
 18 /* Check for a drop of a monitored column and record it. */

12-ch12.indd 506 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 507

 19 IF ORA_IS_ALTER_COLUMN(lv_column_table(i)) OR
 20 ORA_IS_DROP_COLUMN(lv_column_table(i)) THEN
 21 INSERT INTO logging
 22 (message)
 23 VALUES
 24 (ora_dict_obj_owner||'.'||
 25 ora_dict_obj_name||'.'||
 26 lv_column_table(i)||' column dropped.');
 27 END IF;
 28 END LOOP;
 29 END IF;
 30 END;
 31 /

Line 2 instructs the trigger to run when an ALTER statement runs against the schema. Line 15
checks whether an ALTER TABLE statement fired the trigger. Lines 19 and 20 check whether the
change touches a column of interest, like the standard who-audit columns. The following
statement would fire the preceding trigger if a sample table exists with a last_updated_by
column:

SQL> ALTER TABLE sample1
 2 DROP COLUMN last_updated_by;

Querying the message column of the logging table, you would find the following
message:

MESSAGE

VIDEO.SAMPLE1.LAST_UPDATED_BY column dropped.

This is very useful if you want to guard against changing standard who-audit columns, like
CREATED_BY, CREATION_DATE, LAST_UPDATED_BY, or LAST_UPDATE_DATE. These are
security columns generally used to identify who last touched the data through the standard
application programming interface (API). Any change to columns like these can destabilize
an API.

ORA_IS_CREATING_NESTED_TABLE
The ORA_IS_CREATING_NESTED_TABLE function takes no formal parameters. It returns a true
or false value as a BOOLEAN data type when you create a table with a nested table.

You can use it like this:

BEGIN
 IF ora_sysevent = 'CREATE' AND
 ora_dict_obj_type = 'TABLE' AND
 ora_is_creating_nested_table THEN
 INSERT INTO logging_table
 VALUES (ora_dict_obj_name||'.'||' created with nested table.');
 END IF;
END;

12-ch12.indd 507 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

508 Oracle Database 12c PL/SQL Programming

ORA_IS_DROP_COLUMN
The ORA_IS_DROP_COLUMN function takes one formal parameter, which is a column name. The
function returns a true or false value as a BOOLEAN data type. It is true when the column has been
dropped, and it returns false when it hasn’t been dropped. This function worked with the
traditional uppercase catalog information, but in Oracle Database 12c you need to match the
catalog case if you opted to save any tables in a case-sensitive format. The example uses a case-
insensitive string as an actual parameter.

You can use it like this:

DECLARE
 TYPE column_list IS TABLE OF VARCHAR2(32);
 columns COLUMN_LIST := column_list('CREATED_BY','LAST_UPDATED_BY');
BEGIN
 IF ora_sysevent = 'DROP' AND
 ora_dict_obj_type = 'TABLE' THEN
 FOR i IN 1..columns.COUNT THEN
 IF ora_is_drop_column(columns(i)) THEN
 INSERT INTO logging_table
 VALUES (ora_dict_obj_name||'.'||columns(i)||' changed.');
 END IF;
 END LOOP;
 END IF;
END;

This function is very useful if you want to guard against changing standard who-audit
columns, like those discussed previously for the ORA_IS_ALTER_COLUMN function.

ORA_IS_SERVERERROR
The ORA_IS_SERVERERROR function takes one formal parameter, which is an error number. It
returns a true or false value as a BOOLEAN data type when the error is on the error stack.

You can use it like this:

BEGIN
 IF ora_is_servererror(4082) THEN
 INSERT INTO logging_table
 VALUES ('ORA-04082 error thrown.');
 END IF;
END;

ORA_LOGIN_USER
The ORA_LOGIN_USER function takes no formal parameters. The function returns the current
schema name as a VARCHAR2 data type.

You can use it like this:

BEGIN
 INSERT INTO logging_table
 VALUES
 (ORA_LOGIN_USER ||' is the current user.');
END;

12-ch12.indd 508 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 509

ORA_PARTITION_POS
The ORA_PARTITION_POS function takes no formal parameters. The function returns the numeric
position with the SQL text where you can insert a partition clause. This is only available in an
INSTEAD OF CREATE trigger.

You can use the following, provided you add your own partitioning clause:

DECLARE
 sql_text ORA_NAME_LIST_T;
 sql_stmt VARCHAR2(32767);
 partition VARCHAR2(32767) := 'partitioning_clause';
BEGIN
 FOR i IN 1..ora_sql_txt(sql_text) LOOP
 sql_stmt := sql_stmt || sql_text(i);
 END LOOP;
 sql_stmt := SUBSTR(sql_text,1,ORA_PARTITION_POS – 1)||' '
 || partition||' '||SUBSTR(sql_text,ORA_PARTITION_POS);
 /* Add logic to prepend schema because it runs under SYSTEM. */
 sql_stmt := REPLACE(UPPER(sql_stmt),'CREATE TABLE '
 ,'CREATE TABLE '||ora_login_user||'.');
 EXECUTE IMMEDIATE sql_stmt;
END;

The coding sample requires that you grant the owner of the trigger the CREATE ANY TRIGGER
privilege. You should consider a master privileged user for your application and avoid using the
system schema.

ORA_PRIVILEGE_LIST
The ORA_PRIVILEGE_LIST function takes one formal parameter. The formal parameter is also
returned because it is passed by reference as an OUT mode list of VARCHAR2 variables. The formal
parameter data type is defined in the dbms_standard package as ora_name_list_t. The
ora_name_list_t is a table of VARCHAR2(64) data types. The function returns the number of
elements in the list indexed by a PLS_INTEGER data type. The priv_list contains the list of
privileges or roles granted by the triggering event.

You can use it like this:

DECLARE
 priv_list DBMS_STANDARD.ORA_NAME_LIST_T;
 counter PLS_INTEGER;
BEGIN
 IF ORA_SYSEVENT = 'GRANT' OR ORA_SYSEVENT = 'REVOKE' THEN
 counter := ora_privilege_list(priv_list);
 END IF;
END;

Line 5 illustrates inclusionary logic from Chapter 5, and many developers write code like this
because they feel it’s clearer. I’d suggest there’s a better way. You can replace line 5 with a lookup
operator, like this:

 5 IF ORA_SYSEVENT IN ('GRANT','REVOKE') THEN

12-ch12.indd 509 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

510 Oracle Database 12c PL/SQL Programming

The IN lookup operator ensures you only call the ORA_SYSEVENT event attribute function
once. After calling the ORA_SYSEVENT function, you compare its value against the list of values.
You can also use the =ANY or =SOME lookup operators in lieu of the IN lookup operator. All three
deliver the same functionality. Appendix B discusses lookup operators in server sections.

ORA_REVOKEE
The ORA_REVOKEE function takes one formal parameter. The formal parameter is also returned
because it is passed by reference as an OUT mode list of VARCHAR2 variables. The formal
parameter data type is defined in the dbms_standard package as ora_name_list_t. The
ora_name_list_t is a table of VARCHAR2(64) data types. The function returns the number of
elements in the list indexed by a PLS_INTEGER data type. The priv_list contains the list of
users that had privileges or roles revoked by the triggering event.

You can use it like this:

DECLARE
 revokee_list DBMS_STANDARD.ORA_NAME_LIST_T;
 counter PLS_INTEGER;
BEGIN
 IF ORA_SYSEVENT = 'REVOKE' THEN
 counter := ORA_REVOKEE(priv_list);
 END IF;
END;

ORA_SERVER_ERROR
The ORA_SERVER_ERROR function takes one formal parameter, which is the position on the error
stack, where 1 is the top of the error stack. It returns an error number as a NUMBER data type.

You can use it like this:

DECLARE
 error NUMBER;
BEGIN
 FOR i IN 1..ORA_SERVER_ERROR_DEPTH LOOP
 error := ORA_SERVER_ERROR(i);
 END LOOP;
END;

ORA_SERVER_ERROR_DEPTH
The ORA_SERVER_ERROR_DEPTH function takes no formal parameters. The function returns the
number of errors on the error stack as a PLS_INTEGER data type. The code samples for the ORA_
SERVER_ERROR and ORA_SERVER_ERROR_MSG functions demonstrate how you can use it.

ORA_SERVER_ERROR_MSG
The ORA_SERVER_ERROR_MSG function takes one formal parameter, which is the position on the
error stack, where 1 is the top of the error stack. It returns an error message text as a VARCHAR2
data type.

12-ch12.indd 510 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 511

You can use it like this:

DECLARE
 error VARCHAR2(64);
BEGIN
 FOR i IN 1..ora_server_error_depth LOOP
 error := ORA_SERVER_ERROR_MSG(i);
 END LOOP;
END;

ORA_SERVER_ERROR_NUM_PARAMS
The ORA_SERVER_ERROR_NUM_PARAMS function takes no formal parameters. The function
returns the count of any substituted strings from error messages as a PLS_INTEGER data type. For
example, an error format could be "Expected %s, found %s." The code sample for the
ORA_SERVER_ERROR_PARAM function shows how you can use it.

ORA_SERVER_ERROR_PARAM
The ORA_SERVER_ERROR_PARAM function takes one formal parameter, which is the position in
an error message, where 1 is the first occurrence of a string in the error message. It returns an
error message text as a VARCHAR2 data type. You can use it like this:

DECLARE
 param VARCHAR2(32);
BEGIN
 FOR i IN 1..ora_server_error_depth LOOP
 FOR j IN 1..ora_server_error_num_params(i) LOOP
 param := ORA_SERVER_ERROR_PARAM(j);
 END LOOP;
 END LOOP;
END;

ORA_SQL_TXT
The ORA_SQL_TXT function takes one formal parameter. The formal parameter is also returned
because it is passed by reference as an OUT mode list of VARCHAR2 variables. The formal
parameter data type is defined in the dbms_standard package as ora_name_list_t. The
ora_name_list_t is a table of VARCHAR2(64) data types. The function returns the number of
elements in the list indexed by a PLS_INTEGER data type. The list contains the substrings of the
processed SQL statement that triggered the event. The coding example is shown with the ORA_
PARTITION_POS function.

ORA_SYSEVENT
The ORA_SYSEVENT function takes no formal parameters. The function returns the system event
that was responsible for firing the trigger as a VARCHAR2 data type. You can use it like this:

BEGIN
 INSERT INTO logging_table
 VALUES (ORA_SYSEVENT||' fired the trigger.');
END;

12-ch12.indd 511 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

512 Oracle Database 12c PL/SQL Programming

ORA_WITH_GRANT_OPTION
The ORA_WITH_GRANT_OPTION function has no formal parameters. The function returns a true
or false value as a BOOLEAN data type. It returns true when privileges are granted with grant
option. You can use it like this:

BEGIN
 IF ORA_WITH_GRANT_OPTION THEN
 INSERT INTO logging_table
 VALUES ('ORA-04082 error thrown.');
 END IF;
END;

SPACE_ERROR_INFO
The SPACE_ERROR_INFO function uses six formal pass-by-reference parameters. They are all
OUT mode parameters. The prototype is

SPACE_ERROR_INFO(error_number OUT NUMBER
 , error_type OUT VARCHAR2
 , object_owner OUT VARCHAR2
 , table_space_name OUT VARCHAR2
 , object_name OUT VARCHAR2
 , sub_object_name OUT VARCHAR2)

This function returns true when the triggering event is related to an out-of-space condition,
and it fills in all the outbound parameters. You implement this with a logging table that supports
at least the six OUT parameters. When the function returns false, the OUT mode variables are null.

You can use it like this:

DECLARE
 error_number NUMBER;
 error_type VARCHAR2(12);
 object_owner VARCHAR2(30);
 tablespace_name VARCHAR2(30);
 object_name VARCHAR2(128);
 subobject_name VARCHAR2(30);
BEGIN
 IF SPACE_ERROR_INFO(error_number, error_type
 , object_owner, tablespace_name
 , object_name, subobject_name) THEN
 INSERT INTO logging_table
 VALUES
 (...);
 END IF;
END;

Building DDL Triggers
The prototype for building DDL triggers is

CREATE [OR REPLACE] [EDITIONABLE | NONEDITIONABLE] TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF} ddl_event ON {DATABASE | SCHEMA}
[WHEN (logical_expression)]

12-ch12.indd 512 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 513

[DECLARE]
 declaration_statements
BEGIN
 execution_statements
END [trigger_name];
/

You can use the INSTEAD OF clause only when auditing a creation event. BEFORE triggers
make sure the contents of the trigger body occur before the triggering DDL command, while
AFTER triggers run last. See the section “ORA_PARTITION_POS” earlier in this chapter for an
implementation of an INSTEAD OF CREATE trigger that appends a partitioning table.

The DDL example trigger requires that you create the audit_creation table and audit_
creations_s1 sequence before the trigger. If you forget to create one or both, you can’t create
either after you attempt to compile the database trigger. This limitation exists because you have a
valid trigger declaration but an invalid trigger body. You must drop or disable the trigger
(declaration) before you can create anything in the schema.

You should note that the table and trigger share the same name. This is possible because there
are two namespaces in Oracle databases, one for triggers and another for everything else.

You create the table and sequence as follows:

SQL> CREATE TABLE audit_creation
 2 (audit_creation_id NUMBER
 3 , audit_owner_name VARCHAR2(30) CONSTRAINT audit_creation_nn1 NOT NULL
 4 , audit_obj_name VARCHAR2(30) CONSTRAINT audit_creation_nn2 NOT NULL
 5 , audit_date DATE CONSTRAINT audit_creation_nn3 NOT NULL
 6 , CONSTRAINT audit_creation_p1 PRIMARY KEY (audit_creation_id));
SQL> CREATE SEQUENCE audit_creation_s1;

Alternatively, Oracle Database 12c lets you define identity columns, which eliminate the need
for you to manually set surrogate primary key values with manual sequence pseudocolumns. You
would change line 2 from the preceding CREATE TABLE statement to use an identity column, like

2 (audit_creation_id NUMBER GENERATED ALWAYS AS IDENTITY

ALWAYS is the default (and, yes, you can omit it safely) when you create an identify column.
You can read more about the identity column in the “Identity Columns” section of Appendix B.

Now you can create the audit_creation system trigger. This trigger shows you the behavior
of a DDL trigger when dependencies become unavailable to the trigger:

SQL> CREATE OR REPLACE TRIGGER audit_creation
 2 BEFORE CREATE ON SCHEMA
 3 BEGIN
 4 INSERT INTO audit_creation VALUES
 5 (audit_creation_s1.nextval
 6 , ORA_DICT_OBJ_OWNER
 7 , ORA_DICT_OBJ_NAME
 8 , SYSDATE);
 9 END audit_creation;
 10 /

Lines 6 and 7 use event attribute functions, and they simplify writing a DDL trigger. You should
use event attribute functions where possible to capture enriched content from your DDL triggers.

12-ch12.indd 513 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

514 Oracle Database 12c PL/SQL Programming

The following DDL statement triggers the system trigger, which inserts data from the event
attribute functions. It creates a mythology synonym that doesn’t translate to anything real, but it
does create an event that fires the trigger.

The DDL statement is

CREATE SYNONYM mythology FOR plsql.some_myth;

You can query the results of the audit_creation trigger from the audit_creation table.
While it’s possible to use the same name for both the table and the database trigger (as done),
doesn’t it cause you to wonder, “Is that right?” That’s why I’d like to suggest you append a _T
(underscore and T) at the end of trigger names. It’s simply clearer and inexpensive to do. Please
remember that just because you can do something doesn’t mean you should, like reuse table
names for trigger names.

The following SQL*Plus formatting (covered in the “Interactive Mode Parameter Passing”
section of Appendix A) helps us see what the trigger logged:

SQL> COL audit_creation_id FORMAT 99 HEADING "Audit|Creation|ID #"
SQL> COL audit_owner_name FORMAT A6 HEADING "Audit|Owner|Name"
SQL> COL audit_obj_name FORMAT A8 HEADING "Audit|Object|Name"
SQL> COL audit_obj_name FORMAT A9 HEADING "Audit|Object|Name"
SQL> SELECT * FROM audit_creation;

The query returns

 Audit Audit Audit
 Creation Owner Object Audit
 ID # Name Name Date
--------- ------ --------- ---------
 21 PLSQL MYTHOLOGY 17-NOV-08

You have now seen how to implement a DDL trigger. The next section examines DML triggers.

Review Section
This section has described the following points about the Oracle Database 12c DDL database
trigger architecture:

 ■ DDL triggers fire when you create, change, or remove objects in a database.

 ■ Oracle Database 12c’s event attribute functions provide a readymade set of code you
can use in your DDL triggers and system or database event triggers.

 ■ You can create DDL triggers that work against the whole database, editions, or
schemas.

 ■ You also can limit a DDL trigger to a single PDB instance in Oracle Database 12c’s
new multitenant architecture.

 ■ Oracle Database 12c’s event attribute functions only return values in the context of a
database trigger.

 ■ You can use the INSTEAD OF CREATE clause when you want to automate a standard
partition storage clause every time you create a table.

12-ch12.indd 514 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 515

Data Manipulation Language Triggers
DML triggers can fire before or after INSERT, UPDATE, and DELETE statements. DML triggers
can be statement- or row-level activities. Statement-level triggers fire and perform a statement or
set of statements once no matter how many rows are affected by the DML event. Row-level
triggers fire and perform a statement or set of statements for each row changed by a DML statement.

A principal caveat of triggers that manage data changes is that you cannot use SQL Data
Control Language (DCL) in them, unless you declare the trigger as autonomous. When triggers
run inside the scope of a transaction, they disallow setting a SAVEPOINT or performing either a
ROLLBACK or COMMIT statement. Likewise, they can’t have a DCL statement in the execution path
of any function or procedure that they call.

The prototype for building DML triggers is

CREATE [OR REPLACE] [EDITIONABLE | NONEDITIONABLE] TRIGGER trigger_name
{BEFORE | AFTER}
{INSERT | UPDATE | UPDATE OF column [, column [, ...]] | DELETE}
ON table_name
[FOR EACH ROW]
[REFERENCING {old | new} [ROW] AS something_else
 [{old | new} [ROW] AS something_else]]
[ENABLE | DISABLE]
[FOLLOWS table_name]
[WHEN (logical_expression)]
[DECLARE]
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 declaration_statements
BEGIN
 execution_statements
END [trigger_name];
/

Oracle Database 11g Release 2 added the EDITIONABLE or NONEDITIONABLE feature of
DML triggers. It allows different trigger behaviors in various editions of the Oracle database.

The BEFORE or AFTER clause determines whether the trigger fires before or after the change
is written to your local copy of the data. You can define a BEFORE or AFTER clause on tables but
not on views. While the prototype shows that you can use either an INSERT, UPDATE, UPDATE
OF (a column), or DELETE statement, you can also use an inclusion, OR, operator between the
events. Using one OR between two events creates a single trigger that runs for two events. You can
create a trigger that supports all four possible events with multiple inclusion operators.

There are two options for DML triggers. You can declare them as statement-level triggers,
which are also known as table-level triggers, or you can declare them as row-level triggers.

You have a FOR EACH ROW clause, a WHEN clause, and new and old pseudo-records in
row-level triggers. The FOR EACH ROW clause specifies that the trigger should fire for each row,
as opposed to once per statement. The WHEN clause acts as a filter specifying when the trigger
fires. Unlike when working with other stored program units, you must qualify a DECLARE block
when you declare local variables, types, or cursors in a trigger.

12-ch12.indd 515 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

516 Oracle Database 12c PL/SQL Programming

Triggers require the DECLARE block in trigger bodies because the declaration of a trigger is
separate from the trigger body. Trigger bodies are like anonymous block PL/SQL programs. They
are called by the trigger, and the trigger implicitly manages parameter passing. Unlike anonymous
blocks, trigger bodies don’t support substitution variables. They support bind variables, but only in
the context of row-level triggers. There is no parameter passing to statement-level triggers.

Statement- and row-level triggers have different purposes and approaches. The trigger types
are covered in the next two subsections.

Statement-Level Triggers
Statement-level triggers are also known as table-level triggers because they’re triggered by a
change to a table. Statement-level triggers capture and process information when a user inserts,
updates, or deletes one or more rows in a table. You can also restrict (filter) UPDATE statement
triggers by constraining them to fire only when a specific column value changes. You can restrict
the trigger by using an UPDATE OF clause. The clause can apply to a column name or a comma-
delimited list of column names.

You can’t use a WHEN clause in a statement-level trigger. You also can’t use the REFERENCING
clause (which lets you change the new or old pseudo-records) when creating a statement-level
trigger. An attempt to do so raises an ORA-04082 exception, which is a compile-time error telling
you that new or old references aren’t allowed in statement-level triggers. It’s important to note
that this same error also can be raised when compiling row-level triggers. The REFERENCING
clause triggers this parsing error, but you can safely ignore the error when compiling row-level
triggers.

You can implement statement-level triggers on inserting, updating, or deleting events.
Statement-level triggers don’t let you collect transaction details. You have access to only the type
of event and values returned by event attribute functions. The UPDATE OF clause lets you filter
the triggering event to a specific column change.

The statement-level example uses an UPDATE OF column name event. The trigger depends
on your running the create_store.sql script from the publisher’s website. You can find a
reference to it in the Introduction to this book.

The trigger logs events in the price_type_log table. It must be created before you compile
the trigger. The following statement creates the table:

SQL> CREATE TABLE price_type_log
 2 (price_id NUMBER CONSTRAINT price_type_log_nn1 NOT NULL
 3 , user_id VARCHAR2(32) CONSTRAINT price_type_log_nn2 NOT NULL
 4 , action_date DATE CONSTRAINT price_type_log_nn3 NOT NULL
 5 , CONSTRAINT price_type_log_p1 PRIMARY KEY (price_id))
 6 /

After creating the table, you can create the trigger. It is possible that the trigger can fail if
you’ve already declared another price_t1 trigger on another table. The REPLACE command
only works when the CREATE OR REPLACE TRIGGER command works against the same table.
You raise an ORA-04095 exception when a trigger name already exists for another table.

The following trigger works in Oracle Database 11g or 12c. Oracle 10g doesn’t support
references to sequence .nextval or .currval pseudocolumns in SQL statements when they’re
inside a PL/SQL block.

12-ch12.indd 516 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 517

Oracle Database 11g and forward releases do support references to sequence .nextval and
.currval pseudocolumns in SQL statements when they’re inside PL/SQL blocks. The following
is included:

SQL> CREATE OR REPLACE TRIGGER price_t1
 2 AFTER UPDATE OF price_type ON price
 3 BEGIN
 4 /* This statement only works in Oracle 11g forward. */
 5 INSERT INTO price_type_log
 6 VALUES
 7 (price_log_s1.nextval,USER,SYSDATE);
 8 END price_t1;
 9 /

It’s fair to assume that code will continue to use the .nextval and .currval pseudocolumns
in SQL statements and transaction management for some time. However, you should consider
migrating to the new identity columns, which are discussed in the “Identity Columns” section
of Appendix B.

Backward Compatibility of .nextval
In prior releases, like Oracle Database 10g, you would need to remove the call to the
.nextval pseudocolumn from the INSERT statement. You would need to refactor it like
this for the older releases:

SQL> CREATE OR REPLACE TRIGGER price_t
 2 AFTER UPDATE OF price_type ON price
 3 DECLARE
 4 lv_price_id NUMBER;
 5 BEGIN
 6 -- Retrieve sequence value and store in local variable.
 7 SELECT price_type_log_s1.nextval
 8 INTO lv_price_id
 9 FROM dual;
 10 -- Insert logging values.
 11 INSERT INTO price_type_log
 12 VALUES
 13 (lv_price_id
 14 , USER
 15 , SYSDATE);
 16 END price_t1;
 17 /

The refactoring requires that you declare a local variable on line 4, then select a value
from the sequence on lines 7 to 8, and use the local variable inside the INSERT statement
on line 13. Relatively, it’s a lot of work to move backward, but that’s probably why Oracle
made it work inside DML statements in the current release.

12-ch12.indd 517 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

518 Oracle Database 12c PL/SQL Programming

Assuming you redefine the price table with a price_id identity column, the trigger would
change to the following override signature for the INSERT statement:

SQL> CREATE OR REPLACE TRIGGER price_t1
 2 AFTER UPDATE OF price_type ON price
 3 BEGIN
 4 /* This statement only works in Oracle 11g forward. */
 5 INSERT INTO price_type_log
 6 (user_id, action_date)
 7 VALUES
 8 (USER,SYSDATE);
 9 END price_t1;
 10 /

Line 6 provides an override signature. Override signatures qualify which columns of data
you’ll provide in the VALUES clause. You can check the “Insert Statements” section of Appendix B
for more details on INSERT statements. Personally, I think the code is cleaner this way, and it’s
certainly more portable to other relational databases.

You can trigger this by running the following UPDATE statement that changes nothing because
it simply reassigns the current value of the price_type column to itself:

SQL> UPDATE price p
 2 SET p.price_type = p.price_type
 3 WHERE EXISTS (SELECT NULL
 4 FROM price q
 5 WHERE q.price_id = p.price_id);

The following query shows that the trigger fired and wrote audit information to the price_
type_log table:

SQL> SELECT *
 2 FROM price_type_log;

This subsection has shown you how to use statement-level DML triggers. The next section
shows you how to write row-level triggers.

Row-Level Triggers
Row-level triggers let you capture new and prior values from each row. This information can let
you audit changes, analyze behavior, and recover prior data without performing a database
recovery operation.

There are two pseudo-records when you use the FOR EACH ROW clause in a row-level trigger.
They both refer to the columns referenced in the DML statement. The pseudo-records are
composite variables; new or old are the pseudo-record variable names in the WHEN clause, and
:new and :old are the bind variables in the trigger body. They differ because the trigger
declaration and body are separate PL/SQL blocks. The new and old pseudo-records are declared
in scope by the row-level trigger declaration. The trigger declaration is the calling block, and the
trigger body is the called block. Bind variables are passed by reference between PL/SQL blocks
when an event fires a trigger in a database session. The elements of the pseudo-record are
pseudo-fields.

12-ch12.indd 518 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 519

The new and old pseudo-records are session-level composite variables. They’re implicitly
declared in the scope of the triggering event, which is the DML statement. Unlike stand-alone
functions and procedures, triggers do not have formal signatures, but they have access to column
values changed by DML statements. These column values are the elements of the pseudo-records,
or pseudo-fields. Pseudo-field values are those columns inserted by an INSERT statement, set by
an UPDATE statement, or destroyed by a DELETE statement.

You access pseudo-fields by referencing the new or old pseudo-records, a component
selector, and a column name in the WHEN clause. Inside a trigger body, you preface the pseudo-
records with a colon (:). The colon lets you reference the externally scoped pseudo-records in the
trigger body. The DML statement declares the list of column names (pseudo-fields).

The following example demonstrates a trigger that replaces a white space in a last name with
a dash for hyphenated names. It’s actually a business rule in some human resource departments to
disallow multiple names in a last_name column. This practice has always struck me as odd,
because there are many names that lead with a preface like de or von followed by a white space.

CREATE OR REPLACE TRIGGER contact_insert_t1

 BEFORE INSERT ON contact

 FOR EACH ROW

 WHEN (REGEXP_LIKE(new.last_name,' '))

BEGIN

:new.last_name := REGEXP_REPLACE(:new.last_name,' ','-',1,1);

END contact_insert_t1;
/ Reads external

pseudo-�eldWrites external
pseudo-�eld

Checks the local
transaction pseudo-�eld

The WHEN clause checks whether the value of the pseudo-field for the last_name column in
the contact table contains a white space. If the condition is met, the trigger passes control to
the trigger body. The trigger body has one statement; the REGEXP_REPLACE function takes a
copy of the pseudo-field as an actual parameter. REGEXP_REPLACE changes any white space in
the string to a dash and returns the modified value as a result. The result is assigned to the
pseudo-field and becomes the value in the INSERT statement. This is an example of using a DML
trigger to enforce a business policy of entering all last names as hyphenated.

The trigger depends on your having run the create_store.sql script, as discussed in the
Introduction to the book. After compiling the trigger in your test schema, you can test the trigger
by running the following INSERT statement:

SQL> INSERT INTO contact
 2 (contact_id
 ...
 10 , last_update_date)
 11 VALUES
 12 (contact_s1.nextval
 ...
 15 ,'Catherine'
 16 ,'Zeta Jones'
 ...
 20 , SYSDATE);

12-ch12.indd 519 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

520 Oracle Database 12c PL/SQL Programming

It converts the last name to a hyphenated last name. You query last_name from the
contact table to see the actual inserted value:

SQL> SELECT last_name
 2 FROM contact
 3 WHERE last_name LIKE 'Zeta%';

You should have the following results:

LAST_NAME

Zeta-Jones

Let’s add another trigger on the same table and instruct it to follow the execution of the
contact_insert_t1 trigger. The code for this trigger checks for multiple names in the first_
name column, and accepts only the first one:

SQL> CREATE OR REPLACE TRIGGER contact_insert_t2
 2 BEFORE INSERT ON contact
 3 FOR EACH ROW
 4 FOLLOWS contact_insert_t1
 5 WHEN (REGEXP_LIKE(new.first_name,' '))
 6 BEGIN
 7 /* Accept only the first of multiple names. */
 8 :new.first_name :=
 9 SUBSTR(:new.first_name,1,REGEXP_INSTR(:new.first_name,' ',1,1,0,'i')-1);
 10 END contact_insert_t2;
 11 /

You should note the _t1 suffix indicates the first trigger, and the second trigger uses a _t2
suffix because it follows the first trigger. Line 4 explains that it’s the second trigger because it
follows the trigger without a FOLLOWS clause. Lines 8 and 9 parse the value being inserted as the
first_name column and insert only the first substring.

A new INSERT statement lets us test both triggers. It inserts first_name and last_name
values that meet the criteria of both of the triggers’ WHEN clauses. That means the triggers fire and
run their respective trigger body. The INSERT statement is

SQL> INSERT INTO contact
 2 (contact_id
 ...
 10 , last_update_date)
 11 VALUES
 12 (contact_s1.nextval
 ...
 15 ,'John the Actor'
 16 ,'Rhys Davies'
 ...
 20 , SYSDATE);

12-ch12.indd 520 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 521

While the first trigger converts the last name to a hyphenated last name, the second trigger
parses the string and returns only the first value. You query first_name and last_name from
the contact table to see the actual inserted values:

SQL> SELECT first_name
 2 , last_name
 2 FROM contact
 3 WHERE last_name LIKE 'Rhys%';

You should have the following results:

FIRST_NAME LAST_NAME
-------------------- --------------------
John Rhys-Davies

Naturally, you can consolidate these two triggers into a single database trigger. The following
contact_insert_t trigger does exactly that:

SQL> CREATE OR REPLACE TRIGGER contact_insert_t1
 2 BEFORE INSERT ON contact
 3 FOR EACH ROW
 4 WHEN (REGEXP_LIKE(new.last_name,' ') OR REGEXP_LIKE(new.first_name,' '))
 5 BEGIN
 6 /* Enforce hyphenated names. */
 7 :new.last_name := REGEXP_REPLACE(:new.last_name,' ','-',1,1);
 8
 9 /* Enforce one name only. */
 10 :new.first_name :=
 11 SUBSTR(:new.first_name,1,REGEXP_INSTR(:new.first_name,' ',1,1,0,'i')-1);
 12 END contact_insert_t1;
 13 /

Line 4 consolidates the two WHEN clauses to a single WHEN clause. That means the trigger
body can then perform both input conversions.

There are two problems with the preceding DML trigger. First, you aren’t logging the attempt
to violate the business rule when you automate compliance. Failure to capture the attempt means
you lose the opportunity to correct data entry practices and educate the business staff of
compliance-based rules. Second, you haven’t prevented an administrator from saying, “That’s not
what I want, let me update it” and then updating the column value without a problem, because
your trigger only restricts INSERT statement behavior.

You can log things in the same transaction context when you don’t choose to raise an
exception. However, it’s a bad idea to capture logging information in the same transaction
context, because you lose your logging information when the user performs a rollback. I’d
recommend that you write all logging triggers as autonomous transactions.

To show you how to log the data, let’s create a small log_name_change table for the
example. The syntax to create it with an identity column is

SQL> CREATE TABLE log_name_changes
 2 (log_name_change NUMBER GENERATED ALWAYS AS IDENTITY
 3 , name_submitted VARCHAR2(20)
 4 , name_modified VARCHAR2(20));

12-ch12.indd 521 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

522 Oracle Database 12c PL/SQL Programming

The new logging version of the trigger is

SQL> CREATE OR REPLACE TRIGGER contact_insert_t1
 2 BEFORE INSERT ON contact
 3 FOR EACH ROW
 4 REFERENCING new AS myNew
 5 WHEN (REGEXP_LIKE(myNew.last_name,' '))
 6 DECLARE
 7 /* Declare local variables. */
 8 lv_name_submitted VARCHAR2(20);
 9 lv_name_modified VARCHAR2(20);
 10
 11 /* Declare trigger as an autonomous transaction. */
 12 PRAGMA AUTONOMOUS_TRANSACTION;
 13 BEGIN
 14 /* Assign submitted last name. */
 15 lv_name_submitted := :myNew.last_name;
 16
 17 /* Enforce hyphenated names. */
 18 :myNew.last_name := REGEXP_REPLACE(:myNew.last_name,' ','-',1,1);
 19
 20 /* Assign modified last name. */
 21 lv_name_modified := :myNew.last_name;
 22
 23 /* Autonomous transaction writes before and after values. */
 24 INSERT INTO log_name_change
 25 (name_submitted
 26 , name_modified)
 27 VALUES
 28 (lv_name_submitted
 29 , lv_name_modified);
 30
 31 /* Commit the write. */
 32 COMMIT;
 33 END contact_insert_t1;
 34 /

Line 4 uses the REFERENCING clause to rename the new pseudo-record to myNew,
which is actually case insensitive, so :myNew would work as well. Line 5 now checks for the
myNew.last_name value, which reflects the renaming of the new pseudo-record.

Line 12 uses the PRAGMA AUTONOMOUS_TRANSACTION (precompiler directive) to make the
trigger body an autonomous program unit. That means it runs in its own transaction scope. A
ROLLBACK statement after the INSERT statement would only undo the insert into the contact
table, not the insert into the log_name_change table. Line 32 commits the write to the log_
name_change table, and committing the write is required any time you implement an
autonomous trigger body.

12-ch12.indd 522 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 523

You can modify the original or subsequent logging trigger to prevent somebody from updating
the last_name column with a white space. You actually can prevent that in a single trigger by
using the inclusion OR operator, like

SQL> CREATE OR REPLACE TRIGGER contact_insert_t1
 2 BEFORE INSERT OR UPDATE OF last_name ON contact
 3 FOR EACH ROW
 4 WHEN (REGEXP_LIKE(new.last_name,' '))
 5 BEGIN
 6 :new.last_name := REGEXP_REPLACE(:new.last_name,' ','-',1,1);
 7 END contact_insert_t1;
 8 /

Line 2 ensures the trigger is now fired on any INSERT statement and only for UPDATE
statements that change the last_name column. It is always better to build triggers that work with
multiple DML events when you take the same or similar type of action. You also can build single
triggers to perform different tasks, and my opinion is that it’s generally a better practice to
minimize the number of triggers where possible.

Let’s say the business case assumes an INSERT statement of a multiple-name first_name or
nonhyphenated last_name is an error of omission, and a trigger should correct the error. That means
you don’t surface the problem to the business user when they make the mistake. A second business
rule identifies that any attempt to update the first_name column with multiple names or the
last_name column with a nonhyphenated last name is an error of commission. That means you do
want to surface the violation of the business rules directly to the business user attempting the action.

A single trigger can manage these different rules for the INSERT and UPDATE statements. It
accomplishes it by leveraging the INSERTING and UPDATING functions (covered in Table 12-3
later in the chapter). Here’s the trigger implementation to achieve these two behaviors:

SQL> CREATE OR REPLACE TRIGGER contact_insert_t
 2 BEFORE INSERT OR UPDATE OF first_name, last_name ON contact
 3 FOR EACH ROW
 4 WHEN (REGEXP_LIKE(new.last_name,' ') OR REGEXP_LIKE(new.first_name,' '))
 5 BEGIN
 6 /* Enforce hyphenated names. */
 7 :new.last_name := REGEXP_REPLACE(:new.last_name,' ','-',1,1);
 8
 9 /* Selectively evaluate only insert or update actions. */
 10 IF INSERTING THEN
 11 :new.first_name :=
 12 SUBSTR(:new.first_name
 13 ,1
 14 ,REGEXP_INSTR(:new.first_name,' ',1,1,0,'i')-1);
 15 ELSIF UPDATING THEN
 16 IF REGEXP_LIKE(:new.first_name,' ') THEN
 17 RAISE_APPLICATION_ERROR(-20099,'Updates can''t use multiple names.');
 18 ELSIF REGEXP_LIKE(:new.last_name,' ') THEN
 19 RAISE_APPLICATION_ERROR(-20100,'Inserts non-hyphenated last name..');

12-ch12.indd 523 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

524 Oracle Database 12c PL/SQL Programming

 20 END IF;
 21 END IF;
 22 END contact_insert_t;
 23 /

Line 2 now manages only insert and updates where the business user changes the first_name
or last_name column value. Line 4 filters which column changes the trigger should fix. Line 10
uses the INSERTING function to perform the automatic repair process. Line 15 uses the UPDATING
function to perform the notification process for an error of commission. Lines 16 through 20 manage
the two different kinds of errors.

Repeating the test for an INSERT statement isn’t necessary because the logic works the same
as it does in prior examples. The UPDATE statement changes behavior, and here’s an example of
an UPDATE statement that fires the database trigger:

SQL> UPDATE contact
 2 SET first_name = 'John the Actor'
 3 WHERE last_name LIKE 'Rhys%';

It raises the following user-defined exception:

UPDATE contact
 *
ERROR at line 1:
ORA-20099: Updates can't use multiple names.
ORA-06512: at "VIDEO.CONTACT_INSERT_T", line 13
ORA-04088: error during execution of trigger 'VIDEO.CONTACT_INSERT_T'

The trigger raises the exception on line 13 of the trigger body, which means you must subtract
the four lines of trigger declaration to find the right line where the error is thrown.

Another common use for a DML trigger is automatic numbering for a primary key column,
although this is no longer necessary because Oracle Database 12c now supports identity
columns. You still can create this type of trigger with or without a WHEN clause. With a WHEN
clause, the trigger can filter when it should or shouldn’t run. For example, a WHEN clause lets you
insert a manual primary key value by suppressing the one generated by a sequence called inside a
trigger. This type of solution lets you perform bulk processing without calling the sequence for
each row insert. While it’s possible to do this, it’s a horrible solution. Rather than use a WHEN
clause for bulk operations, you should use NDS to disable the trigger prior to the bulk operations
and re-enable the trigger after the bulk operations. You’ll also need to use DNS to drop and
re-create the associated sequence, because you can’t alter the sequence to reset its starting value.

Rather than build a multiple-table example, we will examine automatic numbering from the
perspective of logging new connections to the database and logging disconnections from the
database. The balance of the code for this example is in the section “Data Definition Language
Triggers” earlier in the chapter. The DDL triggers that monitor login and logout events call a
user_connection package that logs to a connection_log table. The table definition is

SQL> CREATE TABLE connection_log
 2 (event_id NUMBER(10)
 3 , event_user_name VARCHAR2(30) CONSTRAINT log_event_nn1 NOT NULL
 4 , event_type VARCHAR2(30) CONSTRAINT log_event_nn2 NOT NULL
 5 , event_date DATE CONSTRAINT log_event_nn3 NOT NULL
 6 , CONSTRAINT connection_log_p1 PRIMARY KEY (event_id));

12-ch12.indd 524 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 525

The row-level trigger connection_log_t1 demonstrates the proper way to write a pseudo-
automatic numbering trigger for Oracle Database 10g (which becomes obsoleted with the release
of Oracle 12c):

SQL> CREATE OR REPLACE TRIGGER connection_log_t1
 2 BEFORE INSERT ON connection_log
 3 FOR EACH ROW
 4 BEGIN
 5 SELECT connection_log_s1.nextval
 6 INTO :new.event_id
 7 FROM dual;
 8 END;
 9 /

The connection_log_t1 trigger demonstrates managing a sequence, but it also shows you
how to SELECT INTO a pseudo-field variable. You should really modify the trigger when
deploying it on an Oracle Database 12c database because you no longer have to select a
sequence value into a variable from the pseudo-table dual. You can simply assign it directly.

The row-level trigger connection_log_t2 demonstrates the proper way to write a pseudo-
automatic numbering trigger for Oracle Database 12c:

SQL> CREATE OR REPLACE TRIGGER connection_log_t1
 2 BEFORE INSERT ON connection_log
 3 FOR EACH ROW
 4 BEGIN
 5 :new.event_id := connection_log_s1.nextval;
 6 END;
 7 /

The connection_log_t1 and connection_log_t2 triggers fire always, which means they fire
even when you don’t want them to. You lose the ability to override the sequence-based column
values.

These row-level triggers illustrate two processing rules. One rule is that you must reference a
pseudo-row column as an ordinary variable in the WHEN clause, because the actual trigger fires in
the same memory scope as the DML transaction. The other rule is that you must reference a
pseudo-row column as a bind variable inside the actual trigger scope, where it is running in a
different memory space. The pseudo-rows new and old are pass-by-reference structures, and they
contain your active DML session variable values when arriving at the trigger body. The new and
old pseudo-record variables also receive any changes made in the trigger body when they are
returned to your active DML session.

All the old pseudo-record columns are null when you execute an INSERT statement, and the
new pseudo-record columns are null when you run a DELETE statement. Both new and old
pseudo-records are present during UPDATE statements, but only for those columns referenced by
the SET clause. Table 12-2 displays the availability of pseudo-records.

This subsection has shown you how to write row-level triggers. It demonstrated how to use the
new and old pseudo-records in your WHEN clause and trigger body.

12-ch12.indd 525 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

526 Oracle Database 12c PL/SQL Programming

This section has covered how to use DML triggers and has examined both statement- and
row-level trigger implementation. You should be able to use DML triggers by drawing on what
you have learned in this section.

Review Section
This section has described the following points about the Oracle Database 12c DML database
trigger architecture:

 ■ DML triggers can fire before or after an INSERT, UPDATE, or DELETE statement.

 ■ DML triggers can be statement-level or row-level triggers.

 ■ DML triggers can run in the same transaction scope as the INSERT, UPDATE, or
DELETE statement, or they can run in an autonomous scope.

 ■ You can support the MERGE statement by providing a INSERT or UPDATE database
trigger.

 ■ Statement-level DML triggers fire once before and after the INSERT, UPDATE, or
DELETE statement.

 ■ Row-level DML triggers can pass the record structure of any INSERT, UPDATE, or
DELETE statement, which allows you to evaluate and change old and new column
values.

 ■ The WHEN clause lets you filter when a trigger fires its trigger body.

 ■ You can sequence database triggers by using the FOLLOWS clause from Oracle
Database 11g forward.

 ■ Oracle Database 11g forward supports editioning of database triggers.

 ■ You can use DML triggers to mimic automatic numbering in surrogate key columns.
You do so by calling a sequence into the session memory and then using the next
value of the sequence as a primary key value.

 ■ A single DML trigger can manage an INSERT, UPDATE, or DELETE event, or it can
manage two or more events at the same time.

old new

INSERT No Yes
UPDATE Yes Yes
DELETE Yes No

TABLE 12-2. Pseudo-Record Availability

12-ch12.indd 526 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 527

Compound Triggers
Compound triggers acts as both statement- and row-level triggers when you insert, update, or
delete data in a table. As mentioned, compound triggers contain a global trigger state and four
timing blocks. You can use a compound trigger to capture information at four timing points: (a)
before the firing statement, (b) before each row change from the firing statement, (c) after each
row change from the firing statement, and (d) after the firing statement. You can use these types of
triggers to audit, check, save, and replace values before they are changed when you need to take
action at both the statement and row event levels.

Prior to compound triggers, you had to go to great lengths to mimic this behavior and you ran
the risk of a memory leak with the failure of an AFTER STATEMENT trigger. A compound trigger
functions like a multithreaded process. There is a declaration section for the trigger as a whole,
and each timing point section has its own local declaration section. Timing point sections are
subordinate trigger blocks of the compound trigger.

You can use a compound trigger when you want the behavior of both statement-level and
row-level triggers. Compound triggers can be defined on either a table or a view. Compound
triggers don’t support filtering actions with the WHEN clause or the use of the autonomous
transaction PRAGMA. You can use the UPDATE OF column name filter as a governing event in
updates. Also, the firing order of compound triggers is not guaranteed because they can be
interleaved (mixed between) with the firing of stand-alone triggers.

TIP
You can always call out to a stored function or procedure that runs
autonomously.

Compound triggers don’t support an EXCEPTION block, but you can implement EXCEPTION
blocks in any of the subordinate timing point blocks. The GOTO command is restricted to a single
timing point block, which means you can’t call between timing blocks. You can use the :new and
:old pseudo-records in the row-level statement blocks but nowhere else.

The minimum implementation of a compound trigger requires that you implement at least
one timing point block. Only DML statements trigger compound triggers. Also, compound triggers
don’t fire when (a) the DML statement doesn’t change any rows and (b) the trigger hasn’t
implemented at least a BEFORE STATEMENT or AFTER STATEMENT block. Compound triggers
have significant performance advantages when your DML statements use bulk operations.

The prototype for a compound trigger is

CREATE [OR REPLACE] [EDITIONABLE | NONEDITIONABLE] TRIGGER trigger_name
FOR {INSERT | UPDATE | UPDATE OF column [, column [, ...]] | DELETE}
ON table_name
COMPOUND TRIGGER
[BEFORE STATEMENT IS
 [declaration_statement]
 BEGIN
 execution_statement
 END BEFORE STATEMENT;]
[BEFORE EACH ROW IS

12-ch12.indd 527 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

528 Oracle Database 12c PL/SQL Programming

 [declaration_statement]
 BEGIN
 execution_statement
 END BEFORE EACH ROW;]
[AFTER EACH ROW IS
 [declaration_statement]
 BEGIN
 execution_statement
 END AFTER EACH ROW;]
[AFTER STATEMENT IS
 [declaration_statement]
 BEGIN
 execution_statement
 END AFTER STATEMENT;]
END [trigger_name];
/

The following example rewrites as a compound trigger the insert event row-level trigger from
the earlier section “Row-Level Triggers”:

SQL> CREATE OR REPLACE TRIGGER compound_connection_log_t1
 2 FOR INSERT ON connection_log
 3 COMPOUND TRIGGER
 4 BEFORE EACH ROW IS
 5 BEGIN
 6 IF :new.event_id IS NULL THEN
 7 :new.event_id := connection_log_s1.nextval;
 8 END IF;
 9 END BEFORE EACH ROW;
 10 END;
 11 /

You should note three key elements about compound triggers.

 ■ You can’t filter events in this type of trigger by using a WHEN clause.

 ■ As mentioned, :new and :old pseudo-records are only available in the BEFORE EACH
ROW and AFTER EACH ROW timing blocks.

 ■ Variables declared in the global declaration block retain their value through the
execution of all timing blocks that you’ve implemented.

You can collect row-level information in either the BEFORE EACH ROW timing point or the
AFTER EACH ROW timing point and transfer that information to a global collection declared in
the trigger body. Then, you can perform bulk operations with the collection contents in the AFTER
STATEMENT timing point. If you don’t write the data to another table, you could raise a
“maximum number of recursive calls” error, ORA-00036.

The next example demonstrates collecting information in the row-level timing points,
transferring it to a global collection, and processing it as a bulk transaction in the AFTER
STATEMENT timing block. This example depends on your running the create_store.sql script,

12-ch12.indd 528 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 529

which is described in the Introduction. The first step requires creating a log repository, which is
done by creating the following table and sequence:

SQL> CREATE TABLE price_event_log
 2 (price_log_id NUMBER
 3 , price_id NUMBER
 4 , created_by NUMBER
 5 , creation_date DATE
 6 , last_updated_by NUMBER
 7 , last_update_date DATE);
SQL> CREATE SEQUENCE price_event_log_s1;

The trigger populates created_by and last_updated_by columns as part of the
applications “who-audit” information. It assumes that you’re striping the data, which means you
need to set a client_info value for the session. The physical client_info section is found
in the V$SESSION view. You can read more about these concepts in the sidebar “Reading and
Writing Session Metadata” later in the chapter.

The following sets the client_info value to 3, which is a valid system_user_id in the
system_user table:

EXECUTE dbms_application_info.set_client_info('3');

The trigger depends on the state of the CLIENT_INFO column, but as you might imagine, it
can’t control it. Therefore, the trigger assigns a –1 when the CLIENT_INFO value is missing
during its execution.

The following defines the compound trigger with both BEFORE EACH ROW and AFTER
STATEMENT timing blocks:

SQL> CREATE OR REPLACE TRIGGER compound_price_update_t1
 2 FOR UPDATE ON price
 3 COMPOUND TRIGGER
 4 /* Declare a global record type. */
 5 TYPE price_record IS RECORD
 6 (price_log_id price_event_log.price_log_id%TYPE
 7 , price_id price_event_log.price_id%TYPE
 8 , created_by price_event_log.created_by%TYPE
 9 , creation_date price_event_log.creation_date%TYPE
 10 , last_updated_by price_event_log.last_updated_by%TYPE
 11 , last_update_date price_event_log.last_update_date%TYPE);
 12 /* Declare a global collection type. */
 13 TYPE price_list IS TABLE OF PRICE_RECORD;
 14 /* Declare a global collection and initialize it. */
 15 price_updates PRICE_LIST := price_list();
 16 BEFORE EACH ROW IS
 17 /* Declare or define local timing point variables. */
 18 c NUMBER;
 19 user_id NUMBER :=
 20 NVL(TO_NUMBER(SYS_CONTEXT('userenv','client_info')),-1);
 21 BEGIN
 22 /* Extend space and assign dynamic index value. */
 23 price_updates.EXTEND;

12-ch12.indd 529 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

530 Oracle Database 12c PL/SQL Programming

 24 c := price_updates.LAST;
 25 price_updates(c).price_log_id := price_event_log_s1.nextval;
 26 price_updates(c).price_id := :old.price_id;
 27 price_updates(c).created_by := user_id;
 28 price_updates(c).creation_date := SYSDATE;
 29 price_updates(c).last_updated_by := user_id;
 30 price_updates(c).last_update_date := SYSDATE;
 31 END BEFORE EACH ROW;
 32 AFTER STATEMENT IS
 33 BEGIN
 34 /* Bulk insert statement. */
 35 FORALL i IN price_updates.FIRST..price_updates.LAST
 36 INSERT INTO price_event_log
 37 VALUES
 38 (price_updates(i).price_log_id
 39 , price_updates(i).price_id
 40 , price_updates(i).created_by
 41 , price_updates(i).creation_date
 42 , price_updates(i).last_updated_by
 43 , price_updates(i).last_update_date);
 44 END AFTER STATEMENT;
 45 END;
 46 /

The BEFORE EACH ROW timing block collects row-level data and stores it in a global
collection, which can then be read from another timing block. The numeric index for the
collection is dynamic and leverages the Oracle Collection API LAST method. If you’d like to
check how that works, please refer to Chapter 6, where it is covered.

The AFTER STATEMENT timing block reads the global collection and performs a bulk insert
of the data to the log table. The next time the trigger is fired, the global collection is empty
because the compound trigger implementation is serialized.

You can test the trigger by running the following UPDATE statement:

SQL> UPDATE price
 2 SET last_updated_by =
 3 NVL(TO_NUMBER(SYS_CONTEXT('userenv','client_info')),-1);

Then, you can query the price_event_log table:

SQL> SELECT * FROM price_event_log;

This example has shown you how to capture row-level data, save it in a global collection, and
reuse it in a statement-level statement.

This section has explained compound triggers and shown you how to implement them. They
allow you to mix the benefits and operations of statement- and row-level triggers in a single
trigger.

12-ch12.indd 530 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 531

Review Section
This section has described the following points about the Oracle Database 12c compound
database trigger architecture:

 ■ Compound database triggers support a global state that lets you define variables
available at any of the four timing points.

 ■ Compound database triggers support DML events at four timing points: BEFORE
STATEMENT, BEFORE EACH ROW, AFTER EACH ROW, and AFTER STATEMENT.

 ■ Compound database triggers don’t support a global exception block, but each of the
timing blocks supports exception blocks.

Reading and Writing Session Metadata
The process of writing to and reading from the session client_info column requires you
to use the dbms_application_info package. You use the set_client_info
procedure in the dbms_application_info package to write data into the 64-character
client_info column found in the V$SESSION view. The following anonymous PL/SQL
block assumes that the created_by and last_updated_by columns should be 3:

SQL> BEGIN
 2 /* Write value to V$SESSION.CLIENT_INFO column. */
 3 DBMS_APPLICATION_INFO.SET_CLIENT_INFO('3');
 4 END;
 5 /

You can now read this value by calling the read_client_info procedure. You
should enable SERVEROUTPUT using SQL*Plus to see the rendered output when you run
the following program:

SQL> DECLARE
 2 client_info VARCHAR2(64);
 3 BEGIN
 4 /* Read value from V$SESSION.CLIENT_INTO column. */
 5 DBMS_APPLICATION_INFO.READ_CLIENT_INFO(client_info);
 6 DBMS_OUTPUT.PUT_LINE('['||client_info||']');
 7 END;
 8 /

User-defined session columns let you store unique information related to user credentials
from your access control list (ACL). You assign a session column value during user
authentication. Then, the session client_info column allows you to manage multiple
user interactions in a single schema. Authenticated users can access rows from tables when
their session client_info column value matches a striping column value in the table.

12-ch12.indd 531 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

532 Oracle Database 12c PL/SQL Programming

INSTEAD OF Triggers
You can use the INSTEAD OF trigger to intercept INSERT, UPDATE, and DELETE statements and
replace those instructions with alternative procedural code. Nonupdatable views generally have
INSTEAD OF triggers to accept the output and resolve the issues that make the view nonupdatable.
INSTEAD OF triggers are editionable from Oracle Database 11g Release 2 forward.

The prototype for building an INSTEAD OF trigger is

CREATE [OR REPLACE] [EDITIONABLE | NONEDITIONABLE] TRIGGER trigger_name
INSTEAD OF {dml_statement}
ON {object_name | database | schema}
FOR EACH ROW
[WHEN (logical_expression)]
[DECLARE]
 declaration_statements
BEGIN
 execution_statements
END [trigger_name];
/

INSTEAD OF triggers are powerful alternatives that resolve how you use complex and
nonupdatable views. When you know how the SELECT statement works, you can write procedural
code to update the data not directly accessible through nonupdatable views.

You can only deploy an INSTEAD OF DML trigger against a view. There is no restriction as to
whether the view is updatable or nonupdatable, but generally INSTEAD OF triggers are built for
nonupdatable views.

The following view is supported by the data model provided on the publisher’s website. It is
also a nonupdatable view because of the DECODE statement, as shown:

SQL> CREATE OR REPLACE VIEW account_list AS
 2 SELECT c.member_id
 3 , c.contact_id
 4 , m.account_number
 5 , c.first_name
 6 || DECODE(c.middle_name,NULL,' ',' '||c.middle_name||' ')
 7 || c.last_name FULL_NAME
 8 FROM contact c JOIN member m ON c.member_id = m.member_id;

Without an INSTEAD OF trigger, a DML statement against this view can raise an ORA-01776
exception that says you’re disallowed from modifying more than one base table through a join.
You could also raise an ORA-01779 exception that says you’re disallowed from modifying a
column because it fails to map to a non-key-preserved table.

You can create an INSTEAD OF trigger that would allow you to update or delete from this view.
However, the view doesn’t have enough information to support INSERT statements to either base
table. Without redefining the view, there is also no programmatic way to fix these shortcomings.

12-ch12.indd 532 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 533

The following is an INSTEAD OF INSERT trigger. It raises an exception for any insertion
attempt to the nonupdatable view.

SQL> CREATE OR REPLACE TRIGGER account_list_insert
 2 INSTEAD OF INSERT ON account_list
 3 FOR EACH ROW
 4 BEGIN
 5 RAISE_APPLICATION_ERROR(-20000,'Not enough data for insert!');
 6 END;
 7 /

After compiling the trigger, an INSERT statement run against the view now raises the
following exception stack:

INSERT INTO account_list
 *
ERROR at line 1:
ORA-20000: Not enough data for insert!
ORA-06512: at "PLSQL.ACCOUNT_LIST_INSERT", line 2
ORA-04088: error during execution of trigger 'PLSQL.ACCOUNT_LIST_INSERT'

The question here is, do you want to define three INSTEAD OF event triggers or one? A
number of developers opt for multiple INSTEAD OF triggers as opposed to one that does
everything. You should consider defining one trigger for inserting, updating, and deleting events.
Table 12-3 qualifies the INSERTING, UPDATING, and DELETING functions from the dbms_
standard package. These functions let you determine the type of DML event and write one trigger
that manages all three DML events.

Certain required fields for an insert to either the member table or contact table are missing
from the view. There is also a programmatic way to fix these shortcomings.

Function Name Return Data Type Description
DELETING BOOLEAN The DELETING function returns a Boolean true

when the DML event is deleting.
INSERTING BOOLEAN The INSERTING function returns a Boolean true

when the DML is inserting.
UPDATING BOOLEAN The UPDATING function returns a Boolean true

when the DML is updating.

TABLE 12-3. Data Manipulation Language Event Functions

12-ch12.indd 533 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

534 Oracle Database 12c PL/SQL Programming

You can build a complete trigger for all DML statements by using the event function from
Table 12-3. The following provides an example INSTEAD OF trigger:

SQL> CREATE OR REPLACE TRIGGER account_list_dml
 2 INSTEAD OF INSERT OR UPDATE OR DELETE ON account_list
 3 FOR EACH ROW
 4 DECLARE
 5 /* Anchor variable declaration. */
 6 lv_source account_list.full_name%TYPE := :new.full_name;
 7
 8 /* Declare variables. */
 9 lv_fname VARCHAR2(43);
 10 lv_mname VARCHAR2(1);
 11 lv_lname VARCHAR2(43);
 12
 13 /* Check whether all dependents are gone. */
 14 FUNCTION get_dependents
 15 (pv_member_id NUMBER) RETURN BOOLEAN IS
 16 /* Declare a local variable. */
 17 lv_rows NUMBER := 0;
 18
 19 /* Declare a dynamic cursor. */
 20 CURSOR c
 21 (cv_member_id NUMBER) IS
 22 SELECT COUNT(*)
 23 FROM contact
 24 WHERE member_id = pv_member_id;
 25 BEGIN
 26 /* Open the cursor with the function input. */
 27 OPEN c (pv_member_id);
 28 FETCH c INTO lv_rows;
 29
 30 /* Return false when there's more than one row. */
 31 IF lv_rows > 0 THEN
 32 RETURN FALSE;
 33 ELSE
 34 RETURN TRUE;
 35 END IF;
 36 END get_dependents;
 37
 38 BEGIN
 39 /* Take action inline with scope of DML statement. */
 40 IF INSERTING THEN -- On insert event.
 41 RAISE_APPLICATION_ERROR(-20000,'Not enough data for insert!');
 42 ELSIF UPDATING THEN -- On update event.
 43 /* Assign source variable. */
 44 lv_source := :new.full_name;
 45
 46 -- Parse full_name for elements.
 47 lv_fname := LTRIM(REGEXP_SUBSTR(lv_source,'(^|^ +)([[:alpha:]]+)',1));
 48 lv_mname := REGEXP_SUBSTR(

12-ch12.indd 534 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 535

 49 REGEXP_SUBSTR(
 50 lv_source
 51 ,'(+)([[:alpha:]]+)((+|. +))',1),'([[:alpha:]])',1);
 52 lv_lname := REGEXP_SUBSTR(
 53 REGEXP_SUBSTR(
 54 lv_source
 55 ,'(+)([[:alpha:]]+)(+$|$)',1),'([[:alpha:]]+)',1);
 56
 57 /* Update name change in base table. */
 58 UPDATE contact
 59 SET first_name = lv_fname
 60 , middle_name = lv_mname
 61 , last_name = lv_lname
 62 WHERE contact_id = :old.contact_id;
 63 ELSIF DELETING THEN -- On delete event.
 64 /* Remove a row. */
 65 DELETE FROM contact
 66 WHERE member_id = :old.member_id;
 67
 68 /* Only delete the parent when there aren't any more children. */
 69 IF get_dependents(:old.member_id) THEN
 70 DELETE FROM member WHERE member_id = :old.member_id;
 71 END IF;
 72 END IF;
 73 END;
 74 /

There are some tricks or risks inherent in this type of trigger. Risks are bad in triggers because
triggers should be foolproof. One potential flaw in this trigger is the assignment of the pseudo-
field :new.full_name in the declaration section. The database doesn’t check when you
compile the trigger if the size of the source variable is large enough to handle possible
assignments. This is a critical place to use type anchoring, as discussed in the section “Attribute
and Table Anchoring” in Chapter 3.

The account_list_dml trigger anchors the source variable to the assigned column value,
which ensures you won’t raise ORA-06502, ORA-06512, and ORA-04088 errors. An assignment
in the DECLARE block of a trigger body does raise a runtime exception, like stand-alone
anonymous block programs.

This trigger fires on any DML event against the nonupdatable view, and it handles the insert,
update, or deletion to the base tables where appropriate. As mentioned, there wouldn’t be enough
information to perform INSERT statements to the base tables. The trigger raises a user-defined
exception when someone attempts to insert a new record through the view. There is enough
information to update the name, but as you can tell, it isn’t a trivial bit of work. You should know
that the regular expression for the middle name won’t work if you have leading white space
before the first name. The DELETE statement only touches one table unless all dependent rows in
the contact table have been deleted first, because you never want to leave orphaned rows in a
dependent table.

This section has shown you how to write individual-event and multiple-event INSTEAD OF
triggers. You should try to write all DML events in a single INSTEAD OF trigger because that
makes them much easier to maintain.

12-ch12.indd 535 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

536 Oracle Database 12c PL/SQL Programming

Review Section
This section has described the following points about the Oracle Database 12c INSTEAD OF
database trigger architecture:

 ■ You can use the INSTEAD OF trigger to intercept INSERT, UPDATE, and DELETE
statements and replace those instructions with alternative procedural code.
Nonupdatable views generally have INSTEAD OF triggers to accept the output
and resolve the issues that make the view nonupdatable. INSTEAD OF triggers are
editionable from Oracle Database 11g Release 2 forward.

 ■ The INSTEAD OF trigger intercepts INSERT, UPDATE, and DELETE statements against
nonupdatable views and enables writing changes to the underlying tables.

 ■ DML event functions support taking different actions based on the firing event.

System and Database Event Triggers
System triggers enable you to audit server startup and shutdown, server errors, and user logon
and logoff activities. They are convenient for tracking the duration of connections per user and the
uptime of the database server. They also can use event attribute functions, as shown earlier in this
chapter. As auditing devices, system and database event triggers are best suited for logging what
they find rather than raising exceptions.

The prototype for building a database system trigger is

CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE | AFTER} database_event ON {database | schema}
[DECLARE]
 declaration_statements
BEGIN
 execution_statements
END [trigger_name];
/

Nonupdatable Views
Views are nonupdatable when they contain any of the following constructs:

 ■ Set operators

 ■ Aggregate functions

 ■ CASE or DECODE statements

 ■ CONNECT BY, GROUP BY, HAVING, or START WITH clauses

 ■ The DISTINCT operator

 ■ Joins (with exceptions when they contain the joining key)

You also cannot reference any pseudo-columns or expressions when you update a view.

12-ch12.indd 536 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 537

The logon and logoff triggers monitor the duration of connections. The DML statements for
these triggers are in the user_connection package. The connecting_trigger and
disconnecting_trigger triggers both call procedures in the user_connection package to
insert logon and logoff information per user.

The connecting_trigger provides an example of a system trigger that monitors users’
logons to the database, as shown:

SQL> CREATE OR REPLACE TRIGGER connecting_trigger
 2 AFTER LOGON ON DATABASE
 3 BEGIN
 4 user_connection.connecting(sys.login_user);
 5 END;
 6 /

The disconnecting_trigger provides an example of a system trigger that monitors users’
logoffs from the database, as shown:

SQL> CREATE OR REPLACE TRIGGER disconnecting_trigger
 2 BEFORE LOGOFF ON DATABASE
 3 BEGIN
 4 user_connection.disconnecting(sys.login_user);
 5 END;
 6 /

Both triggers are compact and call methods of the user_connection package. This
package requires the connection_log table, which is

SQL> CREATE TABLE connection_log
 2 (event_id NUMBER
 3 , event_user_name VARCHAR2(30) CONSTRAINT log_event_nn1 NOT NULL
 4 , event_type VARCHAR2(14) CONSTRAINT log_event_nn2 NOT NULL
 5 , event_date DATE CONSTRAINT log_event_nn3 NOT NULL
 6 , CONSTRAINT connection_log_p1 PRIMARY KEY (event_id));

The package body declares two procedures. One supports the logon trigger, and the other
supports the logoff trigger. The package specification is

SQL> CREATE OR REPLACE PACKAGE user_connection AS
 2 PROCEDURE connecting (user_name IN VARCHAR2);
 3 PROCEDURE disconnecting (user_name IN VARCHAR2);
 4 END user_connection;
 5 /

The implementation of the user_connection package body is

SQL> CREATE OR REPLACE PACKAGE BODY user_connection AS
 2 PROCEDURE connecting (user_name IN VARCHAR2) IS
 3 BEGIN
 4 INSERT INTO connection_log
 5 (event_user_name, event_type, event_date)
 6 VALUES (user_name,'CONNECT',SYSDATE);
 7 END connecting;
 8 PROCEDURE disconnecting (user_name IN VARCHAR2) IS

12-ch12.indd 537 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

538 Oracle Database 12c PL/SQL Programming

 9 BEGIN
 10 INSERT INTO connection_log
 11 (event_user_name, event_type, event_date)
 12 VALUES (user_name,'DISCONNECT',SYSDATE);
 13 END disconnecting;
 14 END user_connection;
 15 /

You may notice that the connection_log table has four columns but the INSERT statement
only uses three. This is possible because the connection_log_t1 trigger automatically assigns
the next value from the connection_log_s1 sequence. You can find the source of the
connection_log_t1 trigger in the section “Row-Level Triggers” in this chapter.

This section has demonstrated how you can build system triggers.

Review Section
This section has described the following points about the Oracle Database 12c system and
database event triggers:

 ■ System and database event triggers let you capture events like logging on or off the
system, or connecting to different schemas.

 ■ System and database event triggers are best suited to log activities rather than raise
exceptions.

Trigger Restrictions
There are several restrictions on how you implement triggers in Oracle Database 12c. They are
fairly consistent between releases, but Oracle Database 11g forward has relaxed some mutating
table restrictions. Restrictions have been covered in earlier sections when they apply to only one
type of trigger.

The following subsections cover the remaining restrictions.

Maximum Trigger Size
A trigger body can be no longer than 32,760 bytes, as noted in the section “Introduction to Triggers”
at the beginning of this chapter. This size limitation means that you should consider keeping
your trigger bodies small in size. You can accomplish this without losing any utility by moving
coding logic into other schema-level components, such as functions, procedures, and packages.
An advantage of moving the coding logic out of the trigger body is that you can reuse the code.
You can also wrap schema-level objects, whereas you can’t wrap trigger bodies. Appendix F discusses
wrapping your PL/SQL code to hide it from prying eyes.

SQL Statements
Nonsystem trigger bodies can’t contain DDL statements. They also can’t contain Data Control
Language (DCL) or Transaction Control Language (TCL) commands, like ROLLBACK, SAVEPOINT,
or COMMIT. This rule holds true for the schema-level components that you call from nonsystem
trigger bodies when the trigger runs within the scope of the triggering statement.

12-ch12.indd 538 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 539

If you declare a trigger as autonomous, nonsystem trigger bodies can contain DCL commands
because they don’t alter the transaction scope. They act outside of it. You enable a trigger to work
outside the scope of a triggering statement by putting the following in its DECLARE block:

PRAGMA AUTONOMOUS_TRANSACTION;

A larger problem with SQL statements exists with remote transactions. If you call a remote
schema-level function or procedure from a trigger body, it is possible that you may encounter a
timestamp or signature mismatch. A mismatch invalidates the trigger and causes the triggering
SQL statement to fail.

LONG and LONG RAW Data Types
The LONG and LONG RAW data types are legacy components. No effort is spent on updating them,
and you should migrate to LOBs at your earliest opportunity.

You can’t declare a local variable in a trigger with the LONG or LONG RAW data type. However,
you can insert into a LONG or LONG RAW column when the value can be converted to a constrained
data type, like a CHAR or VARCHAR2. The maximum length is 32,000 bytes.

Row-level triggers cannot use a :new or :old pseudo-record, or row of data, when the column
is declared as a LONG or LONG RAW data type.

Mutating Tables
A mutating table is a table that is undergoing change. Change can come from an INSERT,
UPDATE, or DELETE statement, or from a DELETE CASCADE constraint. This type of error can
only happen on row-level triggers.

You can’t query or modify tables when they’re changing. This makes sense if you think about
it. If a trigger fires because of a change on a table, it can’t see the change until it is final. While
you can access the new and old pseudo-records, you can’t read the state of the table. Any
attempt to do so raises an ORA-04091 exception.

The following example demonstrates how mutating errors can occur. First create a mutant
table, as follows:

SQL> CREATE TABLE mutant
 2 (mutant_id NUMBER
 3 , mutant_name VARCHAR2(20));

You can then insert the four primary ninja turtles:

SQL> INSERT INTO mutant VALUES (mutant_s1.nextval,'Donatello');
SQL> INSERT INTO mutant VALUES (mutant_s1.nextval,'Leonardo');
SQL> INSERT INTO mutant VALUES (mutant_s1.nextval,'Michelangelo');
SQL> INSERT INTO mutant VALUES (mutant_s1.nextval,'Raphael');

After inserting the data, you can build the following trigger:

SQL> CREATE OR REPLACE TRIGGER mutator
 2 AFTER DELETE ON mutant
 3 FOR EACH ROW
 4 DECLARE
 5 lv_rows NUMBER;
 6 BEGIN

12-ch12.indd 539 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

540 Oracle Database 12c PL/SQL Programming

 7 SELECT COUNT(*)
 8 INTO lv_rows
 9 FROM mutant;
 10 dbms_output.put_line('[lv_rows] has '||lv_rows||']');
 11 END;
 12 /

The trigger body attempts to get the number of rows, but it can’t find the number of rows
because the record set is not final. This restriction exists to prevent the trigger from seeing
inconsistent data.

You can fire the trigger by running the following command to delete Michelangelo from the
mutant table:

SQL> DELETE FROM mutant
 2 WHERE mutant_name = 'Michelangelo';

After running that statement, the DELETE statement raises the following error stack:

DELETE FROM mutant WHERE mutant_name = 'Michelangelo'
 *
ERROR at line 1:
ORA-04091: table PLSQL.MUTANT is mutating, trigger/function may not see it
ORA-06512: at "PLSQL.MUTATOR", line 4
ORA-04088: error during execution of trigger 'PLSQL.MUTATOR'

A trigger rolls back the trigger body instructions and triggering statement when it encounters a
mutating table. You should be careful to avoid mutating table errors now that you understand why
they can occur.

System Triggers
System triggers can present interesting problems. Most problems relate to limitations or
constraints imposed by event attribute functions. Some of the event attribute functions may be
undefined for certain DDL events. You should refer to the section “Event Attribute Functions”
earlier in this chapter to understand exactly what to expect from event attribute functions.

Event attribute functions are declared and implemented in the Oracle standard package.
You can also encounter a problem creating objects after a system trigger fails to compile. This
occurs for a CREATE event trigger when a CREATE event fires the trigger and the trigger body is
invalid due to a missing object dependency. The missing dependency invalidates the trigger and
marks it as invalid. When you try to create the missing object, the CREATE event trigger raises an
ORA-04098 error and disallows the DDL statement. To proceed, you must drop the invalid
trigger, fix the object dependency, and recompile the trigger.

You can use the audit_creation trigger created in the section “Data Definition Language
Triggers” to illustrate this restriction. If you drop the audit_creation table, the audit_
creation trigger becomes invalid. Subsequently, you raise an ORA-04098 error while attempting
to create this missing table. You can’t proceed until you drop the trigger, or you disable it. You
disable the trigger by running the following command:

ALTER TRIGGER audit_creations DISABLE;

12-ch12.indd 540 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 541

You can now create the table, and the trigger should revalidate when it is called. If the trigger
is still invalid, you can compile it with this syntax:

ALTER TRIGGER audit_new_stuff COMPILE;

This section has covered some trigger restrictions. You should check the individual sections for
restrictions that are specific to certain trigger types.

Review Section
This section has described the following points about Oracle Database 12c trigger restrictions:

 ■ A trigger body can be no longer than 32,760 bytes, which is the size of a LONG data type.

 ■ Nonsystem trigger bodies can’t contain DDL statements.

 ■ LONG and LONG RAW data types are legacy components, and you should avoid
implementing solutions with them.

 ■ Mutating tables are tables undergoing change, and you can’t query or modify data
while they’re changing.

 ■ You can encounter problems with DDL statements when system triggers fail to compile.

Supporting Scripts
This section describes programs placed on the McGraw-Hill Professional website to support the
chapter.

 ■ The ddl_triggers.sql program contains the scripts that support DDL trigger
examples.

 ■ The dml_triggers.sql program contains the scripts that support DML trigger
examples.

 ■ The compound_triggers.sql program contains the scripts that support the
compound trigger example.

 ■ The system_triggers.sql program contains the scripts that support the system and
database event trigger example.

Summary
This chapter has reviewed the five types of database triggers. It has explained triggers and their
architecture.

Mastery Check
The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix I for answers to
these questions.

12-ch12.indd 541 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

542 Oracle Database 12c PL/SQL Programming

True or False:

1. ___Statement-level database triggers can change the new pseudo-record column values
with the INSERT and UPDATE statements.

2. ___Oracle Database 12c supports triggers on Data Definition Language (DDL) statements.

3. ___Row-level database triggers can change the new pseudo-record column values with
the INSERT and UPDATE statements.

4. ___Compound database triggers have four timing points.

5. ___Compound database triggers can implement a global exception handler.

6. ___Event attribute functions are designed for use in triggers and non-trigger PL/SQL
program units.

7. ___You can implement event attribute functions in system event triggers.

8. ___You can define a single DML trigger that fires for INSERT, UPDATE, or DELETE
statements on the same table.

9. ___You can define a DDL trigger for a MERGE statement.

10. ___It’s possible to define an autonomous trigger body.

Multiple Choice:

11. Which of the following types of database triggers work in an Oracle database? (Multiple
answers possible)

A. DDL triggers

B. TCL triggers

C. DML triggers

D. INSTEAD OF triggers

E. Compound triggers

12. Which of the following types of database triggers work with a nonupdatable view in an
Oracle database? (Multiple answers possible)

A. DDL triggers

B. DML triggers

C. System event triggers

D. TCL triggers

E. INSTEAD OF triggers

13. You have new and old pseudo-record structures for which triggers in an Oracle database?
(Multiple answers possible)

A. DML statement-level triggers

B. DDL row-level triggers

C. DDL statement-level triggers

12-ch12.indd 542 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 12: Triggers 543

D. DML row-level triggers

E. Compound triggers

14. Which of the following are event functions? (Multiple answers possible)

A. A MERGING function

B. An INSERTING function

C. An UPDATING function

D. A DELETING function

E. All of the above

15. Oracle requires what syntax to access new column values from an INSERT or UPDATE
statement in the code block? (Multiple answers possible)

A. new.column_name

B. :new.column_name

C. old.column_name

D. :old.column_name

E. None of the above

12-ch12.indd 543 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

12-ch12.indd 544 12/17/13 9:21 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

CHAPTER
13

Dynamic SQL

13-ch13.indd 545 12/14/13 4:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

546 Oracle Database 12c PL/SQL Programming

Native Dynamic SQL (NDS), delivered in Oracle 9i Database and improved in Oracle
Database 10g, 11g, and 12c, provides a replacement for all but two key features of the
dbms_sql package. So, NDS is the future, but dbms_sql isn’t quite the past. While

you should consider moving appropriate dbms_sql code forward at the earliest opportunity,
some dbms_sql code will remain relevant for awhile. NDS and the dbms_sql package let you
create and execute SQL at runtime.

The chapter is divided into three principal areas:

 ■ Dynamic SQL architecture

 ■ Native Dynamic SQL (NDS)

 ■ Dynamic statements

 ■ Dynamic statements with inputs

 ■ Dynamic statements with inputs and outputs

 ■ Dynamic statements with an unknown number of inputs

 ■ DBMS_SQL package

 ■ Dynamic statements

 ■ Dynamic statements with input variables

 ■ Dynamic statements with variable inputs and fixed outputs

 ■ Dynamic statements with variable inputs and outputs

 ■ DBMS_SQL package

Dynamic SQL statements are a powerful technology that let you write and execute queries as
your programs run. This means the DDL and DML statements can change as your programming
needs change.

The architecture of dynamic statements applies to both NDS and dbms_sql. The architecture
is covered first, and you should at least examine that section instead of going straight to the NDS
section or dbms_sql section. NDS is covered before dbms_sql because you can do everything
with NDS except two things:

 ■ Manage dynamic statements when the number and data type of columns are unknown
before runtime

 ■ Convert LONG and RAW columns to variable length strings to either a VARCHAR2, CLOB,
or NCLOB data types

You must use the dbms_sql package to manage those statements. The dbms_sql package is
covered in detail, including the features replaced by NDS, because there’s often a lot of old code
that gets migrated and supported for years.

13-ch13.indd 546 12/14/13 4:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 547

Dynamic SQL Architecture
Dynamic SQL delivers the flexibility to solve many problems. It allows you to write what are
known as lambda-style functions. You declare lambda-style functions like other functions, but
they can have an unknown parameter list and return type. Dynamic SQL provides this functionality
to the PL/SQL programming language.

While you have two approaches available for building dynamic programs, NDS and the
dbms_sql package, keep in mind that, as mentioned in the introduction, Oracle Database 12c
includes the latest improvements to NDS, and dbms_sql is provided primarily for backward
compatibility.

You have essentially two architectures that apply in both cases. You can concatenate (“glue”)
strings together, or you can implement placeholders. The gluing of strings is susceptible to SQL
injection attacks. SQL injection attacks prey on the issues surrounding quoting strings. While
gluing strings is risky, it’s unavoidable in certain circumstances. You should use the dbms_assert
package when you creating dynamic statements by gluing strings together. Implementing
placeholders makes your dynamic SQL immune to SQL injection attacks. You probably know
these placeholders as bind variables. They act as formal parameters to dynamic statements, but
they’re not quite as tidy as the signatures of functions and procedures.

At compile time, none of the elements in the dynamic statement are validated against objects
in the database. This lets you write statements that will work with future components or work for
multiple components. The decision about what these dynamic statements will do rests with how
you call them.

The process of running a dynamic statement involves four steps. First, the statement is parsed
at runtime. Second, a statement maps call parameters to placeholders in a statement string.
Statements map variables to the placeholders by using their relative position in a statement string.
When you map variables to placeholders you are binding variables to a statement. Binding mimics
calling a function. The only difference is the parameter list is interspersed inside a dynamically
built function. Third, the NDS engine parses and runs the statement with any bound variables.
Fourth, the statement returns values to the calling statement through one of two methods. One
method uses IN OUT mode call variables in the USING clause, which makes the statement act
like a pass-by-reference function. The other method returns values through the RETURNING INTO
clause. The process for dbms_sql is a bit more complex; you can find the process flow chart in
the Oracle Database PL/SQL Packages and Types Reference 12c Release.

Native Dynamic SQL (NDS)
NDS is a powerful and simple tool. It is easy to use and deploy. It generally meets most needs
for lambda-style functions. This section is divided into three parts. First, you cover dynamic
statements, which are gluing strings together to make dynamic statements. Second, you learn
how to use input bind variables. Third, you learn how to return data from NDS statements.

As you work through the various approaches to writing NDS statements, I’ll provide comparisons
to the types of dbms_sql statements they replace. To do so, it’s important to qualify the four methods
provided by the dbms_sql package. Table 13-1 shows you the four dbms_sql methods.

The sections work through the four dbms_sql methods by their complexity. Method 1 is the
least complex, while Method 4 is the most complex. NDS provides a more efficient approach to
Methods 1 through 3, but again there’s no NDS equivalent to Method 4.

13-ch13.indd 547 12/14/13 4:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

548 Oracle Database 12c PL/SQL Programming

Method Description Functions or Procedures

1 Method 1 supports DML or DDL statements that are static.
Static statements have no inputs or outputs when they’re
defined. Method 1 also does not support SELECT statements.

EXECUTE
OPEN_CURSOR
PARSE

2 Method 2 supports DML statements that are dynamic,
which means they have bind variables. This method requires
that you know the number and data type of bind variables
at statement definition. Method 2 also does not support
SELECT statements.

BIND_ARRAY
BIND_VARIABLE
EXECUTE
OPEN_CURSOR
PARSE

3 Method 3 supports DML statements that are dynamic,
which means they have bind variables. It also supports the
RETURNING INTO clause, which lets you retrieve columns
and LOB locators from DML statements. This method
requires that you know the number and data type of bind
variables at statement definition. Method 3 supports SELECT
statements, provided you know the number and data types
at statement definition.

BIND_ARRAY
BIND_VARIABLE
COLUMN_VALUE
DEFINE_COLUMN
EXECUTE
EXECUTE_AND_FETCH
FETCH_ROWS
OPEN_CURSOR
PARSE
VARIABLE_VALUE

4 Method 4 supports DML statements that are dynamic,
which means they have bind variables. It also supports the
RETURNING INTO clause, which lets you retrieve columns
and LOB locators from DML statements. This method does
not require advanced knowledge of the number and data
type of bind variables at statement definition. Method 4
supports SELECT statements without requiring you to know
the number and data type of columns at statement definition.

BIND_ARRAY
BIND_VARIABLE
COLUMN_VALUE
DEFINE_COLUMN
DESCRIBE_COLUMNS
DESCRIBE_COLUMNS2
DESCRIBE_COLUMNS3
EXECUTE
EXECUTE_AND_FETCH
FETCH_ROWS
OPEN_CURSOR
PARSE
VARIABLE_VALUE

TABLE 13-1. DBMS_SQL Methods of Operation

Dynamic Statements
This section shows you how to run dynamic statements. These statements are static shells when
you define your programs. They are constructed as statements during runtime. They require
dynamic execution for different reasons. These types of statements implement Method 1 from the
dbms_sql package. Table 13-1 lists these methods.

You write DDL statements in dynamic SQL to avoid failures during compilation. An example
would be a statement that should perform only when an object exists. Without dynamic SQL
statements, the program unit could fail due to missing objects in the database.

The reasons for using dynamic DML statements differ. More often than not, the purpose is tied
to checking something in the current session before you perform a statement. For example, you

13-ch13.indd 548 12/14/13 4:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 549

may read the CLIENT_INFO value from the session to check for authentication, roles, and
privileges in an end-user application.

The subsections demonstrate dynamic DDL and DML statements, respectively.

Dynamic DDL Statements
A frequently performed task in stand-alone scripts is to check whether something is in the database
before you act on it. You don’t want to run a DROP statement on a table or sequence that doesn’t exist.

NOTE
Unlike MySQL, Oracle Database 12c doesn’t provide an IF EXISTS
clause when creating tables and sequences.

The following anonymous block shows you how to conditionally drop a sequence. It uses a
FOR loop to check whether the sequence exists and then it creates and runs a dynamic DDL
statement. You should enable the SQL*Plus SERVEROUTPUT environment variable before testing
this code if you want to see a confirmation message. You can run this anonymous block successfully
whether there is or isn’t a sample_sequence. The sample program creates the sequence,
validates that it exists in the user_sequences view, and then runs this anonymous block. After
that, it queries the user_sequences view to confirm it’s no longer there.

SQL> BEGIN
 2 /* Use a loop to check whether to drop a sequence. */
 3 FOR i IN (SELECT null
 4 FROM user_objects
 5 WHERE object_name = 'SAMPLE_SEQUENCE') LOOP
 6 EXECUTE IMMEDIATE 'DROP SEQUENCE sample_sequence';
 7 dbms_output.put_line('Dropped [sample_sequence].');
 8 END LOOP;
 9 END;
 10 /

NDS is simple and direct. You simply query to see if the table is there, and when it’s not there,
you drop it. The EXECUTE IMMEDIATE statement runs the command.

Dynamic DML Statements
Dynamic DML statements are often simply strings assembled at runtime. They can be inserted as
function or procedure parameters. The problem with gluing strings together from inputs is that
they’re subject to SQL injection attacks. The dbms_assert package lets you validate input
parameters against SQL injection attacks.

The following procedure lets you dynamically build an INSERT statement to the item table:

SQL> CREATE OR REPLACE PROCEDURE insert_item
 2 (pv_table_name VARCHAR2
 3 , pv_asin VARCHAR2
 4 , pv_item_type VARCHAR2
 5 , pv_item_title VARCHAR2
 6 , pv_item_subtitle VARCHAR2 := ''
 7 , pv_rating VARCHAR2
 8 , pv_agency VARCHAR2
 9 , pv_release_date VARCHAR2) IS

13-ch13.indd 549 12/14/13 4:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

550 Oracle Database 12c PL/SQL Programming

 10 stmt VARCHAR2(2000);
 11 BEGIN
 12 stmt := 'INSERT INTO '||dbms_assert.simple_sql_name(pv_table_name)
 13 ||' VALUES '
 14 || '(item_s1.nextval '
 15 || ','||dbms_assert.enquote_literal('ASIN'||CHR(58)||pv_asin)
 16 || ',(SELECT common_lookup_id '
 17 || ' FROM common_lookup '
 18 || ' WHERE common_lookup_type = '
 19 || dbms_assert.enquote_literal(pv_item_type)||')'
 20 || ','||dbms_assert.enquote_literal(pv_item_title)
 21 || ','||dbms_assert.enquote_literal(pv_item_subtitle)
 22 || ', empty_clob() '
 23 || ', NULL '
 24 || ','||dbms_assert.enquote_literal(pv_rating)
 25 || ','||dbms_assert.enquote_literal(pv_agency)
 26 || ','||dbms_assert.enquote_literal(pv_release_date)
 27 || ', 3, SYSDATE, 3, SYSDATE)';
 28 /* Run the command. */
 29 EXECUTE IMMEDIATE stmt;
 30 END insert_item;
 31 /

The item table could be hard-coded in the string, but it is a parameter to highlight the
qualified_sql_name function. The qualified_sql_name function on line 12 compares
the string against the namespace value in the schema. It raises an ORA-44004 error when the
actual parameter is incorrect. The enquote_literal function puts containing quotes around
string literals in SQL statements. This function is superior to the older style where you backquote
the quotes like this '''some_string''' to get a delimited string literal 'some_string'.

You can test the program with the following anonymous block:

SQL> BEGIN
 2 insert_item (table_name => 'ITEM'
 3 , asin => 'B00005O3VC'
 4 , item_title => 'Monty Python and the Holy Grail'
 5 , item_subtitle => 'Special Edition'
 6 , rating => 'PG'
 7 , agency => 'MPAA'
 8 , release_date => '23-OCT-2001');
 9 END;
 10 /

It successfully enters a new item in the item table.

Dynamic Statements with Inputs
A dynamic statement with input variables takes you one step beyond gluing strings together. This
lets you write a statement with placeholders. The placeholders act like formal parameters but are
interspersed inside the SQL statement. You pass actual parameters by placing them as arguments
to the USING clause. This NDS approach let’s you implement the equivalent of Method 2
operations in the dbms_sql package.

13-ch13.indd 550 12/14/13 4:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 551

Placeholders are positional based on their location in the SQL statement, or PL/SQL call
parameter. You must have an actual parameter in the USING clause for each placeholder. The
USING clause takes a comma-delimited list of parameters. They are IN mode (pass-by-value)
parameters unless you specify otherwise. You override the default mode of operation by setting
any parameter to IN OUT mode or OUT-only mode.

SQL Injection Attacks
SQL injection attacks are attempts to gain access to information that should be protected. SQL
injection uses unbalanced quotes in SQL statements to alter the behavior of dynamic SQL
statements. Dynamic SQL is a place where some hacker might try to exploit your code.

Oracle Database 11g forward has the dbms_assert package to help you prevent SQL
injection attacks. dbms_assert has the following functions:

 ■ The enquote_literal function takes a string input and adds leading and trailing
single quotes to the output string.

 ■ The enquote_name function takes a string input and promotes it to uppercase
before adding leading and trailing double quotes to the output string. An optional
Boolean parameter lets you disable capitalization by setting it to false.

 ■ The noop function takes a string input and returns the same value as an output
without any validation. The noop function is overloaded and can manage a
VARCHAR2 or CLOB data type.

 ■ The qualified_sql_name function validates the input string as a valid schema-
object name. This function lets you validate your functions, procedures, packages,
and user-defined objects. The actual parameter evaluates in lowercase, mixed case,
or uppercase.

 ■ The schema_name function takes a string input and validates whether it is a
valid schema name. The actual parameter needs to be uppercase for this to work
properly. So, you should pass the actual parameter inside a call to the UPPER
function, which is covered in Appendix C.

 ■ The simple_sql_name function validates the input string as a valid schema-
object name. This function lets you validate your functions, procedures, packages,
and user-defined objects.

 ■ The sql_object_name function validates the input string as a valid schema-
object name. This function lets you validate your functions, procedures, and
packages. At the time of writing it raised an ORA-44002 error when checking a
user-defined object type.

You can find more information about the dbms_assert package in the Oracle
Database PL/SQL Packages and Types Reference 12c Release. Oracle NDS is immune to
SQL injection attacks when you use bind variables as opposed to gluing things together.

13-ch13.indd 551 12/14/13 4:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

552 Oracle Database 12c PL/SQL Programming

You use IN mode parameters when executing a SQL statement. The IN OUT or OUT mode
requires that you enclose the SQL statement inside an anonymous block, or that you call a PL/
SQL function or procedure. The Oracle documentation from Oracle Database 11g forward makes
the following recommendations regarding placeholder variables:

 ■ If a dynamic SQL SELECT statement returns at most one row, you should return the value
through an INTO clause. This requires that you either open the statement as a reference
cursor or enclose the SQL statement inside an anonymous block. The former does not use
an IN OUT or OUT mode parameter in the USING clause, while the latter requires it.

 ■ If a dynamic SQL SELECT statement returns more than one row, you should return the
value through a BULK COLLECT INTO clause. Like the INTO clause, the bulk collection
requires that you either (a) open the statement as a reference cursor, or (b) enclose the
SQL statement inside an anonymous block. The former does not use an IN OUT or OUT
mode parameter in the USING clause, while the latter requires it.

 ■ If a dynamic SQL statement is a DML statement with input only placeholders, you should
put them in the USING clause.

 ■ If a dynamic SQL statement is a DML statement and uses a RETURNING INTO clause,
you should put the input values in the USING clause and put the output values in the
NDS RETURNING INTO clause.

 ■ If the dynamic SQL statement is a PL/SQL anonymous block or CALL statement, then you
should put both input and output parameters in the USING clause. All parameters listed
in the USING clause are IN-only mode parameters. You must override the default and
designate them as IN OUT or OUT.

The examples in this section demonstrate all approaches with SQL statements and calling a
PL/SQL anonymous block. As a rule of thumb, you should avoid enclosing an NDS statement in
an anonymous block because using the RETURNING INTO clause is superior and simpler.

The following example rewrites the insert_item procedure from the prior section. This one
uses bind variables:

SQL> CREATE OR REPLACE PROCEDURE insert_item
 2 (pv_asin VARCHAR2
 3 , pv_item_type VARCHAR2
 4 , pv_item_title VARCHAR2
 5 , pv_item_subtitle VARCHAR2 := ''
 6 , pv_rating VARCHAR2
 7 , pv_agency VARCHAR2
 8 , pv_release_date DATE) IS
 9 stmt VARCHAR2(2000);
 10 BEGIN
 11 stmt := 'INSERT INTO item VALUES '
 12 || '(item_s1.nextval '
 13 || ',''ASIN''||CHR(58)||:asin '
 14 || ',(SELECT common_lookup_id '
 15 || ' FROM common_lookup '
 16 || ' WHERE common_lookup_type = :item_type)'

13-ch13.indd 552 12/14/13 4:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 553

 17 || ', :item_title '
 18 || ', :item_subtitle '
 19 || ', empty_clob() '
 20 || ', NULL '
 21 || ', :rating '
 22 || ', :agency '
 23 || ', :release_date '
 24 || ', 3, SYSDATE, 3, SYSDATE)';
 25 EXECUTE IMMEDIATE stmt
 26 USING pv_asin, pv_item_type, pv_item_title, pv_item_subtitle
 27 , pv_rating, pv_agency, pv_release_date;
 28 END insert_item;
 29 /

You may have noticed a couple of changes. Foremost is that all the dbms_assert package
calls were removed. Bind variables inherit the data type from the actual parameter passed through
the USING clause. This is why there are no delimiting quotes around the variables that would
otherwise be string literals. The next change you may notice is the removal of the table name
substitution. You can’t substitute a table name as a bind variable without raising an ORA-00903
error at runtime. The last change is the data type of the release_date parameter; it is now a
DATE type.

Bind variables in NDS statements are like formal parameters in functions and procedures.
While they are scattered throughout a statement, you read them from left to right because the
NDS statement is a string. Their occurrence in the NDS statement string maps their position, and
the USING clause parameter must follow that left-to-right ordering.

The EXECUTE IMMEDIATE statement uses all variables passed as actual parameters through
the USING clause as IN mode–only variables. As is the case for formal parameters in functions
and procedures, the IN mode is the default. You need to specify OUT mode when you want
variables’ results returned to the local program scope by the USING clause.

If the number of parameters in the list is fewer than the actual number of placeholders, you
raise an ORA-01008 error, which says that not all variables are bound. The USING clause
replaces the old bind_value and bind_array procedures in the dbms_sql package.

The following anonymous block lets you test the replacement insert_item procedure:

SQL> BEGIN
 2 insert_item (asin => 'B00005O3VC'
 3 ,item_type => 'DVD_FULL_SCREEN'
 4 ,item_title => 'Monty Python and the Holy Grail'
 5 ,item_subtitle => 'Special Edition'
 6 ,rating => 'PG'
 7 ,agency => 'MPAA'
 8 ,release_date => '23-OCT-2001');
 9 END;
 10 /

Using bind variables is generally preferred over gluing strings together, but both options have
their purposes. Using bind variables is preferred because it makes your code immune to SQL
injection attacks.

13-ch13.indd 553 12/14/13 4:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

554 Oracle Database 12c PL/SQL Programming

Dynamic Statements with Inputs and Outputs
The ability to bind inputs is powerful and simple using NDS. The terrific thing about getting output
variables is that it is so simple. This is a refreshing change over the verbose dbms_sql approach
that you can find in the section “Dynamic Statements with Input and Output Variables” later in
the chapter. This approach let’s NDS provide the equivalent of the dbms_sql package’s Method 3.

The following uses a dynamic statement that returns its outbound values through a PL/SQL
cursor variable:

SQL> DECLARE
 2 /* Define explicit record structure. */
 3 TYPE title_record IS RECORD
 4 (item_title VARCHAR2(60)
 5 , item_subtitle VARCHAR2(60));
 6 /* Define dynamic variables. */
 7 title_cursor SYS_REFCURSOR;
 8 title_row TITLE_RECORD;
 9 stmt VARCHAR2(2000);
 10 BEGIN
 11 /* Set statement. */
 12 stmt := 'SELECT item_title, item_subtitle '
 13 || 'FROM item '
 14 || 'WHERE SUBSTR(item_title,1,12) = :input';
 15 /* Open and read dynamic cursor, then close it. */
 16 OPEN title_cursor FOR stmt USING 'Harry Potter';
 17 LOOP
 18 FETCH title_cursor INTO title_row;
 19 EXIT WHEN title_cursor%NOTFOUND;
 20 dbms_output.put_line(
 21 '['||title_row.item_title||']['||title_row.item_subtitle||']');
 22 END LOOP;
 23 CLOSE title_cursor;
 24 END;
 25 /

The NDS statement is dynamic, accepting a single input bind variable on line 14. The OPEN
FOR statement on line 16 simply appends the USING clause to accept filtering criteria. The
USING clause in this context is IN mode only. If you attempt to specify an OUT mode operation,
the parser raises a PLS-00254 error.

You output the results of the query as you would any other reference cursor statement. The
“System Reference Cursors” section in Chapter 4 covers system reference cursors.

A bulk operation is also possible in NDS. Chapter 3 has a section called “Bulk Statements”
that you may cross reference while working through the bulk processing examples. You simply
call the FETCH BULK COLLECT INTO statement. This is demonstrated in the next query:

SQL> DECLARE
 2 /* Define explicit record structure. */
 3 TYPE title_record IS RECORD
 4 (item_title VARCHAR2(60)
 5 , item_subtitle VARCHAR2(60));

13-ch13.indd 554 12/14/13 4:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 555

 6 TYPE title_collection IS TABLE OF TITLE_RECORD;
 7 /* Define dynamic variables. */
 8 title_cursor SYS_REFCURSOR;
 9 titles TITLE_COLLECTION;
 10 stmt VARCHAR2(2000);
 11 BEGIN
 12 /* Set statement. */
 13 stmt := 'SELECT item_title, item_subtitle '
 14 || 'FROM item '
 15 || 'WHERE SUBSTR(item_title,1,12) = :input';
 16 /* Open and read dynamic cursor, then close it. */
 17 OPEN title_cursor FOR stmt USING 'Harry Potter';
 18 FETCH title_cursor BULK COLLECT INTO titles;
 19 FOR i IN 1..titles.COUNT LOOP
 20 dbms_output.put_line(
 21 '['||titles(i).item_title||']['||titles(i).item_subtitle||']');
 22 END LOOP;
 23 CLOSE title_cursor;
 24 END;
 25 /

The FETCH BULK COLLECT INTO statement on line 18 moves the entire cursor return set
into the collection variable. In a larger program scope, you could return the collection record set
to another PL/SQL block, or to a pipelined function as described in Chapter 8. You can also
reference the section “FORALL Statements” in Chapter 5 to see how you could then use bulk
inserts to process the resulting collection.

The last item to cover is how you use NDS to handle input and output variables. You declare
actual parameters as OUT mode variables in the USING clause. This approach requires two things:
you enclose the SQL statement in an anonymous block PL/SQL program, and you return the
variable through a RETURNING INTO clause.

The next two scripts depend on your adding another row to the item table. This anonymous
block uses the insert_item procedure that you build by running the create_nds3.sql
script (available on the McGraw-Hill Professional website).

SQL> BEGIN
 2 insert_item (asin => 'B000G6BLWE'
 3 ,item_type => 'DVD_FULL_SCREEN'
 4 ,item_title => 'Young Frankenstein'
 5 ,rating => 'PG'
 6 ,agency => 'MPAA'
 7 ,release_date => '05-SEP-2006');
 8 END;
 9 /

The following example demonstrates reading and writing through a CLOB locator with a
dynamic SQL statement. Oracle Database 12c documentation recommends this approach. It has
a couple of benefits. First, all input bind variables are passed through the USING clause, and all
output bind variables are returned through the RETURNING INTO clause. Second, there is no
need to create an enclosing anonymous PL/SQL block for the statement.

13-ch13.indd 555 12/14/13 4:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

556 Oracle Database 12c PL/SQL Programming

The recommended script is

SQL> DECLARE
 2 /* Define explicit record structure. */
 3 lv_target CLOB;
 4 lv_source VARCHAR2(2000) := 'A Mel Brooks comedy classic!';
 5 lv_movie VARCHAR2(60) := 'Young Frankenstein';
 6 stmt VARCHAR2(2000);
 7 BEGIN
 8 /* Set statement. */
 9 stmt := 'UPDATE item '
 10 || 'SET item_desc = empty_clob() '
 11 || 'WHERE item_id = '
 12 || ' (SELECT item_id '
 13 || ' FROM item '
 14 || ' WHERE item_title = :input) '
 15 || 'RETURNING item_desc INTO :descriptor';
 16 EXECUTE IMMEDIATE stmt USING lv_movie RETURNING INTO lv_target;
 17 dbms_lob.writeappend(lv_target,LENGTH(lv_source),lv_source);
 18 COMMIT;
 19 END;
 20 /

The :input placeholder on line 14 receives the local lv_movie value from the USING
clause on line 16. The statement’s RETURNING INTO clause on line 15 returns the
:descriptor placeholder to the lv_target local variable on line 16. As qualified in Chapter
10, the LOB locator is a special connection to a work area that lets you read from and write to a
CLOB variable. The locator acts like an IN OUT mode variable. This is a very simple and direct
approach compared to the alternative. The alternative would have you replace the RETURNING
INTO clause with an IN OUT mode parameter in the USING clause, which would require you to
enclose the SQL statement in a PL/SQL anonymous block.

You could also write a stand-alone procedure to manage this UPDATE statement. The
procedure would look like this:

SQL> CREATE OR REPLACE PROCEDURE get_clob
 2 (pv_item_title VARCHAR2, pv_item_desc_out IN OUT CLOB) IS
 3 BEGIN
 4 UPDATE item
 5 SET item_desc = empty_clob()
 6 WHERE item_id =
 7 (SELECT item_id
 8 FROM item
 9 WHERE item_title = pv_item_title)
 10 RETURNING item_desc INTO pv_item_desc_out;
 11 END get_clob;
 12 /

After creating the procedure, you can then use NDS to call the stored procedure. This works
more like a call through the OCI than NDS. It does provide you with the ability to dynamically
marshal call parameters by filtering them through some procedural logic.

13-ch13.indd 556 12/14/13 4:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 557

The following calls the stored procedure and writes a new string to the CLOB column. The
actual call semantic is enclosed in an anonymous block, which is required when you want to use
IN OUT or OUT mode placeholders.

SQL> DECLARE
 2 /* Define explicit record structure. */
 3 lv_target CLOB;
 4 lv_source VARCHAR2(2000) := 'A Mel Brooks classic movie!';
 5 lv_movie VARCHAR2(60) := 'Young Frankenstein';
 6 stmt VARCHAR2(2000);
 7 BEGIN
 8 /* Set statement. */
 9 stmt := 'BEGIN '
 10 || ' get_clob(:input,:output); '
 11 || 'END;';
 12 EXECUTE IMMEDIATE stmt USING lv_movie, IN OUT lv_target;
 13 dbms_lob.writeappend(lv_target,LENGTH(lv_source),lv_source);
 14 COMMIT;
 15 END;
 16 /

The USING clause maps the lv_movie local variable to the :input placeholder, and
the lv_target local variable to the :output placeholder. The call to the stand-alone
procedure returns a CLOB locator. You use the CLOB locator as the first actual parameter to
the dbms_lob.writeappend procedure. It writes the contents of the lv_source local
variable to the CLOB column courtesy of the placeholder.

You can’t replace an IN OUT mode variable in the USING clause with a RETURNING INTO
clause because it would fail. The attempt raises an ORA-06547 error for a PL/SQL anonymous
block. The error tells you that the RETURNING INTO clause can only be used with an INSERT,
UPDATE, or DELETE statement. The preferred solution is an IN OUT or OUT-only mode
parameter in the USING clause when working with dynamic (or runtime) PL/SQL anonymous
blocks.

NOTE
The get_clob function fails if you have more than one row in the table
that meets the criteria. You should delete any extra copies to test this.

You can confirm any of the writes by running the following query:

SQL> SELECT item_desc
 2 FROM item
 3 WHERE item_title = 'Young Frankenstein';

You’ll see

ITEM_DESC

A Mel Brooks classic movie!

13-ch13.indd 557 12/14/13 4:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

558 Oracle Database 12c PL/SQL Programming

Dynamic Statements with an Unknown Number of Inputs
This section shows you how to create statements that run with an unknown number of
placeholders. It demonstrates what is known as dbms_sql Method 4 (refer to Table 13-1), which
allows you to bind a variable number of placeholders in statements.

The following shows you how to build an unknown number of inputs, while returning a
known list of columns. You still need to use Method 4 and dbms_sql when you have a variable
list of both inputs and outputs.

SQL> DECLARE
 2 /* Declare explicit record structure and table of structure. */
 3 TYPE title_record IS RECORD
 4 (item_title VARCHAR2(60)
 5 , item_subtitle VARCHAR2(60));
 6 TYPE title_table IS TABLE OF title_record;
 7 /* Declare dynamic variables. */
 8 title_cursor SYS_REFCURSOR;
 9 title_rows TITLE_TABLE;
 10 /* Declare dbms_sql variables. */
 11 c INTEGER := dbms_sql.open_cursor;
 12 fdbk INTEGER;
 13 /* Declare local variables. */
 14 counter NUMBER := 1;
 15 column_names DBMS_SQL.VARCHAR2_TABLE;
 16 item_ids DBMS_SQL.NUMBER_TABLE;
 17 stmt VARCHAR2(2000);
 18 substmt VARCHAR2(2000) := '';
 19 BEGIN
 20 /* Find the rows that meet the criteria. */
 21 FOR i IN (SELECT 'item_ids' AS column_names
 22 , item_id
 23 FROM item
 24 WHERE REGEXP_LIKE(item_title,'^Harry Potter')) LOOP
 25 column_names(counter) := counter;
 26 item_ids(counter) := i.item_id;
 27 counter := counter + 1;
 28 END LOOP;
 29 /* Dynamically create substatement. */
 30 IF item_ids.COUNT = 1 THEN
 31 substmt := 'WHERE item_id IN (:item_ids)';
 32 ELSE
 33 substmt := 'WHERE item_id IN (';
 34 FOR i IN 1..item_ids.COUNT LOOP
 35 IF i = 1 THEN
 36 substmt := substmt ||':'||i;
 37 ELSE
 38 substmt := substmt ||',:'||i;
 39 END IF;
 40 END LOOP;

13-ch13.indd 558 12/14/13 4:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 559

 41 substmt := substmt || ')';
 42 END IF;
 43 /* Set statement. */
 44 stmt := 'SELECT item_title, item_subtitle '
 45 || 'FROM item '
 46 || substmt;
 47 /* Parse the statement with DBMS_SQL. */
 48 dbms_sql.parse(c,stmt,dbms_sql.native);
 49 /* Bind the bind variable name and value. */
 50 FOR i IN 1..item_ids.COUNT LOOP
 51 dbms_sql.bind_variable(c,column_names(i),item_ids(i));
 52 END LOOP;
 53 /* Execute using dbms_sql. */
 54 fdbk := dbms_sql.execute(c);
 56 /* Convert the cursor to NDS. */
 57 title_cursor := dbms_sql.to_refcursor(c);
 58 /* Open and read dynamic cursor, then close it. */
 59 FETCH title_cursor BULK COLLECT INTO title_rows;
 60 FOR i IN 1..title_rows.COUNT LOOP
 61 dbms_output.put_line('['||title_rows(i).item_title||']['
 62 ||title_rows(i).item_subtitle||']');
 63 END LOOP;
 64 /* Close the System Reference Cursor. */
 65 CLOSE title_cursor;
 66 END;
 67 /

The program dynamically builds a SQL SELECT statement. The query looks like the following:

SQL> SELECT i.item_title
 2 , i.item_subtitle
 3 FROM item i
 4 WHERE i.item_id IN (:1,:2,:3,:4,:5,:6,:7,:8,:9,:10,:11,:12,:13,:14);

The loop binds the list of numeric placeholders with the values in the item_ids associative
array. The call to the dbms_sql.to_refcursor function converts the dbms_sql cursor to a
standard weakly typed system reference cursor. It also closes the original dbms_sql cursor. If
you try to close the dbms_sql cursor after conversion, you raise an ORA-29471 error. The error
message says that you’re denied access because the package no longer owns the resource.

After converting to the system reference cursor, you simply use the standard NDS features to
bulk-fetch the record set. You can also convert back from NDS to dbms_sql by using the
to_cursor_number function.

This section has shown you how to use NDS. You should note two things in particular: NDS is
simple to implement and simple to use. The next section describes the older and more complex
dbms_sql.

13-ch13.indd 559 12/14/13 4:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

560 Oracle Database 12c PL/SQL Programming

Review Section
This section has described the following points about Native Dynamic SQL:

 ■ NDS lets you create dynamic programs at runtime.

 ■ NDS supports concatenating (or gluing) strings together to make a statement.

 ■ NDS statements built through concatenation should use the dbms_assert package
functions to prevent SQL injection attacks.

 ■ NDS supports bind variables, which are like parameters scattered throughout a
statement. If you think of NDS statements as long strings, you refer to bind variables in
the order they occur when reading the string from the left to the right.

 ■ The EXECUTE IMMEDIATE statement dispatches an NDS statement for execution.

 ■ The EXECUTE IMMEDIATE statement support IN, IN OUT, and OUT mode
parameters, and is the preferred solution when calling NDS statements that include
PL/SQL anonymous blocks.

 ■ The RETURNING INTO clause supports OUT mode parameters for INSERT, UPDATE,
and DELETE statements.

 ■ The OPEN system_reference_cursor FOR nds_statement lets you create
dynamic SELECT lists easily.

DBMS_SQL Package
Oracle introduced the dbms_sql package in Oracle 7. It gave you a way to store object code in
the database that would dynamically build SQL statements. It was an innovative solution because
it works around the problem of how PL/SQL checks dependencies. Prior to dbms_sql, you could
not store a SQL statement unless the table existed with the same definition.

dbms_sql was enhanced in Oracle 8i Database to support collections. The package has grown
through successive releases up to Oracle 9i Database. As discussed in the section “Native Dynamic
SQL (NDS)” earlier in the chapter, the direction shifted to NDS with the release of Oracle 9i.

The dbms_sql package provides several overloaded procedures. If you were to do run a
describe command on the dbms_sql package, you would find a copy of each of these
overloaded procedures for the types listed. The section “DBMS_SQL Package Definition” documents
the constants, types, functions, and procedures.

dbms_sql still has two major features that are not delivered in NDS. It can manage dynamic
statements when the number and data type of columns are unknown before runtime. This feature
is possible because of two dbms_sql procedures: describe_columns and describe_
columns2. You also have the ability to convert LONG and RAW columns to strings with the
column_value_long procedure of the dbms_sql package.

Like the NDS approach, dbms_sql supports string concatenation and bind variables. If you
need a refresher on bind variables, please check Chapter 3. Unlike NDS, the dbms_sql package
requires explicit grants.

13-ch13.indd 560 12/14/13 4:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 561

Oracle qualifies four types of dynamic SQL statements. You use certain functions and
procedures with each method type. Table 13-1, introduced in the “Native Dynamic SQL (NDS)”
section earlier, lists the methods, their definitions, and the dbms_sql functions and procedures
that you use with each.

The next four subsections examine the dbms_sql package. The first three demonstrate the
features and use of dynamic SQL with the dbms_sql package. The last section documents the
package constants, types, functions, and procedures.

Dynamic Statements
This section shows you how to run dynamic statements. These statements are static when you
define your programs. They are constructed at runtime. They require dynamic execution for
different reasons. These types of statements implement Method 1 from Table 13-1.

You write DDL statements in dynamic SQL to avoid failures during compilation. An example
would be a statement that should perform only when an object exists. Without dynamic SQL
statements, the program unit could fail due to missing objects in the database.

The reasons for using dynamic DML statements differ. More often than not, the purpose is tied
to checking something in the current session before you perform a statement. For example, you
may read the CLIENT_INFO value from the session to check for authentication, roles, and
privileges in an end-user application.

The subsections demonstrate dynamic DDL and DML statements, respectively.

Dynamic DDL Statements
A frequently performed task in stand-alone scripts is to check whether something is in the database
before you act on it. You don’t want to run a DROP statement on a table or sequence that doesn’t exist.

DBMS_SQL Grants and Privileges
The dbms_sql package is owned by the SYS schema. It is sometimes necessary to grant
permissions to the SYSTEM user first. Then, you can grant permissions to the individual
users rather than provisioning them through roles. You generally need access to the dbms_
sql and dbms_sys_sql packages.

You grant permissions from the SYS account to the SYSTEM user with the following two
statements:

GRANT EXECUTE ON dbms_sys_sql TO system WITH GRANT OPTION;
GRANT EXECUTE ON dbms_sql TO system WITH GRANT OPTION;

After granting the proper privileges to the SYSTEM user, you can grant them to your
c##plsql CDB or video PDB user to run the sample programs. You grant the following
privileges as the system user:

GRANT EXECUTE ON sys.dbms_sys_sql TO plsql;
GRANT EXECUTE ON sys.dbms_sql TO plsql;

You should now be able to run the scripts in this file, provided you’ve also installed the
video store example discussed in the Introduction to this book.

13-ch13.indd 561 12/14/13 4:55 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

562 Oracle Database 12c PL/SQL Programming

The following anonymous block shows you how to conditionally drop a sequence. It uses a
FOR loop to check whether the sequence exists and then it creates and runs a dynamic DDL
statement. You should enable the SQL*Plus SERVEROUTPUT environment variable before testing
this code, if you want to see the confirmation message. The code follows:

SQL> DECLARE
 2 /* Define local DBMS_SQL variables, and open cursor. */
 3 c INTEGER := dbms_sql.open_cursor;
 4 fdbk INTEGER;
 5 stmt VARCHAR2(2000);
 6 BEGIN
 7 /* Use a loop to check whether to drop a sequence. */
 8 FOR i IN (SELECT null
 9 FROM user_objects
 10 WHERE object_name = 'SAMPLE_SEQUENCE') LOOP
 11 /* Build, parse, and execute SQL statement, then close cursor. */
 12 stmt := 'DROP SEQUENCE sample_sequence';
 13 dbms_sql.parse(c,stmt,DBMS_SQL.NATIVE);
 14 fdbk := dbms_sql.execute(c);
 15 dbms_sql.close_cursor(c);
 16 dbms_output.put_line('Dropped Sequence [SAMPLE_SEQUENCE].');
 17 END LOOP;
 18 END;
 19 /

The declaration block defines three variables for dbms_sql statements. Line 3 holds the
database cursor number, named c for cursor (by tradition more than anything else). You’re welcome
to change it to something more meaningful to you, but you’ll see it as c in all the sample programs.
The database cursor variable c is defined, not declared, by calling the dbms_sql.open_cursor
function. Line 4 declares fdbk (which stands for feedback). It is used to capture the return value
from the dbms_sql.execute function. Line 5 declares the third variable, stmt (which stands
for statement).

The execution block assigns a valid DDL statement to the stmt variable. Then, the dbms_
sql.parse procedure ties the cursor number and statement together and runs the statement
using the current database version’s execution semantics.

You can test the program by creating a sample_sequence with the following syntax:

SQL> CREATE SEQUENCE sample_sequence;

You can confirm the sequence is there and working by querying the database catalog, or by
incrementing the sequence. This verifies the presence of the sequence by incrementing it:

SQL> SELECT sample_sequence.nextval FROM dual;

Run the conditional DROP statement and you see this message:

Dropped Sequence [SAMPLE_SEQUENCE].

You have now seen how to implement a dynamic DDL statement using the dbms_sql package.
If you check the corresponding “Dynamic DDL Statements” section in the “Native Dynamic SQL
(NDS)” section, you’ll see that this approach is more typing for little or no return.

13-ch13.indd 562 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 563

Dynamic DML Statements
Dynamic DML statements are often created as strings at runtime. They often audit some state or
behavior before deciding how to build the DML statement. This section discusses dbms_sql
Method 1, which allows only strings or patchworks of strings.

The example in this section uses a code block that changes the column values for an INSERT
statement. Authenticated users enter one type of data, while unauthenticated users enter another.

You could check the value of the CLIENT_INFO variable in the session, and then choose the
value to insert into the last_updated_by column of a table. Chapter 12 has a sidebar
“Reading and Writing Session Metadata” that explains how you can set and get the CLIENT_
INFO value for your session.

The example checks if the value has been set. If not set, it substitutes a –1 for the last_
updated_by column. That would be an illegal user, and entering it conditionally lets you track
manual SQL entries to a production database. Actually, it should update both the created_by
and last_updated_by columns for completeness, but you’ll do that in a subsequent example
with bind variables.

SQL> DECLARE
 2 /* Declare local DBMS_SQL variables, and open cursor. */
 3 c INTEGER := dbms_sql.open_cursor;
 4 fdbk INTEGER;
 5 stmt1 VARCHAR2(2000);
 6 stmt2 VARCHAR2(20) := '-1,SYSDATE)';
 7 /* V$SESSION.CLIENT_INFO variable. */
 8 client VARCHAR2(64);
 9 BEGIN
 10 stmt1 := 'INSERT INTO item VALUES '
 11 || '(item_s1.nextval '
 12 || ',''ASIN'||CHR(58)||' B000VBJEEG'''
 13 || ',(SELECT common_lookup_id '
 14 || ' FROM common_lookup '
 15 || ' WHERE common_lookup_type = ''DVD_WIDE_SCREEN'') '
 16 || ',''Ratatouille'''
 17 || ','''''
 18 || ', empty_clob() '
 19 || ', NULL '
 20 || ',''G'''
 21 || ',''MPAA'''
 22 || ',''06-NOV-2007'''
 23 || ', 3, SYSDATE,';
 24 /* Get the current CLIENT_INFO value and conditionally append to string. */
 25 dbms_application_info.read_client_info(client);
 26 IF client IS NOT NULL THEN
 27 stmt1 := stmt1 || client || ',SYSDATE)';
 28 ELSE
 29 stmt1 := stmt1 || stmt2;
 30 END IF;
 31 /* Build, parse, and execute SQL statement, then close cursor. */
 32 dbms_sql.parse(c,stmt1,dbms_sql.native);
 33 fdbk := dbms_sql.execute(c);

13-ch13.indd 563 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

564 Oracle Database 12c PL/SQL Programming

 34 dbms_sql.close_cursor(c);
 35 dbms_output.put_line('Rows Inserted ['||fdbk||']');
 36 END;
 37 /

Unless you set the CLIENT_INFO column value, this script should insert one row with a –1
in the last_updated_by column. As you tell from the statement, typing SQL statements into a
variable is tedious and a backquoting feat when successful. You raise an ORA-01756 error, which
says “quoted string not properly terminated,” when you fail to get all the single quotes matched.

Colons inside dynamic SQL statements are indicators of placeholders. When dbms_sql.parse
parses a statement string, it marks placeholders as bind value targets. If you fail to call either the
bind_array or bind_variable procedure before you execute the parsed statement, it would
fail due to the missing bind variable. You bind scalar variables by calling the bind_variable
procedure, and you bind nested tables by calling the bind_array procedure.

You should use CHR(58) in lieu of the colon when you want to insert a colon as text, because
the parser doesn’t interpret it as a bind variable. That’s what I’ve done on line 12. While the parsed
output string contains a colon, the parsing process didn’t trigger a substitution.

All the dbms_sql command syntax mirrors the syntax in the DDL example in the preceding
section. You have now seen how to create and implement dynamic SQL statements by creating
and executing conditionally constructed strings.

Dynamic Statements with Input Variables
The prior section demonstrated how you dynamically piece strings together to build a statement.
That is a cumbersome process, and as you might guess, there is a better way. This section discusses
dbms_sql Method 2, which allows you to bind variables into statements.

You generally know the statement structure of your DML statements when you write a PL/SQL
block. You can actually write your dynamic statements like a function, with input values. You call
these input variables placeholders instead of formal parameters. Inside the statements they act as
bind variables, and you may find many people calling them that.

Writing a DDL or DML statement that uses placeholders is much easier than gluing strings
together through concatenation. dbms_sql Method 2 from Table 13-1 provides this feature.
Table 13-2 lists some errors that can occur when using placeholders and bind variables.

You should also note that you can implement a PL/SQL block with dbms_sql. The only
caveat is that you terminate the string with a semicolon. This is a departure from how ordinary
SQL statements work. The difference occurs because the closing semicolon terminates the PL/SQL
block. A semicolon acts as an execution instruction for a SQL statement. You will see an example
of this approach in the next section, “Dynamic Statements with Input and Output Variables.”

The following example re-implements the INSERT statement from the prior section. This time
it uses replacement variables. The anonymous block is rewritten as a stand-alone procedure. After
creating the procedure, you can insert new items into the item table through the procedure.

The following is the stand-alone procedure that implements IN mode placeholders or bind
variables:

SQL> CREATE OR REPLACE PROCEDURE insert_item
 2 (pv_asin VARCHAR2
 3 , pv_title VARCHAR2
 4 , pv_subtitle VARCHAR2 := NULL
 5 , pv_itype VARCHAR2 := 'DVD_WIDE_SCREEN'

13-ch13.indd 564 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 565

 6 , pv_rating VARCHAR2
 7 , pv_agency VARCHAR2
 8 , pv_release DATE) IS
 9 /* Define local DBMS_SQL variables. */
 10 c INTEGER := dbms_sql.open_cursor;
 11 fdbk INTEGER;
 12 stmt VARCHAR2(2000);
 13 /* Variable to get OUT parameter value. */
 14 lv_client VARCHAR2(64);
 15 BEGIN
 16 stmt := 'INSERT INTO item VALUES '
 17 || '(item_s1.nextval '
 18 || ',''ASIN''||CHR(58)|| :asin'
 19 || ',(SELECT common_lookup_id '
 20 || ' FROM common_lookup '
 21 || ' WHERE common_lookup_type = :itype) '
 22 || ',:title'
 23 || ',:subtitle'
 24 || ', empty_clob() '
 25 || ', NULL '
 26 || ',:rating'

Error Code Description and Fix
ORA-00928 You raise an ORA-00928 error when you put placeholders inside the overriding

signature of an INSERT statement. The signature is the formal parameter list
between the table name and VALUES clause. The generic “missing SELECT
keyword” message can be misleading.

ORA-06502 You raise an ORA-06502 error when an explicit size is required for a CHAR,
RAW, or VARCHAR2 variable and you fail to provide one. You need to include the
output size when you call the bind_variable_char or bind_variable_
raw procedure. The generic “PL/SQL: numeric or value error” message can be
misleading.

ORA-01006 You raise an ORA-01006 error when you enclose placeholders for VARCHAR2
data types in quotes. The bind_variable function binds the value and data type
to the statement, which eliminates the need for delimiting quotes. The generic
“bind variable does not exist” message is a complete misnomer, but now you
know how to fix it.

PLS-00049 You raise a PLS-00049 error when a placeholder receives an unexpected data
type that can’t be implicitly converted to the target data type. You need to ensure
any assignments are explicitly made with the correct data type. Don’t rely on
implicit type conversion and you’ll never be disappointed. The “bad bind variable”
message isn’t clear, but it’s spot on because you’ve sent the wrong data type.

TABLE 13-2. Errors That Can Occur When Using DBMS_SQL

13-ch13.indd 565 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

566 Oracle Database 12c PL/SQL Programming

 27 || ',:agency'
 28 || ',:release'
 29 || ',:created_by,SYSDATE,:last_updated_by,SYSDATE)';
 30 /* Call and dynamically set the session for the CLIENT_INFO value. */
 31 dbms_application_info.read_client_info(client);
 32 IF client IS NOT NULL THEN
 33 lv_client := TO_NUMBER(lv_client);
 34 ELSE
 35 lv_client := -1;
 36 END IF;
 37 /* Parse and execute the statement. */
 38 dbms_sql.parse(c,stmt,dbms_sql.native);
 39 dbms_sql.bind_variable(c,'asin',pv_asin);
 40 dbms_sql.bind_variable(c,'itype',pv_itype);
 41 dbms_sql.bind_variable(c,'title',pv_title);
 42 dbms_sql.bind_variable(c,'subtitle',pv_subtitle);
 43 dbms_sql.bind_variable(c,'rating',pv_rating);
 44 dbms_sql.bind_variable(c,'agency',pv_agency);
 45 dbms_sql.bind_variable(c,'release',pv_release);
 46 dbms_sql.bind_variable(c,'created_by',lv_client);
 47 dbms_sql.bind_variable(c,'last_updated_by',lv_client);
 48 fdbk := dbms_sql.execute(c);
 49 dbms_sql.close_cursor(c);
 50 dbms_output.put_line('Rows Inserted ['||fdbk||']');
 51 END insert_item;
 52 /

The placeholders are represented in bold text inside the dynamic INSERT statement. They
don’t have delimiting single quotes around them because the value and data type are bound to
the statement, and the delimiters are unnecessary. If you forget and include the delimiting internal
quotes in the statement, an ORA-01006 error is raised at runtime. You need to remove the single
quotes or enclose the statement in a PL/SQL block.

Lines 39 through 47 bind either a parameter or a local variable to a placeholder name in
the dynamic SQL stmt (statement). The order of how you bind parameters or local variables to
placeholders is immaterial, which is unlike the restriction on the USING clause in NDS.

As the number of bind variables increases, so do the calls to the bind_variable procedure.
You must call the dbms_sql package’s bind_variable procedure for each placeholder.

This section has shown you how to use Method 2 dynamic SQL, which lets you substitute
input variables.

Dynamic Statements with Variable Inputs and Fixed Outputs
This section shows you how to implement placeholders that either input or output data from SQL
statements. It demonstrates dbms_sql Method 3, which allows you to have IN mode bind
variables and map SELECT-list values to local variables.

Dynamic SELECT statements work in Method 3, provided you know at compile time how
many columns are retrieved. In this section you work with a set of scalar return values and a
single scalar input value, then a set of associative arrays and a range of scalar input values.

13-ch13.indd 566 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 567

NDS Is the Key to Converting LONG Data Types
The legacy of the LONG and LONG RAW data type is that someday you would need to move
the data. I’d suggest the day has arrived with Oracle Database 12c. After all, Oracle
Database 12c enables you to store a 32,767-byte string in a VARCHAR2 column, as
qualified in the “VARCHAR2, STRING, and VARCHAR Data Types ” section of Chapter 4.

The dbms_sql package provides the only way to convert LONG or LONG RAW columns
into VARCHAR2 or CLOB data types. You perform the conversion with the dbms_sql
package’s column_value_long procedure. The “Converting a LONG to a CLOB” section
in Chapter 10 shows you how to convert a LONG data type to a CLOB data type. This
sidebar shows you how to convert LONG data types to VARCHAR2 data types.

To do the conversion, I’ve written the following long_to_varchar2 function, which
takes a view_name column value from the CDB_, ALL_, DBA_, or USER_VIEWS
administrative view and the length of the text column value. The text column is where
Oracle stores the view’s text in a LONG data type column. Without the length of the LONG,
you must read character by character to find the whole LONG column’s value.

SQL> CREATE OR REPLACE FUNCTION long_to_varchar2
 2 (pv_view_name VARCHAR2
 3 , pv_column_length INTEGER)
 4 RETURN VARCHAR2 AS
 5 /* Declare local variables. */
 6 lv_cursor INTEGER := dbms_sql.open_cursor;
 7 lv_feedback INTEGER; -- Feedback of dynamic execution
 8 lv_length INTEGER; -- Length of string
 9 lv_return VARCHAR2(32767); -- Function output
 10 lv_stmt VARCHAR2(2000); -- Dynamic SQL statement
 11 lv_string VARCHAR2(32760); -- Maximum length of LONG data type
 12 BEGIN
 13 /* Create dynamic statement. */
 14 lv_stmt := 'SELECT text'||CHR(10)
 15 || 'FROM user_views'||CHR(10)
 16 || 'WHERE view_name = '''||pv_view_name||'''';
 17 /* Parse and define a long column. */
 18 dbms_sql.parse(lv_cursor, lv_stmt, dbms_sql.native);
 19 dbms_sql.define_column_long(lv_cursor,1);
 20 /* Only attempt to process the return value when fetched. */
 21 IF dbms_sql.execute_and_fetch(lv_cursor) = 1 THEN
 22 dbms_sql.column_value_long(
 23 lv_cursor
 24 , 1
 25 , pv_column_length
 26 , 0
 27 , lv_string
 28 , lv_length);
 29 END IF;
 30 /* Check for an open cursor. */
 31 IF dbms_sql.is_open(lv_cursor) THEN
 32 dbms_sql.close_cursor(lv_cursor);
 33 END IF;

(continued)

13-ch13.indd 567 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

568 Oracle Database 12c PL/SQL Programming

 34 /* Convert the long length string to a maximum size length. */
 35 lv_return := lv_string;
 36 RETURN lv_return;
 37 END long_to_varchar2;
 38 /

Lines 25 through 33 hold the logic for transferring the contents of a LONG data type to a
VARCHAR2 data type. Internally, the dbms_sql package converts the LONG data type (up to
32,760 bytes) to a VARCHAR2 data type.

The following return_view_text wrapper function queries the USER_VIEWS view,
gets the size of the LONG column, and calls the long_to_varchar2 function:

SQL> CREATE OR REPLACE FUNCTION return_view_text
 2 (pv_view_name VARCHAR2) RETURN VARCHAR2 IS
 3 /* Declare a target variable, because of the limit of SELECT-INTO. */
 4 lv_long_view LONG;
 5 /* Declare a dynamic cursor. */
 6 CURSOR c (cv_view_name VARCHAR2) IS
 7 SELECT text
 8 FROM user_views
 9 WHERE view_name = cv_view_name;
 10 BEGIN
 11 /* Open, fetch, and close cursor to capture view text. */
 12 OPEN c(pv_view_name);
 13 FETCH c INTO lv_long_view;
 14 CLOSE c;
 15
 16 /* Return the output CLOB value. */
 17 RETURN long_to_varchar2(pv_view_name, LENGTH(lv_long_view));
 18 END;
 19 /

You can’t use the SELECT-INTO with a LONG data type as a target. That’s why I’ve defined
a dynamic cursor on lines 6 through 9, and opened, fetched, and closed it on lines 12 and 13.
The SQL LENGTH built-in lets me submit the length of the LONG column to the long_to_
varchar2 function as the second parameter on line 17.

This sidebar should demonstrate why knowing how to use the dbms_sql package makes
you a powerful PL/SQL programmer.

You are performing row-by-row queries when you manage scalar output values. The output
values of associate arrays are single-dimensional arrays of scalar values. You process parallel
arrays when you return multiple columns from a SELECT statement into associative arrays through
bulk processing. You need to be very attentive to managing how you navigate through these to
ensure your index values are always equal. Failure to keep the index in synchronization means
you’re looking at columns from different rows.

13-ch13.indd 568 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 569

This syntax is probably among the most tedious for the DBMS_SQL package, regardless of
whether you’re returning one value, row-by-row values, or bulk statement values. You should
consider the NDS OPEN FOR clause for these types of operation because it’s simpler.

The row-by-row and bulk processing examples are covered in separate subsections.

Row-by-Row Statement Processing
The sample program shows you how to process single- and multiple-row returns from a dynamic
SELECT statement. These examples depend on the item table that is built by the create_
store.sql script discussed in the Introduction of this book.

The single-row statement is

SQL> DECLARE
 2 c INTEGER := dbms_sql.open_cursor;
 3 fdbk INTEGER;
 4 statement VARCHAR2(2000);
 5 lv_item_id NUMBER := 1081;
 6 lv_item_title VARCHAR2(60);
 7 lv_item_subtitle VARCHAR2(60);
 8 BEGIN
 9 /* Build and parse SQL statement. */
 10 statement := 'SELECT item_title'||CHR(10)
 11 || ', item_subtitle'||CHR(10)
 12 || 'FROM item WHERE item_id = :item_id'||CHR(10)
 13 || 'WHERE item_id = :item_id';
 14 dbms_sql.parse(c,statement,dbms_sql.native);
 15 /* Define column mapping, execute statement, and copy results. */
 16 dbms_sql.define_column(c,1,item_title,60); -- Define OUT mode variable.
 17 dbms_sql.define_column(c,2,item_subtitle,60); -- Define OUT mode variable.
 18 dbms_sql.bind_variable(c,'item_id',item_id); -- Bind IN mode variable.
 19 fdbk := dbms_sql.execute_and_fetch(c);
 20 dbms_sql.column_value(c,1,item_title); -- Copy query column to variable.
 21 dbms_sql.column_value(c,2,item_subtitle); -- Copy query column to variable.
 22 /* Print return value and close cursor. */
 23 dbms_output.put_line(
 24 '['||item_title||']['||NVL(item_subtitle,'None')||']');
 25 dbms_sql.close_cursor(c);
 26 END;
 27 /

Debugging Tips for DBMS_SQL with SELECT Statements
It is critical when working with scalar variable-length strings that you provide a physical
size to the dbms_sql.define_columns procedure. You must also do so when returning
a scalar RAW data type. If you forget to provide the physical size, the dbms_sql package
raises a PLS-00307 error. The error says too many declarations of define_column match
this call. The error is actually a bit tricky because it involves how implicit casting works
when calling this function.

You can make your life easier by simply providing the fourth parameter, which is the
length of a CHAR, RAW, or VARCHAR2 data type.

13-ch13.indd 569 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

570 Oracle Database 12c PL/SQL Programming

This approach lets you enter the SELECT columns natively in the statement because they’re
OUT mode variables. You need to define the columns before executing the statement and then
copy the column values to a local variable after fetching them. You reference columns by position
and local variables by name. This differs for the IN mode variable, which uses a semicolon to
identify it as a replacement variable (or bind variable).

This query should return

[We Were Soldiers][None]

You’ve now seen how to return a single row, but more often than not you return more than
one row. The following example performs a row-by-row query and prints the contents of the
returned rows:

SQL> DECLARE
 2 c INTEGER := dbms_sql.open_cursor;
 3 fdbk INTEGER;
 4 statement VARCHAR2(2000);
 5 lv_item1 NUMBER := 1003;
 6 lv_item2 NUMBER := 1013;
 7 lv_item_title VARCHAR2(60);
 8 lv_item_subtitle VARCHAR2(60);
 9 BEGIN
 10 /* Build and parse SQL statement. */
 11 statement := 'SELECT item_title'||CHR(10)
 12 || ', item_subtitle'||CHR(10)
 13 || 'FROM item'||CHR(10)
 14 || 'WHERE item_id BETWEEN :item1 AND :item2'||CHR(10)
 15 || 'AND item_type = 1014';
 16 dbms_sql.parse(c,statement,dbms_sql.native);
 17 /* Define column mapping and execute statement. */
 18 dbms_sql.define_column(c,1,item_title,60); -- Define OUT mode variable.
 19 dbms_sql.define_column(c,2,item_subtitle,60); -- Define OUT mode variable.
 20 dbms_sql.bind_variable(c,'item1',item1); -- Bind IN mode variable.
 21 dbms_sql.bind_variable(c,'item2',item2); -- Bind IN mode variable.
 22 fdbk := dbms_sql.execute(c);
 23 /* Read results. */
 24 LOOP
 25 EXIT WHEN dbms_sql.fetch_rows(c) = 0; -- No more results.
 26 /* Copy and print. */
 27 dbms_sql.column_value(c,1,item_title); -- Copy column to variable.
 28 dbms_sql.column_value(c,2,item_subtitle); -- Copy column to variable.
 29 dbms_output.put_line(
 30 '['||item_title||']['||NVL(item_subtitle,'None')||']');
 31 END LOOP;
 32 dbms_sql.close_cursor(c);
 33 END;
 34 /

You define the column mapping once for each column on lines 18 and 19, and you bind
variables once on lines 20 and 21, respectively. You also need to copy each row’s column values
to the local variable to process them, as shown on lines 27 and 28 in the preceding loop.

13-ch13.indd 570 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 571

With the SQL*Plus SERVEROUTPUT environment variable set, this should print

[Casino Royale][None]
[Die Another Day][None]
[Die Another Day][2-Disc Ultimate Version]
[Golden Eye][Special Edition]
[Tomorrow Never Dies][None]
[Tomorrow Never Dies][Special Edition]

You’ve now seen how to process single- and multiple-row returns from a SELECT statement.
The next section shows you how to manage bulk SELECT operations.

Bulk Statement Processing
Bulk processing is often a better solution then row-by-row statements. You should use NDS for
this behavior, not dbms_sql. The BULK COLLECT INTO clause would only work in the context
of a PL/SQL block. The dbms_sql binding process isn’t designed to support SQL statements
inside anonymous blocks. If you attempt that type of unsupported work-around, you’ll ultimately
raise a PLS-00497 error.

Dynamic Statements with Variable Inputs and Outputs
This section shows you how to implement placeholders that are inputs and how to work with a
variable number of columns returned by a SELECT list. It demonstrates dbms_sql Method 4,
which allows you to use a variable number of IN mode bind variables in SQL statements and
return a variable number of columns from a SELECT statement.

To illustrate this for you, I’ve picked a feature from MySQL that doesn’t exist in Oracle without
a user-defined vertical_query function. This function takes a table or view name and a
WHERE clause as formal parameters. It returns a vertical collection of column names and values
for each row, and extends an example from Oracle’s Ask Tom column (by Thomas Kyte) in
November 2000.

Before defining the function, you need to create a query_result collection of strings.
Since the base type is a scalar data type, the following is an Attribute Data Type (ADT).

SQL> CREATE OR REPLACE
 2 TYPE query_result AS TABLE OF VARCHAR2(77);
 3 /

The vertical_query function is complex and unfortunately long, but it’s a rock-solid
example of the dbms_sql package’s Method 4:

SQL> CREATE OR REPLACE FUNCTION vertical_query
 2 (table_name VARCHAR2, where_clause VARCHAR2) RETURN query_result IS
 3
 4 /* Open a cursor for a query against all columns in a table. */
 5 base_stmt INTEGER := dbms_sql.open_cursor;
 6
 7 /* Open a cursor for a dynamically constructed query, which excludes
 8 any non-displayable columns with text. */
 9 stmt INTEGER := dbms_sql.open_cursor;
 10
 11 /* Declare local variables, assumes MAX_STRING_LENGTH is STANDARD. */

13-ch13.indd 571 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

572 Oracle Database 12c PL/SQL Programming

 12 colValue VARCHAR2(4000); -- Maximum string length for column values.
 13 STATUS INTEGER; -- Acknowledgement of DBMS_SQL.EXECUTE
 14 tableDesc dbms_sql.desc_tab2; -- Hold metadata for the queries.
 15 colCount NUMBER; -- Variable for the column count.
 16 rowIndex NUMBER := 0; -- Row number retrieved from the cursor
 17 colLength NUMBER := 0; -- Length of the longest column name
 18
 19 /* Declare local variable for the dynamically constructed query. */
 20 dynamic_stmt VARCHAR2(4000) := 'SELECT ';
 21
 22 /* Declare an index for the return collection. */
 23 rsIndex NUMBER := 0;
 24
 25 /* Declare a collection variable and instantiate the collection. */
 26 result_set QUERY_RESULT := query_result();
 27
 28 /* Declare an exception for a bad table name, raised by a call to
 29 the dbms_assert.qualified_sql_name function. */
 30 table_name_error EXCEPTION;
 31 PRAGMA EXCEPTION_INIT(table_name_error, -942);
 32
 33 /* Declare exception handlers for bad WHERE clause statements.
 34 ---
 35 Declare an exception for a missing WHERE keyword. */
 36 missing_keyword EXCEPTION;
 37 PRAGMA EXCEPTION_INIT(missing_keyword, -933);
 38
 39 /* Declare an exception for a bad relational operator. */
 40 invalid_relational_operator EXCEPTION;
 41 PRAGMA EXCEPTION_INIT(invalid_relational_operator, -920);
 42
 43 /* Declare an exception for a bad column name. */
 44 invalid_identifier EXCEPTION;
 45 PRAGMA EXCEPTION_INIT(invalid_identifier, -904);
 46
 47 /* Declare an exception for a missing backquoted apostrophe. */
 48 misquoted_string EXCEPTION;
 49 PRAGMA EXCEPTION_INIT(misquoted_string, -1756);
 50
 51 /* --- */
 52
 53 /* Declare a function that replaces non-displayable values. */
 54 FUNCTION check_column(p_name VARCHAR2
 55 , p_type NUMBER) RETURN VARCHAR2 IS
 56
 57 /* Return column name or literal value. */
 58 retval VARCHAR2(30);
 59
 60 BEGIN
 61
 62 /* Find strings, numbers, et cetera and replace non-display values. */

13-ch13.indd 572 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 573

 63 IF p_type IN (1,2,8,9,12,69,96,100,101,112,178,179,180,181,231) THEN
 64
 65 /* Assign the column name for a displayable column value. */
 66 retval := p_name;
 67
 68 ELSE
 69
 70 /* Re-assign string literals for column names where values aren't
 71 displayable. */
 72 SELECT DECODE(p_type, 23,'''RAW not displayable.'''
 73 ,105,'''MLSLABEL not displayable.'''
 74 ,106,'''MLSLABEL not displayable.'''
 75 ,113,'''BLOB not displayable.'''
 76 ,114,'''BFILE not displayable.'''
 77 ,115,'''CFILE not displayable.'''
 78 ,'''UNDEFINED not displayable.''')
 79 INTO retval
 80 FROM dual;
 81
 82 END IF;
 83
 84 -- Return the column name or an apostrophe-delimited string literal.
 85 RETURN retval;
 86 END check_column;
 87
 88 /* --- */
 89
 90 BEGIN
 91
 92 /* Prepare unfiltered display cursor. */
 93 dbms_sql.parse(base_stmt
 94 ,'SELECT * FROM'||CHR(10)
 95 ||dbms_assert.simple_sql_name(TABLE_NAME)||CHR(10)
 96 ||where_clause, dbms_sql.native);
 97
 98 /* Describe the table structure:
 99 || --
100 || 1. Store metadata in tableDesc
101 || 2. Store the number of columns in colCount
102 || -- */
103 dbms_sql.describe_columns2(base_stmt, colCount, tableDesc);
104
105 -- Define individual columns and assign value to colValue variable.
106 FOR i IN 1..colCount LOOP
107
108 -- Define columns for each column returned into tableDesc.
109 dbms_sql.define_column(base_stmt, i, colValue, 4000);
110
111 -- Find the length of the longest column name.
112 IF LENGTH(tableDesc(i).col_name) > colLength THEN
113 colLength := LENGTH(tableDesc(i).col_name);

13-ch13.indd 573 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

574 Oracle Database 12c PL/SQL Programming

114 END IF;
115
116 -- Replace non-displayable column values with displayable values.
117 IF i < colCount THEN
118 dynamic_stmt := dynamic_stmt
119 || check_column(tableDesc(i).col_name
120 ,tableDesc(i).col_type) || ' AS '
121 || tableDesc(i).col_name || ', ';
122 ELSE
123 dynamic_stmt := dynamic_stmt
124 || check_column(tableDesc(i).col_name
125 ,tableDesc(i).col_type) || ' AS '
126 || tableDesc(i).col_name ||CHR(10)
127 ||'FROM '|| dbms_assert.simple_sql_name(TABLE_NAME)
128 || CHR(10) || where_clause;
129 END IF;
130
131 END LOOP;
132
133 /* Provide conditional debugging instruction. */
134 $IF $$DEBUG = 1 $THEN
135 dbms_output.put_line(dynamic_stmt);
136 $END
137
138 /* Prepare unfiltered display cursor. */
139 dbms_sql.parse(stmt, dynamic_stmt, dbms_sql.native);
140
141 /* Describe the table structure:
142 || --
143 || 1. Store metadata in tableDesc (reuse of existing variable)
144 || 2. Store the number of columns in colCount
145 || -- */
146 dbms_sql.describe_columns2(stmt, colCount, tableDesc);
147
148 /* Define individual columns and assign value to colValue variable. */
149 FOR i IN 1..colCount LOOP
150 dbms_sql.define_column(stmt, i, colValue, 4000);
151 END LOOP;
152
153 /* Execute the dynamic cursor. */
154 STATUS := dbms_sql.EXECUTE(stmt);
155
156 /* Fetch the results, row-by-row. */
157 WHILE dbms_sql.fetch_rows(stmt) > 0 LOOP
158
159 /* Reset row counter for output display purposes. */
160 rowIndex := rowIndex + 1;
161
162 /* Increment the counter for the collection and extend space. */
163 rsIndex := rsIndex + 1;
164 result_set.EXTEND;

13-ch13.indd 574 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 575

165 result_set(rsIndex) := '********************************** '
166 || rowIndex
167 || '. row **********************************';
168
169 /* For each column, print left-aligned column names and values. */
170 FOR i IN 1..colCount LOOP
171
172 /* Increment the counter for the collection and extend space. */
173 rsIndex := rsIndex + 1;
174 result_set.EXTEND;
175
176 /* Limit display of long text. */
177 IF tableDesc(i).col_type IN (1,9,96,112) THEN
178 /* Display 40 character substrings of long text. */
179 dbms_sql.column_value(stmt, i, colValue);
180 result_set(rsIndex) := RPAD(tableDesc(i).col_name, colLength,' ')
181 || ' : ' || SUBSTR(colValue, 1,40);
182 ELSE
183 /* Display full value as character string. */
184 dbms_sql.column_value(stmt, i, colValue);
185 result_set(rsIndex) := RPAD(tableDesc(i).col_name, colLength,' ')
186 || ' : ' || colValue;
187 END IF;
188 END LOOP;
189 END LOOP;
190
191 /* Increment the counter for the collection and extend space. */
192 FOR i IN 1..3 LOOP
193 rsIndex := rsIndex + 1;
194 result_set.EXTEND;
195
196 CASE i
197 WHEN 1 THEN
198 result_set(rsIndex) := '**************************************'
199 || '**************************************';
200 WHEN 2 THEN
201 result_set(rsIndex) := CHR(10);
202 WHEN 3 THEN
203 result_set(rsIndex) := rowIndex || ' rows in set';
204 END CASE;
205 END LOOP;
206
207 /* Return collection. */
208 RETURN result_set;
209 EXCEPTION
210 /* Customer error handlers, add specialized text or collapse into one. */
211 WHEN table_name_error THEN
212 dbms_output.put_line(SQLERRM);
213 WHEN invalid_relational_operator THEN
214 dbms_output.put_line(SQLERRM);
215 WHEN invalid_identifier THEN
216 dbms_output.put_line(SQLERRM);

13-ch13.indd 575 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

576 Oracle Database 12c PL/SQL Programming

217 WHEN missing_keyword THEN
218 dbms_output.put_line(SQLERRM);
219 WHEN misquoted_string THEN
220 dbms_output.put_line(SQLERRM);
221 WHEN OTHERS THEN
222 dbms_output.put_line(SQLERRM);
223 END;
224 /

You can run the function with the following syntax (column_value is the standard name
returned from a scalar schema-level collection):

SQL> SELECT column_value
 2 FROM TABLE(vertical_query('ITEM','WHERE item_title LIKE ''Star%'''));

It produces output like the following:

******************************** 1. ROW ********************************
ITEM_ID : 1002
ITEM_BARCODE : 24543-02392
ITEM_TYPE : 1011
ITEM_TITLE : Star Wars I
ITEM_SUBTITLE : Phantom Menace
ITEM_RATING : PG
 ...
******************************** 2. ROW ********************************
ITEM_ID : 1003
ITEM_BARCODE : 24543-5615
ITEM_TYPE : 1010
ITEM_TITLE : Star Wars II
ITEM_SUBTITLE : Attack OF the Clones
ITEM_RATING : PG
 ...
**

This section has shown you how to implement dbms_sql’s Method 4 with an unknown
number of inputs and outputs until runtime.

DBMS_SQL Package Definition
The dbms_sql package has been in the product since Oracle 7. Changes and fixes have made it
a very stable and robust component in the database. It is popular notwithstanding the release of
NDS in Oracle 9i. In Oracle Database 12c, the only thing you can’t do in NDS is work with
statements that have an unknown set of columns at runtime. The dbms_sql package lets you
manage these statements.

This section covers the constants, variables, functions, and procedures found in the dbms_sql
package. You can go to the appropriate subsection to check component definitions.

DBMS_SQL Constants
The dbms_sql package has three constants, all of which are designed to support the dbms_
sql.parse procedure. Table 13-3 defines the constants. As noted, you should use only the
NATIVE constant from Oracle 8i Database forward.

13-ch13.indd 576 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 577

DBMS_SQL Data Types
The dbms_sql package supports associative arrays (the old PL/SQL tables) that are indexed by
binary integers for the following base scalar types: BFILE, BINARY_DOUBLE, BLOB, CLOB,
DATE, INTERVAL_DAY_TO_SECOND, INTERVAL_YEAR_TO_MONTH, NUMBER, TIME,
TIMESTAMP, TIMESTAMP_WITH_LTZ, and UROWID. These associative array data types use a
naming pattern of <scalar_type>_TABLE. They are designated as Data Structures in the
Oracle Database PL/SQL Packages and Types Reference 12c Release.

A dbms_sql.varchar2_table table type is also described in the same reference as a
general type. It behaves consistently with the bulk data types.

The dbms_sql package also supports three record types:

 ■ desc_rec supports the describe_columns procedure. The procedure uses it to
describe columns for a cursor opened and parsed by the dbms_sql package.

TYPE desc_rec IS RECORD (col_type BINARY_INTEGER := 0
, col_max_len BINARY_INTEGER := 0
, col_name VARCHAR2(32) := ''
, col_name_len BINARY_INTEGER := 0
, col_schema_name VARCHAR2(32) := ''
, col_schema_name_len BINARY_INTEGER := 0
, col_precision BINARY_INTEGER := 0
, col_scale BINARY_INTEGER := 0
, col_charsetid BINARY_INTEGER := 0
, col_charsetform BINARY_INTEGER := 0
, col_null_ok BOOLEAN := TRUE);

 ■ desc_rec2 supports the describe_columns2 procedure. The procedure uses it to
describe columns for a cursor opened and parsed by the dbms_sql package.

TYPE desc_rec2 IS RECORD (col_type BINARY_INTEGER := 0
, col_max_len BINARY_INTEGER := 0
, col_name VARCHAR2(32767):= ''
, col_name_len BINARY_INTEGER := 0
, col_schema_name VARCHAR2(32) := ''
, col_schema_name_len BINARY_INTEGER := 0
, col_precision BINARY_INTEGER := 0
, col_scale BINARY_INTEGER := 0
, col_charsetid BINARY_INTEGER := 0
, col_charsetform BINARY_INTEGER := 0
, col_null_ok BOOLEAN := TRUE);

Constant Name Description Value
NATIVE You should use only the NATIVE constant from Oracle 8i Database

forward. It is an INTEGER data type and indicates the parsing language.
1

V6 You shouldn’t use the V6 constant any more. 0
V7 You should use the V7 constant only if you’re running the desupported

Oracle 7 Database release.
2

TABLE 13-3. DBMS_SQL Available Constants

13-ch13.indd 577 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

578 Oracle Database 12c PL/SQL Programming

 ■ desc_rec3 supports the describe_columns3 procedure. The procedure uses it to
describe columns for a cursor opened and parsed by the dbms_sql package.

TYPE desc_rec3 IS RECORD (col_type BINARY_INTEGER := 0
, col_max_len BINARY_INTEGER := 0
, col_name VARCHAR2(32767):= ''
, col_name_len BINARY_INTEGER := 0
, col_schema_name VARCHAR2(32) := ''
, col_schema_name_len BINARY_INTEGER := 0
, col_precision BINARY_INTEGER := 0
, col_scale BINARY_INTEGER := 0
, col_charsetid BINARY_INTEGER := 0
, col_charsetform BINARY_INTEGER := 0
, col_null_ok BOOLEAN := TRUE
, col_type_name VARCHAR2(32) := ''
, col_type_name_len BINARY_INTEGER := 0);

There are also associative arrays for each of the record types. These record structures and
associative arrays are used for Method 4 processing, which involves an unknown set of columns
at compile time.

DBMS_SQL Functions and Procedures
The functions and procedures of the dbms_sql package have endured over the years. They are
still widely used, while virtually everything can run through NDS. Some of the customer reasoning
for their continued use is related to backward compatibility or coding standards that try to keep
things the same. Clearly, Oracle Database 12c continues the trend toward deprecating the dbms_
sql package somewhere in the future.

Whether you need them for maintenance or want to replace them with NDS, the following
synopses should help you quickly check the functions and procedures of the dbms_sql package.
If you run into permission issues, check the sidebar “DBMS_SQL Grants and Privileges” earlier in
this chapter.

BIND_ARRAY Procedure The bind_array procedure supports bulk DML operations. The
procedure binds a nested table collection into a SQL statement. You can choose a collection from
a list of base SQL data types. It is an overloaded procedure. There are two types of signatures, and
all parameters use an IN mode of operation.

Prototype 1

bind_array(cursor_number NUMBER
 , column_name VARCHAR2
 , collection <datatype_list>)

Prototype 2

bind_array(cursor_number NUMBER
 , column_name VARCHAR2
 , collection <datatype_list>
 , index1 NUMBER
 , index2 NUMBER)

13-ch13.indd 578 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 579

The collection is an associative array, indexed by a BINARY_INTEGER. You can choose
the base scalar variable from: BFILE, BLOB, CLOB, DATE, NUMBER, ROWID, TIME, TIMESTAMP,
TIME WITH TIME ZONE, or VARCHAR2. This function also supports table and varray collections
and user-defined object types through the OCI libraries.

BIND_VARIABLE Procedure The bind_variable procedure supports row-by-row DML
operations. The function binds a wide variety of data types into a SQL statement. It is an
overloaded procedure with two principal types of signature. One signature take three parameters
and the variable_value parameter can be any of the valid datatype_list scalar or
composite variables. All parameters in this signature use an IN mode of operation. The other
signature takes four parameters and only works with a VARCHAR2 variable_value. The out_
value_size parameter is an IN OUT mode, and returns the size of the bound variable.

Prototype 1

bind_variable(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value <datatype_list>)

Prototype 2

bind_variable(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value VARCHAR2
 , out_value_size NUMBER)

The datatype_list includes any of these SQL scalar data types: BFILE, BINARY_
DOUBLE, BINARY_FLOAT, BLOB, CLOB, DATE, INTERVAL YEAR TO MONTH, INTERVAL
YEAR TO SECOND, NUMBER, REF OF STANDARD, ROWID, TIME, TIME WITH TIME ZONE,
TIMESTAMP, TIMESTAMP WITH TIME ZONE, or VARCHAR2. The datatype_list also
includes an Attribute Data Type (ADT), varray, table, or opaque collection.

BIND_VARIABLE_CHAR Procedure The bind_variable_char procedure supports row-
by-row DML operations. The function binds a CHAR data type into a SQL statement. It is an
overloaded procedure with two signatures, and all parameters use an IN mode of operation.

Prototype 1

bind_variable_char(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value CHAR)

Prototype 2

bind_variable_char(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value CHAR
 , out_value_size NUMBER)

The out_value_size parameter captures the size of the CHAR variable_value parameter.

13-ch13.indd 579 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

580 Oracle Database 12c PL/SQL Programming

BIND_VARIABLE_RAW Procedure The bind_variable_raw procedure supports row-by-
row DML operations. The function binds a RAW data type into a SQL statement. It is an overloaded
procedure with two signatures, and all parameters use an IN mode of operation.

Prototype 1

bind_variable_raw(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value RAW)

Prototype 2

bind_variable_raw(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value RAW
 , out_value_size NUMBER)

The out_value_size parameter captures the size of the RAW variable_value parameter.

BIND_VARIABLE_ROWID Procedure The bind_variable_rowid procedure supports
row-by-row DML operations. The function binds a ROWID data type into a SQL statement. It is not
an overloaded procedure, with a single signature, and all parameters use an IN mode of operation.

Prototype

bind_variable_rowid(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value ROWID)

CLOSE_CURSOR Procedure The close_cursor procedure closes an open dbms_sql
cursor. The cursor number is passed by reference as an IN OUT mode variable.

Prototype

close_cursor(cursor_number NUMBER)

COLUMN_VALUE Procedure The column_value procedure supports bulk and row-by-row
queries. The function binds the output from a SELECT statement into an OUT mode variable. The
variable can be a scalar variable or a nested table of a scalar variable. The cursor_name and
position are IN mode variables. On the other hand, the variable_value or collection_
value, column_error, and actual_length parameters are OUT mode variables. The
procedure has three overloaded signatures.

Prototype 1

column_value(cursor_number NUMBER
 , position NUMBER
 , variable_value <datatype_list>)

13-ch13.indd 580 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 581

Prototype 2

column_value(cursor_number NUMBER
 , position NUMBER
 , collection_value <datatype_list>)

Prototype 3

column_value(cursor_number NUMBER
 , position NUMBER
 , collection_value <datatype_list>
 , column_error NUMBER
 , actual_length NUMBER)

The data type can be an ADT (scalar collection) or UDT (associative array) variable of any of
these SQL data types: BFILE, BLOB, CLOB, DATE, NUMBER, ROWID, TIME, TIMESTAMP, TIME
WITH TIME ZONE, or VARCHAR2.

The prototype signature five parameters are restricted to an associative array of a DATE,
NUMBER, or VARCHAR2 scalar data type. This function also supports associative arrays, table
collections, varray collections, and user-defined object types through the OCI libraries.

COLUMN_VALUE_CHAR Procedure The column_value_char procedure supports row-by-
row SELECT statements. The function binds the output from a SELECT statement for a CHAR
column into an OUT mode variable. It is an overloaded procedure, and it has two signatures.

Prototype 1

column_value_char(cursor_number NUMBER
 , position NUMBER
 , variable_value CHAR)

Prototype 2

column_value_char(cursor_number NUMBER
 , position NUMBER
 , variable_value CHAR
 , column_error NUMBER
 , actual_length NUMBER)

COLUMN_VALUE_LONG Procedure The column_value_long procedure supports row-
by-row queries. The function binds the output from a SELECT statement for a LONG column into
an OUT mode variable. It is not an overloaded procedure, and it has one signature.

Prototype

column_value_long(cursor_number IN NUMBER
 , position IN NUMBER
 , variable_value IN LONG
 , value OUT VARCHAR2
 , value_length OUT NUMBER)

13-ch13.indd 581 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

582 Oracle Database 12c PL/SQL Programming

COLUMN_VALUE_RAW Procedure The column_value_raw procedure supports row-by-
row queries. The function binds the output from a SELECT statement for a RAW column into an
OUT mode variable. It is an overloaded procedure, and it has two signatures.

Prototype 1

column_value_raw(cursor_number NUMBER
 , position NUMBER
 , variable_value RAW)

Prototype 2

column_value_raw(cursor_number NUMBER
 , position NUMBER
 , variable_value RAW
 , column_error NUMBER
 , actual_length NUMBER)

COLUMN_VALUE_ROWID Procedure The column_value_rowid procedure supports
row-by-row queries. The function binds the output from a SELECT statement for a ROWID column
into an OUT mode variable. It is an overloaded procedure, and it has two signatures.

Prototype 1

column_value_rowid(cursor_number NUMBER
 , position NUMBER
 , variable_value ROWID)

Prototype 2

column_value_rowid(cursor_number NUMBER
 , position NUMBER
 , variable_value ROWID
 , column_error NUMBER
 , actual_length NUMBER)

DEFINE_ARRAY Procedure The define_array procedure supports bulk queries. The function
defines (or maps) a nested table to columns of a SELECT statement. You must use this before calling
the column_value procedure. It is an overloaded procedure, and it has one type of signature.

Prototype

define_array(cursor_number NUMBER
 , position NUMBER
 , collection <datatype_list>
 , count NUMBER
 , lower_bound NUMBER)

The count parameter sets the maximum number of elements returned. The lower_bound
parameter sets the starting point, which is typically 1.

The data type can be an associative array variable of any of these SQL data types: BFILE, BLOB,
CLOB, DATE, NUMBER, ROWID, TIME, TIMESTAMP, TIME WITH TIME ZONE, or VARCHAR2.

13-ch13.indd 582 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 583

DEFINE_COLUMN Procedure The define_column procedure supports row-by-row queries.
The function defines (or maps) column values to columns of a SELECT statement. You must use
this before calling the column_value procedure. It is an overloaded procedure, and it has one
type of signature.

Prototype

define_column(cursor_number NUMBER
 , position NUMBER
 , variable_value <datatype_list>)

The data type can be a scalar variable of any of these SQL data types: BFILE, BLOB, CLOB,
DATE, NUMBER, ROWID, TIME, TIMESTAMP, TIME WITH TIME ZONE, or VARCHAR2.

DEFINE_COLUMN_CHAR Procedure The define_column_char procedure supports row-
by-row queries. The function defines (or maps) column values to columns of a SELECT statement.
You must use this before calling the column_value procedure. It is not an overloaded
procedure, and it has one signature.

Prototype

define_column_char(cursor_number NUMBER
 , position NUMBER
 , variable_value CHAR)

DEFINE_COLUMN_LONG Procedure The define_column_long procedure supports row-
by-row queries. The function defines (or maps) column values to columns of a SELECT statement.
You must use this before calling the column_value procedure. It is not an overloaded
procedure, and it has one signature.

Prototype

define_column_long(cursor_number NUMBER
 , position NUMBER
 , variable_value LONG)

DEFINE_COLUMN_RAW Procedure The define_column_raw procedure supports row-by-
row queries. The function defines (or maps) column values to columns of a SELECT statement.
You must use this before calling the column_value procedure. It is not an overloaded
procedure, and it has one signature.

Prototype

define_column_raw(cursor_number NUMBER
 , position NUMBER
 , variable_value RAW)

DEFINE_COLUMN_ROWID Procedure The define_column_rowid procedure supports
row-by-row queries. The function defines (or maps) column values to columns of a SELECT
statement. You must use this before calling the column_value procedure. It is not an overloaded
procedure, and it has one signature.

13-ch13.indd 583 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

584 Oracle Database 12c PL/SQL Programming

Prototype

define_column_rowid(cursor_number NUMBER
 , position NUMBER
 , variable_value ROWID)

DESCRIBE_COLUMNS Procedure The describe_columns procedure supports bulk and
row-by-row queries and DML operations. The function describes columns for a cursor opened
and parsed by the dbms_sql package. It only works with column names that are 30 characters
or smaller in Oracle Database 10g but works with 32-character column names in Oracle Database
12c. It is not an overloaded procedure, and it has one signature.

Prototype

describe_columns(cursor_number NUMBER
 , column_count NUMBER
 , record_collection DBMS_SQL.DESC_TAB)

The dbms_sql.desc_tab data type is an associative array of the dbms_sql.desc_rec
record type. The desc_rec record type contains the metadata about the column values. The
information is a subset of what you would find in the USER_TABLES view.

DESCRIBE_COLUMNS2 Procedure The describe_columns2 procedure supports bulk and
row-by-row queries and DML operations. The function describes columns for a cursor opened
and parsed by the dbms_sql package. It only works with column names that are up to 32,767
bytes in length from Oracle Database 10g forward. It is not an overloaded procedure, and it has
one signature.

Prototype

describe_columns2(cursor_number NUMBER
 , column_count NUMBER
 , record_collection DBMS_SQL.DESC_TAB2)

The dbms_sql.desc_tab2 data type is an associative array of the dbms_sql.desc_rec2
record data type. The desc_rec2 record data type contains the same metadata about the column
values as desc_rec but allows for a larger column name. The information is a subset of what
you would find in the USER_TABLES view.

DESCRIBE_COLUMNS3 Procedure The describe_columns3 procedure supports bulk and
row-by-row queries and DML operations. The function describes columns for a cursor opened
and parsed by the dbms_sql package. It only works with column names that are up to 32,767
bytes in length from Oracle Database 10g forward. It is not an overloaded procedure, and it has
one signature.

Prototype

describe_columns3(cursor_number NUMBER
 , column_count NUMBER
 , record_collection DBMS_SQL.DESC_TAB3)

13-ch13.indd 584 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 585

The dbms_sql.desc_tab3 data type is an associative array of the dbms_sql.desc_rec3
record data type. The desc_rec3 record data type contains the same metadata about the column
values as desc_rec2, plus it adds the data type name and name length to the record structure.
The information is a broader subset of what you would find in the USER_TABLES view.

EXECUTE Function The execute function runs the statement associated with an open dbms_
sql cursor. It returns the number of rows touched by DML statements. You should ignore the
return value when it runs a DDL statement because it is a meaningless value (technically, an
undefined value). This function is not overloaded, and it has one signature. The parameter uses an
IN mode of operation.

Prototype

execute(cursor_number NUMBER) RETURN NUMBER

EXECUTE_AND_FETCH Function The execute_and_fetch function runs the statement
associated with an open dbms_sql cursor and fetches one or more rows from a cursor. The
function is more or less like running the execute and fetch_rows functions in tandem. The
function returns the number of rows touched by DML statements. You should ignore the return
value when it runs a DDL statement because it is a meaningless value (technically, an undefined
value).

The optional exact_fetch parameter is false by default, which lets you return more than
one row. You can return only one row when you override the default value of the exact_fetch
parameter. Oracle 7 forward does not support an exact_fetch option for LONG data type
columns.

The function is not overloaded. It also has one signature. The parameter uses an IN mode of
operation.

Prototype

execute_and_fetch(cursor_number NUMBER
 , exact_fetch BOOLEAN DEFAULT FALSE) RETURN NUMBER

FETCH_ROWS Function The fetch_rows function fetches a row or set of rows from a given
cursor. You can run the fetch_rows function until all rows are read. The column_value
function reads the fetched row or set of rows into a local variable. The local variable can be a
scalar or nested table data type. The cursor number is passed by using an IN mode of operation.
The fetch_rows function returns the number of rows fetched, or a –1. The latter means that all
rows have been read.

Prototype

fetch_rows(cursor_number NUMBER) RETURN NUMBER

IS_OPEN Function The is_open function checks whether a cursor is open. It returns true
when the cursor is open and false when it’s not. The function is not overloaded. It also has one
signature. The parameter uses an IN mode of operation.

Prototype

is_open(cursor_number NUMBER) RETURN BOOLEAN

13-ch13.indd 585 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

586 Oracle Database 12c PL/SQL Programming

LAST_ERROR_POSITION Function The last_error_position function returns the byte
offset in a SQL statement text where an error occurred. Unlike other things that start with a 1, this
checks the string with the first position being 0. You must call this function after the PARSE call
but before any execution function call.

Prototype

last_error_position RETURN NUMBER

LAST_ROW_COUNT Function The last_row_count function returns the cumulative
number of rows fetched from a query. You get the cumulative number when you call the last_
row_count function after an execute_and_fetch or fetch_rows call. If you call this
function after an execute function, you get 0.

Prototype

last_row_count RETURN NUMBER

LAST_ROW_ID Function The last_row_id function returns the ROWID value of the last row
fetched from a query. You get the ROWID when you call the last_row_id function after an
execute_and_fetch or fetch_rows call.

Prototype

last_row_id RETURN ROWID

LAST_SQL_FUNCTION_CODE Function The last_sql_function_code function returns
SQL function code for the statement. You can find these codes in the Oracle Call Interface
Programmer’s Guide 12c Release. This must be called immediately after you run the SQL
statement, or the return value is undefined.

Prototype

last_sql_function_code RETURN INTEGER

OPEN_CURSOR Function The open_cursor function opens a cursor in the database, and
returns the cursor’s number. You must call the close_cursor function to close the cursor and
release the resource.

Prototype

open_cursor RETURN INTEGER

PARSE Procedure The parse procedure parses a given statement string. All statements are
parsed immediately. DML statements queue on a call to execute or execute_and_fetch
functions. DDL statements are run immediately after they’re successfully parsed. It is an overloaded
procedure, and it has ten types of signatures. Recent changes in Oracle Database 11g, Release 2
and Oracle Database 12c add overloaded methods to accommodate editioning and pluggable
databases.

13-ch13.indd 586 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 587

Prototype 1

parse(cursor_number NUMBER
 , statement {CLOB | VARCHAR2}
 , language_flag NUMBER)

Prototype 2

parse(cursor_number NUMBER
 , statement {CLOB | VARCHAR2}
 , language_flag NUMBER
 , edition VARCHAR2)

Prototype 3

parse(cursor_number NUMBER
 , statement {VARCHAR2S | VARCHAR2A}
 , language_flag NUMBER
 , lower_bound NUMBER
 , upper_bound NUMBER
 , language_flag NUMBER)

Prototype 3

parse(cursor_number NUMBER
 , statement {VARCHAR2S | VARCHAR2A}
 , language_flag NUMBER
 , edition VARCHAR2
 , apply_crossedition_trigger NUMBER
 , fire_apply_trigger NUMBER)

Prototype 5

parse(cursor_number NUMBER
 , statement {VARCHAR2S | VARCHAR2A}
 , language_flag NUMBER
 , lower_bound NUMBER
 , upper_bound NUMBER
 , language_flag NUMBER
 , edition VARCHAR2)

Prototype 6

parse(cursor_number NUMBER
 , statement {CLOB | VARCHAR2 }
 , language_flag NUMBER
 , edition VARCHAR2
 , apply_crossedition_trigger VARCHAR2
 , fire_apply_trigger BOOLEAN
 , schema VARCHAR2)

13-ch13.indd 587 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

588 Oracle Database 12c PL/SQL Programming

Prototype 7

parse(cursor_number NUMBER
 , statement {VARCHAR2S | VARCHAR2A}
 , language_flag NUMBER
 , lower_bound NUMBER
 , upper_bound NUMBER
 , language_flag NUMBER
 , edition VARCHAR2
 , apply_crossedition_trigger VARCHAR2
 , fire_apply_trigger BOOLEAN)

Prototype 8

parse(cursor_number NUMBER
 , statement {VARCHAR2S | VARCHAR2A}
 , language_flag NUMBER
 , lower_bound NUMBER
 , upper_bound NUMBER
 , language_flag NUMBER
 , edition VARCHAR2
 , apply_crossedition_trigger VARCHAR2
 , fire_apply_trigger BOOLEAN
 , schema VARCHAR2)

Prototype 9

parse(cursor_number NUMBER
 , statement {CLOB | VARCHAR2}
 , language_flag NUMBER
 , edition VARCHAR2
 , apply_crossedition_trigger VARCHAR2
 , fire_apply_trigger BOOLEAN
 , schema VARCHAR2
 , container VARCHAR2)

Prototype 10

parse(cursor_number NUMBER
 , statement {VARCHAR2S | VARCHAR2A}
 , language_flag NUMBER
 , lower_bound NUMBER
 , upper_bound NUMBER
 , language_flag NUMBER
 , edition VARCHAR2
 , apply_crossedition_trigger VARCHAR2
 , fire_apply_trigger BOOLEAN
 , schema VARCHAR2
 , container VARCHAR2)

The VARCHAR2S data type is a nested table collection of 256-byte strings. The VARCHAR2A
data type is a nested table collection of 32,767-byte strings.

13-ch13.indd 588 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 589

TO_CURSOR_NUMBER Function The to_cursor_number function converts an NDS
cursor to a dbms_sql cursor. It can be useful when you open a cursor of indefinite columns and
want to process it by using the dbms_sql package. It takes a single IN mode cursor reference,
and it returns a generic reference cursor.

Prototype

to_cursor_number(reference_cursor REF CURSOR) RETURNS NUMBER

TO_REFCURSOR Function The to_refcursor function converts a dbms_sql cursor
number to an NDS reference cursor. It can be useful when you open a cursor in dbms_sql and
want to process it by using NDS. It takes a single IN mode cursor number, and it returns a cursor
number.

Prototype

to_refcursor(cursor_number NUMBER) RETURNS REF CURSOR

VARIABLE_VALUE Procedure The variable_value procedure supports bulk and row-by-
row DML operations. It is used to transfer a variety of data type results back through a
RETURNING INTO clause. The function binds a wide variety of data types into a SQL statement.
It is an overloaded procedure with a single type of signature. The cursor and column name are
passed by value as IN mode operations. The variable value is returned because it is passed as an
OUT mode variable.

Prototype

variable_value(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value <datatype_list>)

The data type list includes scalar or associative arrays of scalar variables. You can use any of
the following scalar data types: BFILE, BINARY_DOUBLE, BINARY_FLOAT, BLOB, CLOB, DATE,
INTERVAL YEAR TO MONTH, INTERVAL YEAR TO SECOND, NUMBER, REF OF STANDARD,
ROWID, TIME, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIME WITH TIME ZONE, or
VARCHAR2. This function also supports associate arrays (PL/SQL tables), varrays, and user-defined
object types through the OCI libraries.

VARIABLE_VALUE_CHAR Procedure The variable_value_char procedure supports row-
by-row DML operations. It is used to transfer CHAR data type results back through a RETURNING
INTO clause. It is an overloaded procedure with two signatures. The cursor and column name are
passed by value as IN mode operations. The variable value is returned because it is passed as an
OUT mode variable.

Prototype

variable_value_char(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value CHAR)

13-ch13.indd 589 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

590 Oracle Database 12c PL/SQL Programming

VARIABLE_VALUE_RAW Procedure The variable_value_raw procedure supports row-
by-row DML operations. It is used to transfer CHAR data type results back through a RETURNING
INTO clause. It is an overloaded procedure with two signatures. The cursor and column name are
passed by value as IN mode operations. The variable value is returned because it is passed as an
OUT mode variable.

Prototype

variable_value_raw(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value RAW)

VARIABLE_VALUE_ROWID Procedure The variable_value_rowid procedure supports
row-by-row DML operations. It is used to transfer CHAR data type results back through a
RETURNING INTO clause. It is an overloaded procedure with two signatures. The cursor and
column name are passed by value as IN mode operations. The variable value is returned because
it is passed as an OUT mode variable.

Prototype

variable_value_rowid(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value ROWID)

This section has reviewed the functions and procedures in the dbms_sql package. You
should find most of them in the dbms_sql examples

Review Section
This section has described the following points about the dbms_sql package, which supports
dynamic SQL statements:

 ■ The dbms_sql package may require grants to access the dbms_sql and dbms_sys_
sql packages.

 ■ The dbms_sql package supports static SQL statements that process DDL and DML
statements. These dynamic statements are known as Method 1.

 ■ The dbms_sql package supports dynamic SQL statements that process DML
statements with bind variables. These dynamic statements are known as Method 2.

 ■ The dbms_sql package supports dynamic SQL statements with a set of known inputs
and outputs. They process DML statements with bind variables and a RETURNING
INTO clause. These dynamic statements are known as Method 3.

 ■ The dbms_sql package supports dynamic SQL statements with a set of runtime-
determined inputs and outputs. They process DML statements with bind variables and
a RETURNING INTO clause. These dynamic statements are known as Method 4.

 ■ The dbms_sql package supports converting LONG, LONG RAW, and RAW data types.

13-ch13.indd 590 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Chapter 13: Dynamic SQL 591

Supporting Scripts
This section describes programs placed on the McGraw-Hill Professional website to support this
chapter.

 ■ The create_nds1.sql, create_nds2.sql, create_nds3.sql, create_nds4
.sql, create_nds5.sql, create_nds6.sql, and create_nds7.sql scripts
support the “Native Dynamic SQL (NDS)” section of this chapter.

 ■ The create_dbms_sql1.sql, create_dbms_sql2.sql, create_dbms_sql3
.sql, create_dbms_sql4.sql, create_dbms_sql5.sql, and create_dbms_
sql7.sql scripts support the “DBMS_SQL Package” section of this chapter.

Summary
This chapter has shown you how to leverage NDS and the dbms_sql package to create and
execute dynamic SQL statements. You should now have a foundation on how you can use them
in your PL/SQL applications.

Mastery Check
The mastery check is a series of true-or-false and multiple-choice questions that let you confirm
how well you understand the material in the chapter. You may check Appendix I for answers to
these questions.

True or False:

1. ___NDS supports dynamic DDL statements with bind variables.

2. ___NDS supports static DDL statements.

3. ___NDS supports dynamic DML statements with bind variables.

4. ___NDS supports dynamic SELECT statements with a known set of columns.

5. ___NDS supports dynamic PL/SQL anonymous blocks.

6. ___NDS supports string literals with an embedded colon (:).

7. ___NDS statements with an unknown number of inputs rely on the dbms_sql package.

8. ___Without NDS, you must explicitly use the dbms_sql package to open a cursor.

9. ___With an unknown set of dynamic inputs, you must parse, execute, and fetch results
with functions and procedures found in the dbms_sql package.

10. ___You only need to define columns and bind variables to retrieve SELECT-list values
from a dynamic query with the dbms_sql package.

13-ch13.indd 591 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

592 Oracle Database 12c PL/SQL Programming

Multiple Choice:

11. Which of the following are procedures in the dbms_sql package? (Multiple answers
possible)

A. bind_array

B. bind_variable

C. fetch_rows

D. is_open

E. parse

12. Which of the following are functions in the dbms_sql package? (Multiple answers
possible)

A. bind_array

B. execute_and_fetch

C. fetch_rows

D. is_open

E. parse

13. Which of the following are package constants? (Multiple answers possible)

A. The NATIVE constant

B. The V6 constant

C. The V7 constant

D. The V8 constant

E. All of the above

14. Which of the following are dbms_sql-supported base scalar types for collections?
(Multiple answers possible)

A. The BLOB data type

B. The CLOB data type

C. The BINARY_DOUBLE data type

D. The BINARY_FLOAT data type

E. The TIMESTAMP data type

15. Which of the following dbms_sql functions or procedures execute a query? (Multiple
answers possible)

A. The parse_and_execute procedure

B. The parse_and_execute function

C. The execute function

D. The execute_and_fetch function

E. The execute_fetch_all function

13-ch13.indd 592 12/14/13 4:56 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

PART
III

Appendixes and Glossary

14-AppA.indd 593 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1
Blind folio: 594

14-AppA.indd 594 12/17/13 3:42 PM

This page has been intentionally left blank

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

APPENDIX
A

Oracle Database Primer

14-AppA.indd 595 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

596 Oracle Database 12c PL/SQL Programming

This appendix first introduces you to the general concepts of Oracle database architecture.
It then describes how to start and stop both the database instance and the database listener,
how to work with Oracle SQL*Plus and Oracle SQL Developer, and how to tune and trace

SQL. If you are responsible for managing an Oracle database instance, learning these basic skills
is critical if you don’t already possess some experience as an Oracle database administrator (DBA).

This appendix covers the preceding material in the following sequence:

 ■ Oracle database architecture

 ■ Starting and stopping the Oracle Database 12c server

 ■ Starting and stopping the Oracle listener

 ■ Multiversion Concurrency Control

 ■ Definer rights and invoker rights

 ■ SQL interactive and batch processing

 ■ Database administration

 ■ SQL tuning

 ■ SQL tracing

NOTE
For a general introduction to managing the Oracle Database product
stack, check out Oracle Database 12c DBA Handbook, by Bob Bryla
(Oracle Press, 2014). In addition, Oracle’s online document library
offers step-by-step instructions on Oracle Database administration in
the Oracle Database 2 Day DBA 12c manual, and provides in-depth
treatment of Oracle Database administration in the Oracle Database
Administrator’s Guide 12c.

This appendix assumes that you will read it sequentially, and thus each section may reference
material introduced earlier. Naturally, you can skip forward to an area of interest if you already
understand the earlier material.

Oracle Database Architecture
The Oracle Database 12c database is available in three editions:

 ■ Oracle Database 12c Express Edition (XE), a free, limited version of the Standard Edition

 ■ Oracle Database 12c Standard Edition (SE), the best-selling edition

 ■ Oracle Database 12c Enterprise Edition (EE), the full-featured product

The most significant architectural change in Oracle Database 12c is that it divides the database
into two parts, a container database (CDB) and one or more pluggable databases (PDBs). The data
catalog includes references to the standard catalog, and adding PDBs synchronizes the data catalog
through provisioning when using the Oracle Database Configuration Assistant (DBCA) utility.

14-AppA.indd 596 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 597

You can explore the new information about the CDB with this query set:

COLUMN db_name FORMAT A20
COLUMN cdb FORMAT A3
COLUMN auth_id FORMAT A10
COLUMN user_id FORMAT A10
COLUMN container FORMAT A10
SELECT sys_context('userenv', 'db_name') AS db_name
, (SELECT cdb FROM v$database) AS cdb
, sys_context('userenv', 'authenticated_identity') AS auth_id
, sys_context('userenv', 'current_user') AS user_id
, NVL(sys_context('userenv', 'con_Name'), 'NON-CDB') AS container
FROM dual;

It returns the following from a sample Oracle Database 12c installation:

DB_NAME CDB AUTH_ID USER_ID CONTAINER
-------------------- --- ---------- ---------- ----------
orcl YES system SYSTEM CDB$ROOT

You can gain more insight into the PDBs with this query:

COLUMN RESTRICTED FORMAT A10
SELECT v.name
, v.open_mode
, NVL(v.restricted, 'n/a') AS restricted
, d.status
FROM v$PDBs v INNER JOIN dba_pdbs d USING(guid)
ORDER BY v.create_scn;

It returns the following from a sample Oracle Database 12c installation:

NAME OPEN_MODE RESTRICTED STATUS
------------------------------ ---------- ---------- -------------
PDB$SEED READ ONLY NO NORMAL
PDBORCL MOUNTED n/a NORMAL

All three editions of Oracle Database 12c contain all the standard relational database
management system components, embedded Java, collection types, and PL/SQL runtime engine
that set Oracle apart in the database industry. These components enable any of these Oracle database
management systems to manage small to large data repositories and consistently access data
requested concurrently by multiple users. Oracle Database 12c Enterprise Edition also includes
many features that empower advanced context and object management.

The components of Oracle database management systems can be divided into two groups of
services:

 ■ Data repositories (aka databases) Enable a SQL interface that can access any column
value in one or more rows of a table or result set. Result sets are selected values of a
single table or the product of joins between multiple tables (SQL joins are described in
Appendix B). Tables are persistent, two-dimensional collections that are organized by
rows of defined structures. You create these structures when defining and creating tables
in a database instance. Databases are relational databases when they include a data
catalog that tracks the definitions of structures.

14-AppA.indd 597 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

598 Oracle Database 12c PL/SQL Programming

 ■ Programs Enable you to administer and access the data repository, thereby providing
the infrastructure to manage that data repository. The combination of a data repository and
enabling programs is known as an instance of a database because the programs process
and manage the data repository and data catalog. A data catalog stores information about
data, known as metadata. The data catalog also defines how the database management
system programs will access and manage user-defined databases. The programs are
background processes that manage the physical input and output to physical files and
other required processing activities. Opening a relational database instance starts these
background processes.

Integrating the data repository and administrative programs requires a relational programming
language that (a) has a linear structure, (b) can be accessed interactively or within procedural
programs, and (c) supports data definition, manipulation, and query activities. The Structured
Query Language (SQL) is the relational programming language used by the Oracle Database and
most other relational database products.

Appendix B introduces how to work with Oracle SQL. Like any spoken or written language,
SQL has many dialects. The Oracle Database 12c products support two dialects of SQL. One is
the Oracle proprietary SQL syntax and the other is the ANSI 1999 SQL standard. The SQL language
provides users with high-level definition, set-at-a-time, insert, update, and delete operations, as
well as the ability to select data. SQL is considered a high-level language because it enables you
to access data without dealing with physical file-access details.

Data catalogs are tables that map data that defines other database tables, views, stored
procedures, and structures. Database management systems define frameworks, which qualify
what can belong in data catalogs to support database instances. Database management systems
also use SQL to define, access, and maintain the data catalog. Beneath the SQL interface and
background processes servicing SQL commands, the database management system contains a set
of library programs that manage transaction control. These services guarantee that transactions in
a multiple user database are ACID-compliant.

ACID-compliant transactions are atomic, consistent, isolated, and durable. Atomic means that
every part or no part of a transaction completes. Consistent means that the same results occur
whether the transaction is serially or concurrently run. Isolated means that changes are invisible
to any other session until made permanent by a commit action. Durable means the transaction is
written to a permanent store at the conclusion of the transaction.

The architecture of the Oracle database instance is shown in Figure A-1. As you can see, it
includes a shared memory segment, known as the System Global Area (SGA), active background
processes, and files. The SGA contains various buffered areas of memory that process queries,
inserts, updates, and delete statements in databases. The active background processes, described
next, support the database instance. The files supporting the database instance are divisible into
three segments—files that contain instance variables, files that contain the physical data and data
catalog files, and files that contain control files, log files, and archive files.

There are five required Oracle database instance background processes, listed next along with
a description of the services they perform:

 ■ Process Monitor (PMON) cleans up the instance after failed processes by rolling back
transactions, releasing database locks and resources, and restarting deceased processes.

 ■ System Monitor (SMON) manages system recovery by opening the database, rolling
forward changes from the online redo log files, and rolling back uncommitted
transactions. SMON also coalesces free space and deallocates temporary segments.

14-AppA.indd 598 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 599

 ■ Database Writer (DBWRn) writes data to files when any of the following occur:
checkpoints are reached, dirty buffers reach their threshold or no buffers are free,
timeouts occur, Oracle Real Application Clusters (RAC) ping requests are made,
tablespaces are placed in OFFLINE or READ ONLY state, tables are dropped or truncated,
or tablespaces begin backup processing.

 ■ Log Writer (LGWR) writes at user commits or three-second intervals, whichever comes
first; when the redo log buffer is one-third full, online redo log switch occurs, or there is
1MB of redo instructions; and before a Database Writer writes dirty buffers to disk.

 ■ Checkpoint (CKPT) signals the Database Writer at checkpoints and updates the file
header information for database and control files at checkpoints.

FIGURE A-1. Oracle database instance architecture diagram

Online Redo
Log Files

SGA

U

3 sec.

1/3

LGWR

Database
Buffer Cache DDD

D D
D

D
D

D
D D

DDD

DBWRn

Data
File

ARCn

SQL Work Areas

Session Memory

Private SQL Area

SQL Work Areas

Session Memory

Private SQL Area

SQL Work Areas

Session Memory

Private SQL Area

U U

Fixed
SGA

Java
Pool

Streams
Pool

Large
Pool

Shared
Pool

... ...

CHKPT

Control
Files

Flashback
Log

Archived Redo
Log Files

MMON

RECO

SMON

PMON

MMNL

OTHER

Client
Processes

Server
Processes

D
at

ab
as

e
In

st
an

ce

Shared Pool

select *
from
hr.employee;

Shared SQL Area

Pr
iv

at
e

SQ
L

A
re

a
(S

ha
re

d
Se

rv
er

 O
nl

y)

Library Cache

Data
Entry

Server
Result

Rsrvd
Pool

Other

Large Pool

Request
Queue

Response
Queue

F U F F F F F F U F F I F F
F F F F F F F I F F I F U F
F I F U F F U F F U F F F F
F F F F U I F F I I U F F
F I F I F F U F F U F F I F
I U F F F F I F F F I F F U

SQL Work Areas

Session Memory

Private SQL Area

U
...

RVWR

• A user commits a transaction
• An online redo log switch
 occurs
• Three seconds have passed
• The redo log buffer is 1/3 full
• DBWRn writes “dirty” buffers
 to disk

LGWR Events

Commit

14-AppA.indd 599 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

600 Oracle Database 12c PL/SQL Programming

Figure A-1 also shows an optional background process, Archiver (ARCn), that is critical to
recovering databases. When an Oracle database instance is in archive mode, the Archiver
process’s writes to the redo log file are mirrored in the archive log files as the database switches
from one redo log file to another. You should have the database in archive mode unless it is a test
system and the time to rebuild it is trivial or unimportant.

The other optional background processes for the Oracle Database 12c family are as follows:
Memory Monitor (MMON), Memory Monitor Lite (MMNL), Memory Manager (MMAN),
Automatic Shared Memory Management (ASMM), Coordinator Job Queue (CJQ0), Dispatcher
(Dnnn), RAC Lock Manager – Instance (LCKn), RAC DLM Monitor – Remote (LMDn), RAC DLM
Monitor – Global Locks (LMON), RAC Global Cache Service (LMS), Parallel Query Slaves (Pnnn),
Advanced Queuing (QMNn), Recoverer (RECO), Recovery Writer (RVWRn), and Shared Server
(Snnn). All of these processes are available in the Oracle Database 12c products. You may only
additionally configure the Coordinator Job Queue, Dispatcher, and Recoverer processes.

Understanding the details of how shared memory, processes, and files interact is the responsibility
of the DBA. As noted earlier, you can find a fairly comprehensive guide to how to manage
databases in the Oracle Database 12c DBA Handbook (Oracle Press, 2014), and you can find
a summary explanation in the Oracle Database Express Edition 2 Day DBA 12c Release manual.

Beyond the database instance, the Oracle database management system provides many
utilities. These utilities support database backup and recovery, Oracle database file integrity
verification (via the DBVerify utility—dbv), data import and export, and a network protocol stack.
The network protocol stack is a critical communication component that enables local and remote
connections to the Oracle database by users other than the owner of the Oracle executables. The
networking product stack is known as Net8. Net8 is a complete host layer that conforms to the
Open Systems Interconnection (OSI) model and provides the session, presentation, and
application layers. You can find more information about the OSI model at http://en.wikipedia.org/
wiki/OSI_model.

Oracle Net8 enables connectivity between both local and remote programs and the database
instance. Remote programs, whether implemented on the same physical machine or different
physical machines, use remote procedure calls (RPCs) to communicate to the database instance.
RPCs let one computer call another computer by directing the request to a listener service.

RPCs require software on both the client and the server. The remote client program environment
needs to know how to get to the server programming environment, which is found by reading the
tnsnames.ora file in the Oracle Database 12c Client software. The Oracle Database 12c Server
software provides the implementation for the Oracle listener that receives and handles RPC requests.
Net8 provides the packaging and de-packaging of network packets between local and remote
programs and a database instance.

The Oracle listener listens for Net8 packaged transmissions on a specific port. The packaged
transmissions are Oracle Net8 encoded packages. Packages are received from a network transport
layer, such as TCP/IP, at a designated port number. The default port number is 1521. This port is
where the Oracle listener hears, receives, and connects the transactions to the local database
instance.

As illustrated in Figure A-2, when the package arrives at the listening port, a listener thread
hears it and then hands it to the Oracle Call Interface (OCI) thread. Then, the transaction is sent
through the Net8 transport layer to remove the packaging and pass the SQL command to a
transactional object in a database instance, such as a table, view, or stored procedure.

This process has two variations: thick client and thin client. Thick-client communication, the
old model, supports client-server computing, which worked like telnet or secure shell (shh)

14-AppA.indd 600 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 601

across state-aware network sockets. The thick-client communication model requires that you
install an Oracle Database 12c Client software application on the client. The Oracle Database
12c Client software contains the necessary programs and libraries to effect bidirectional state-
aware sockets between a client and the server computer. The newer, thin-client communication
supports both state-aware and stateless transaction patterns but it does so differently. All you need
is an OCI library that enables you to package the communication into a compatible Net8 packet.
Java Database Connectivity (JDBC) programs use an Oracle Java archive, while C, C++, Java, PHP,
and other third-party programming languages use the OCI8 libraries to make connections to the
Oracle database. The JDBC programs can work with only the Java archive file, while the others
require the Oracle Database 12c Client installation.

FIGURE A-2. Oracle listener architecture

Th
re

ad
 o

f C
on

tr
ol

R
ec

ei
vi

ng
 T

hr
ea

d

Se
nd

in
g

Th
re

ad

D
at

ab
as

e
O

C
I

Th
re

ad

Socket

IPC

TCP/IP Network (IEEE 802.3)
1

Oracle Net8 Transport Layer

8

2

7

3

6

Oracle
Database

4

5

User Account vs. Namespace
Although they have the same name, there is a subtle difference between a user account and
its corresponding namespace. A user account by itself represents no more than stored
authentication tokens. At the time of account creation, no namespace exists, even if the
user is granted rights such as CONNECT, INSERT, UPDATE, DELETE, and SELECT on a
myriad of database objects. The namespace is not created until the user is granted rights to
create database objects and actually creates a database object. Oracle chose to label the
namespace the same as the user account that owns it, which causes a great deal of confusion
for DBAs and users alike.

14-AppA.indd 601 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

602 Oracle Database 12c PL/SQL Programming

Inside the database instance, user accounts are called schemas. The superuser schemas are
known as sys and system. They support the CDB and contain some elements that map across all
PDBs. One example is the administrative views with a CDB_ prefix. The sys schema has rights to
all database objects. It also owns a special namespace where the data catalog is stored. The sys
schema should never be used for routine administration. The system schema has a master set of
roles and privileges that enables the DBA to use it like a superuser account. The system schema
contains administrative views to the data catalog, which typically are easier to use than trying to
kludge through the physical tables that contain the data catalog.

CAUTION
A small mistake in the data catalog can destroy your database instance
and provide you with no way to recover it. Also, changing things in the
sys schema is not supported by your license agreement unless you
are instructed to do so by Oracle to fix a specified problem.

As mentioned at the beginning of this section, Oracle Database 12c introduces the concept
of Pluggable Databases (PDBs), which in turn introduces the concept of private context data
dictionaries. Every PDB has its own sys and system schemas, and they work like the superuser
schemas for the CDB. The sys and system schemas exist as part of the PDB ADMIN schema.

Unix or Linux requires that you set an $ORACLE_HOME environment variable that maps to the
physical Oracle database management system home directory. Windows does not automatically
create an %ORACLE_HOME% environment variable because it adds the fully qualified directory path
to your %PATH% variable.

You set the correct operating environment in Unix or Linux by running the following
commands in the Bash or Korn shell as the owner of the Oracle database installation:

export set ORACLE_SID=oracle_sid
export set ORACLE_ASK=no

You can then navigate to the default /usr/local/bin directory to find the installed oraenv
file. You then source it as shown in the Bash or Korn shell:

./oraenv

You will find further instructions in the Oracle Database Installation Guide 12c Release. These
are also found on the http://docs.oracle.com web site under documentation for Oracle Database 12c.

Microsoft Windows Services
The design of Microsoft Windows compels Oracle to deploy services to start and stop the
database and listener. Oracle creates this Microsoft service by using the platform-specific utility
ORADIM. Fortunately, the Oracle Database 12c installation builds these services for you as a
post-installation step when you use the DBCA. You should change these services only if you
truly understand how to do so. A mistake working with the ORADIM facility can force you to
refresh your operating system or manually clean up the registry.

14-AppA.indd 602 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 603

This section has provided you with a summary of the Oracle database architecture and pointed
you to some additional useful references. You can also review whitepapers and administrative-
related database architecture notes posted on http://otn.oracle.com for additional information.
In the next sections, you will learn how to start and stop the database and listener, and learn how
to access SQL*Plus to run SQL statements.

Starting and Stopping the
Oracle Database 12c Server
This section demonstrates how to start and stop the Oracle Database 12c server. The command-
line utility is sqlplus and works the same for the Unix, Linux, and Microsoft Windows versions.
The only difference is linked to account ownership of the database. This difference exists because
of how the file system and ownership models work in Unix, Linux, and Microsoft Windows.

The Oracle database management system can support multiple database instances. Each
instance is a separate CDB. This capability makes it necessary to assign each instance a unique
System Identifier (SID). The generic database SID value is orcl when installing the Oracle
Database 12c server. The assignment of the SID is the same regardless of platform.

A PDB is a private context, on an instance within an instance. As such, a PDB has its own SID
value. The PDB’s SID value is the name of the PDB when you provision it. Unlike the CDB’s external
SID value, there’s no environment variable that you set for a PDB because the resolution of PDBs
is internally managed by the Oracle Database 12c database. You configure access through the
Oracle listener.

After provisioning a videodb PDB with a CREATE PLUGGABLE DATABASE statement, you
must add a SID_DESC definition to Oracle’s listener.ora file, like this:

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = CLRExtProc)
 (ORACLE_HOME = C:\app\oracle\product\12.1.0\dbhome_1)
 (PROGRAM = extproc)
 (ENVS = "EXTPROC_DLLS=ONLY:<oracle_home_dir>\bin\oraclr12.dll")
)
 (SID_DESC =
 (SID_NAME = VIDEODB)
 (ORACLE_HOME = <oracle_home>)
)
)

The SID_NAME is assigned the PDB’s database name, and the ORACLE_HOME variable is assigned
the fully qualified path to the physical directory. This configuration is necessary to provide access
to the sysdba role for the videodb PDB. After making these changes to the listener.ora file,
it’s necessary to stop and start the listener to make the changes effective. You can read more about
how you start, stop, and status the Oracle listener in the “Starting and Stopping the Oracle Listener”
section later in this appendix.

While adding a SID_DESC definition to the listener.ora file provides access to the database,
you also need to configure the tnsnames.ora file. The tnsnames.ora file acts like a police

14-AppA.indd 603 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

604 Oracle Database 12c PL/SQL Programming

officer directing traffic, and it maps a TNS alias to an Oracle database SID value. The following
video TNS alias maps access through a port to the videodb PDB:

VIDEO =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = videodb)
)
)

Together these changes let you access the videodb PDB from the command line. They’re
necessary to let you start and stop the videodb PDB, which can be stopped separately from the CDB.

The following subsections explain how to start and shut down the Oracle Database 12c server
in the Unix/Linux and Microsoft Windows environments, respectively.

Unix or Linux Operations
Oracle Database 12c installs as the oracle user in a dba group on the Unix or Linux system and
is set up to start at boot. When you want to shut down or start the database after the system has
booted, use the substitute user, su, command. The su command lets you become another user
and inherit that user’s environment variables. For example, the following command lets you change
from a less privileged user to the oracle owner:

su - oracle

You assume the mantle of oracle by providing the correct password to the account. Then,
how you start or stop the database depends on which Oracle Database 12c edition you are using.
As an Oracle Database 12c XE user (when it ships after Release 2), you can use the script built
during installation to start, stop, restart, configure, or check the status of the database and all
attendant services by typing the following:

/etc/init.d/oracle-xe {start|stop|restart|configure|status}

Alternatively, with an Oracle Database 12c SE or EE installation, you can use the sqlplus
utility to start, stop, restart, configure, or status the database or start the Oracle listener and then
use the Oracle Enterprise Manager (OEM) Database Control utility to start, stop, restart, or check
the status of the database.

You will need to build an environment file and source it into your environment. The following
values are the minimum required values for your environment file:

export set ORACLE_HOME=/mount_point/12c/product/12.1.0/db_1
export set PATH=$PATH:$ORACLE_HOME/bin:.
export set ORACLE_SID=oracle_sid
export set LD_LIBRARY_PATH=/usr/lib/openwin/lib:$ORACLE_HOME/lib

Assuming that you are in the same directory as your environment file, you source your
environment in the Bash or Korn shell as follows:

. ./12c.env

14-AppA.indd 604 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 605

Then, you can start the Oracle Enterprise Manager Database Control utility as follows:

emctl start dbconsole

You can also issue a sqlplus command to connect to the Oracle Database 12c instance as
the privileged user sys, using a specialized role for starting and stopping the database. The
connection command to the sysdba role is

sqlplus '/ as sysdba'

NOTE
You can connect directly to the Oracle database only when you are
the owner of the Oracle database. This type of connection is a direct
connection between the shell process and the database, which means
that the communication is not routed through Net8 and the Oracle
listener does not need to be running.

After connecting to the SQL> prompt, you will need to provide the Oracle superuser password.
Once authenticated, you will be the sys user in a specialized role known as sysdba. The sysdba
role exists for starting and stopping your database instance and performing other administrative
tasks. You can see your current Oracle user name by issuing the following SQL*Plus command:

SQL> show user
USER is "SYS"

Assuming the database is already started, you can use the following command to see the
current SGA values:

SQL> show sga

Total System Global Area 1233534976 bytes
Fixed Size 1297104 bytes
Variable Size 935765296 bytes
Database Buffers 285212672 bytes
Redo Buffers 11259904 bytes

Starting Oracle Enterprise Manager
If the console tells you that the emctl program was not found, it most likely was not found
in your path statement. You can determine whether the executable is in your current path by
using the which utility:

which –a emctl

The –a option returns a list of all emctl programs in order of their precedence in your
$PATH environment variable. You fix the $PATH environment variable by adding the required
directory path where the executable is found. After you fix your $PATH environment variable
in the environment file, source the environment file again.

14-AppA.indd 605 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

606 Oracle Database 12c PL/SQL Programming

You can shut down the database by choosing abort, immediate, transactional, or normal
after the shutdown command. Only the abort method fails to secure transaction integrity, which
means that database recovery is required when restarting the database. The other three shut down
methods do not require recovery when restarting the database. The optional arguments perform
the following types of shut down operations:

 ■ Shutdown normal stops any new connections to the database and waits for all connected
users to disconnect; then the Oracle instance writes completed database transactions from
redo buffers to data files and marks them closed, terminates background processes, closes
the database, and dismounts the database.

 ■ Shutdown transactional stops any new connections to the database and disconnects
users as soon as the current transactions complete; when all transactions complete, the
Oracle instance writes database and redo buffers to data files and marks them closed,
terminates background processes, closes the database, and dismounts the database.

 ■ Shutdown immediate stops all current SQL statements, rolls back all active transactions,
and immediately disconnects users from the database; then the Oracle instance writes
database and redo buffers to data files and marks them closed, terminates background
processes, closes the database, and dismounts the database.

 ■ Shutdown abort stops all current SQL statements and immediately shuts down without
writing database and redo buffers to data files; the Oracle instance does not roll back
uncommitted transactions but terminates running processes without closing physical files
and the database, and it leaves the database in a mounted state, requiring recovery when
restarted.

The following illustrates using shutdown immediate statement on a database instance:

SQL> shutdown immediate
Database closed.
Database dismounted.
ORACLE instance shut down.

When you want to start the database, you have three options. You can start the database by
using the startup command and either the nomount, mount, or open (default) option. The
optional arguments perform the following types of startup operations:

 ■ Startup nomount starts the instance by reading the parameter file in the $ORACLE_HOME/
dbs directory. This file can be named spfile.ora or pfile.ora. The former can’t be
read in a text editor but is the default parameter file option beginning with Oracle 9i
Database. You can create an editable pfile.ora file using SQL as the sys user in the
role of sysdba from an open database. This startup option starts the background
processes, allocates the SGA shared memory segment, and opens the alertSID.log and
trace files. The SID is the name of an Oracle database instance. The value is stored in the
data catalog and control files. This type of startup should be done only when creating
a new database or rebuilding control files during a backup and recovery operation.

 ■ Startup mount does everything the nomount process does, and then it continues by
locating, opening, and reading the control files and parameter files to determine the status
of the data files and online redo log files, but it performs no checks to verify the existence

14-AppA.indd 606 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 607

or state of the data files. This type of startup is useful when you need to rename the data
files, change the online redo file archiving process, or perform full database recovery.

 ■ Startup open does everything the mount process does, and then it continues by locating,
opening, and reading the online data files and redo log files. This is the default startup
operation, and you use it when opening the database for user transactions.

 ■ Startup restrict lets you start the database completely but prevents users from connecting
and using the database.

After reconnecting to the database if you disconnected, you can issue the startup command.
If you provide a nomount or mount argument to the startup command, only those processes
specified in the previous list will occur. When you provide the startup command with no
argument, the default argument open is applied and the database will be immediately available
for user transactions. The following demonstrates a standard startup of the database instance:

SQL> startup
ORACLE instance started.

Total System Global Area 1720328192 bytes
Fixed Size 2382680 bytes
Variable Size 1291846824 bytes
Database Buffers 419430400 bytes
Redo Buffers 6668288 bytes
Database mounted.
Database opened.

Viewing how the database moves from shutdown to nomount to mount to open is helpful.
The following syntax demonstrates moving the database one step at a time from a shutdown
instance to an open database:

SQL> startup nomount
ORACLE instance started.

Total System Global Area 1720328192 bytes
Fixed Size 2382680 bytes
Variable Size 1291846824 bytes
Database Buffers 419430400 bytes
Redo Buffers 6668288 bytes
SQL> ALTER DATABASE MOUNT;

Database altered.

SQL> ALTER DATABASE OPEN;

Database altered.

The preceding output demonstrates that the Oracle instance creates the shared memory segment
before opening the database, even in a startup nomount operation. The memory segment is
the first operation because it is the container where you store the open instance. You can use an
ALTER SQL statement against the database to mount and open the database instance.

14-AppA.indd 607 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

608 Oracle Database 12c PL/SQL Programming

You can also use the SQL*Plus executable to start and stop embedded PDBs. The syntax is
very similar to what you use to start and stop an Oracle Database 12c instance. You have three
options to start a PDB.

Option one lets you connect at the sysdba role for the CDB and start all PDBs with the
following command:

SQL> ALTER PLUGGABLE DATABASE ALL OPEN;

Option two lets you connect at the sysdba role for the CDB and start one pluggable
database with this command:

SQL> ALTER PLUGGABLE DATABASE OPEN pdb_name;

TIP
You also have the option of shutting down the PDB by switching the
OPEN keyword with a CLOSE keyword. When you CLOSE a PDB, it’s
like SHUTDOWN IMMEDIATE for a CDB.

Option three lets you connect to an embedded videodb PDB with the sysdba role with the
following syntax:

sqlplus sys@VIDEO as sysdba

The sys@VIDEO provides access to the PDB-only data dictionary and discrete sysdba role.
You can’t gain access to the PDB-only data dictionary through any other means, and this access
is only available after you’ve configured the listener.ora and tnsnames.ora files.

In this next example, we’ll take a new security precaution. Connecting to the database on a
command line discloses the user name and potentially the password of the user. Oracle recommends
that you connect by using the /NOLOG option, which prevents disclosing the user name or password
while logging into the database. After all, the operating system keeps a log of all user commands,
which can be compromised by a hack of the server.

sqlplus /nolog
SQL*Plus: Release 12.1.0.1.0 Production ON Tue Aug 13 01:28:30 2013
Copyright (c) 1982, 2013, Oracle. ALL rights reserved.

SQL> CONNECT videoadm@VIDEO/Video1
Connected.
SQL> SHOW USER
USER IS "VIDEOADM"

A connection made with the CONNECT statement isn’t recorded in the operating system, and
as a result denies information to would-be hackers. It’s the Oracle recommended way to connect
to the database.

You start the database with the familiar startup command, like

SQL> STARTUP
Pluggable Database opened.

14-AppA.indd 608 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 609

This section has shown you how to shut down and restart your database instance in a Linux or
Unix environment. It has also laid a foundation for some insights into routine database administration
tasks, which you can explore further in the “Database Administration” section later in this appendix
or by referencing the Oracle Database 12c DBA Handbook (Oracle Press, 2014).

Microsoft Windows Operations
Oracle Database 12c installs as a standard program on the Microsoft Windows system. You have
full access from any user account that has Administrator privileges. Oracle Database 12c also
installs several services using the platform-specific ORADIM utility. You can find these services by
opening the Control Panel and navigating to the Services icon. The navigation path differs depending
on whether you are in the Classic view or the Category view. In the Classic view, click Administrative
Tools and then click Services. In the Category view, first click System and Security, then click
Administrative Tools, and then you have to double-click Services. This opens the Services view
displayed in the following illustration.

TIP
An easy way to launch Services is to open the Command Prompt
utility and enter services.msc.

As a general rule, you are best served by starting, restarting, and shutting down the services
from this GUI view. However, you will need the Command Prompt utility when you want to
perform data backup and recovery activities. You can access the sqlplus utility from any Command
Prompt session to manually start, stop, restart, configure, or status the database. This is possible
because the fully qualified directory path is placed in the generic %PATH% environment variable for
all Administrator accounts during the product installation. Making changes in the database requires
that you connect to the Oracle Database 12c instance as the privileged user sys.

You use the SQL*Plus executable, sqlplus. You connect using the following syntax with the
Windows user that installed the software:

sqlplus '/ as sysdba'

14-AppA.indd 609 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

610 Oracle Database 12c PL/SQL Programming

After connecting to the SQL> prompt, you have the same access. The only difference is the
pattern for environment variables. For example, you can find the spfile.ora file or pfile.ora
file in the %ORACLE_HOME%\dbs directory.

You can also use the SQL*Plus executable to access embedded PDB instances. The process
mirrors that shown for Unix and Linux earlier in the previous section and thus isn’t repeated here,
to conserve space and avoid redundancy.

This section has shown you how to shut down and restart your database instance in a Windows
environment. It has also laid a foundation for some insight into routine database administration tasks,
which you can explore further in in the “Database Administration” section later in this appendix
or by referencing the Oracle Database 12c DBA Handbook (Oracle Press, 2014).

Starting and Stopping the Oracle Listener
The Oracle lsnrctl utility lets you start the server-side Oracle listener process on a port that you
set in the listener.ora configuration file. There are actually three files used in configuring the
Oracle Net8 listener: the listener.ora, tnsnames.ora, and sqlnet.ora configuration files.
The sqlnet.ora file is not necessary for basic operations and is not configured in the shipped
version of Oracle Database 12c. You can use the sqlnet.ora file to set network tracing commands,
which are qualified in the Oracle Database Net Services Administrator’s Guide 12c Release and
Oracle Database Net Services Reference 12c Release documentation from Oracle. You may
browse or download these documents at http://docs.oracle.com/ for supplemental information.

The network configuration files are in the network/admin subdirectory of the Oracle
Database 12c product home directory. The following qualifies the default Oracle product home
by platform:

Linux or Unix

/mount_point/directory_to_oracle_home/

Windows

C:\directory_to_oracle_home

The Oracle product home path is typically set as an environment variable for all user accounts.
Environment variables are aliases that point to something else, and they exist in all operating
systems. You can set an Oracle product home directory as follows by platform:

Linux or Unix

export set ORACLE_HOME=/mount_point/directory_to_oracle_home/

Windows

C:\directory_to_oracle_home

You can then navigate to the Oracle product home by using $ORACLE_HOME in Unix or Linux
or %ORACLE_HOME% in Microsoft Windows. These settings are temporary unless you put them in a
configuration file that gets sourced when you connect to your system in Unix or Linux. Standard
practice is to put these settings in your .bashrc file or have your system administrator put them
in the standard .profile account in Linux. You can also configure permanent environment

14-AppA.indd 610 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 611

variables in the System Properties dialog box in Microsoft Windows. You will find the instructions
for setting the environment variables in the Oracle Database 2 Day DBA 12c Release manual.

TIP
To set your environment variables in Microsoft Windows 7, open
the Control Panel, launch the System icon (in Classic view), click
Advanced System Settings to open the System Properties dialog box
with the Advanced tab displayed, and then click the Environment
Variables button.

The sample listener.ora file is a configuration file. A listener.ora file exists after you
install Oracle Database 12c. You will find that your listener.ora file contains the Oracle
product home directory, your server machine hostname, and a port number, as shown in the
following example. These values are critical pieces of information that enable your listener to find
your Oracle database installation. These data components mirror the configuration directives that
enable Apache to hand off HTTP requests to appropriate services. The only differences between
the Unix or Linux OS version and the Microsoft Windows OS version are the different path
statement for the Oracle product home and the case sensitivity or insensitivity of the hostname.
The hostname is lowercase for a Unix or Linux system and uppercase for Microsoft Windows.

The listener.ora file uses bold text to highlight generic components, like the hostname,
port_number, and oracle_product_home_directory, and listener name. Generic names allow you
to provide specific values. The one exception is the listener name, which is the default LISTENER
value.

-- An example of a default listener.ora file.
LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1))
 (ADDRESS = (PROTOCOL = TCP)(HOST = hostname)(PORT = port_number))
)
)

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = PLSExtProc)
 (ORACLE_HOME = oracle_product_home_directory)
 (PROGRAM = extproc)
)
)

The listener.ora has two key addressing components. The first is the actual listener name,
which by default isn’t too original because it is an uppercase string, LISTENER. The default listener
name is implicitly assumed unless you provide an overriding listener name to any lsnrctl
command. You must explicitly provide the listener name when you use anything other than the
default as your actual listener name.

The listener name is also appended to the SID_LIST_ descriptor, which registers static maps
for external procedures and the Oracle Heterogeneous Server. Oracle Database 12c uses one

14-AppA.indd 611 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

612 Oracle Database 12c PL/SQL Programming

external procedure configuration—PLSExtProc. Oracle recommends that you have discrete
listeners for IPC and TCP traffic, but in the standard listener configuration file they share a listener.
Unless you change the listener file, you will encounter an ORA-28595 error because user-defined
shared libraries (called dynamic-link libraries in Windows) must communicate across an IPC channel.

The DEFAULT_SERVICE_LISTENER parameter is set to orcl in the listener.ora file. ORCL
also is the global name of the current database instance. The SERVICE_NAME parameter defaults
to the global database name when one is not specified in the spfileSID.ora or pfileSID.ora
file. The service name for any Oracle database is the database name concatenated to the
database domain. Oracle Database 12c defines the default database name as ORCL and assigns
no database domain. You can find this information by connecting as the sys user under the
sysdba role, formatting the return values, and running the following query:

COL name FORMAT A30
COL value FORMAT A30

SELECT name
, value
FROM v$parameter
WHERE name LIKE '%name'
OR name LIKE '%domain';

The query returns the following data:

NAME VALUE
------------------------------ ------------------------------
db_domain
instance_name orcl
db_name orcl
db_unique_name orcl

Net8 is designed to support client load balancing and connect-time failover. The SERVICE_NAME
parameter replaces the SID parameter that previously enabled these features. The tnsnames.ora
file is a mapping file that enables client requests to find the Oracle listener. The tnsnames.ora file
contains a network alias that maps to the Oracle SERVICE_NAME and connection configurations
to facilitate access to external procedures. The hostname and port_number enable the network
alias, orcl, to find the Oracle listener. Naturally, there is an assumption that your hostname maps
through DNS resolution or the local host file to a physical IP address.

TIP
You can add the hostname and IP address to your local host file when
you do not resolve to a server through DNS. The /etc/host file is
the Linux host file, and the C:\WINDOWS\system32\drivers\etc\
hosts file is the Microsoft Windows host file.

The following is an example of a tnsnames.ora file:

-- An example of a default tnsnames.ora file.
ORCL =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = hostname)(PORT = port_number))

14-AppA.indd 612 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 613

 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = ORCL)
)
)

EXTPROC_CONNECTION_DATA =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1521))
)
 (CONNECT_DATA =
 (SID = PLSExtProc)
 (PRESENTATION = RO)
)
)

The HOST and PORT values are replaced by the KEY value when you change the PROTOCOL
from TCP to IPC. Some strings in these configuration files are case sensitive, such as the PROGRAM
value in the listener.ora file and the KEY value in the tnsnames.ora file. These must
match exactly between files or you will receive an ORA-28576 error when accessing the external
procedure.

These files support the lsnrctl utility regardless of platform. The lsnrctl utility enables you
to start, stop, and status the listener process. As discussed in the earlier coverage of how to start
and stop the database instance, you need to be the oracle user in the Linux environment and an
Administrator user in the Microsoft Windows environment.

The default installation starts the Oracle listener when the system boots, but you should check
whether it is running before you attempt to shut it down. You can use the following to check the
status of the Oracle listener:

lsnrctl status

As discussed, the command implicitly substitutes LISTENER as the default second argument.
If you have changed the default listener name, you will need to provide the listener name explicitly
when you start, stop, or check the status of the listener. You should see the following on a Windows
system (and only slight differences on a Unix system or Windows system) when you check the
status of a running Oracle Database 12c listener:

LSNRCTL for 64-bit Windows: Version 12.1.0.0.2 - Beta on 05-MAY-2013 23:43:34
Copyright (c) 1991, 2012, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC1521)))
STATUS of the LISTENER

Alias LISTENER
Version TNSLSNR for 64-bit Windows: Version 12.1.0.0.2 – Beta
Start Date 28-APR-2013 15:25:41
Uptime 7 days 8 hr. 17 min. 54 sec
Trace Level off
Security ON: Local OS Authentication

14-AppA.indd 613 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

614 Oracle Database 12c PL/SQL Programming

SNMP OFF
Listener Parameter File C:\app\oracledba\product\12.1.0\dbhome_1\network\...
Listener Log File C:\app\oracledba\diag\tnslsnr\betawin\listener\alert\...
Listening Endpoints Summary...
 (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(PIPENAME=\\.\pipe\EXTPROC1521ipc)))
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=mclaughlin12c)(PORT=1521)))
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=mclaughlin12c)(PORT=5500))
 (Presentation=HTTP)(Session=RAW))
Services Summary...
Service "CLRExtProc" has 1 instance(s).
 Instance "CLRExtProc", status UNKNOWN, has 1 handler(s) for this service...
Service "orcl" has 1 instance(s).
 Instance "orcl", status READY, has 1 handler(s) for this service...
Service "orclXDB" has 1 instance(s).
 Instance "orcl", status READY, has 1 handler(s) for this service...
Service "pdborcl" has 1 instance(s).
 Instance "orcl", status READY, has 1 handler(s) for this service...
Service "video2small" has 1 instance(s).
 Instance "orcl", status READY, has 1 handler(s) for this service...
The command completed successfully

You can stop the service by using

lsnrctl stop

You can restart the service by using

lsnrctl start

After stopping and starting the listener, you should check if you can make a network
connection from your user account to the listener. This is very similar to the idea of a network
ping operation, except you are pinging the Oracle Net8 connection layer. You use the tnsping
utility to verify an Oracle Net8 connection, as follows:

tnsping orcl

You should see the following type of return message but with a real hostname as opposed to
the substituted hostname value, provided you haven’t changed the default network port number:

C:\>tnsping orcl

TNS Ping Utility for 64-bit Windows: Version 12.1.0.0.2 on 05-MAY-2013
Copyright (c) 1997, 2012, Oracle. All rights reserved.

Used parameter files:
C:\app\oracledba\product\12.1.0\dbhome_1\network\admin\sqlnet.ora

Used TNSNAMES adapter to resolve the alias
Attempting to contact (DESCRIPTION = (ADDRESS = (PROTOCOL = TCP)
(HOST = hostname) (PORT = 1521)) (CONNECT_DATA = (SERVER = DEDICATED)
(SERVICE_NAME = orcl)))
OK (30 msec)

14-AppA.indd 614 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 615

The tnsping utility checks the sqlnet.ora parameter file for any instructions that it may
contain. Net8 connections first check the sqlnet.ora file to find any network tracing instructions
before proceeding with connection attempts. The Oracle Net8 tracing layers are very powerful
tools and can assist you in diagnosing complex connection problems. You will find answers to
configuring sqlnet.ora in the Oracle Database Net Services Reference 12c Release.

You can use a GUI tool to start, stop, and status the Oracle listener when you are running on
Microsoft Windows. To find the GUI tool from the Control Panel in the Classic view, click
Administrative Tools and then click Services; in the Category view, click System and Security,
click Administrative Tools, and then click Services. Select OracleORCLListener in the list of
services in the right panel and click Stop the service.

This section has explained where the configuration files are located and how they work to
enable you to start, stop, and check the status of the Oracle listener.

Multiversion Concurrency Control
Multiversion Concurrency Control (MVCC) uses database snapshots to provide transactions with
memory-persistent copies of the database. This means that users, via their SQL statements, interact
with the in-memory copies of data rather than directly with physical data. MVCC systems isolate
user transactions from each other and guarantee transaction integrity by preventing dirty
transactions, writes to the data that shouldn’t happen and that make the data inconsistent. Oracle
Database 12c prevents dirty writes by its MVCC and transaction model.

Transaction models depend on transactions, which are ACID-compliant blocks of code.
Oracle Database 12c provides an MVCC architecture that guarantees that all changes to data are
ACID-compliant, which ensures the integrity of concurrent operations on data—transactions.

As described earlier, in the section “Oracle Database Architecture,” ACID-compliant
transactions meet four conditions:

 ■ Atomic They complete or fail while undoing any partial changes.

 ■ Consistent They change from one state to another the same way regardless of whether
the change is made through parallel actions or serial actions.

 ■ Isolated Partial changes are never seen by other users or processes in the concurrent
system.

 ■ Durable They are written to disk and made permanent when completed.

Oracle Database 12c manages ACID-compliant transactions by writing them to disk first, as
redo log files only or as both redo log files and archive log files. Then it writes them to the
database. This multiple-step process with logs ensures that Oracle database’s buffer cache (part of
the instance memory) isn’t lost from any completed transaction. Log writes occur before the
acknowledgement-of-transactions process occurs.

The smallest transaction in a database is a single SQL statement that inserts, updates, or
deletes rows. SQL statements can also change values in one or more columns of a row in a table.
Each SQL statement is by itself an ACID-compliant and MVCC-enabled transaction when
managed by a transaction-capable database engine. The Oracle database is always a transaction-
capable system. Transactions are typically a collection of SQL statements that work in close
cooperation to accomplish a business objective. They’re often grouped into stored programs,
which are functions, procedures, or triggers. Triggers are specialized programs that audit or
protect data. They enforce business rules that prevent unauthorized changes to the data.

14-AppA.indd 615 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

616 Oracle Database 12c PL/SQL Programming

SQL statements and stored programs are foundational elements for development of business
applications. They contain the interaction points between customers and the data and are
collectively called the application programming interface (API) to the database. User forms
(typically web forms today) access the API to interact with the data. In well-architected business
application software, the API is the only interface that the form developer interacts with.

Database developers, such as you and I, create these code components to enforce business
rules while providing options to form developers. In doing so, database developers must guard a
few things at all cost. For example, some critical business logic and controls must prevent changes
to the data in specific tables, even changes in API programs. That type of critical control is often
written in database triggers. SQL statements are events that add, modify, or delete data. Triggers
guarantee that API code cannot make certain additions, modifications, or deletions to critical
resources, such as tables. Triggers can run before or after SQL statements. Their actions, like the
SQL statements themselves, are temporary until the calling scope sends an instruction to commit
the work performed.

A database trigger can intercept values before they’re placed in a column, and it can ensure
that only certain values can be inserted into or updated in a column. A trigger overrides an
INSERT or UPDATE statement value that violates a business rule and then it either raises an error
and aborts the transaction or changes the value before it can be inserted or updated into the table.
Chapter 12 offers examples of both types of triggers in Oracle Database 12c.

MVCC determines how to manage transactions. MVCC guarantees how multiple users’ SQL
statements interact in an ACID compliant manner. The next two sections qualify how data transactions
work and how MVCC locks and isolates partial results from data transactions.

Data Transactions
Data Manipulation Language (DML) commands are the SQL statements that transact against the
data. They are principally the INSERT, UPDATE, and DELETE statements. The INSERT statement
adds new rows in a table, the UPDATE statement modifies columns in existing rows, and the
DELETE statement removes a row from a table.

The Oracle MERGE statement transacts against data by providing a conditional insert or
update feature. The MERGE statement lets you add new rows when they don’t exist or change
column values in rows that do exist. (Appendix B covers merging data from external sources with
the MERGE statement.) Oracle also provides a conditional INSERT ALL statement (also covered
in Appendix B) that lets you insert into multiple tables from the same data source.

NOTE
All of these statements are transactions by themselves, like the
INSERT, UPDATE, and DELETE statements.

Inserting data seldom encounters a conflict with other SQL statements because the values
become a new row or rows in a table. Updates and deletes, on the other hand, can and do encounter
conflicts with other UPDATE and DELETE statements. INSERT statements that encounter conflicts
occur when columns in a new row match a preexisting row’s uniquely constrained columns. The
insertion is disallowed because only one row can contain the unique column set.

These individual transactions have two phases in transactional databases such as Oracle. The
first phase involves making a change that is visible only to the user in the current session. The user
then has the option of committing the change, which makes it permanent, or rolling back the change,

14-AppA.indd 616 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 617

which undoes the transaction. Developers use Data Control Language (DCL) commands to confirm
or cancel transactions. The COMMIT statement confirms or makes permanent any change, and the
ROLLBACK statement cancels or undoes any change.

A generic transaction lifecycle (see Figure A-3) for a two-table insert process implements a
business rule that specifies that neither INSERT statement works unless they both work. Moreover,
if the first INSERT statement fails, the second INSERT statement never runs; and if the second
INSERT statement fails, the first INSERT statement is undone by a ROLLBACK statement to a
SAVEPOINT. After a failed transaction is unwritten, good development practice requires that you
write the failed event(s) to an error log table. The write succeeds because it occurs after the ROLLBACK
statement but before the COMMIT statement.

A SQL statement followed by a COMMIT statement is called a transaction process, or a
two-phase commit (2PC) protocol. ACID-compliant transactions use a 2PC protocol to manage
one SQL statement or collections of SQL statements. In a 2PC protocol model, the INSERT,
UPDATE, MERGE, or DELETE DML statement starts the process and submits changes. These DML
statements can also act as events that fire database triggers assigned to the table being changed.

FIGURE A-3. Transaction lifecycle

Start Transaction

Set Savepoint

Insert into
Table 1

Insert into
Table 2

Succeeds?

Commit Work

Succeeds?

Rollback to
Savepoint

Insert into
Error Log Table

N

Y

N

Y

14-AppA.indd 617 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

618 Oracle Database 12c PL/SQL Programming

Transactions become more complex when they include database triggers because triggers can
inject an entire layer of logic within the transaction scope of a DML statement. For example,
database triggers can do the following:

 ■ Run code that verifies, changes, or repudiates submitted changes

 ■ Record additional information after validation in other tables (they can’t write to the table
being changed—or, in database lexicon, “mutated”

 ■ Throw exceptions to terminate a transaction when the values don’t meet business rules

As a general rule, triggers can’t contain a COMMIT or ROLLBACK statement because they run
inside the transaction scope of a DML statement. Oracle databases give developers an alternative
to this general rule because they support autonomous transactions. Autonomous transactions run
outside the transaction scope of the triggering DML statement. They can contain a COMMIT
statement and act independently of the calling scope statement. This means an autonomous trigger
can commit a transaction when the calling transaction fails. Chapter 13 covers this advanced behavior.

As independent statements or collections of statements add, modify, and remove rows, one
statement transacts against data only by locking rows: the SELECT statement. A SELECT statement
typically doesn’t lock rows when it acts as a cursor in the scope of a stored program. A cursor is a
data structure that contains rows of one-to-many columns in a stored program. This is also known
as a list of record structures.

NOTE
The ability to lock rows for pending transaction statements is why the
SELECT statement is considered a DML command. That’s generally
accomplished by appending a FOR UPDATE clause in Oracle SQL or
MySQL.

Cursors act like ordinary SQL queries, except they’re managed by procedure programs row
by row. There are many examples of procedural programming languages. PL/SQL and SQL/PSM
programming languages are procedural languages designed to run inside the database. C, C++, C#,
Java, Perl, and PHP are procedural languages that interface with the database through well-defined
interfaces, such as Java Database Connectivity (JDBC) and Open Database Connectivity (ODBC).

Cursors can query data two ways. One way locks the rows so that they can’t be changed until
the cursor is closed; closing the cursor releases the lock. The other way doesn’t lock the rows,
which allows them to be changed while the program is working with the data set from the cursor.
The safest practice is to lock the rows when you open the cursor, and that should always be the
case when you’re inserting, updating, or deleting rows that depend on the values in the cursor not
changing until the transaction lifecycle of the program unit completes.

Loops use cursors to process data sets. That means the cursors are generally opened at or near
the beginning of program units. Inside the loop the values from the cursor support one to many
SQL statements for one to many tables.

Stored and external programs create their operational scope inside a database connection
when they’re called by another program. External programs connect to a database and enjoy their
own operational scope, known as a session scope. The session defines the programs’ operational
scope. The operational scope of a stored program or external program defines the transaction scope.
Inside the transaction scope, the programs interact with data in tables by inserting, updating, or
deleting data until the operations complete successfully or encounter a critical failure. These stored

14-AppA.indd 618 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 619

program units commit changes when everything completes successfully, or they roll back changes
when any critical instruction fails. Sometimes, the programs are written to roll back changes when
any instruction fails.

In the Oracle Database, the most common clause to lock rows is the FOR UPDATE clause,
which is appended to a SELECT statement. An Oracle database also supports a WAIT n seconds
or NOWAIT option. The WAIT option is a blessing when you want to reply to an end user form’s
request and can’t make the change quickly. Without this option, a change could hang around for
a long time, which means virtually indefinitely to a user trying to run your application. MySQL
doesn’t support this wait or no wait feature. The default value in an Oracle database is NOWAIT,
WAIT without a timeout, or wait indefinitely. You should avoid this default behavior when
developing program units that interact with customers. The Oracle Database also supports a full
table lock with the SQL LOCK TABLE command, but you would need to embed the command
inside a stored or external program’s instruction set.

DML Locking and Isolation Control
Oracle’s locking and isolation control implement the American National Standards Institute
(ANSI)/International Standards Organization (ISO) SQL standards. This leave you with the ANSI
SQL:92 possibilities presented in Table A-1.

As indicated, dirty reads are possible when you implement the ANSI read committed level.
Dirty reads should never occur—and Oracle prevents them—while nonrepeatable and phantom
reads do occur occasionally. Nonrepeatable reads occur in large systems where UPDATE or
DELETE statements change the data between a user’s first and subsequent SELECT statements from
the database. Phantom reads are similar but involve new data, typically from INSERT statements.

You can prevent nonrepeatable or phantom reads by setting the database to serializable mode
(see Table A-2). Issuing a SET TRANSACTION READ ONLY command provides you with read
consistency. More can be found on transaction consistency in the Oracle Database Advanced
Application Developer’s Guide 12c Release.

Oracle’s automatic table locking is the default because it represents a balance between maximum
concurrency and serialization. While automatic table locking is the preferred method, you do have
the following explicit commands at your disposal:

 ■ SELECT * FROM some_table FOR UPDATE;

 ■ SET TRANSACTION READ ONLY

 ■ SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

 ■ LOCK TABLE

Isolation Level Dirty Read Nonrepeatable Read Phantom Read

Read committed Possible Possible Possible

Read uncommitted Not possible Possible Possible

Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible

TABLE A-1. ANSI SQL:92 Isolation Levels

14-AppA.indd 619 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

620 Oracle Database 12c PL/SQL Programming

The FOR UPDATE clause locks only rows touched by a statement, which differs from the LOCK
TABLE command, which locks all rows in the table. You also have the FOR UPDATE WAIT n
(seconds), which tells Oracle to wait for n seconds when a lock already exists. If the existing lock
still exists at the end of the n seconds, the connection is lost.

Following are the five valid lock modes:

ROW EXCLUSIVE The least restrictive lock level, allows for row sharing. It also prevents users
from locking the entire table for exclusive access. ROW EXCLUSIVE locks are automatically
obtained by any INSERT, UPDATE, or DELETE statement.

ROW SHARE While like ROW EXCLUSIVE mode, it’s also known as SHARE UPDATE mode.
The ROW SHARE permits concurrent access to locked tables but prohibits users from locking any
table for exclusive access.

SHARE Allows SELECT statements but prohibits other updates to a locked table.

SHARE ROW EXCLUSIVE Like SHARE mode, it lets you prevent other users from locking tables
in SHARE mode. It does allow others to look at any rows in the SHARE ROW EXCLUSIVE table.

EXCLUSIVE The most restrictive level, prevents all DML activities other than SELECT statements.

Definer Rights and Invoker Rights
The definer rights model is the default for Oracle Database 12c, but Oracle also supports the invoker
rights model. Definer rights approaches are best suited to centralized database architectures, while
invoker rights repositories best support distributed database models with a common shared code base.

Definer Rights
A centralized data repository is synonymous with the definer rights model. The definer owns all
objects that it creates and holds the right to query them and transact with them. A definer can also
grant rights on the tables, views, and stored programs to other users. Stored programs run with the

Operation Read Committed Serializable

Dirty write Not possible Not possible

Dirty read Not possible Not possible

Nonrepeatable read Possible Not possible

Phantoms Possible Not possible

Row-level locking Yes Yes

Reads block writes No No

Writes block reads No No

Row-level blocking writes Yes Yes

TABLE A-2. Oracle Read-Committed vs. Serializable Transactions

14-AppA.indd 620 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 621

same privileges as the definer. This is the application design pattern that supports Virtual Private
Databases (VPDs). Effectively, every table becomes like an apartment building or a multiple-tenancy
building: some rows in the table belong to one user or privileged group while others belong to
another user.

The definer rights model offers two advantages. The first advantage is that you can stripe your
tables and wrap them in views so that only certain rows can be seen by specific users. The second
advantage is that you can wrap access to the tables behind a series of stored functions and procedures,
which provides an additional security barrier.

Opting to stripe tables requires that you add a column to them that stores a unique ID or name.
A view implements a filtering clause that checks whether the current user or database matches the
striped column value. This limits access to rows of data to information recorded during the session—
the duration of a connection. It’s similar to assigning apartment numbers to tenants in a large building.

The strategy of separating tables from connections is powerful. It compels programmers to use
your API rather than query and transact directly against the data. You can also set session-level
variables with key data. For example, many business applications connect all users to the
database with the same user name, password, and database name, but then validate against an
access control list (ACL) stored in a table. Heading back to the analogy of an apartment building,
every tenant has the same key to unlock the building’s external door. Each tenant has a unique
key to access his or her apartment. An ACL is analogous to a cabinet where spare keys to all the
apartments are stored, indexed by apartment tenant.

When APIs wrap access to tables, they filter queries to a restricted list of rows. The APIs
identify requestors by inspecting the ACL, determining their rights of access to rows, and filtering
their access to rows. APIs also provide another barrier to wide-open access to data tables. The
parameters for the API guarantee access rules. APIs also let you control parameters by using
prepared statements, which help minimize the possibility of SQL injection attacks.

Restricting web-based program components from directly accessing tables also provides a way
to vet (audit and verify) parameters for SQL injection attacks. Using stored programs also gives you
control over the scope and integrity of transactions, which presumes good development always
uses transaction databases. Although individual DML statements are individually ACID-compliant
and naturally MVCC-safe, stored programs extend those protections to sets of DML statements. This
lets a complete business process have the same guarantee provided by individual DML statements.

The definer rights model also gives you control over table and table relationship designs,
because the stored programs constitute an additional barrier to your data. They abstract or hide
the internal structure of your tables and their relationships. This means that the design of tables,
views, and relationships can change independently of web-based or other interfaces.

Overall, the definer rights model offers extremely strong benefits. The model doesn’t offer
good support for distributed data sets, however. The definer rights model isn’t a good fit when
the business requires independent database instances and consolidation models at fixed financial
periods, such as weekly, monthly, quarterly, or yearly. Those types of models fit better with the
invoker rights model, covered next.

Invoker Rights
The invoker rights model uses distributed data repositories and a common code base. This means
that all stored programs run with the rights of the invoker, or caller, of the programs. Therefore, the
invoker must have access to any tables or views that the stored programs use, or the invoker must
have his or her own copies. Typically, this requires that duplicate copies of the tables and views
be deployed into every invoker’s work area.

14-AppA.indd 621 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

622 Oracle Database 12c PL/SQL Programming

Adopting the invoker rights model inherently separates data into discrete work areas. This
model is desirable when the business model supports franchisees that operate as separate business
entities. In a franchisee model, application software helps the franchises operate the same way
and collect critical information for consolidation. It also lets the central franchising operation control
the look, feel, and integrity of data over which it doesn’t have direct control.

Invoker rights also can parallel the analogy of an apartment building, as discussed in the context
of definer rights. It is a decidedly different model, however, because the tenants reside in different
buildings in a complex, and each building has its own external door. Tenants in building A hold
keys for building A and tenants in building B hold keys for building B, but both have keys to the
common area. This is a model of a distributed database.

Years ago, the separate franchisees might operate on separate servers, but today these types of
operations exist in virtual clouds. They often share a single deployment but retain control over
their data. This type of model is used in many hosting companies around the world.

Invoker rights models don’t prevent the striping of data, as discussed earlier, but they may
disclose how that security information is managed. Note that the most effective implementations
of invoker rights models define key parts of their solutions as definer rights components. Separation
is critical in hiding how they manage security. Otherwise, disclosure to one franchisee may expose
others to educated and directed hacking exploits. Therefore, the combination of both approaches
makes for a stronger security deployment when the security component is implemented in the
definer rights model.

SQL Interactive and Batch Processing
SQL*Plus provides an interactive and batch processing environment that dispatches commands
to the SQL and PL/SQL engines. You can work either in the interactive SQL*Plus command-line
interface (CLI) or in Oracle SQL Developer through a Java-based GUI. This section explains how
to use these two primary interfaces to the SQL and PL/SQL engines. There are many other
commercial products from other vendors that let you work with Oracle, but coverage of those
products is beyond the scope of this book.

SQL*Plus Command-Line Interface
SQL*Plus is the client software for Oracle that runs SQL statements and anonymous block PL/SQL
statements in an interactive and batch development environment. The statements are organized in
the order that you generally encounter them as you start working with SQL*Plus or the MySQL
Monitor.

Although Oracle supports large object types, prior to Oracle Database 10g you couldn’t display
more than 32,767 characters’ worth of them in SQL*Plus. That’s because the maximum size of a
long data type was 32,767, and SQL*Plus displayed large objects using the LONG data type. From
Oracle Database 10g forward, you can set the LONG environment variable as high as you want,
and it works. The CLOB data type is displayed now by SQL*Plus, but the LONG environment variable
hasn’t changed yet. Likewise, you can see a billion bytes of a binary large object in SQL*Plus.

Connecting to and Disconnecting from SQL*Plus
After installing the product on the Windows OS, you access SQL*Plus from the command line.
This works when the operating system finds the sqlplus executable in its path environment
variable (%PATH% on Windows and $PATH on Linux). Linux installations require that you configure

14-AppA.indd 622 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 623

this manually. When sqlplus is in the path environment variable, you can access it by typing
the following:

sqlplus some_username/some_password

The preceding connect string uses IPC to connect to the Oracle database. You can connect
through the network by specifying a valid net service name, like this:

sqlplus some_username/some_password@some_net_service_name

While this works, and many people use it, you should simply enter your user name and let
the database prompt you for the password. That way, it’s not displayed as clear text, as shown in
the following illustration.

Password is disclosed
in the window frame.

NOTE
Aside from the obvious security risks of the Windows dialog, it is
possible for others to snoop for passwords from command histories.

To avoid displaying your password, you should connect in the following way, which uses IPC:

sqlplus some_username

Or you can connect using the network layer by using a net service name like this:

sqlplus some_username@some_tns_alias

You’ll then see a password prompt. As you type your password, it is masked from prying eyes. The
password also won’t be visible in the window of the command session.

The problem with either of these approaches is that you’ve disclosed your user account name
at the operating system level. No matter how carefully you’ve host-hardened your operating system,

14-AppA.indd 623 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

624 Oracle Database 12c PL/SQL Programming

there’s no reason to disclose unnecessary details. The recommended best practice for connecting
at the command line is to use /nolog, like this:

sqlplus /nolog

After you’re connected as an authenticated user, you can switch to work as another user by using
the following syntax, which discloses your password to the screen but not the session window:

SQL> CONNECT some_otheruser/some_password

Or you can connect through a net service name, like

SQL> CONNECT some_otheruser@net_service_name/some_password

Alternatively, you can connect with or without a net service name to avoid displaying your
password:

SQL> CONNECT some_otheruser

As with the preceding initial authorization example, you are prompted for the password. Entering
it in this way also protects it from prying eyes.

If you try to run the sqlplus executable and it fails with a message that it can’t find the
sqlplus executable, you must correct that issue. Check whether the %ORACLE_HOME%\bin
(Windows) or $ORACLE_HOME/bin (Linux or Unix) is found in the respective %PATH% or $PATH
environment variable. Like PATH, the ORACLE_HOME is also an operating system environment
variable. ORACLE_HOME should point to where you installed the Oracle database.

NOTE
Make sure your %PATH% or $PATH variable includes the Oracle
executables, which are in the bin directory of the ORACLE_HOME.

You can use the following commands to check the contents of your path environment variable.
Instructions for setting these are in the Oracle Database Installation Guide for your platform and
release:

 ■ Windows: echo %PATH%

 ■ Linux or Unix: echo $PATH

When you’ve connected to SQL*Plus, you will see the SQL> prompt.
If you haven’t created your own user, you can connect with the system user name and

password and create one. The Oracle root account is the sys user, but Oracle recommends that
you use the system user, which shares most administration rights and privileges. It provides
insurance that you won’t directly update the data dictionary, which is found in the SYS schema.

You set the password for the sys and system users when installing the Oracle database. If
you’re new to Oracle, refer to the “Create a Default Oracle User” sidebar later in this appendix
for instructions. If you didn’t install the database, you can ask whoever did to create a user
name for you.

After you create a user, you must grant privileges to the user. Privileges let the user connect to
the database and perform runtime tasks. You may also grant privileges as groups. This is done with
roles, which are collections of privileges. The caveat with roles is that they change between releases.

14-AppA.indd 624 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 625

It is critical that you understand exactly what roles do before you grant privileges through them.
For example, you should avoid granting the CONNECT and RESOURCE roles because the Oracle
Database 10g documentation announced that they will be deprecated in future versions. These
roles are still available in Oracle Database 12c.

NOTE
Oracle plans to deprecate the CONNECT and RESOURCE roles and
began letting customers know of this change in the Oracle Database 10g
documentation.

The CONNECT and RESOURCE roles are overused in many sample databases and in some
production databases. Legacy roles can create unnecessary vulnerabilities by conveying more
than the necessary privileges to user accounts. You should always check which privileges come
with any role before granting the role, which you’ll learn about in the “Security Privileges” section
later in this appendix. Acknowledging that caveat, roles are preferred to grants because they
provide a layer of abstraction.

TIP
Granting the RESOURCE role to a user automatically grants unlimited
tablespace to that user, at least up to the physical size limit imposed
on a tablespace by its physical files.

The benefit of abstraction in roles is an added layer of security. Although users should
understand what they can and can’t do, a hacker shouldn’t be able to query an administrative
view and discover what they can do as that user. For example, when a hacker gains access to a
database user, he will often query well-known views to determine the amount of control he can
exert on the system. Granting privileges through roles obstructs a hacker’s ability to query
privileges from the USER_SYS_PRIVS administrative view in an Oracle database. The hacker
would be able to see only the roles he’s been granted directly through the USER_ROLE_PRIVS
administrative view. That forces a user, or a hacker acting as a non-superuser, to experiment with
syntax before he knows what he can or can’t do. The delay may limit damage done by a hacker.

Sometimes, privileges convey permission to perform an overloaded behavior. The Oracle
CREATE PROCEDURE privilege is an example. It allows you to create a function or procedure.
Functions and procedures are stored blocks of executable code that return output to the calling
process (see Chapters 8 and 9). Although there are a number of differences between functions
and procedures, the significant one is that a function’s output can be assigned to a variable,
while a procedure’s output can’t. A procedure doesn’t have a result that can serve as an expression
or as a right operand in an assignment.

A user can see her privileges in the USER_SYS_PRIVS administrative view. You can learn
more about roles and privileges in “Security Privileges” later in this appendix.

Working in the SQL*Plus Environment
Unlike other SQL environments, the SQL*Plus environment isn’t limited simply to running SQL
statements. Originally, it was written as a SQL report writer. This means SQL*Plus contains a
number of features to make it friendlier and more useful. (That’s why SQL*Plus was originally
known as an Advanced Friendly Interface [AFI]). Examples of these friendlier and useful features
include a set of well-designed formatting extensions that enables you to format and aggregate
result set data. SQL*Plus also lets you interactively edit files from the command line.

14-AppA.indd 625 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

626 Oracle Database 12c PL/SQL Programming

This section explains how you can dynamically configure your environment to suit your needs
for each connection, configure SQL*Plus to remember settings for every connection, discover
features through the interactive help menus, and shell out of or exit the SQL*Plus environment.

Configuring SQL*Plus Environment You can configure your SQL*Plus environment in two
ways. One requires that you configure it each time that you start a session (dynamically). The
other requires that you configure the glogin.sql file, which is the first thing that runs after a
user authenticates and establishes a connection with the database. The caveat to modifying the
glogin.sql file is that any changes become universal for all users of the Oracle Database
installation. Also, only the owner of the Oracle account can make these changes.

Create a Generic PDB Oracle User
In this sample code, you create a student PDB Oracle user/schema with a minimum set
of permissions. Before you can make these changes, you need to either connect as the ADMIN
user for the PDB or use ALTER SESSION to change the context to the PDB as the container
sysdba account.

You change context to the standard sample database pdborcl PDB with this syntax:

SQL> ALTER SESSION SET container=pdborcl;

The following example shows you how to create a student Oracle user/schema with
a minimum set of permissions. First, create the PDB student account (or have your DBA
create it):

SQL> CREATE USER student IDENTIFIED BY student
 2 DEFAULT TABLESPACE pdb_users QUOTA 50M ON pdb_users
 3 TEMPORARY TABLESPACE temp;

This is a limited account because you can consume only up to 50MB of space in the
users tablespace, which is available in all sample Oracle databases. A tablespace is a
logical unit that can contain one or more users and one or more physical data files where
those users can read and write data. Tablespaces can include one to many physical files, and
the size of the tablespaces is constrained by the space available in these files. You can learn
more about tablespaces in the Oracle Database 12c DBA Handbook (Oracle Press, 2014).

Next, you should grant several privileges to the student PDB user. The Data Control
Language (DCL) provides the GRANT command to perform this task. The GRANT command
enables an authorized user to assign roles and privileges to other users. The following
example uses privileges, which are provided as comma-separated lists:

SQL> GRANT create cluster, create indextype, create operator
 2 , create procedure, create sequence, create session
 3 , create table, create trigger, create type
 4 , create view, unlimited tablespace TO student;

The grant extends the permission to connect to the database through the CREATE SESSION
privilege.

14-AppA.indd 626 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 627

Dynamically Configuring SQL*Plus—Every connection to SQL*Plus is configurable. Some developers
choose to put these instructions inside their script files, while others prefer to type them as they go.
Putting them in the script files means you have to know what options you have first. The SQL*Plus
SHOW command lets you find all of them with the keyword ALL, like this:

SHOW ALL

The SQL*Plus SHOW command also lets you see the status of a given environment variable.
The following command displays the default value for the FEEDBACK environment variable:

SHOW FEEDBACK

It returns the default value unless you’ve altered the default by configuring it in the glogin.sql
file. The oracle user has the rights to make any desired changes in this file, but they apply to all
users who connect to the database. The default value for FEEDBACK is

FEEDBACK ON for 6 or more rows

By default, an Oracle database shows the number of rows touched by a SQL command only
when six or more rows are affected. If you also want to show feedback when five or fewer rows
are affected, the following syntax resets the environment variable:

SET FEEDBACK ON

It returns 0 or the number of rows affected by any SQL statement.
Setting these environment variables inside script files allows you to designate runtime behaviors,

but you should also reset them to the default at the conclusion of the script. When they’re not
reset at the end of a script, they can confuse a user expecting the default behaviors.

Configuring the Default SQL*Plus Environment File—The glogin.sql file is where you define
override values for the environment variables. You might want to put many things beyond environment
variable values into your glogin.sql configuration file. The most common is a setting for the
default editor in Linux or Unix, because it’s undefined out of the box. You can set the default editor
to the vi text editor in Linux by adding the following line to the glogin.sql file:

DEFINE _EDITOR=vi

The DEFINE keyword has two specialized uses in SQL*Plus. One lets you define substitution
variables (sometimes called user variables) that act as session-level variables. The other lets you
enable or disable the ampersand (&) symbol as a substitution variable operator. It is enabled by
default because the DEFINE environment variable is ON by default. You disable the specialized
role by setting DEFINE to OFF. SQL*Plus treats the ampersand (&) as an ordinary text character
when DEFINE is OFF. You can find more on this use of the DEFINE environment variable in the
“When to Disable Substitution Variables” sidebar later in this appendix.

Substitution variables are placeholder variables in SQL statements or session-level variables
in script files. They are placeholder variables when you precede them with one ampersand
and are session-level variables when you precede them with two ampersands. As placeholders, they
are discarded after a single use. Including two ampersands (&&) makes the assigned value of a
substitution variable reusable. You can set a session-level variable either with the DEFINE command,

14-AppA.indd 627 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

628 Oracle Database 12c PL/SQL Programming

as shown previously with the _EDITOR variable, or by using a double ampersand (&&), as in
the following:

SELECT '&&BART' FROM dual;

With two ampersands, the query prompts the user for a value for the BART session-level
variable and sets the value as a session-level variable. A single ampersand would simply prompt,
use it, and discard it. Assuming you enter “Cartoon Character” as the response to the preceding
query, you see the value by querying it with a single or double ampersand:

SELECT '&BART' AS "Session Variable" FROM dual;

This displays the following:

Session Variable

Cartoon Character

Or you can use the DEFINE command like this:

DEFINE BART

This displays the following:

DEFINE BART = "Cartoon Character" (CHAR)

The scope of the session variable lasts throughout the connection unless you undefine it with
the following command:

UNDEFINE BART

Although you can define substitution variables, you can use them only by preceding their
name with an ampersand. That’s because a single ampersand also lets you read the contents of
substitution variables when they’re set as session-level variables. Several user variables are
reserved for use by Oracle Database. These user variables can contain letters, underscores, or
numbers in any order. When reserved for use by Oracle, these variables all start with an underscore,
as is the case with the _EDITOR variable. Any reference to these variables is case-insensitive.

SQL*Plus checks the contents of the _EDITOR user variable when you type the EDIT
command, often abbreviated as ED. The EDIT command launches the executable stored in the
_EDITOR user variable. The Windows version of Oracle Database comes preconfigured with
Notepad as the default editor. It finds the Notepad utility because it’s in a directory found in the
operating system path variable. If you choose another editor, you need to ensure that the executable
is in your default path environment. In Windows, you should create a shortcut that points to the
physical location of the new editor, and put it in the C:\Windows\System32 directory.

The DEFINE command also lets you display the contents of all session-level variables. There
is no all option for the DEFINE command, as there is for the SHOW command. You simply type
DEFINE without any arguments to get a list of the default values:

DEFINE _DATE = "12-MAY-13" (CHAR)
DEFINE _CONNECT_IDENTIFIER = "" (CHAR)
DEFINE _USER = "" (CHAR)

14-AppA.indd 628 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 629

DEFINE _PRIVILEGE = "" (CHAR)
DEFINE _SQLPLUS_RELEASE = "1201000002" (CHAR)
DEFINE _EDITOR = "Notepad" (CHAR)

The preceding user variables are set by Oracle during a /nolog connection. When you connect
as a container or pluggable user, the DEFINE command displays a different result. Shown next is
the example after having connected as the student (a pluggable database user):

DEFINE _DATE = "12-MAY-13" (CHAR)
DEFINE _CONNECT_IDENTIFIER = "orcl" (CHAR)
DEFINE _USER = "STUDENT" (CHAR)
DEFINE _PRIVILEGE = "" (CHAR)
DEFINE _SQLPLUS_RELEASE = "1201000002" (CHAR)
DEFINE _EDITOR = "Notepad" (CHAR)
DEFINE _O_VERSION = "Oracle Database 12c Enterprise ... " (CHAR)
DEFINE _O_RELEASE = "1201000002" (CHAR)

The last two lines are displayed only when you’re connected as a user to the Oracle Database 12c
database. As previously explained, you can define the contents of other substitution variables.

Although substitution variables have many uses, their primary purpose is to support the
SQL*Plus environment. For example, you can use them to reset the SQL> prompt. You can reset
the default SQL*Plus prompt by using two predefined session-level variables, like this:

SET sqlprompt "'SQL:'_user at _connect_identifier>"

This would change the default prompt to look like this when the _user name is system and the
_connect_identifier is orcl:

SQL: SYSTEM at orcl>

This type of prompt takes more space, but it shows you your current user and schema at a glance.
It’s a handy prompt to help you avoid making changes in the wrong schema or instance, which
occurs too often in daily practice.

A number of possibilities exist for modifying your prompt beyond this example. The preceding
example provided the syntax to set the prompt for the duration of the connection. If you want to
modify the starting default prompt, you can edit %ORACLE_HOME%\sqlplus\admin\glogin
.sql in Windows or its equivalent in Linux or Unix.

Using Interactive Help in the SQL*Plus Environment SQL*Plus also provides an interactive
help console that contains an index of help commands. You can find the index of commands by
typing the following in SQL*Plus:

SQL> help index

It displays the following:

Enter Help [topic] for help.

 @ COPY PAUSE SHUTDOWN
 @@ DEFINE PRINT SPOOL
 / DEL PROMPT SQLPLUS

14-AppA.indd 629 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

630 Oracle Database 12c PL/SQL Programming

 ACCEPT DESCRIBE QUIT START
 APPEND DISCONNECT RECOVER STARTUP
 ARCHIVE LOG EDIT REMARK STORE
 ATTRIBUTE EXECUTE REPFOOTER TIMING
 BREAK EXIT REPHEADER TTITLE
 BTITLE GET RESERVED WORDS (SQL) UNDEFINE
 CHANGE HELP RESERVED WORDS (PL/SQL) VARIABLE
 CLEAR HOST RUN WHENEVER OSERROR
 COLUMN INPUT SAVE WHENEVER SQLERROR
 COMPUTE LIST SET XQUERY
 CONNECT PASSWORD SHOW

You can discover more about the commands by typing help with one of the index keywords.
The following demonstrates the STORE command, which lets you store the current buffer contents
as a file:

SQL> help store

It displays the following:

STORE

 Saves attributes of the current SQL*Plus environment in a script.

 STORE {SET} file_name[.ext] [CRE[ATE] | REP[LACE] | APP[END]]

This is one way to save the contents of your current SQL statement into a file. You’ll see another,
the SAVE command, shortly in this appendix. You might want to take a peek in the “Writing
SQL*Plus Log Files” section later in this appendix if you’re experimenting with capturing the
results of the HELP utility by spooling the information to a log file.

As discussed, the duration of any SQL*Plus environment variable is from the beginning to the
end of any session. Define environment variables in the glogin.sql file when you want them
to be available in all SQL*Plus sessions.

Shelling Out of the SQL*Plus Environment In cases where you don’t want to exit an interactive
session of SQL*Plus, you can leave the session (known as shelling out) and run operating system
commands. The HOST command lets you do that, like so:

SQL> HOST

Anything that you do inside this operating system session other than modify files is lost when
you leave it and return to the SQL*Plus session. The most frequent things that most developers do
in a shelled-out session are check the listing of files and rename files. Sometimes, developers
make small modifications to files, exit the subshell session, and rerun the file from SQL*Plus.

You exit the operating system shell environment and return to SQL*Plus by typing EXIT.
An alternative to shelling out is to run a single operating system command from SQL*Plus.

For example, you can type the following in Windows to see the contents of the directory from
which you entered SQL*Plus:

SQL> HOST dir

14-AppA.indd 630 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 631

Linux works with the HOST command, too. In Linux, you also have the option of a shorthand
version of the HOST command—the exclamation mark (!). You use it like this:

SQL> ! ls -al

The difference between the ! and HOST commands is that you can’t use substitution variables
with !. Also, ! doesn’t work when you’re deployed on a Windows platform.

Exiting SQL*Plus Environment You use QUIT or EXIT to exit a session in the SQL*Plus program.
Either command ends a SQL*Plus session and releases any session variables.

The next sections show you how to write, save, edit, rerun, edit, abort, call, run, and pass
parameters to SQL statements. Then you’ll learn how to call PL/SQL programs and write SQL*Plus
log files.

Writing SQL Statements with SQL*Plus
A simple and direct way to demonstrate how to write SQL statements in SQL*Plus is to write a
short query. Queries use the SELECT keyword to list columns from a table and use the FROM
keyword to designate a table or set of tables. The following query selects a string literal value
(“Hello World!”) from thin air with the help of the pseudo table dual. The dual pseudo table is
a structure that lets you query one or more columns of data without accessing a table, view, or
stored program. Oracle lets you select any type of column except a large object (LOB) from the
dual table. The dual table returns only one row of data.

NOTE
The dual table exists in MySQL and Microsoft SQL Server but is
optional in the equivalent syntax.

SELECT 'Hello World!' FROM dual;

Notice that Oracle requires single quotation marks as delimiters of string literal values. Any
attempt to substitute double quotation marks raises an ORA-00904 error message, which means
you’ve attempted to use an invalid identifier. For example, you’d generate the following error if
you used double quotes around the string literal in the original statement:

SELECT "Hello World!" FROM dual
 *
ERROR at line 1:
ORA-00904: "Hello World!": invalid identifier

If you’re coming from the MySQL world to work in Oracle databases, this may seem a bit
provincial. MySQL works with either single or double quotes as string delimiters, but Oracle doesn’t.
No quote delimiters are required for numeric literals.

SQL*Plus places a query or other SQL statement in a special buffer when you run it. Sometimes
you may want to save these queries in files. The next section shows you how to do that.

Saving SQL Statements with SQL*Plus
Sometimes you’ll want to save a SQL statement in a file. That’s actually a perfect activity for the
SAVE or STORE command (rather than spooling a log file). Using the SAVE or STORE command

14-AppA.indd 631 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

632 Oracle Database 12c PL/SQL Programming

lets you save your current statement to a file. Capturing these ad hoc SQL statements is generally
important—after all, SQL statements ultimately get bundled into rerunnable script files before they
ever move into production systems.

Use the following syntax to save a statement as a runnable file:

SAVE some_new_file_name.sql

If the file already exists, you can save the file with this syntax:

SAVE some_new_file_name.sql REPLACE

CAUTION
Note that SAVE and STORE commands that include a REPLACE
option have no undo capability. That means any existing file with the
same name is immediately unrecoverable. Use the REPLACE option
with care.

Back-Quoting in Oracle
The art of back-quoting is critical in many programming languages. You back-quote a character
that has special purpose in a programming language when you want to use the character as
ordinary text. The apostrophe (') is a special character in Oracle’s implementation of SQL.

When you have a string with an apostrophe, you must back-quote the apostrophe with
another apostrophe. Here’s an example:

SELECT 'Ralph Malph is stealing Fonzie''s bike.' AS Statement
FROM dual;

The first apostrophe instructs the parser to treat the next character as an ordinary text
character. This means that the second apostrophe is stored in a column or printed from the
query. This syntax also works in the MySQL database. Here’s the output from the query:

Statement

Ralph Malph is stealing Fonzie's bike.

Beginning with Oracle Database 10g, you have an alternative to back-quoting an
apostrophe. You may use the following syntax:

SELECT q'(Ralph Malph is stealing Fonzie's bike.)' AS trite
FROM dual;

Alternatives are nice. You should use the one that works best for you.

14-AppA.indd 632 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 633

Editing SQL Statements with SQL*Plus
You can edit your current SQL statements from within SQL*Plus by using EDIT. SQL*Plus
preconfigures itself to launch Notepad when you type EDIT or the shorthand ED in any Windows
installation of Oracle Database.

Although the EDIT command points to Notepad when you’re working in Windows, it isn’t
configured by default in Linux or Unix. You have to set the editor for SQL*Plus when running on
Linux or Unix. Refer to the “Working in the SQL*Plus Environment” section earlier in the appendix
for details about setting up the editor.

Assuming you’ve configured the editor, you can edit the last SQL statement by typing EDIT
like this (or you can use ED):

SQL> EDIT

The temporary contents of any SQL statement are stored in the afiedt.buf file by default.
After you edit the file, you can save the modified statement into the buffer and rerun the statement.
Alternatively, you can save the SQL statement as another file.

Rerunning SQL*Plus SQL Statements from the Buffer
After you edit a SQL statement, SQL*Plus automatically lists it for you and enables you to rerun it.
Use a forward slash (/)to run the last SQL statement from the buffer. The semicolon at the end of
your original SQL statement isn’t stored in the buffer; it’s replaced by a forward slash. If you add
the semicolon back when you edited the SQL statement, you would see something like the following
with the semicolon at the end of the last line of the statement:

SQL> EDIT
Wrote file afiedt.buf
 1* SELECT 'Hello World!' AS statement FROM dual;

A forward slash can’t rerun this from the buffer because the semicolon is an illegal character.
You would get an error like this:

SQL> /
SELECT 'Hello World!' AS statement FROM dual;
 *
ERROR at line 1:
ORA-00911: invalid character

To fix this error, you should re-edit the buffer contents and remove the semicolon. The forward
slash would then run the statement.

Some SQL statements have so many lines that they don’t fit on a single page in your terminal
or shell session. In these cases, you can use the LIST command (or simply a lowercase l or
uppercase L) to see only a portion of the current statement from the buffer. The LIST command
by itself reads the buffer contents and displays them with line numbers at the SQL prompt.

If you’re working with a long PL/SQL block or SQL statement, you can inspect ranges of line
numbers with the following syntax:

SQL> LIST 23 32

14-AppA.indd 633 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

634 Oracle Database 12c PL/SQL Programming

This will echo back to the console the inclusive set of lines from the buffer if they exist. Another
command-line interface is used to edit line numbers. It’s very cumbersome and limited in its
utility, so you should simply edit the SQL statement in a text editor.

Aborting Entry of SQL Statements in SQL*Plus
When you’re working at the command line, you can’t just point the mouse to the prior line and
correct an error; instead, if your statement has an error, your must either abort the statement or
run it and wait for it to fail. SQL*Plus lets you abort statements with errors.

To abort a SQL statement that you’re writing interactively, press enter, type a period (.) as the
first character on the new line, and then press enter again. This aborts the statement but leaves it
in the active buffer file in case you went to edit it.

TIP
The period (.) aborts the statement only when it’s the first character
on a line.

After aborting a SQL statement, you can use the instructions in the previous “Editing SQL
Statements with SQL*Plus” section to edit the statement with the ed utility—that is, if editing the
statement is easier than retyping the whole thing.

Calling and Running SQL*Plus Script Files
Script (or batch) files are composed of related SQL statements and are the primary tool for
implementing new software and patching old software. You use script files when you run installation
or update programs in test, stage, and production environments. Quality and assurance departments
want script files to ensure code integrity during predeployment testing. If errors are found in the
script file, the script file is fixed by a new version. The final version of the script file is the one that a
DBA runs when installing or upgrading an application or database system.

NOTE
A batch file is a shell script file containing a series of commands
run by the command interpreter in the Microsoft Windows OS and
PowerShell Scripting language.

A script is rerunnable only if it can manage preexisting conditions in the production database
without raising errors. You must eliminate all errors because administrators might not be able to
judge which errors can be safely ignored. This means the script must perform conditional drops of
tables and data migration processes.

Assuming you have a file named create_data.sql in a C:\Data directory, you can run
it with the @ (at) command in SQL*Plus. This script can be run from within SQL*Plus with either a
relative filename or an absolute filename. A relative filename contains no path element because
it assumes the present working path. An absolute filename requires a fully qualified path (also
known as a canonical path) and filename.

The relative filename syntax depends on starting SQL*Plus from the directory where you have
saved the script file. Here’s the syntax to run the create_data.sql file:

@create_data.sql

14-AppA.indd 634 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 635

Although the relative filename is easy to use, it limits you to starting SQL*Plus from a specific
directory, which is not always possible. The absolute filename syntax works regardless of where
you start SQL*Plus. Here’s an example for Windows:

@C:\Data\create_data.sql

The @ command is also synonymous with the SQL*Plus START command. This means you can
also run a script file based on its relative filename like this:

START create_data.sql

The @ command reads the script file into the active buffer and then runs the script file. You
use two @@ symbols when you call one script file from another script file that exists in the same
directory. Combining the @@ symbols instructs SQL*Plus to look in the directory specified by the
command that ran the calling script. This means that a call such as the following runs a subordinate
script file from the same directory:

@@some_subordinate.sql

If you need to run scripts delivered by Oracle and they reside in the ORACLE_HOME, you can
use a handy shortcut: the question mark (?). The question mark maps to the ORACLE_HOME. This
means you can run a library script from the \rdbms subdirectory of the ORACLE_HOME with this
syntax in Windows:

?\rdbms\somescript.sql

The shortcuts and relative path syntax are attractive during development but should be
avoided in production. Using fully qualified paths from a fixed environment variable such as the
%ORACLE_HOME% in Windows or $ORACLE_HOME in Linux is generally the best approach.

Passing Parameters to SQL*Plus Script Files
Understanding how to write and run static SQL statements or script files is important, but
understanding how to write and run SQL statements or script files that can solve dynamic problems
is even more important. To write dynamic scripts, you use substitution variables, which act like
placeholders in SQL statements or scripts. As mentioned earlier, SQL*Plus supports two modes of
processing: interactive mode and call mode.

Interactive Mode Parameter Passing When you call a script that contains substitution variables,
SQL*Plus prompts for values that you want to assign to the substitution variables. The standard
prompt is the name of the substitution variable, but you can alter that behavior by using the
ACCEPT SQL*Plus command.

For example, assume that you want to write a script that looks for a table with a name that’s
some partial string, but you know that the search string will change. A static SQL statement
wouldn’t work, but a dynamic one would. The following dynamic script enables you to query the
database catalog for any table based on only the starting part of the table name. The placeholder
variable is designated using an ampersand (&) or two. Using a single ampersand instructs SQL*Plus to
make the substitution at runtime and forget the value immediately after the substitution. Using two

14-AppA.indd 635 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

636 Oracle Database 12c PL/SQL Programming

ampersands instructs SQL*Plus to make the substitution, store the variable as a session-level
variable, and undefine the substitution variable.

SQL> SELECT table_name
 2 , column_id
 3 , column_name
 4 FROM user_tab_columns
 5 WHERE table_name LIKE UPPER('&input')||'%';

The UPPER function on line 5 promotes the input to uppercase letters because Oracle stores all
metadata in uppercase and performs case-sensitive comparisons of strings by default. The query
prompts as follows when run:

Enter value for input: it

When you press enter, it shows the substitution of the value for the placeholder, like so:

old 5: WHERE table_name LIKE UPPER('&input')||'%'
new 5: WHERE table_name LIKE UPPER('it')||'%'

At least this is the default behavior. The behavior depends on the value of the SQL*Plus
VERIFY environment variable, which is set to ON by default. You can suppress that behavior by
setting the value of VERIFY to OFF:

SET VERIFY OFF

You can also configure the default prompt by using SQL*Plus formatting commands, like so:

ACCEPT input CHAR PROMPT 'Enter the beginning part of the table name:'

This syntax acts like a double ampersand assignment and places the input substitution in memory
as a session-level variable.

You can also format output through SQL*Plus. The COL[UMN] command qualifies the column
name, the FORMAT command sets formatting to either numeric or alphanumeric string formatting,
and the HEADING command lets you replace the column name with a reporting header. The
following is an example of formatting for the preceding query:

SQL> COLUMN table_name FORMAT A20 HEADING "Table Name"
SQL> COLUMN column_id FORMAT 9990 HEADING "Column|ID"
SQL> COLUMN column_name FORMAT A20 HEADING "Column Name"

The table_name column and column_name column now display the first 20 characters
before wrapping to the next line because they are set to an alphanumeric size of 20 characters.
The column_id column now displays the first four numeric values and would display a 0 when
the column_id value is less than 1. Actually, this only illustrates the possibility of printing at
least a 0 because a surrogate key value can’t have a value less than 1. The column headers for the
table_name and column_name columns print in title case with an intervening whitespace,
while the column_id column prints “Column” on one line and “ID” on the next.

Advanced Formatting of SQL*Plus Output SQL*Plus enables you to assign column values
from queries to object variables and create dynamic titles with these object values. SQL*Plus also
lets you perform computations with result sets and set column breaks.

14-AppA.indd 636 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 637

The following gives you an example of advanced SQL*Plus reporting:

-- Set prompt message.
ACCEPT INPUT PROMPT "Enter [TABLE | VIEW] unless you want both: "

-- Set the heading and title.
SET HEADING ON
TTITLE LEFT o1 o2 ' >' SKIP 1 -
'--' SKIP 1

-- Clear column and page breaks.
CLEAR COLUMNS
CLEAR BREAKS

-- Set page breaks.
BREAK ON REPORT
BREAK ON c2 SKIP PAGE

-- Assign columns to SQL*Plus object variables.
COL c1 NEW_VALUE o1 NOPRINT
COL c2 NEW_VALUE o2 NOPRINT

-- Format display columns.
COL c3 FORMAT A32 HEADING "Name"
COL c4 FORMAT A8 HEADING "Null?"
COL c5 FORMAT A33 HEADING "Type"
COL c6 FORMAT A1 HEADING "Default?"

-- Display results from a dynamic query.
SELECT DECODE(st.object_type,'TABLE','Table Name: < '
, 'VIEW' ,'View Name: < ') c1
, st.table_name c2
, st.column_name c3
, st.nullable c4
, st.data_type c5
, st.data_default c6
FROM schema_tables st
WHERE st.table_name LIKE UPPER('&input')||'%'
ORDER BY st.table_name
, st.column_id;

This produces a SQL report with a row break between every table and displays a dynamic title
that display a literal like one of the following:

Table Name: < table_name >

or

View Name: < view_name >

14-AppA.indd 637 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

638 Oracle Database 12c PL/SQL Programming

The left angle bracket and string literal are returned as part of c1, translated to o1. c2 returns
the table or view name to o2, and the right angle bracket is defined as a text literal in the
SQL*Plus TTITLE statement.

You can also perform computations on the result set. You can find details on these features in
the SQL*Plus User’s Guide and Reference from Oracle.

Batch Mode Parameter Passing Batch mode operations typically involve a script file that
contains more than a single SQL statement. The following example uses a file that contains a
single SQL statement because it successfully shows the concept and conserves space.

The trick to batch submission is the -s option flag, or the silent option. Script files that run
from the command line with this option flag are batch programs (those using the SQL*Plus call
mode). They suppress a console session from being launched and run much like statements
submitted through the JDBC API or ODBC API. Batch programs must include a QUIT or EXIT
statement at the end of the file or they will hang in SQL*Plus. This technique lets you create a file
that can run from an operating system script file, also commonly known as a shell script.

The following sample.sql file shows how you would pass a parameter to a dynamic SQL
statement embedded in a script file:

-- Disable echoing substitution.
SET VERIFY OFF

-- Open log file.
SPOOL demo.txt

-- Query data based on an externally set parameter.
SELECT table_name
, column_id
, column_name
FROM user_tab_columns
WHERE table_name LIKE UPPER('&1')||'%';

-- Close log file.

When to Disable Substitution Variables
Substitution variables are important aspects of the SQL*Plus environment and should
generally be enabled. However, you need to disable substitution variables when you create
and compile a Java source file. Java code uses the double ampersand (&&) as the logical and
operator. Before attempting to create and compile a Java source file, you should disable the
DEFINE environment variable:

SET DEFINE OFF

After you’ve created and compiled the Java source file, you should re-enable
substitution variables with the ON option.

14-AppA.indd 638 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 639

SPOOL OFF

-- End session connection.
QUIT;

You would call the program from a batch file in Windows or a shell script in Linux. The syntax
would include the user name and password, which presents a security risk. Provided you’ve
secured your local server and you routinely purge your command history, you would call a
sample.sql script from the present working directory like this:

sqlplus -s student/student @sample.sql

You can also pass the user name and password as connection parameters, which is illustrated
in the following sample:

SET VERIFY OFF
SPOOL demo.txt
CONNECT &1/&2
SELECT USER FROM dual;
SPOOL OFF
QUIT;

The script depends on the /nolog option to start SQL*Plus without connecting to a schema.
You would call it like this, providing the user name and password:

sqlplus -s /nolog @create_data.sql student student

As mentioned, there are risks to disclosing user names and passwords, because the information
from the command line can be hacked from user history logs. Therefore, you should use anonymous
login or operating system user validation when you want to run scripts like these.

NOTE
Configuring the anonymous user account is a necessary component
of working with the Oracle XDB Server. The Oracle Database 12c
DBA Handbook (Oracle Press, 2014) shows you how to configure
operating system user account validation in lieu of formal credentials.

Calling PL/SQL Programs
PL/SQL provides capabilities that don’t exist in SQL that are required by some database-centric
applications. PL/SQL programs are stored programs that run inside a separate engine from the
SQL statement engine. Their principal role is to group SQL statements and procedural logic to
support transaction scopes across multiple SQL statements.

PL/SQL supports two types of stored programs: anonymous blocks and named blocks. Anonymous
blocks are stored as trigger bodies and named blocks can be either stand-alone functions or
procedures. PL/SQL also supports packages, which are groups of related functions and procedures.
Packages support function and procedure overloading and provide many of the key utilities for
Oracle databases. Oracle also supports object types and object bodies with the PL/SQL language.
Object types support MEMBER and STATIC functions and procedures.

14-AppA.indd 639 12/17/13 3:42 PM

640 Oracle Database 12c PL/SQL Programming

Functions and procedures support pass-by-value and pass-by-reference methods available in
other procedural programming languages. Functions return a value when they’re placed as right
operands in an assignment and as calling parameters to other functions or procedures. Procedures
don’t return a value or reference as a right operand and can’t be used as calling parameters to
other functions or procedures.

NOTE
You can find more details about functions and procedures in Chapter 8.

Sometimes you’ll want to output diagnostic information to your console or formatted output
from small PL/SQL programs to log files. This is easy to do in Oracle Database because PL/SQL
supports anonymous block program units.

Before you can receive output from a PL/SQL block, you must open the buffer that separates the
SQL*Plus environment from the PL/SQL engine. You do so with the following SQL*Plus command:

SET SERVEROUTPUT ON SIZE UNLIMITED

You enable the buffer stream for display to the console by changing the status of the
SERVEROUTPUT environment variable to ON. Although you can set the SIZE parameter to any
value, the legacy parameter limit of 1 million bytes no longer exists. That limit made sense in
earlier releases because of physical machine limits governing console speed and network bandwidth.
Today, there’s really no reason to constrain the output size, and you should always use UNLIMITED
when you open the buffer.

You now know how to call the various types of PL/SQL programs. Whether the programs are
yours or built-ins provided by Oracle, much of the logic that supports features of Oracle databases
rely on stored programs.

Executing an Anonymous Block Program The following example demonstrates a traditional
“Hello World!” program in an anonymous PL/SQL block. It uses a specialized stored program
known as a package. Packages contain data types, shared variables, and cursors, functions, and
procedures. You use the package name, a dot (the component selector), and a function or procedure
name when you call package components.

You print “Hello World!” with the following anonymous block program unit:

SQL> BEGIN
 2 DBMS_OUTPUT.PUT_LINE('Hello World!');
 3 END;
 4 /

PL/SQL is a strongly typed language that uses declarative blocks rather than the curly braces
you may know best from C, C#, C++, Java, Perl, or PHP. The execution block starts with the BEGIN
keyword and ends with an EXCEPTION or END keyword. Since the preceding sample program
doesn’t employ an exception block, the END keyword ends the program. All statements and blocks
in PL/SQL end with a semicolon. The forward slash on line 4 executes the anonymous block
program because the last semicolon ends the execution block. The program prints “Hello World!”
to the console, provided you opened the buffer by enabling the SQL*Plus SERVEROUTPUT
environment variable.

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 641

Anonymous block programs are very useful when you need one-time procedural processing
and plan to execute it in the scope of a single batch or script file. Displaying results from the
internals of the PL/SQL block is straightforward, as discussed earlier in this section: enable the
SERVEROUTPUT environment variable.

Setting a Session Variable Inside PL/SQL Oracle databases also support session variables,
which are not the same as session-level substitution variables. Session variables act like global
variables in the scope and duration of your connection, as do session-level substitution variables,
but the former differ from substitution variables in two ways. Substitution variables are limited to
a string data type, while session variables may have any of the following data types: BINARY_
DOUBLE, BINARY_FLOAT, CHAR, CLOB, NCHAR, NCLOB, NUMBER, NVARCHAR2, REFCURSOR,
or VARCHAR2. Session variables, more commonly referred to as bind variables, can’t be assigned
a value in SQL*Plus or SQL scope. You must assign values to session variables in an anonymous
PL/SQL block.

Session variables, like session-level substitution variables, are very useful because you can
share them across SQL statements. You must define session variables with the VARIABLE keyword,
which gives them a name and data type but not a value. As an example, you can define a bind
variable as a 20-character-length string like so:

VARIABLE whom VARCHAR2(20)

You can assign a session variable with an anonymous PL/SQL block or a CALL to a stored
function. Inside the anonymous block, you reference the variable with a colon preceding the
variable name. The colon points to a session-level scope that is external to its local block scope:

BEGIN
 :whom := 'Sam';
END;
/

After assigning a value to the session variable, you can query it in a SQL statement or reuse it
in another PL/SQL anonymous block program. The following query from the dual pseudo table
concatenates string literals before and after the session variable:

SELECT 'Play it again, ' || :whom || '!' FROM dual;

The colon appears in SQL statements, too. Both the anonymous block and SQL statement actually
run in execution scopes that are equivalent to other subshells in operating system shell scripting.
The query prints the following:

Play it again, Sam!

The dual pseudo table is limited to a single row but can return one to many columns. You
can actually display 999 columns, which is the same as the number of possible columns for a table.

Executing a Named Block Program Stored functions and procedures are known as named
blocks, whether they’re stand-alone programs or part of a package. You can call a named function
into a session variable or return the value in a query. Procedures are different because you execute
them in the scope of a session or block and they have no return value (procedures are like functions
that return a void data type).

14-AppA.indd 641 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

642 Oracle Database 12c PL/SQL Programming

The following is a “Hello World!” function that takes no parameters:

SQL> CREATE OR REPLACE FUNCTION hello_function RETURN VARCHAR2 IS
 2 BEGIN
 3 RETURN 'Hello World!';
 4 END hello_function;
 5 /

A query of the function uses the dual pseudo table, like so:

SELECT hello_function FROM dual;

When you call in a query a function that doesn’t have defined parameters, you can omit the
parentheses traditionally associated with function calls with no arguments. However, if you use
the SQL*Plus CALL syntax, you must provide the opening and closing parentheses or you raise an
ORA-06576 error message. Assuming that the return value of the function will be assigned to a
bind variable of output, you need to define the session variable before calling the function value
into the output variable.

The following defines a session variable as a 12-character, variable-length string:

VARIABLE my_output VARCHAR2(12)

The following statement calls the function and puts the result in the session variable :my_
output. Preceding the session variable with a colon is required to make it accessible from SQL
statements or anonymous PL/SQL blocks.

CALL hello_world AS INTO :my_output;

The lack of parentheses causes this statement to fail and raises an ORA-06576 error message.
Adding the parentheses to the CALL statement makes it work:

CALL hello_world() AS INTO :my_output;

Procedures work differently and are run by the EXECUTE command. The following defines a
stored procedure that echoes out the string “Hello World!” Procedures are easier to work with
from SQL*Plus because you don’t need to define session variables to capture output. All you do is
enable the SQL*Plus SERVEROUTPUT environment variable.

SQL> CREATE OR REPLACE PROCEDURE hello_procedure IS
 2 BEGIN
 3 dbms_output.put_line('Hello World!');
 4 END hello_procedure;
 5 /

You can execute the procedure successfully like so:

EXECUTE hello_procedure;

Or you can execute the procedure with parentheses, like so:

EXECUTE hello_procedure();

14-AppA.indd 642 12/17/13 3:42 PM

Appendix A: Oracle Database Primer 643

You should see “Hello World!” using either form. If it isn’t displayed, enable the SQL*Plus
SERVEROUTPUT environment variable. Remember that nothing returns to the console without
enabling the SERVEROUTPUT environment variable.

All the examples dealing with calls to PL/SQL named blocks use a pass-by-value method,
which means that values enter the program units, are consumed, and other values are returned.
Pass-by-reference methods are covered in Chapter 8.

Writing SQL*Plus Log Files
When you’re testing the idea of how a query should work and want to capture one that did work,
you can write it directly to a file. You can also capture all the activity of a long script by writing it
to a log file. You can write log files in either of two ways: capture only the feedback messages,
such as “four rows updated,” or capture the statement executed and then the feedback message.
The output of the latter method are called verbose log files.

You can write verbose log files by leveraging the SQL*Plus ECHO environment variable in
SQL*Plus. You enable it with this command:

SET ECHO ON

Enabling the ECHO command splits your SQL commands. It dispatches one to run against the
server and echoes the other back to your console. This allows you to see statements in your log
file before the feedback from their execution.

You open a log file with the following command:

SPOOL C:\Data\somefile.txt

This logs all output from the script to the file C:\Data\somefile.txt until the SPOOL OFF
command runs in the session. The output file’s extension is not required but defaults to .lst
when not provided explicitly. As an extension, .lst doesn’t map to a default application in
Windows or Linux environments. It’s a convention to use some file extension that maps to an
editor as a text file.

You can append to an existing file with the following syntax:

SPOOL C:\Data\somefile.txt APPEND

Both of the foregoing syntax examples use an absolute filename. You can do the same thing in
Linux by substituting a mount point for the logical drive (C:\) and changing the backslashes to
forward slashes. You use a relative filename when you omit the qualified path, in which case the
file is written to the directory where you launched sqlplus.

When using a relative path, you should know that it looks in the directory where you launched
sqlplus. That directory is called the present working directory or, by some old csh (C Shell)
folks, the current working directory. In older Windows versions, a GUI version of SQL*Plus (that’s
deprecated as of Oracle Database 11g) writes to the bin directory of the Oracle home.

You close a log file with the following command:

SPOOL OFF

No file exists until you close the buffer stream. Only one open buffer stream can exist in any
session. This means you can write only to one log file at a time from a given session. Therefore,

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

644 Oracle Database 12c PL/SQL Programming

you should spool only in script files that aren’t called by other script files that might also spool to
a log file. You shouldn’t attempt to log from the topmost script because that makes triaging errors
among the programming units more complex.

TIP
When you spool to a log file, make the log file extension something
other than .sql, to avoid overwriting your script filename.

A pragmatic approach to development requires that you log work performed. Failure to log
your work can have impacts on the integrity of data and processes.

Oracle SQL Developer Interface
Oracle SQL Developer is a Java-based GUI development and data modeling tool. Oracle produces
it and releases it free of charge to any developer that would like to use it. There are other GUI tools
available that offer similar functionality, but we’ll focus on SQL Developer because it is a natural fit
for PL/SQL programming in Oracle Database 12c. This section shows you how to launch, configure,
and use SQL Developer.

Launching Oracle SQL Developer
SQL Developer is installed as part of the Oracle Database 12c installation. It’s found in the following
platform-specific directories:

Linux or Unix

$ORACLE_HOME/sqldeveloper/sqldeveloper/sqldeveloper

Windows

$ORACLE_HOME\sqldeveloper\sqldeveloper\sqldeveloper

After installing and configuring the Oracle Database 12c database, you can run SQL Developer
by launching the executable. At least, you can when the directory is in your environment path.
You should add the path to your environment file in Linux, or in Windows as part of the default
%PATH% environment.

Configuring Oracle SQL Developer
The first time you launch SQL Developer, you’ll see the following dialog box that requests the
Java Home.

14-AppA.indd 644 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 645

On Linux, you can install Java 6.0 SDK where you want, but on Windows, you install it
differently based on whether you have a 32-bit or 64-bit version of the Windows OS. If you have
a 32-bit version of Windows, enter the following as the Java Software Development Kit (JDK)’s
directory:

C:\Program Files\Java\jdk1.6.0_45

If you have a 64-bit Windows installation, enter the following Java Software Development Kit
(JDK)’s directory:

C:\Program Files (x86)\Java\jdk1.6.0_45

The last two digits (45) will change as new JDKs are released. The SQL Developer released
with Oracle Database 12c, Release 1 doesn’t support Java 7 and you’ll raise an error dialog unless
you’ve installed and configured Java 6. Click the OK button to proceed with launching the SQL
Developer software.

The dialog box that appears, shown next, lets you configure file type associations. You
shouldn’t check any of the boxes because SQL Developer would become the default application
for all those file type. Click the OK button to proceed with the installation.

Fixing the SQL Developer JDK
If you accidently enter an incorrect value for the JDK in the dialog box, you can’t launch
SQL Developer because it’s pointed to the wrong location for the JDK. You only have a
manual fix to this type of problem.

The fix requires you to edit the sqldeveloper.conf file and replace the value for
SetJavaHome. For a Windows installation, the correct path is as follows:

SetJavaHome C:\Program Files (x86)\Java\jdk1.6.0_45

The Linux location of Oracle SQL Developer can change based on installation choices.
That means you need to locate where you’ve installed it. For reference, the
sqldeveloper.conf file is a plain text file that you can edit with any text editor.

After you fix the SetJavaHome value, you can launch SQL Developer successfully.

14-AppA.indd 645 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

646 Oracle Database 12c PL/SQL Programming

After those simple configuration steps, you see the initial SQL Developer screen. Click the
green + (plus symbol) to configure an initial connection to the Oracle Database 12c database.

The New/Select Database Connection dialog box launches. As shown next, it initially displays
the Basic connection type information. Typically, you will configure a TNS connection type. To do
so, click the Connection Type drop-down arrow and choose TNS.

14-AppA.indd 646 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 647

As shown next, for purposes of demonstration, enter PluggableUser in the Connection Name
field, enter video in the Username field, and enter a valid password in the Password field. Click
the Network Alias radio button and choose ORCL from the drop-down list. Click the Test button
before you create the connection.

The Status field in the bottom-left corner should now indicate Success, as shown next. Click
the Connect button to save the new database connection and exit the configuration dialog box.

14-AppA.indd 647 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

648 Oracle Database 12c PL/SQL Programming

As shown next, the Connections panel on the left side of SQL Developer will list the new
PluggableUser connection below the generic Connections repository, and you’ll have a SQL
Worksheet in the right panel.

Click the PluggableUser connection and you’ll see a list of data catalog views displayed
below it.

14-AppA.indd 648 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 649

Using Oracle SQL Developer
Enter a query in the Worksheet panel, like this:

SELECT user FROM dual;

The semicolon isn’t needed when you run a statement from SQL Developer, and it is ignored
when present. The result should look as follows:

Click the green arrow button in the toolbar, and you should see the query result as shown here:

14-AppA.indd 649 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

650 Oracle Database 12c PL/SQL Programming

You can also run an anonymous block PL/SQL program unit by entering it in the Worksheet
panel. When you click the green arrow button, an acknowledgment of successful execution is
displayed, as shown in the following script output.

Script files differ from SQL statements or PL/SQL anonymous blocks because they can include
SQL*Plus commands. To open a script file, first choose File | Open in the menu. In the Open
dialog box, shown next, select the file you want to load into the Worksheet panel.

14-AppA.indd 650 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 651

After you choose a file, click the Open button to load the file content into the Worksheet
panel, as shown here:

To run a script file, instead of clicking the green arrow button, click the button to its right that
shows a document with a small green arrow icon in its lower-left corner. Doing so should display
a Select Connection dialog box that verifies the connection you want to use, as shown next.
Choose the valid Connection, and click the OK button to continue.

14-AppA.indd 651 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

652 Oracle Database 12c PL/SQL Programming

The last screen shows the script output:

This concludes your introduction to how to configure and work with the basics of Oracle SQL
Developer. It’s a great tool, so make sure to explore it further on your own.

Database Administration
Database administration is generally divided into two major roles: the physical DBA and the
application DBA. Since this book is targeted at developers and application DBAs, this section
does not cover all the database administration tasks of the physical DBA, such as creating and
maintaining tablespaces, creating and maintaining physical files, and managing the storage aspects
of tables. Instead, this section shows you how to provision users, use database constraints, and
harden the database, and then explains data governance.

Provisioning Users
Users hold privileges to work in the database. Each database designates at least one default
superuser. The superuser enjoys all privileges in the database.

The Oracle database defines two superusers, sys and system, and follows the ANSI-SPARC
architecture’s three-tiered model. This architectural model divides the schema or database into
three views: internal, conceptual, and external.

14-AppA.indd 652 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 653

The internal view consists of the physical reality of how data is organized, which is specific to
any DBMS. The internal view also contains the editable data catalog that maintains all the data
about data, or metadata. This metadata contains all the definitions of users, databases, tables,
indexes, constraints, sequences, data types, and views. Inside the internal view and with the
proper credentials, a superuser can alter the contents of the data catalog with DML statements.
That means an authorized user could use an INSERT, UPDATE, or DELETE statement to change
critical metadata outside the administrative barrier of system privileges and DDL statements.

CAUTION
Never use DML statements to change the data catalog values without
the express instruction of Oracle Support.

The conceptual view consists of the community view of data. The community view is defined
by the users with access privileges to the database, and it represents an administrator’s view of
data from the perspective of SQL. This view of data provides administrator-friendly views of data
stored in the data catalog.

It isn’t possible to change the contents of the metadata in the community view, except through
DDL statements such as ALTER, CREATE, and DROP. Developers can use these DDL statements
only against objects or, in the case of the ALTER statement, against system and database environment
settings. These types of environment settings enable such things as database traces measuring
behavior and performance. You can find more details about these types of DDL statements in the
Oracle Database 12c DBA Handbook (Oracle Press, 2014).

Oracle implements the concept of the community view as a collection of striped views.
Striped views detect the user and allow them to see only things they have rights to access. These
views typically start with CDB_, DBA_, ALL_, and USER_ prefixes, and you access them as you
would any other table or view through queries with a SELECT statement. The views prefixed with
ALL_ and DBA_ are accessible only to the Oracle superusers: sys, system, and user-defined
accounts granted superuser privileges.

Every user has access to the striped views prefixed with USER_. Those views provide access to
structures only in the user’s schema or personal work area.

The external view consists of access to the user’s schema or database, which is a private work
area. Users typically have complete control over the resources of their schema or database, but in
some advanced architectures, users can have restricted rights. In those models, the user may be
able to perform only the following tasks:

 ■ Create tables and sequences

 ■ Create or replace stored program units

 ■ Grant or revoke privileges and synonyms (described later, in the “Granting Oracle
Privileges” section)

 ■ Limit access to memory, disk space, or network connections

Oracle’s sys and system users are synonymous with the two schemas for the internal and
conceptual views, respectively. The differences between the definition of the internal view and the
privileges conveyed when connecting as sys aren’t immediately visible.

You cannot change things in the sys schema when you connect as the sys user, unless you
connect with the / as sysoper (system operator) or / as sysdba (system DBA) privilege.

14-AppA.indd 653 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

654 Oracle Database 12c PL/SQL Programming

You have full privileges as the system DBA but only a subset of privileges as the system operator.
Typically, the only thing you perform with either of these responsibilities is routine maintenance
or granting of specialized privileges. Routine maintenance would include starting and stopping
the database. Specialized privileges include granting a user wider privileges or revoking privileges
already granted, and defining the internal Java permissions though the dbms_java package.

Although you can create new users and grant them privileges such as superuser privileges,
you shouldn’t alter the predefined roles of the superusers. The following sections describe how to
create users and how to grant privileges to or revoke privileges from a user.

Creating a CDB Oracle User
Creating a CDB user is synonymous with creating a schema in an Oracle database. Here we’ll
focus on the aspects of authentication, profile, and account status for an Oracle database user. All
user-defined CDB users must use c## as a preface to the name from Oracle Database 12c forward.

The SQL prototype to create a user allows you to identify the user with a password, an external
Secure Sockets Layer (SSL)-authenticated certificate name, or a globally identified user name
based on a Lightweight Directory Access Protocol (LDAP) entry.

The following syntax lets you create a c##plsql CDB user that is identified by a local
database password:

CREATE USER c##plsql IDENTIFIED BY Mag1c200;

Alternatively, you can create a student PDB user after changing the CONTAINER context of
the CDB’s sysdba user. Assuming the PDB is open, you alter the session to change the context to
the PDB. The syntax for both statements for a standard Oracle Database 12c sample database is

ALTER SESSION SET CONTAINER=pdborcl;
CREATE USER student IDENTIFIED BY student;

One alternative to a local password is an SSL-authenticated certificate name, which would
look like this:

CREATE USER c##plsql IDENTIFIED EXTERNALLY AS 'certificate_name';

The LDAP alternative would look the same but use a different source:

CREATE USER c##plsql IDENTIFIED EXTERNALLY AS 'CN=miles,O=apple,C=US';

The certificate is an SSL file. It lets you encrypt your database credentials to support secure
data communication.

Any of the three syntax methods can be used to create a private student pluggable database
work area, which is a traditional schema in a pluggable-enabled database. A number of other
options are available for the default and temporary tablespaces of the work area, and quota syntax
is available to limit the space authorized for a schema. These clauses are covered in the “Database”
section later in the appendix.

Another clause allows you to assign a profile to users when you create them. That clause
generally follows any tablespace assignments and quota limits. An example that assumes default
assignment of tablespaces and quota limits would look like this with a local password:

CREATE USER student IDENTIFIED BY student
PROFILE profile_name;

14-AppA.indd 654 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 655

Profiles allow you to restrict the number of concurrent user sessions, amount of CPU per call,
and so forth. Profiles also let you impose restrictions or override password functions. The latter
allows you to enhance the base security provided by the Oracle database, like surrounding the
castle gate with a moat.

You can also set a password as expired. With this setting, when the user signs on with a
provided password, he or she will be prompted to change it immediately. This is the best practice
for issuing user accounts. Accounts are unlocked by default, but sometimes an account should be
locked. For example, you might need to create the schema as a reference for development
purposes in another schema before planned use of the schema. These clauses generally follow all
of those previously discussed. A sample CREATE statement with these clauses would look like this:

CREATE USER student IDENTIFIED BY student
PROFILE profile_name
PASSWORD EXPIRE
ACCOUNT LOCK;

TIP
For security reasons, you should always use PASSWORD EXPIRE.

You can use an ALTER statement to unlock the user account when the time comes to activate
it. Appendix B shows the ALTER statement syntax to unlock an account.

Restricting access through the Oracle Transparent Network Substrate (TNS) is accomplished
by configuring the Oracle networking stack. This is different from the authentication model in the
MySQL database, where the user’s point of access is part of his or her unique identification. For
example, you can configure the sqlnet.ora file to be used to restrict connections within a
domain.

The following example shows how to enable or exclude client machine access (host hardening),
which is covered later in the appendix in the “Listener Hardening” section. The parameter lines go
into the sqlnet.ora file on the server.

tcp.validnode_checking = yes
tcp.invited_nodes = (192.168.0.91)
tcp.excluded_nodes = (192.168.0.129)

The first parameter allows you to check whether the IP address is authorized. The second line
shows you how to authorize a client, and the third line shows you how to prohibit a client from
connecting to the Oracle database server.

After the user connects to the database, you can provide fine-grain access control through
SQL configuration. For example, you can restrict a user’s access down to the column level with
the DBMS_REPCAT package, as shown in Appendix D. Then, you grant execute privileges on the
program only to users who should have limited access privileges.

You can find full documentation on Oracle networking in Oracle Database Net Services
Reference 12c Release.

This concludes the basics of setting up a new user account. You can explore the topic in more
depth online in the Oracle Database SQL Language Reference 12c Release.

14-AppA.indd 655 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

656 Oracle Database 12c PL/SQL Programming

Creating a PDB Oracle User
Creating a PDB user is also synonymous with creating a pluggable database or schema. The
substantial difference between a container and pluggable database user are

 ■ A CDB user name must start with a c## preface. After the c## preface, a CDB user name
includes letters, underscores, and numbers. Container database users are created in the
CDB, which means their information is stored in the container’s data catalog. The CDB
sys or system user or a privileged user-defined CDB user can change the password of a
CDB user.

 ■ A PDB user name may start with a letter and include letters, underscores, and numbers.
A pluggable database user is an ADMIN user who is created when you define the PDB.
The PDB is the only repository for pluggable database users. The container database sys
and system users can’t change pluggable users by default, unless you use the ALTER
SESSION statement to set the container as a PDB. Only the pluggable sys, system,
and ADMIN pluggable users can change the status or password of the pluggable user.

Oracle Network Tracing
Sometimes you’ll need to trace what’s happening in the Oracle portion of the network
communication stack. You do that by configuring the sqlnet.ora file. It is possible to set
four levels of tracing: Oracle Worldwide Support (16), Administration (10), User (4), and
Tracing Off (0).

When you add the following parameters to the sqlnet.ora file, you generate a
server-side network trace file:

trace_level_server = 10
trace_file_server = server.trc
trace_directory_server = <path_to_trace_dir>

The trace_level_server value designates the desired level of tracing. The setting
shown (10) here provides values at the local administrator level.

An alternative to server-side tracing is client-side tracing, which can be accomplished
by adding a parameter to the sqlnet.ora file, like this:

trace_level_client = 10
trace_unique_client = on
trace_file_client = sqlnet.trc
trace_directory_client = <path_to_trace_dir>

Network tracing is a valuable tool when you’re debugging your application stack. You
might likewise need to debug the processing instruction sets, and that is included in the
“Conditional Compilation Statements” section in Chapter 5.

14-AppA.indd 656 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 657

You create an ADMIN user for a PDB when you create it. The syntax to create a video PDB
with a videoadm ADMIN user is

SQL> CREATE PLUGGABLE DATABASE videodb
 2 ADMIN USER videoadm IDENTIFIED BY Video1
 3 ROLES = (dba)
 4 DEFAULT TABLESPACE videots
 5 DATAFILE '<oracle_home_dir>/VIDEOPDB/VIDEO01.DBF' SIZE 500M ONLINE
 6 FILE_NAME_CONVERT = ('<oracle_home_dir>/PDBSEED/',
 7 '<oracle_home_dir>/VIDEOPDB/');

Line 2 creates the pluggable videoadm user and assigns it a password. Line 3 assigns the
user the dba role and enables it to act like an Oracle Database 11g system user in the private
context of the videodb PDB. You should reuse the pluggable videodb name when converting
the filenames for the PDB catalog.

The step on lines 6 and 7 clones the generic catalog from the seed version to an implementation
version. It creates three physical files for the pluggable videodb database, pdbseed_temp01.dbf,
sysaux01.dbf, and system01.dbf, and nests them in a videopdb directory. The nesting
directory separates these files from the CDB files. The last provisioning step creates the default
videots tablespace shown on line 5. The physical file location is placed in the videodb
subdirectory to keeps its files in the same location.

You raise an exception when you create the DEFAULT TABLESPACE before creating the
PDB. The exception raised when you execute CREATE PLUGGABLE DATABASE is

CREATE PLUGGABLE DATABASE videodb
*
ERROR at line 1:
ORA-00604: error occurred at recursive SQL level 1
ORA-01537: cannot add file 'C:\APP\ORACLE\ORADATA\ORCL\VIDEO01.DBF' - file

You can change the password of the videoadm user by connecting with the sysdba
privilege to the PDB, like this:

sqlplus sys@video as sysdba
Enter password: Video1
SQL> ALTER USER videoadm IDENTIFIED BY Video2;

Now, you can create users in the PDB. As mentioned earlier, it is also possible to do this as
the CDB’s sysdba user when you change the default CONTAINER context. The syntax is consistent
with prior releases:

SQL> CREATE USER student IDENTIFIED BY student;
SQL> GRANT CREATE cluster, CREATE indextype, CREATE operator
 2 , CREATE PROCEDURE, CREATE SEQUENCE, CREATE SESSION
 3 , CREATE TABLE, CREATE TRIGGER, CREATE TYPE
 4 , CREATE VIEW, UNLIMITED TABLESPACE TO student;

This section has shown you how to work with PDB users. As with CDB users, you can explore
the topic in more depth online in the Oracle Database SQL Language Reference 12c Release.

14-AppA.indd 657 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

658 Oracle Database 12c PL/SQL Programming

Granting Security Privileges
Security privileges are permissions granted to individual users to work in the database. Some
privileges grant wide-ranging permissions while others grant narrowly defined rights. Privileges
should be granted to users only after careful consideration and only to support real business
needs. Wide-ranging permissions offer more rights, such as CREATE ANY RESOURCE, which
allows users to create any type of database object in their own schema or others’ schemas. That
degree of access, however, is probably a bad idea for anybody other than a DBA.

Designing the architecture for database applications requires making design decisions involving
technology and security. These decisions must resonate at every level of the development organization
to support integration when the pieces of the application product are assembled. Security, a crucial
component in application design, manages how users of the application interact with the data.

The superuser account holds all privileges and grants database privileges to other users. Privileges
provide permissions to perform a task or a series of tasks. Some databases support the concept of roles,
or groups of related privileges. A role gives a user a series of bundled privileges. Roles are a convenient
tool when you understand what they do. They’re dangerous, however, if you lack knowledge about
what they do, because you can inadvertently grant privileges that you shouldn’t.

There are two types of security privileges: system privileges and object privileges. System
privileges don’t relate to a specific object or schema/database. Object privileges provide specific
permissions to work with individual objects or schemas/databases.

System privileges allow a user to take wide-ranging actions and thus should be restricted to
specific administrative user accounts. They allow a user to administer a system, create new privileges,
change the behavior of existing privileges, change the behavior of system resources, or manipulate
any type of object, such as tables, views, indexes, and so forth. DBAs have system privileges, and
these privileges are often provided to developers in small test systems. When developers package
their code for integration testing and deployment, DBA system privileges run their code.

Object privileges grant specific access to objects to a single user or set of users. These
privileges often allow the user to manipulate data objects such as tables or views: a user can
select, insert, update, or delete data. They also grant privileges to run or execute stored programs,
such as stored functions, stored procedures, and instantiable object types. Object privileges also
are granted to the DBA during implementation (as qualified in Table A-3), but they’re key

Object(s) Object Privilege(s)

COLUMN, INDEX, MATERIALIZED VIEW,
TABLE, VIEW

ALTER, CREATE, COMMENT, DROP, SELECT

CLUSTER, DATABASE, LINK ALTER, CREATE, DROP
DIRECTORY READ, WRITE

FUNCTION, PROCEUDRE ALTER, CREATE, DROP, EXECUTE
INDEX ALTER, CREATE, DROP

TABLE, VIEW DELETE, INSERT, LOCK, UPDATE
TRIGGER ALTER, CREATE, DROP
USER ALTER, CREATE, DROP

TABLE A-3. Object Privileges

14-AppA.indd 658 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 659

components of application architectures. They allow the application designer to segment sets of
tables and programs into separate schemas. These schemas act like packages in object-oriented
programming languages.

Both system and object privileges can be revoked by the grantor or a superuser. Any work the
user does to the data while he or she has access to the system remains unaltered when privileges
are revoked. Therefore, privileges should be granted only where appropriate, and their use should
be monitored.

Granting Oracle Privileges
Creating an account in an Oracle database doesn’t automatically enable it for use. First you must
grant basic permissions to use the account. The system user or an administrator account created
with the CREATE ANY USER privilege should run these commands.

These are the basic privileges that you would want to extend to a default user. However,
privileges don’t work when you create a user without a default and temporary tablespace clause,
unless you also grant UNLIMITED TABLESPACE (but don’t), as shown here:

GRANT create cluster, create indextype, create operator
, create procedure, create sequence, create session
, create table, create trigger, create type
, create view, unlimited tablespace TO video;

This type of GRANT statement lets you create a user in a small, developer-only environment,
but you shouldn’t do this in a production database. It works because you avoid assigning default
and temporary tablespaces by granting unlimited space rights. This is never a good thing to do,
except on your laptop! Some might say that you shouldn’t do it on your laptop either, but that is
for you to decide.

The ALTER statement also lets you assign a default tablespace and a temporary tablespace
after a user is created. Both the CREATE and ALTER statements let you assign quotas to the default
tablespace, but you can no longer assign a quota to the temporary tablespace. Any attempt to do
so raises an error. This change became effective with Oracle Database 10g Release 2. You can find
the syntax for the ALTER statement in Appendix B.

NOTE
Beginning with Oracle Database 10g Release 2, you can no longer
assign a temporary tablespace quota.

A sample grant of SELECT privileges, typically made by a user for his or her own schema
objects, would look like this:

GRANT SELECT ON some_tablename TO some_user;

Sometimes you may want to grant a privilege to another user along with the privilege to
extend those privileges to a third party. This is the infrequent pattern of grants reserved for setting
up administrative users. You append a WITH GRANT OPTION clause to give another user the
right to provide other users with the privileges you’ve conveyed to them:

GRANT SELECT ON some_tablename TO some_user WITH GRANT OPTION;

14-AppA.indd 659 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

660 Oracle Database 12c PL/SQL Programming

Oracle also supports the concept of a synonym, which simplifies how another user can access
your object. Without a synonym, the other user would need to put your user name and a dot (.)
in front of the object name before accessing it. The dot is called a component selector. A synonym
creates an alias that maps the user name, component selector, and object name to a synonym
(alias) name in the user’s work area or schema.

You don’t need to use a component selector on objects that you create in your schema.
They’re natively available to you. The sys superuser has access to every object in the Oracle
Database 12c server by simply addressing objects by their fully qualified location—schema name,
component selector, and object name. This makes perfect sense when you recall that the user and
schema names are synonymous.

You create a synonym like this:

CREATE SYNONYM some_tablename FOR some_user.some_tablename;

Typically, but not always, the local table name is the same as the table name in the other
schema. You can also grant privileges on a table to a PUBLIC account, which gives all other users
access to the table. Public synonyms also exist to simplify how those users access the table.

You would grant the SELECT privilege to the PUBLIC account with this syntax:

GRANT SELECT ON some_tablename TO PUBLIC;

After granting the privilege, you create a public synonym with this syntax:

CREATE PUBLIC SYNONYM some_tablename FOR some_user.some_tablename;

As a rule of thumb, use the PUBLIC account only when you’re granting privileges to stored
programs with invoker rights. This appendix previously discussed both the default definer rights
model and the invoker rights model.

Revoking Privileges
You can revoke any privilege from a user provided that you or a peer superuser granted that
privilege. For example, suppose that while reading the previous section you accidentally granted
the UNLIMITED TABLESPACE privilege to the video user, and now you want to revoke it. The
command to do so would look like this:

REVOKE unlimited tablespace FROM video;

The interesting thing about this revocation is that it doesn’t immediately disable the user from
writing to the tablespace generally. That’s because revocation only disallows the allocation of
another extent to any table previously created by the user. An extent is a contiguous block of
space inside a tablespace. Extents are added when an INSERT or UPDATE statement can’t add
anything more in the allocated space. The number of extents allocated to a table is a measure of
the fragmentation of the table on disk.

You can revoke privileges from the PUBLIC account with the same type of syntax:

REVOKE SELECT ON some_tablename FROM PUBLIC;

When you revoke privileges that included a WITH GRANT OPTION clause, make sure you
also revoke the granting option. There should be a routine process in place for validating the
grants and privileges to ensure that they comply with your company’s governance policy and

14-AppA.indd 660 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 661

appropriate laws, such as Sarbanes-Oxley in the United States. You can find more information
about hardening in an application context in the book Oracle E-Business Suite Security, by John
Abel (Oracle Press, 2006).

Using Database Constraints
Constraints are critical components in databases. They restrict (constrain) what you can add to,
modify in, or delete from tables with INSERT, UPDATE, and DELETE statements. Constraints let
you restrict what can be placed in columns, rows, tables, or relationships between tables. That’s a
tremendously broad statement that requires some qualification. So what are these restrictions and
why are they important?

This section covers the following database constraints:

 ■ NOT NULL

 ■ UNIQUE

 ■ Primary key

 ■ Foreign key

 ■ CHECK

A preliminary understanding of constraint capabilities should help you focus on their respective
roles as you read this section. Two types of constraints are used: column constraints and table
constraints. A column constraint applies to a single column. You define it inline by adding it to the
same line in which you define the column. Inline constraints don’t require an explicit reference to
the column because they apply to the column that shares the line. You can also define a column
constraint after the definition of all column values in Oracle Database. Constraints that follow the
definition of columns are out-of-line constraints because they are not placed on the same line as
their column definition. You create tables with the CREATE statement, covered in Appendix B.

The generalized definition of a CREATE TABLE statement is as follows:

CREATE TABLE table_name
(column_name1 data_type1 inline_constraint_definition
, out_of_line_constraint_definition);

Some constraints involve more than a single column. Multiple-column constraints are table
constraints. Table constraints are always defined after the list of columns as you create a table,
because they depend on the column definitions. Alternatively, table constraints can be added to a
table definition with an ALTER TABLE statement. Appendix B covers the syntax for maintenance
activities such as the ALTER TABLE statement.

Figure A-4 provides a matrix that compares constraints against the behaviors they can restrict:
columns, rows, tables, and external relationships between tables.

Column-level constraints let you restrict whether a column can be empty or must contain a
value. They also let you restrict the values that can be inserted into a column, such as only a Yes
or No string, and restrict the values to a list of values found in another table (that’s the role of a
foreign key, as you’ll discover later in this section).

Row-level constraints let you restrict the behavior of one or a group of column values based
on one or a group of column values in the same row. For example, you could constrain one
column’s value based on another column’s value.

14-AppA.indd 661 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

662 Oracle Database 12c PL/SQL Programming

Table-level constraints let you restrict the behavior between rows in a table. A unique constraint
on one or a group of columns prevents more than one row from having the same value for that
column or group of columns.

External constraints are trickier because they involve relationships between tables. They limit
the value list of a column or a group of columns (foreign key) to those values already found in
another column or group of columns (primary key) in another table. This type of constraint is
known as a referential integrity constraint because it ensures that a reference in one table can be
found in another.

The following subsections describe NOT NULL, UNIQUE, primary key, foreign key, and
CHECK constraints.

NOT NULL Constraints
A NOT NULL constraint applies to a single column only, as indicated in Figure A-4. It restricts a
column by making it mandatory, which means you can’t insert a row without a value in the column.
Likewise, you can’t update a mandatory column’s value from something to a null value. Optional
columns are nullable or null-allowed. This means you can enter something or nothing, where
nothing is a null value. Null values also differ from empty strings.

Oracle requires that you define NOT NULL constraints inline. There’s no option to add a NOT
NULL constraint as a table constraint in an Oracle CREATE TABLE statement. You can, however,
use the ALTER TABLE statement to add a NOT NULL constraint to an existing table’s column.
That is, provided the table is empty or you’ve put data in that column for all existing rows before
you alter the table to add a NOT NULL constraint.

NOT NULL constraints impose a minimum cardinality of 1 on a column, which typically
makes the column’s cardinality [1..1] (one-to-one). This is a Unified Modeling Language (UML)
notation for cardinality. The UML notation assigns the minimum cardinality constraint to the
number on the left and the maximum cardinality constraint to the number on the right. The two
dots in the middle indicate a range.

Maximum cardinality is always considered 1, because each column has one data type and
one value in a relational model. The rule applies to all scalar data types.

FIGURE A-4. Constraint matrix

Constraint Column Row Table External

Not Null

Check

Unique

Primary Key

Foreign Key

Index

Trigger

14-AppA.indd 662 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 663

The maximum cardinality rule changes in an object relational database management system
(ORDBMS), such as Oracle Database 12c. That’s because it supports collection data types. In an
ORDBMS, the maximum cardinality can be one to many, depending on what you measure. It is
one when you measure whether or not a column contains a collection data type, and it’s many
when you measure the number of elements in a collection data type. Another twist is some
arbitrary number between one and many, which happens with a varray collection type in an
Oracle database. The varray collection has a fixed maximum size, like ordinary arrays in
programming languages.

Oracle lets you create NOT NULL columns when you create tables and lets you modify a
column in an existing table to make it a NOT NULL or null-allowed column. You perform the
former with the CREATE TABLE statement and the latter with the ALTER TABLE statement.
Appendix B shows you how to use the CREATE TABLE and ALTER TABLE statements.

All rows must contain data in the target column before you can add a NOT NULL constraint.
You can remove a NOT NULL constraint from a column by using an ALTER TABLE statement.

You can mimic the behavior of a NOT NULL constraint by adding a CHECK constraint after the
table is created. NOT NULL and CHECK constraints are stored exactly alike in the data catalog.
Unfortunately, a NOT NULL restriction on a CHECK constraint isn’t displayed when you describe
the table. Using a CHECK constraint to mimic a NOT NULL constraint is not a good idea, because
it can be misleading to other developers and disguise business rules.

Cardinality
Cardinality comes from set mathematics and simply means the number of elements in a set.
For example, in an arbitrary set of five finite values, a cardinality of [1..5] qualifies the
minimum of 1 and the maximum of 5. This set expresses a range of five values.

In databases, cardinality applies to the following:

 ■ The number of values in an unconstrained column within a row has a default
cardinality of [0..1] (zero-to-one) for nullable columns. (The minimum cardinality
of 0 applies only to nullable columns.)

 ■ The number of values in a NOT NULL constrained column within a row has a
cardinality of [1..1] (one-to-one).

When there’s no upward limit on the number of values in a column, it holds a collection.
Collections typically contain one-to-many elements and their cardinality is [0..*] (zero-to-many).

Developers often describe the frequency of repeating values in a table as having low or
high cardinality. High cardinality means the frequency of repeating values is closer to
unique, where unique is the highest cardinality. Low cardinality means values repeat many
times in a table, such as a gender column, where the distribution is often close to half and
half. A column that always contains the same value, which shouldn’t occur, is in the lowest
cardinality possible.

Cardinality also applies to binary relationships between tables. Two principal physical
implementations of binary relationships exist: one-to-one and one-to-many. The one-to-
many relationship is the most common pattern. In this pattern, the table on the one side of
the relationship holds a primary key and the table on the many side holds a foreign key.

14-AppA.indd 663 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

664 Oracle Database 12c PL/SQL Programming

NOTE
Although you can use a CHECK constraint like a NOT NULL constraint,
you shouldn’t.

You can also give meaningful names to NOT NULL constraints in an Oracle database when
you create tables. Using meaningful names helps you to diagnose runtime violations of the
constraint more easily than when working with system-generated names. Finding the name of a
NOT NULL constraint is more difficult if you didn’t assign a constraint name.

You can also find the columns of a NOT NULL or CHECK constraint in the CDB_, DBA_, ALL_,
USER_CONSTRAINTS, or USER_CONS_COLUMNS view. You can use the following query to
discover information about the constraint:

SQL> COLUMN owner FORMAT A10
SQL> COLUMN constraint_name FORMAT A20
SQL> COLUMN table_name FORMAT A20
SQL> COLUMN position FORMAT 9
SQL> COLUMN column_name FORMAT A20
SQL> SELECT ucc.owner
 2 , ucc.constraint_name
 3 , ucc.table_name
 4 , ucc.column_name
 5 , ucc.position
 6 FROM user_constraints uc INNER JOIN user_cons_columns ucc
 7 ON ucc.owner = uc.owner
 8 AND ucc.constraint_name = uc.constraint_name
 9 WHERE uc.constraint_type = 'C';

The same query works to return CHECK constraints, because NOT NULL constraints are
variations on CHECK constraints in the data catalog.

UNIQUE Constraints
A UNIQUE constraint is a table-level constraint, as indicated in Figure A-4, because it makes the
value in a column or set of columns unique within the table. Table-level constraints apply to
relationships between columns, sets of columns, or all columns in one row against the same
columns in other rows of the same table. UNIQUE constraints are out-of-line constraints that are
set after the list of columns in a CREATE statement. Alternatively, you can add them through an
ALTER statement after creating a table.

Every well-designed table should have a minimum of two unique keys: a natural key and a
surrogate key. The natural key is a column or set of columns that describes the subject of the table
and makes each row unique. You can search a table for a specific record by using the natural key
in a WHERE clause, which makes natural keys internal identifiers within the set of data in a table.
Natural keys are rarely a single column.

All surrogate keys are uniquely indexed as a single column. Surrogate keys are ID columns.
They’re generally produced from automatic numbering structures known as sequences. Oracle
Database 12c introduces identity columns, which hide the sequence creation, as qualified in
Appendix B. Surrogate keys don’t describe anything about the data in the table. They do, however,
provide a unique identifier that can be shared with other related tables. Those related tables can
then link their data back to the table where the surrogate keys are unique.

14-AppA.indd 664 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 665

The natural and surrogate keys are potential candidates to become the primary key of a data
table. As such, they’re also candidate keys. The primary key uniquely identifies rows in the table
and must contain a unique value, as opposed to a null value. As a rule, you should choose the
surrogate key as the primary key because all joins will use the single column. This makes writing
joins in SQL statements easier and less expensive to maintain over time because surrogate keys
shouldn’t change or be reused. By itself, a surrogate key, a sequence-generated value, doesn’t
provide optimal search performance when you have lots of data. That’s accomplished by a unique
index made up of the surrogate key and the natural key. That type of index helps to optimize
databases to find and retrieve rows faster.

A UNIQUE constraint can apply to either a single column or a set of columns. You can create
a UNIQUE constraint in Oracle Database 12c when you create or alter a table. The UNIQUE
constraint automatically creates an index to manage the constraint—after all, it is a table
constraint, and when you attempt to add a row that duplicates a unique column or set of
columns, there must be a reference against which it can make a comparison to prevent it. Those
reference points are indexes, and they’re organized by a B-tree, an inverted tree structure that
expedites finding a matching piece of data. A B-tree brackets elements in groups and then
subgroups until it arrives at the basic elements of data, which are the column or columns of data
qualified as unique.

As mentioned, you can create a table with a UNIQUE constraint or alter an existing table to
add a UNIQUE constraint. Creating a UNIQUE constraint implicitly adds a unique index. The
UNIQUE constraint is visible in the CDB_, DBA_, ALL_, or USER_CONSTRAINTS administrative
view of the database catalog. You can also find the columns of the UNIQUE constraint in the
ALL_, DBA_, USER_CONSTRAINTS, or USER_CONS_COLUMNS view. Likewise, you can find
another entry for the UNIQUE constraint in the CDB_, DBA_, ALL_, USER_INDEXES, or USER_
IND_COLUMNS view.

The following query shows you how to check the Oracle database catalog for UNIQUE
constraints:

SQL> COLUMN owner FORMAT A10
SQL> COLUMN constraint_name FORMAT A20
SQL> COLUMN table_name FORMAT A20
SQL> COLUMN position FORMAT 9
SQL> COLUMN column_name FORMAT A20
SQL> SELECT ucc.owner
 2 , ucc.constraint_name
 3 , ucc.table_name
 4 , ucc.position
 5 , ucc.column_name
 6 FROM user_constraints uc INNER JOIN user_cons_columns ucc
 7 ON ucc.owner = uc.owner
 8 AND ucc.constraint_name = uc.constraint_name
 9 WHERE uc.constraint_type = 'U';

The query returns a list of all UNIQUE constraints from the data catalog. You cannot drop this
implicitly created index because the UNIQUE constraint is dependent on it. An attempt to drop an
implicitly created unique index results in an ORA-02429 exception. This exception’s error
message text aptly says that you cannot drop an index used for enforcement of a unique/primary
key. However, you can alter the table and drop the UNIQUE constraint. The command also
implicitly drops the supporting index.

14-AppA.indd 665 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

666 Oracle Database 12c PL/SQL Programming

It’s important to note that unique constraints create unique indexes and that each index
speeds access while slowing inserts, updates, and deletes. Unique constraints should be added
for natural keys and a combination of the surrogate and natural key. Using unique constraints for
other than the natural key purposes requires careful consideration because it can impact the
efficiency of throughput, especially in online transaction processing (OLTP) systems.

Primary Key Constraints
As previously mentioned, primary keys uniquely identify every row in a table. Primary keys are
also the published identifier of tables. As such, primary keys are the point of contact between data
in one table and data in other tables. Primary keys also contain the values that foreign key
columns copy and hold. When using referential integrity, the primary and foreign keys’ shared
values let you link data from different tables together through join operations.

Primary keys can be column or table constraints. They’re column constraints when they apply
to a single column, such as a surrogate key. They’re generally table constraints when they apply to

Oracle Unique Indexes
You can create an index as a stand-alone object in an Oracle database. Indexes behave
differently than constraints. For example, there is no UNIQUE constraint visible in the
USER_CONSTRAINTS administrative view of the database catalog or in the superuser views
of ALL_ and DBA_CONSTRAINTS. However, you can find entries for unique indexes in the
ALL_, DBA_, USER_INDEXES, or USER_IND_COLUMNS view.

The following query is similar to the query that finds UNIQUE constraints, but it uses
different tables. It finds all unique indexes.

COLUMN table_owner FORMAT A10
COLUMN index_name FORMAT A20
COLUMN table_name FORMAT A20
COLUMN column_position FORMAT 9
COLUMN column_name FORMAT A20
SQL> SELECT ui.table_owner
 2 , uic.index_name
 3 , ui.uniqueness
 4 , uic.table_name
 5 , uic.column_position
 6 , uic.column_name
 7 FROM user_indexes ui JOIN user_ind_columns uic
 8 ON uic.index_name = ui.index_name
 9 AND uic.table_name = ui.table_name
 10 WHERE ui.uniqueness = 'UNIQUE';

You would find the nonunique indexes with the following change to line 10:

10 WHERE ui.uniqueness = 'NONUNIQUE';

You also have the right to drop (or remove) indexes without modifying the table that
the indexes organize. This is possible because no UNIQUE constraint is dependent on the
unique index.

14-AppA.indd 666 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 667

a natural key, because natural keys usually contain more than one column. Natural keys often
contain multiple columns because that is generally how you qualify uniqueness in a set.

A single-column primary key exhibits two behaviors: it is not null, and it is unique. A multiple-
column primary key can have a set of behaviors different from those of a single-column primary
key. Although the collection of columns must be not null and unique in the set, it is possible that
one or more, but not all, columns can contain a null value. This rule is not consistently enforced
across relational databases in the industry.

Oracle implements all primary keys as NOT NULL and UNIQUE. This means all columns in a
single- or multiple-column primary key are mandatory columns. Any attempt to insert a null value
in a column of a primary key generates an ORA-01400 error. The error message tells you that you
cannot insert NULL into the primary key.

You can assign a meaningful name to primary key constraints, but Oracle assigns a system-
generated name when you don’t. It is much more difficult to trace back errors on primary key
constraints if you don’t give them meaningful names. You can look up the definition of primary
keys in the CDB_, DBA_, ALL_, or USER_CONSTRAINTS and USER_CONS_COLUMNS
administrative views. Primary keys always have a P in the CONSTRAINT_TYPE column.

Here’s the syntax for this query:

SQL> COLUMN owner FORMAT A10 HEADING "Owner"
SQL> COLUMN table_name FORMAT A20 HEADING "Table Name"
SQL> COLUMN constraint_name FORMAT A20 HEADING "Constraint Name"
SQL> COLUMN column_name FORMAT A20 HEADING "Column Name"
SQL> COLUMN constraint_type FORMAT A1 HEADING "Primary|Key"
SQL> SELECT ucc.owner
 2 , ucc.constraint_name
 3 , ucc.table_name
 4 , ucc.position
 5 , ucc.column_name
 6 FROM user_constraints uc INNER JOIN user_cons_columns ucc
 7 ON ucc.owner = uc.owner
 8 AND ucc.constraint_name = uc.constraint_name
 9 WHERE uc.constraint_type = 'P';

Primary key constraints should never be omitted when you create a table. Likewise, you
should create a unique constraint that contains the surrogate primary key column and all of the
natural key columns. The unique constraint speeds all join resolution because it relies on multiple
columns rather than a single column.

Foreign Key Constraints
As indicated in Figure A-4, a foreign key constraint is both a column-level constraint and an
external constraint. The column-level constraint restricts the list of values to those found in a
primary key column or set of columns. The primary key column(s) generally exists in another
table, which is why an external constraint exists. A self-referencing relationship occurs when the
foreign key points to a primary key in the same table. In a self-referencing relationship, the
primary and foreign keys are different columns or different sets of columns.

A foreign key constraint basically instructs the database to allow only the insertion or update
of a column’s value to a value found in a referenced primary key. Foreign keys always contain
the same number of columns as the primary key, and the data types of all columns must match.

14-AppA.indd 667 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

668 Oracle Database 12c PL/SQL Programming

The column and data type matching criteria is the minimum matching criteria. The values in the
foreign key column(s) must match the values in the primary key column(s). More or less, foreign
keys impose a boundary range of values on foreign column(s).

The matching values in the foreign and primary key columns allow you to join rows found in
one table to those found in another table. Joins between primary and foreign keys are made on
the basis of equality between column values, and they are equijoins, joins that are based on the
equality of values in two columns or two sets of columns.

Foreign key constraints make the database responsible for enforcing cross-referencing rules.
These rules ensure referential integrity, which means that a constraint reference guarantees a
foreign key value must be found in the list of valid primary key values. Many commercial
database applications don’t impose referential integrity through constraints because companies
opt to enforce them through stored programs. A collection of stored programs that protects the
integrity of relationships is an application programming interface (API). The benefit of an API is
that it eliminates the overhead imposed by foreign key constraints. This also means DML statements
run faster without database-level constraint validation.

The downside of foreign key constraints is minimal but important to understand. Although
foreign key constraints guarantee referential integrity of data, they do so at a cost of decreased
performance. A nice compromise position on foreign keys is to deploy them in the stage
environment (preproduction) to identify any referential integrity problems with your API.

NOTE
A stage environment is where stable information technology
companies conduct end-user testing and final integration testing.

Foreign key constraints are useful tools for electronic data processing (EDP) auditors regardless
of whether they’re deployed to maintain referential integrity. For example, an EDP auditor can
attempt to add a foreign key constraint to verify whether the API does actually maintain the
integrity of relationships. An EDP auditor knows there’s a problem with an API if a foreign key
can’t be added. That type of failure occurs when the data doesn’t meet the necessary referential
integrity rules. Likewise, an EDP auditor verifies the referential integrity of an API when foreign key
constraints can be added to a primary-to-foreign key relationship. Such experimental foreign
key constraints are removed at the conclusion of an EDP audit.

An Oracle foreign key constraint is very robust and can have three possible implementations:

 ■ The default implementation prevents the update or deletion of a primary key value when
a foreign key holds a copy of that value.

 ■ Another implementation lets you delete the row but not update the primary key column
or set of column values. This is accomplished by appending an ON DELETE CASCADE
clause when creating or modifying the foreign key constraint.

Mandatory or Optional Foreign Keys
A mistaken belief among some database developers is that a foreign key constraint restricts
a column’s cardinality such that it must have a value. A foreign key constraint does not
implement a NOT NULL constraint. You must assign a NOT NULL constraint when you want
to prevent the insertion or update of a row without a valid foreign key value.

14-AppA.indd 668 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 669

 ■ Another implementation updates the foreign key value to a null value when the row
containing the primary key is deleted. Like the other options, you can’t update the
primary key column value. This doesn’t work when a foreign key column has a column-
level NOT NULL constraint. In that case, any attempt to delete the row holding the
primary key raises an ORA-01407 error, which reports that the foreign key column can’t
be changed to a null value.

You can disable a foreign key constraint in an Oracle database. This would let a DELETE
statement remove the row that has a primary key value with dependent foreign key values.
Enabling the foreign key constraint after deleting the row with the primary key raises an ORA-
02298 error. The error indicates that the database can’t validate the rule that the constraint
supports, which is that every foreign key value must be found in the primary key.

The Oracle database also requires that you add foreign key constraints as out-of-line
constraints when creating a table. This means that foreign key constraints are treated as table
constraints. You can add self-referencing foreign key constraints during table creation, but
inserting values requires that the first row insertion validates its foreign key against the primary
key value in the same row. This means the first row must have the same value for the primary and
foreign key column or set of columns.

You can also find foreign keys in the CDB_, DBA_, ALL_, USER_CONSTRAINTS, or USER_
CONS_COLUMNS administrative views.

SQL> COL c_source FORMAT A38 HEADING "Constraint Name:| Table.Column"
SQL> COL r_column FORMAT A38 HEADING "References:| Table.Column"
SQL> SELECT uc.constraint_name||CHR(10)
 2 || '('||ucc1.TABLE_NAME||'.'||ucc1.column_name||')' c_source
 3 , 'REFERENCES'||CHR(10)
 4 || '('||ucc2.TABLE_NAME||'.'||ucc2.column_name||')' r_column
 5 FROM user_constraints uc
 6 , user_cons_columns ucc1
 7 , user_cons_columns ucc2
 8 WHERE uc.constraint_name = ucc1.constraint_name
 9 AND uc.r_constraint_name = ucc2.constraint_name
 10 AND ucc1.POSITION = ucc2.POSITION
 11 AND uc.constraint_type = 'R'
 12 ORDER BY ucc1.TABLE_NAME
 13 , uc.constraint_name;

This is similar to the other queries against the database catalog. The only difference is that the
constraint type value narrows it to referential integrity.

CHECK Constraints
CHECK constraints let you verify the value of a column during an insert or update. A CHECK
constraint can set a boundary, such as the value can’t be less than, greater than, or between certain
values. This differs from the boundary condition imposed by foreign key constraints because CHECK
constraints qualify their boundaries rather than map them to dynamic values in an external table.

As mentioned earlier in the NOT NULL constraint discussion, you can use a CHECK constraint
to guarantee NOT NULL behaviors, but that is considered a bad practice. Boundary conditions on
the value of a column are typically column-level constraints. You also have set membership
conditions. This type of validation works against a set of real numbers, characters, or strings.

14-AppA.indd 669 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

670 Oracle Database 12c PL/SQL Programming

Beyond the column-level role of a CHECK constraint, there are boundary and set membership
conditions where the comparison values are the values of other columns in the same row. When
the boundaries are set by the values of other columns in the same row, a CHECK constraint
becomes a row-level constraint.

A simple boundary or set element example can also apply to row-level constraints. A row-
level CHECK constraint can disallow the insertion of a null value when another column in the
same row would also contain a null value. (A business rule that illustrates this type of need would
be a menu item table that has separate columns that classify whether an item belongs on the
breakfast, lunch, or dinner menu.)

Beyond boundary and set membership CHECK constraints are complex business rule conditions
that involve checking multiple other columns for sets of business rules. These complex CHECK
constraints are powerful tools, and in some cases are relegated to database triggers because not all
databases implement CHECK constraints. Row-level constraints must be implemented in database
triggers when CHECK constraints aren’t supported in a database management system.

Basketball scoring provides a nice business rule for illustrating a row-level CHECK constraint
that is complex. When a player scores a field goal from a shooting position beyond the 3-point
boundary, the goal is worth 3 points. Any other basket is worth 2 points, unless it is a free throw.
Free throws are worth 1 point. Let’s assume the table designed to record points during the game
contains the following three columns:

 ■ An optional column (that is null allowed) records whether the basket was made from
beyond the 3-point boundary; you enter an X when the condition is met: a field goal.

 ■ An optional column (again, null allowed) records whether a basket was a free throw;
you enter an X when the condition is met.

 ■ A mandatory column for the number of points is constrained by values in the optional
columns for a field goal and a free throw. When the field goal column contains an X,
you enter a 3. When the free throw column contains an X, you enter 1. When neither
contains an X, you enter 2.

A hidden rule in the foregoing business logic is that an X can be inserted or updated in the 3-point
boundary column only when the free throw column is null, and vice versa. It’s hidden because it
doesn’t change the entry of a value for the points scored, only the entry of the Xs in the same row. You
would implement CHECK constraints on the field goal and free throw columns that would verify that
the other column is null before allowing the insertion of a value in the respective column.

Oracle supports boundary constraints, set membership conditions, and complex logic CHECK
constraints. This means you can avoid writing database triggers for many row-level constraints,
which makes implementation actions easier.

The query for a NOT NULL constraint works for all CHECK constraints. You can find the rule
enforced by a CHECK constraint in the search_condition column of the ALL_, DBA_, or
USER_CONSTRAINTS view.

Security Hardening
This section discusses the following methods of hardening your database against attacks:

 ■ Oracle Audit Vault and Database Firewall

 ■ Password hardening

 ■ Listener hardening

14-AppA.indd 670 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 671

NOTE
For an exhaustive discussion of the technical aspects of database
security, see Effective Oracle Database 12c Security by Design, by
David Knox (Oracle Press, 2014). David’s book is not intended to
discuss logistical problems.

Categories of Attackers
For the past several years, the Verizon RISK Team has been publishing an annual Data Breach
Investigations Report (DBIR). This report breaks down major data breaches by identifying the
following: who is behind the data breaches, how the breaches occurred, what commonalities
exist between the breaches, and where mitigation efforts should be focused. Verizon is not the
only publisher of this kind of report, but its report is always very good.

Figure A-5 represents a compilation of the data regarding sources of attack from the past five
years of the Verizon DBIR. It is interesting to see that employee and partner attacks have virtually
been eliminated. Contrariwise, criminal attacks have grown steadily. This group comprises activists
who wish to expose or embarrass whomever their nemesis is, or desire to cripple financial or utility
networks for terroristic purposes. Whatever the reason is, they want your data and they are spending
millions of dollars per year to get at it.

One of the most common reasons attackers are able to breach data is the use of default or weak
passwords. Modern hackers typically use malware or brute-force techniques to discover accounts
that have weak or well-known passwords.

Database hackers are very sophisticated and professional in their work, spending many hours
gaining footholds in your network and researching it. Then, in one fell-swoop, they snatch your
most valuable data and cover up their tracks.

FIGURE A-5. Identifying the major source of data breaches

2008

Who’s Behind Data Breaches?
Verizon Data Breach Report

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

2009 2010 2011 2012

External Attack Employee Attack

Partner Attack Activist/Multi-Party Attack

14-AppA.indd 671 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

672 Oracle Database 12c PL/SQL Programming

The business of data harvesting is big! Billions of dollars are lost every year as a result of data
breaches. Data harvesters are paid per record, especially if those records contain sensitive
information such as credit card numbers or tax IDs. What’s more, as a DBA you could be facing
charges in some jurisdictions if you’re negligent in managing the security risks of your company
or corporation. Database security skills are likely to become as mainstream and as important as
database backup, recovery, and design skills. In the future, you will need database security skills
to even land a job as a DBA.

Oracle Audit Vault and Database Firewall
Benjamin Franklin’s axiom “an ounce of prevention is worth a pound of cure” applies perfectly to
database security—preventing something bad from happening in the first place is much more
practical than attempting to fix a problem once it has occurred. However, the preventative activities
that you choose may not be the most efficient. In fact, some activities, while well intended, may
hinder the business while providing very little protection. For example, system administrators may
spend inordinate amounts of time setting up complex, multilayered firewalls in an attempt to
protect their servers from hackers, only to discover that their efforts have merely slowed down
hackers because no steps were taken to

 ■ Actively listen to network and database traffic

 ■ Alert when anomalies happen

 ■ Intervene in hacking activities when they are in progress

A better approach to database security would be to set up fewer network zones and ramp up
proactive measures like honey pots, real-time traffic monitoring/alerting, and production data
redaction. This kind of prevention requires a shift in thinking from how you can stop hackers to
how you can detect and intervene while the hack is in progress. Luckily, Oracle provides you with
tools such as Audit Vault and Database Firewall. This tool provides you with “eyes” and “ears” on
database activity. It can alert you when suspicious activity is happening and obscure the data
when unauthorized users access it.

Oracle Audit Vault and Database Firewall is not a silver bullet that stops all attackers. It is able
to gather traffic patterns and provide you with a clear picture of database activity, but it does not
administer itself. You will need to train and tune this tool. It is quite possible that a large
organization will require an additional DBA to adequately manage this tool.

Password Hardening
Aside from having eyes, ears, and an intervention plan, you must harden user access. It will do
you very little good to purchase detection tools and configure them if your user accounts have
weak or default passwords.

Hackers typically go for the easiest target first. Their first activities generally include an attempt
to log in via well-known user name/password combinations. If that doesn’t work, they create
rainbow tables that store millions of user name/password/hash combinations. These types of tables
are easy to populate. Hackers simply upload millions of passwords and then loop through a targeted
list of user names. They alter the user’s password and store the resulting hash values.

The last and most difficult method of password cracking attempts to reverse-engineer a password
via known algorithms and seed values. Imagine a rainbow table that creates a hash for every letter
in a password. Each successful attempt is recorded until the entire password is cracked. Hackers
have become extremely sophisticated in these methods. They have recently graduated from standard

14-AppA.indd 672 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 673

CPU-based cracking to GPU-based cracking. Programs such as Whitepixel take advantage of the
massive processing power of popular video cards to accelerate brute-force password cracking.

It’s not amazing to find that there are large server farms dedicated to password cracking, but
sometimes it’s amazing to find out how they’re put together with inexpensive parts. One site
showed a GPU-based farm with 25 high-end ATI graphics cards racked in what looked like
HP-DL500 servers. Table A-4 shows how quickly passwords can be cracked using a system like that.

Notice that the new GPU farms are able to crack 13-character passwords in a mere 2.7 months.
It isn’t until 14 characters are used that the time-to-crack threshold crosses the 6-month mark.
Huzzah! It’s time to rethink password lifetime and length. Do you have passwords that you haven’t
changed in the past 6 months? How about longer than 6 months?

User Roles and Profiles DBAs who use Oracle default roles end up in trouble when they try to
secure their database. Sometimes they’ll drop default roles or users only to discover that they’ve
broken their database. It is much better to create specific roles that address your company’s needs.
Just like roles, profiles need to be created to meet the needs of your company. For example, you may
want to create separate profiles for your human users and your system/computer users as follows:

CREATE PROFILE human_analyst...
CREATE PROFILE human_engineer...
CREATE PROFILE human_dba...
CREATE PROFILE comp_application...
CREATE PROFILE comp_dblink...
CREATE PROFILE comp_audit...

It is best to audit accounts that are assigned to various profiles separately. Users who are
assigned the human_dba profile should probably be audited for everything that they do, while
a user assigned to the human_analyst profile may not need as much auditing.

Password
Length Password CPU-Time-Seconds GPU-Time-Seconds

 5 Dg(Kv 0.3400 0.0000

 6 P?6Z%~ 180.0000 0.0000

 7 Q(?B@y^ 7,200.0000 0.0001

 8 ^md=?^P5 1,728,000.0000 0.0148

 9 6F<DsL].E 31,536,000.0000 0.2704

10 01.?_b.=/(693,792,000.0000 5.9481

11 H#cKCdrNP6b 126,144,000,000.0000 1,081.4815

12 R2*8cO<rUZu5 126,144,000,000,000.0000 1,081,481.4815

13 lxsiopMi$7570 819,936,000,000,000.0000 7,029,629.6296

14 8p0nBTq:)y$*.u 1,387,584,000,000,000,000.0000 11,896,296,296.2963

15 pt#j\TCaBkK=nZ8 126,144,000,000,000,000,000.0000 1,081,481,481,481.4800

16 sKfHER)!Z)dkX.IE 2,207,520,000,000,000,000,000.0000 18,925,925,925,925.9000

TABLE A-4. Time-to-Crack Calculations

14-AppA.indd 673 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

674 Oracle Database 12c PL/SQL Programming

For now, we will focus only on the password portions of the profile. Type the following at a
SQL prompt:

CREATE PROFILE human_analyst
 password_life_time 90
 password_grace_time 7
 password_reuse_max 0
 password_lock_time unlimited
 failed_login_attempts 6
 password_verify_function pwvf_12c;

Most of these parameters accept the word unlimited as input; however, I strongly recommend
that you never use the unlimited argument, except in the PASSWORD_LOCK_TIME parameter.
Here is a list of each parameter and the meaning of its input variable:

 ■ PASSWORD_LIFE_TIME How long the password will live, in days, without requiring a
change

 ■ PASSWORD_GRACE_TIME How many extra days the user is given to change a password

 ■ PASSWORD_REUSE_MAX How many times a user is allowed to reuse a password

 ■ PASSWORD_LOCK_TIME How long, in days, the account will be locked

 ■ PASSWORD_LOGIN_ATTEMPTS How many incorrect password attempts are allowed

 ■ PASSWORD_VERIFY_FUNCTION The function you use to determine password strength

In the previous example of the human_dba and human_analyst profiles, users are allowed
only 90 days between password changes, plus a 7-day grace period. They cannot reuse a password,
and their account will be permanently locked if they fail more than six times to authenticate. Finally,
the password verification function named PWVF_12C is used to validate password strength.

Generating Random Passwords When establishing password requirements, there’s a fine line
between locking down users too much and locking them down just enough. You must discover
your company’s needs and lock down your environment appropriately. You would face a backlash
from users if you were to require them to maintain passwords that look like this:

UD;_!U{;?44{-SU4WP@/AYB=X_^E[=.

However, a password like this one is very strong and would be appropriate for nonhuman accounts.
The following example shows how to put together a simple password verification function.

This program is written in workable chunks, which is the approach you should take in all of your
programming.

The Oracle-supplied package dbms_random supplies pretty good randomization, but its
default seed value does not generate truly random strings. Therefore, you need to set the seed
value to something unique in order to produce millions of unique strings. Issuing the following
query demonstrates a possible seed value:

SQL> SELECT TO_CHAR(systimestamp)
 2 || sys_context('USERENV', 'SID')
 3 || sys_context('USERENV', 'INSTANCE') my_seed
 4 FROM dual;

14-AppA.indd 674 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 675

It returns

MY_SEED

01-MAR-13 09.06.56.634275 AM -07:001251

Notice that the my_seed variable contains a unique instance number, a session identifier,
and a timestamp. This creates enough random bits to allow the dbms_random.string function
to create passwords that really are random. A test run of 1000 simultaneous threads generated
over 6 million passwords in just a few minutes, with no duplicates.

Now that you know how to generate random data, you need to know what the string
function of the dbms_random package is capable of. Issue the following query to test the output:

SQL> BEGIN
 2 dbms_output.put_line(
 3 'Alpha Mixedcase ['||dbms_random.string ('a', 30)||']');
 4 dbms_output.put_line(
 5 'Alpha Lowercase ['||dbms_random.string ('l', 30)||']');
 6 dbms_output.put_line(
 7 'Alpha Uppercase ['||dbms_random.string ('u', 30)||']');
 8 dbms_output.put_line(
 9 'Alpha Numeric ['||dbms_random.string ('x', 30)||']');
 10 dbms_output.put_line(
 11 'Any Printable ['||dbms_random.string ('p', 30)||']');
 12 END;
 13 /

The preceding query returns

Alpha Mixedcase [bFcthbTwDWjAaHYMQbrjXwVpnFJRGA]
Alpha Lowercase [onzvmqarzjxouyqtyojzhquzrhftft]
Alpha Uppercase [NXMBGEQNVLPGCQQBRJJDBMZXZFVEOR]
Alpha Numeric [EJLFE6PGFF7JTGMWPGC1E985OI5A8U]
Any Printable [p%%Ft~Gl)%Oss0W`E`C?:3Kkp(&dd\]

You need to choose which of these methods is right for your company. For purposes of
demonstration, suppose you like the ANY_PRINTABLE and ALPHA_NUMERIC strings. There are a
couple of nuances to note about the output generated by each. First, Oracle Database 12c does
not permit passwords to start with numeric values. You can easily get around this by enclosing
passwords in double quotes, which also makes passwords case sensitive alphanumeric with
special characters, like this:

CREATE USER joe IDENTIFIED BY "6OENAZ9YYMXCFADMX9Z0TDPJEES6ZX";

Joe doesn’t have to enclose his password in double quotes when he uses it. He can, but he
doesn’t have to.

The other nuance is that an apostrophe has been generated in the ANY_PRINTABLE output.
There are some characters that you want to stay away from because Oracle Databases don’t
support them, such as the apostrophe, ampersand, double quote, and backtick. All of the other
printable characters are fair game.

The following generates Jane’s user account using ANY_PRINTABLE output:

CREATE USER jane IDENTIFIED BY "N%6qQp6~?I/HSDZR19X?_<!/z;[x)T";

14-AppA.indd 675 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

676 Oracle Database 12c PL/SQL Programming

One might ask, “How will Jane remember a password like that?” The simple answer is, “She
probably won’t.” Fortunately, with the use of a password-management tool such as Password Safe,
TK8 Safe, or Seahorse, she doesn’t need to. You should strongly consider requiring all users to use
a password-management tool. That way, they need to memorize only one password to access all
of their passwords, and they won’t be tempted to write down their passwords or use other
unsecure methods to keep track of them. Be sure to train the users to take advantage of a
significant passphrase to open their password-management utility, like:

"I go to work at 9:00 AM and get home by 6:00 PM"
"This is my VERY SECRET pass phrase that keeps me safe from H4cK0r$"

Now, you are ready to explore the fun stuff. Next, you will make a package called DBSEC and
place a password generator in it as the first program. (The second program will be a password
verification function, as covered in the next section.) It’s a good idea to keep your security code in
a package, not only for better maintenance, but also in case you decide to wrap it.

The following code block creates a password generator:

SQL> CREATE OR REPLACE FUNCTION random_password
 2 (pv_length INTEGER) RETURN VARCHAR2 IS
 3 -- Declare local variables.
 4 lv_seed VARCHAR2(60);
 5 lv_char VARCHAR2(1);
 6 lv_password VARCHAR2(30);
 7 BEGIN
 8 -- Assign values to the local variables.
 9 lv_seed := TO_CHAR(SYSTIMESTAMP);
 10 lv_seed := lv_seed || SYS_CONTEXT('USERENV', 'SID');
 11 lv_seed := lv_seed || SYS_CONTEXT('USERENV', 'INSTANCE');
 12 -- Generate a random seed value.
 13 dbms_random.seed(lv_seed);
 14 -- Generate random characters.
 15 FOR i IN 1..pv_length LOOP
 16 lv_char := dbms_random.string('p', 1);
 17 -- Cleanup ", `, &, ', and white space.
 18 WHILE lv_char IN ('"', '`', '&', ' ', '''') LOOP
 19 lv_char := dbms_random.string('p', 1);
 20 END LOOP;
 21 -- Create the password one character at a time.
 22 lv_password := lv_password || lv_char;
 23 END LOOP;
 24 -- Return the password.
 25 RETURN lv_password;
 26 EXCEPTION
 27 WHEN OTHERS THEN RETURN 'NO PASSWORD';
 28 END random_password;
 29 /

Note that the preceding code incorporates the seed value identified in the previous discussion
of the STRING function from the DBMS_RANDOM package. It also incorporates the stronger
method of returning almost all printable characters. Test it like so:

SELECT dbsec.random_password(30) AS my_password
FROM dual;

14-AppA.indd 676 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 677

This returns the following:

MY_PASSWORD

.k?L442\-rp#=dg3:+#Dn{b,,](xJS

You can use this function any time you want to generate a significantly strong password.

A Password Verification Function Now that you have a good password generator, you need a
password verification function that checks the user name against the password. Oracle provides
a password verification function, which you can find in the utlpwdmg.sql script, located in
the $ORACLE_HOME/RDBMS/ADMIN directory. However, you may notice right away that the
utlpwdmg.sql file contains only a basic password verification function. Therefore, I created a
new password verification function, and it appears to improve on the one shipped by Oracle. The
encrypting_password.sql file contains all the components to test how to build and deploy
a password validation script.”), identify in the preceding sentence where specifically to find the
full code on the McGraw-Hill Education website, and delete the “Supporting Scripts” section at
the end of the chapter.

NOTE
Interestingly, Oracle’s sample password function uses a complex set
of loops to accomplish what the developer could have done with
one call to the EDIT_DISTANCE_SIMILARITY function. Before you
spend time planning and writing complex code, always make sure to
check the built-in SQL and PL/SQL functions first to see if there is a
nifty one-liner that suits your needs.

From a functional standpoint, there is no difference between my function and the one supplied
by Oracle; however, my function will perform much better because it takes advantage of the
reverse keyword in SQL so that there is no looping. If the password passes all of the tests, my
function returns the Boolean value TRUE. This tells Oracle that the password is okay, and the
Oracle database proceeds to alter the user password.

Voilà! You now have a password verifier that can actually help you with your security efforts.
This isn’t necessarily the end of your modifications, but implementing this last function would
begin to harden access to your environment.

Listener Hardening
The security discipline is relatively new to database administrators. As such, this discussion
doesn’t expect you to know how to use a packet-sniffing tool such as Wireshark. However, you do
need to know that, because default SQL communication between client and server is unencrypted,
Wireshark and similar tools can be used to harvest sensitive DBA activity like ALTER USER
username IDENTIFIED BY password; commands.

NOTE
The following example uses VNC (Virtual Network Computing) because
it is convenient and free. VNC lets you see the desktop of a remote
machine and control it with your local mouse and keyboard. VNC traffic
typically is clear and can be sniffed. If you decide to use VNC in your
workplace, make sure that you do so through an SSH tunnel.

14-AppA.indd 677 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

678 Oracle Database 12c PL/SQL Programming

The following example demonstrates why encrypting SQL*Net traffic is important:

1. Open a remote desktop connection to your server (VNC).

2. Download and install Wireshark.

3. Open Wireshark on Linux: Applications | Internet | Wireshark.

4. Click the eth0 interface.

5. Add the filter tcp.port == 1521 || udp.port == 1521.

6. Connect to the database with your favorite SQL client (SQL Developer is used in this
example).

7. Issue an ALTER USER jane IDENTIFIED BY abc123; command.

8. Look at the output sniffed via Wireshark, as shown in Figure A-6. As you can see, a
system administrator on your database server can easily be watching your traffic.

FIGURE A-6. Exception scope and routing

14-AppA.indd 678 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 679

To encrypt your SQL*Net traffic to protect it against a packet-sniffing tool such as Wireshark,
do the following:

1. Run the command netmgr from a Linux or Unix prompt to open Oracle Net Manager
(make sure you’re the oracle user and have environment variables set). The following
illustration shows you how the Oracle Net Manager will look after you’ve launched it and
accomplished steps 2 through 9.

2. Click the Profile option in the left menu tree.

3. Click the Network Security option from the drop-down menu above the tabbed section.

4. Click the Encryption tab.

5. Click the SERVER selection in the Encryption drop-down list.

6. Click the accepted selection in the Encryption Type drop-down list.

7. Type a seed value in the Encryption Seed text box; you can have up to 256 characters.

8. Choose an encryption method from the Available Methods list, such as AES256, and click
the assign right button to move your selected method into the Select Methods list.

14-AppA.indd 679 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

680 Oracle Database 12c PL/SQL Programming

9. Save the configuration: File | Save Network Configuration.

10. Look at the sqlnet.ora file.

11. Restart your SQL client.

12. Open Wireshark: Applications | Internet | Wireshark.

13. Click the eth0 interface.

14. Add the filter tcp.port == 1521 || udp.port == 1521.

15. Connect to the database with your favorite SQL client (again, SQL Developer is used in
this example).

16. Issue an ALTER USER jane IDENTIFIED BY abc123; command.

17. Look at the output sniffed via Wireshark, as shown in Figure A-7.

Just like that, you protect your SQL*Net traffic. Before you deploy Oracle Advanced Security,
make sure you’re licensed to use it.

FIGURE A-7. Wireshark packet capture after encryption

14-AppA.indd 680 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 681

Listener White Listing In addition to using encryption, you can modify the listener so that it
either accepts or rejects connection requests. This is very easy to perform. Before you do so, make
sure to obtain management approval, because there will be someone who complains that they
can no longer connect to your database (which is a good thing, because you don’t want any
rogue connections anyway).

After obtaining buy-in, make the following modifications to your sqlnet.ora file:

TCP.VALIDNODE_CHECKING = YES
TCP.EXCLUDED_NODES = (192.168.1.110)
TCP.INVITED_NODES = (192.168.1.100, 192.168.1.102)

Then, restart your SQL client and connect to your Oracle instance.
Best practice states that you should use hostnames, not IP addresses, but it works either way.

Also, make sure you add the server into the invited nodes.
To test these exclusions, set your machine IP address as an excluded node and then restart

your SQL listener and attempt to connect to your Oracle instance. As a rule, you may get SQL
Developer users who call to complain about an ORA-17002 error (generated from Oracle’s JDBC
implementation).

While it may be helpful to add a host-based firewall on top of the preceding measures, they
should put you well on your way to a more secure environment.

Remember that your security efforts are never a done deal. If you “set it and forget it,” hackers
will eventually penetrate your firewalls and steal your company’s data. Vigilance is required. The
company’s data may well be its most valuable asset. If it is lost or breached, your company may
cease to exist. It is imperative that you do all that you can to protect your company’s data and
adequately anticipate possible attacks.

Data Governance
The previous section discussed the technical aspects of hardening the database. You should now
have the tools and understanding to put some of these practices in place to detect and prevent
attacks against your databases. It’s unlikely that you control or influence enough of your company’s
IT process to implement a complete security framework or security awareness program, but you
can certainly advocate that one be implemented. Implementing data governance as a complete
security framework trumps simply educating staff about the risks with a security awareness program.

Data governance is an emerging discipline in the IT industry. At present, data governance in
many organizations means completely different things. The following sections discuss how you
overcome resistance to, implement, and develop an ongoing culture of data governance.

Overcoming Resistance to Data Governance
Many companies resist data governance because they have an unspoken bias against security. The
bias is often rooted in their employee perceptions that data governance restricts the employees’
ability to exercise day-to-day discretion over their job responsibilities. Database administrators
and database engineers (DBEs) resist data governance policies because such policies negatively
impact metrics that drive DBA and DBE direct or variable compensation. For example, DBAs and
DBEs may receive a year-end bonus for achieving greater throughput and machine optimization,
but data governance policies may make such achievements impossible. DBAs and DBEs also see
anything that impedes their ability to optimize the database server as an obstacle to overcome.
These are a few reasons why DBAs and DBEs see data governance policies as a hindrance to their

14-AppA.indd 681 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

682 Oracle Database 12c PL/SQL Programming

work. While they should value data governance policies as helpful to their charter of securing the
data, they often perceive them as attempts to block normal access to the database server.

Security measures are always intended to block unauthorized access to data, not to block
normal maintenance access to data. Security should hinder intruders so that they can’t get to the
data, but it should not overtly restrict normal business processes—such as tuning the database
server. Unfortunately, security does erect barriers to normal and productive tasks. Overcoming
resistance to these barriers is complicated because DBAs and DBEs keenly understand the following:

 ■ Their business customers’ demands for information that is highly available and easy to access

 ■ Their performance metrics for salary increases and bonuses

Management may recognize the reasons for DBA and DBE resistance to implementing data
governance. It’s also widely known how often large, well-known software companies release to
market products with known bugs and serious security vulnerabilities. Management also
recognizes the pressure to implement these products quickly in their businesses. That pressure to
implement newly released software can compromise a team’s adherence to security policies that
screen for vulnerabilities. Hackers waiting to exploit these vulnerabilities are elated when DBAs
and DBEs fail to guard against these vulnerabilities.

Management’s conundrum is simple and generally based on a risk management model that
weighs four things:

 ■ The metrics assigned to DBAs and DBEs support their internal customers’ business
requirements, and also support their management compensation plans.

 ■ Bugs and security vulnerabilities threaten the viability of software solutions, and place at
risk employee and management compensation pools.

 ■ Senior management focuses on things managers can control and influence directly.

 ■ Senior management’s lack of focus on quality and assurance leaves wiggle room for
lapses in quality, which may translate to security vulnerabilities in application software,
networks, and database deployments.

Managers seldom remove performance metrics as a factor in DBA or DBE compensation
because motivating DBAs and DBEs to achieve certain metrics helps the managers to ensure
that their units meet performance targets that directly affect the managers’ own compensation.”
The managers’ risk assessment is a simple application of the principle of lost opportunity cost in
economics. They must determine and weigh, “What is the lost opportunity cost of having a DBA
or DBE fail against performance metrics?” and “What is the lost opportunity cost of having a DBA or
DBE guarantee the security compliance of software before release?”

Management typically solves the conundrum when executive or senior management changes
the subordinate unit’s metrics to reflect that a zero tolerance policy. A zero tolerance policy means
that addressing security vulnerabilities trumps all other productivity issues. That means the unit
managers must alter DBA and DBE metrics to focus their efforts on eliminating security vulnerabilities.
Once executive or senior management makes such a decision, companies or corporations gain
the ability to implement an effective data governance program.

Implementing Data Governance
Data governance is the process of managing the proper use, control, access, quality, security, and
retention of company hardware and software. This includes compliance with all licenses and fair
use requirements.

14-AppA.indd 682 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 683

Data Governance Unit A data governance unit acts much like an inspector general’s office in a
military or governmental organization. It is a central policy making and enforcement unit within
a corporation, and it is managed outside of the normal chain-of-command. Day-to-day profit and
loss responsibilities can’t let business units opt in or out of the program. The benefits of effective
data governance can only be achieved when you implement it across the organization. A data
governance unit should exercise complete authority and control over all of the organization’s data
assets.

The best approach is to leverage an existing organizational unit to implement a new data
governance program. This suggestion follows the recommendation of Robert Seiner, one of the
pioneers in data governance. Using an existing organizational unit promotes a less-intrusive impact
to a company or corporation. As a practical matter, data governance should report through your
chief counsel’s (or corporate law) office.

Data Governance Process Without getting too deep into the definitions and issues of data
governance, this section describes the best practices necessary to make database security a reality
in an organization. An organization lays the foundation for these best practices by ceding authority
to a single entity to define, maintain, and audit compliance with corporate or company standards.

All departments must be held to the corporate standard and should periodically and
spontaneously be measured. Measurements should include having a paid hacker try to exploit
services that should be secured by compliance against corporate policy.

The governance process should adhere to a mission statement agreed upon by an executive
committee that acts as the data governance board of directors. An executive commitment to data
governance requires a long-range objective, such as: “All data stores shall be treated as confidential
repositories and shall be secured against intruder access within two years.”

Tactical implementation would occur by establishing short-range objectives, like:

 ■ Define, approve, and implement a data classification scale, process, and initiative to
identify all confidential data stores before next fiscal year.

 ■ Define, approve, and implement a database security policy before the end of this fiscal year.

 ■ Define, approve, and implement a process for updating database security policies against
new threats and vulnerabilities by the end of each fiscal year.

Accomplishment of the short-range objectives leaves you with the need to define integrated
business metrics for future operating years. By way of example, you may implement the following
key measures for your database security policy:

 ■ All security patches will be applied to all databases within one week of their availability.

 ■ All databases will be deployed and administered in a secure area.

 ■ All database audit logs will be reviewed daily by production, stage, test, and
development DBAs.

 ■ All database audit logs and daily activity will be collected and reported weekly to the
stakeholder (or process holder).

Data Governance Compliance You need a neutral method for collecting statistics across the
organization. The best collection systems employ objective metrics and collect data points from
multiple systems. Companies should implement this type of approach consistently across all units
within the organization.

14-AppA.indd 683 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

684 Oracle Database 12c PL/SQL Programming

Metrics should be reported to the unit, peer units, and stakeholders. Costs associated with
implementing and managing data governance should become a cost of all Profit/loss units, and
costs should be billed to individual cost centers on an accounting period-by-period basis.

Data Governance Reports Reports for compliance should be measured two ways. One should
ensure the process stability and the other the process improvement. Process improvement should
be measured by monitoring compliance against an annual unit goal. Data governance reports
should ensure both process stability and process improvement.

Compliance and noncompliance with the company or corporate standard should be reported.
Compliance should be rewarded by the compensation model, and, by extension, noncompliance
should be punished by the compensation model and subject to potential disciplinary action.

Open access to metric information should be available to DBAs, DBEs, and their managers,
but that access should be closely guarded. The data should measure actual performance against
individual types of security vulnerabilities.

Data Governance Remediation The data governance unit should develop and deploy tools
that enable individual DBAs and DBEs to evaluate and fix any security vulnerability. Failure during
periodic metric collection should lead to the engagement of the data governance unit as a mentor
in acquiring and maintaining database security skills.

Developing a Culture of Data Governance
Developing a culture of data requires teaching staff about security and explaining the costs and
benefits of the corporate data governance program. Like any change management process,
developing a culture of data may require an internal marketing campaign and an initial award
system for early adopters of the new security standards.

Initial awards, such as payment in cash or kind, are one type of incentive to adopt new security
standards. Over time, you can also use punishment/fear (such as a salary deduction for
noncompliance) and competition (for example, by measuring compliance with data governance
procedures among distinct internal groups).

The Chief Information Security Officer should be the person who is responsible for using the
summary report information to motivate groups and to report compliance/noncompliance to
executive management.

While changing an organization’s general IT culture is a large and complex process, the return
on investment is generally very positive. Likewise, it’s imperative to secure the data from intrusive
attacks, and failure to do so isn’t an option.

SQL Tuning
SQL tuning is the process of examining how well a SQL statement runs and making necessary
adjustments if it doesn’t run well. You have little to do when the SQL statement runs well in very
little time and sometimes much to do when the SQL statement doesn’t perform well.

To demonstrate SQL tuning, this section works with a single query that has multiple joins—
two inner joins and one outer join. While Oracle’s cost-based optimization (CBO) constantly
keeps track of the data so that CBO can enable optimal join patterns, the developer’s understanding
of the data often drives the approach to interaction and choice of indexes. Indexes often ensure
optimal access to data, but sometimes they can work against optimal access.

SQL tuning may involve either optimizing queries or suboptimizing queries. Optimization
typically is the goal for queries that will run in an online transaction processing (OLTP) or online

14-AppA.indd 684 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 685

analytical processing (OLAP) system. OLTP systems support business operations, such as finance,
purchasing, order management, payroll, and human resources. OLAP systems are typically data
warehouses.

Sometimes you may want to suboptimize query performance in OLTP systems to prevent
delays in processing DML commands such as inserts, updates, and deletes. Query suboptimizing
typically means you reduce the number or breadth of indexes. Every index that speeds a query
slows INSERT, UPDATE, and DELETE statements because indexes require changes with every
transaction that changes the data.

OLAP systems typically optimize queries regardless of transaction cost because the data is
subject to very little change. Typically, the only DML statements in data warehouses are from their
ETL (Extract, Transform, and Load) updates, which occur weekly, monthly, or quarterly.

Whether you’re working in an OLTP environment or an OLAP environment, the first step to SQL
tuning is to identify which SQL statements run most frequently. The following query lets you find the
top ten most frequently running SQL statements in the Oracle Database 12c database server:

SQL> COLUMN sql_id FORMAT A14 HEADING "SQL ID #"
SQL> COLUMN child_number FORMAT 9999 HEADING "Child|Number"
SQL> COLUMN sql_text FORMAT A30 HEADING "SQL Text"
SQL> COLUMN elapsed_time FORMAT 9999999990 HEADING "Elapsed Time"
SQL> SELECT sql_id
 2 , child_number
 3 , sql_text
 4 , elapsed_time
 5 FROM (SELECT sql_id
 6 , child_number
 7 , sql_text
 8 , elapsed_time
 9 , cpu_time
 10 , disk_reads
 11 , RANK() OVER
 12 (ORDER BY elapsed_time DESC) AS elapsed_rank
 13 FROM v$sql)
 14 WHERE elapsed_rank <= 10;

You have two approaches to SQL tuning in an Oracle database: the old way and the new way.
They’re really not that different, but the new way, the dbms_xplan package, provides a richer set
of analytical data for less work. The following sections show you how to use the old EXPLAIN
PLAN approach and the new dbms_xplan package to analyze query performance.

EXPLAIN PLAN Statement
The EXPLAIN PLAN statement lets you analyze the performance of any SQL statement. The
prototype for explaining a statement from the SQL*Plus command line is

EXPLAIN PLAN
SET STATEMENT_ID = '&input'
FOR sql_statement;

The '&input' is a substitution parameter when you set the statement_id value.
(Substitution variables are explained in the “SQL*Plus Command-Line Interface” section, earlier
in this appendix.) Using a substitution variable is generally the best approach unless you plan to

14-AppA.indd 685 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

686 Oracle Database 12c PL/SQL Programming

remove the data that supports analysis after running each statement. A substitution variable
eliminates the need to cleanup the plan_table each time. Substitution variables also let you
use a different value for the unique statement_id, which ensures they won’t conflict with each
other. The FOR keyword precedes the SELECT, INSERT, UPDATE, or DELETE statement that
you’re analyzing.

Here’s the statement we’re working with in this section:

EXPLAIN PLAN
SET STATEMENT_ID = '&input'
FOR
SELECT DISTINCT
 r.rental_id
, c.contact_id
, tu.check_out_date AS check_out_date
, tu.return_date AS return_date
FROM member m INNER JOIN contact c
ON m.member_id = c.member_id INNER JOIN transaction_upload tu
ON c.first_name = tu.first_name
AND NVL(c.middle_name,'x') = NVL(tu.middle_name,'x')
AND c.last_name = tu.last_name
AND tu.account_number = m.account_number LEFT JOIN rental r
ON c.contact_id = r.customer_id
AND tu.check_out_date = r.check_out_date
AND tu.return_date = r.return_date;

If you run the statement from the SQL*Plus command-line interface, it’ll prompt you for the
input value, or statement_id value. The example enters query1 as the statement_id
value and runs the EXPLAIN PLAN statement. The EXPLAIN PLAN statement generates several
rows of data in the plan_table in the database instance.

DBMS_XPLAN Package
The dbms_xplan package lets you analyze the performance of statements. It returns the
formatted output of operations, the tables accessed, the rows processed, the bytes managed, and
the time taken to process the operation.

Table A-5 qualifies the dbms_xplan package’s table access modes for internally managed
tables. Beyond internally managed table access, you have EXTERNAL TABLE ACCESS, RESULT
CACHE, and MAT_VIEW REWRITE ACCESS. Respectively, they manage row retrieval through
external access, result cache retrieval, and queries written to take advantage of materialized views.

The three index operations provided by dbms_xplan are AND-EQUAL, INDEX, and DOMAIN
INDEX. The AND-EQUAL operation combines results from one or more index scans. The DOMAIN
INDEX operation looks up a domain index for use in a join operation. Table A-6 qualifies the
six INDEX scan modes.

Are the Database Statistics Up to Date?
Some DBAs disable statistics, contrary to Oracle’s guidance. So, you should make sure to
update your statistics before you run an EXPLAIN PLAN statement; otherwise, you may
tune the wrong statistics.

14-AppA.indd 686 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 687

Bitmap operations are similar to index operations. dbms_xplan provides five BITMAP scan
modes, which are listed and described in Table A-7.

dbms_xplan provides three join operations. A CONNECT BY operation performs a
hierarchical self-join on the output from preceding steps in a DML statement. A MERGE JOIN
operation performs a merge join on the output of preceding steps in a DML statement. A NESTED
LOOPS operation performs nested loop lookup and comparison on the output from the preceding
steps in a DML statement.

dbms_xplan also offers four hash join operations, OUTER (outer join), ANTI (antijoin), SEMI
(semijoin), and CARTESIAN (Cartesian join). There are also set, miscellaneous, partition, and
aggregation operations. You can find more information about all of these operations in the Oracle
Database Performance Tuning Guide 12c Release.

Table Access Mode Description
FULL Reads every row in the table
CLUSTER Reads data via an index cluster key
HASH Reads one or more rows in a table with a matching hash key
BY INDEX ROWID Reads rows by specific index ROWID values
BY USER ROWID Reads rows by using a ROWID value provided by a bind variable,

literal value, or WHERE CURRENT OF CURSOR clause
BY GLOBAL INDEX ROWID Reads rows by using a ROWID returned from a globally partitioned

index
BY LOCAL INDEX ROWID Reads rows by using a ROWID returned from a locally partitioned

index
SAMPLE Reads rows by using a ROWID returned from a SAMPLE clause

TABLE A-5. SQL Tuning Internal Table Access Modes

Index Scan Description
UNIQUE SCAN Reads a unique index for a single row address—the ROWID value
RANGE SCAN Reads an index for a range of values—returning multiple ROWID values
FULL SCAN Reads every entry in the index through the key order
SKIP SCAN Reads nonleading columns in the index key
FULL SCAN (MAX/MIN) Reads an index for the highest or lowest value
FAST FULL SCAN Reads every entry in an index by block order and, where possible, uses

multiblock reads

TABLE A-6. SQL Tuning INDEX Scan Modes

14-AppA.indd 687 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

688 Oracle Database 12c PL/SQL Programming

You access and format the data with the DISPLAY function of the dbms_xplan package,
like this:

SELECT *
FROM TABLE(dbms_xplan.display(NULL,'query1'));

It generates the following output (formatted and slightly truncated for the page):

PLAN_TABLE_OUTPUT

Plan hash value: 3289798709

| Id | Operation | Name | Rows | Bytes |

0	SELECT STATEMENT		229	24274
1	HASH UNIQUE		229	24274
* 2	HASH JOIN OUTER		229	24274
3	VIEW		4	248
* 4	HASH JOIN		4	572
* 5	HASH JOIN		15	1230
6	TABLE ACCESS FULL	MEMBER	9	180
7	TABLE ACCESS FULL	CONTACT	15	930
8	EXTERNAL TABLE ACCESS FULL	TRANSACTION_UPLOAD	8168	486K
9	TABLE ACCESS FULL	RENTAL	4689	201K

Predicate Information (identified by operation id):

 2 - access("TU"."RETURN_DATE"="R"."RETURN_DATE"(+) AND
 "TU"."CHECK_OUT_DATE"="R"."CHECK_OUT_DATE"(+) AND
 "C"."CONTACT_ID"="R"."CUSTOMER_ID"(+))
 4 - access("C"."FIRST_NAME"="TU"."FIRST_NAME" AND
 NVL("C"."MIDDLE_NAME",'x')=NVL("TU"."MIDDLE_NAME",'x') AND
 "C"."LAST_NAME"="TU"."LAST_NAME" AND
 "TU"."ACCOUNT_NUMBER"="M"."ACCOUNT_NUMBER")
 5 - access("C"."MEMBER_ID"="M"."MEMBER_ID")
Note

 - dynamic sampling used for this statement
30 rows selected.

Bitmap Scan Description
CONVERSION Converts ROWID values to bitmaps or bitmaps to ROWID
INDEX Retrieves a value or range of values from the bitmap
MERGE Merges multiple bitmaps
MINUS Subtracts one bitmap from another
OR Creates a bitwise OR of two bitmaps

TABLE A-7. SQL Tuning BITMAP Scan Modes

14-AppA.indd 688 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 689

The Cost column from the output is truncated, but initially this statement has a cost value of 50.
The immediate problem with this example is that the query accesses an external table, as indicated
in Line 8. Line 8 also tells us that we’re processing 486KB of data because of the external table read.

The biggest improvement we can make requires copying the data from the external table to an
internal table. The following shows the execution plan and rows and bytes processed. Rerunning
the output, the processing bytes decline from 486KB to 61 bytes. What you don’t see is that the
cost value drops from 50 to 34 by moving the data into an internal table.

PLAN_TABLE_OUTPUT
--
Plan hash value: 3624831533
--
| Id | Operation | Name | Rows | Bytes |
--
0	SELECT STATEMENT		400	42400
1	HASH UNIQUE		400	42400
* 2	HASH JOIN OUTER		400	42400
3	VIEW		7	434
4	NESTED LOOPS		7	1001
* 5	HASH JOIN		15	1230
6	TABLE ACCESS FULL	MEMBER	9	180
7	TABLE ACCESS FULL	CONTACT	15	930
* 8	INDEX RANGE SCAN	IMPORT_DATE_RANGE	1	61
9	TABLE ACCESS FULL	RENTAL	4689	201K
--
Predicate Information (identified by operation id):

 2 - access("TU"."RETURN_DATE"="R"."RETURN_DATE"(+) AND
 "TU"."CHECK_OUT_DATE"="R"."CHECK_OUT_DATE"(+) AND
 "C"."CONTACT_ID"="R"."CUSTOMER_ID"(+))
 5 - access("C"."MEMBER_ID"="M"."MEMBER_ID")
 8 - access("TU"."ACCOUNT_NUMBER"="M"."ACCOUNT_NUMBER" AND
 "C"."LAST_NAME"="TU"."LAST_NAME" AND
 "C"."FIRST_NAME"="TU"."FIRST_NAME" AND
 NVL("C"."MIDDLE_NAME",'x')=NVL("MIDDLE_NAME",'x'))
Note

 - dynamic sampling used for this statement
31 rows selected.

We’ve achieved some performance by working with an internal table. Now let’s add three
indexes to speed performance by changing the dynamics of how the database accesses the data:

SQL> CREATE UNIQUE INDEX natural_key_rental
 2 ON rental (rental_id, customer_id, check_out_date, return_date);
SQL> CREATE UNIQUE INDEX member_account
 2 ON member (member_id, account_number);
SQL> CREATE UNIQUE INDEX contact_member
 2 ON contact (contact_id, member_id, last_name, first_name
 3 ,NVL(middle_name,'x'));

14-AppA.indd 689 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

690 Oracle Database 12c PL/SQL Programming

Here’s the modified execution plan:

PLAN_TABLE_OUTPUT
--
Plan hash value: 1185696375
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		400	42400	28 (8)
1	HASH UNIQUE		400	42400	28 (8)
* 2	HASH JOIN OUTER		400	42400	27 (4)
3	VIEW		7	434	17 (0)
4	NESTED LOOPS		7	1001	17 (0)
5	NESTED LOOPS		15	1230	2 (0)
6	INDEX FULL SCAN	CONTACT_MEMBER	15	930	1 (0)
* 7	INDEX RANGE SCAN	MEMBER_ACCOUNT	1	20	1 (0)
* 8	INDEX RANGE SCAN	IMPORT_DATE_RANGE	1	61	1 (0)
9	INDEX FAST FULL SCAN	NATURAL_KEY_RENTAL	4689	201K	9 (0)
--
Predicate Information (identified by operation id):

 2 - access("TU"."RETURN_DATE"="R"."RETURN_DATE"(+) AND
 "TU"."CHECK_OUT_DATE"="R"."CHECK_OUT_DATE"(+) AND
 "C"."CONTACT_ID"="R"."CUSTOMER_ID"(+))
 7 - access("C"."MEMBER_ID"="M"."MEMBER_ID")
 8 - access("TU"."ACCOUNT_NUMBER"="M"."ACCOUNT_NUMBER" AND
 "C"."LAST_NAME"="TU"."LAST_NAME" AND
 "C"."FIRST_NAME"="TU"."FIRST_NAME" AND
 NVL("MIDDLE_NAME",'x')=NVL("MIDDLE_NAME",'x'))
Note

 - dynamic sampling used for this statement
31 rows selected.

The execution plan shows us that we now have two nested loops with the outer hash join,
which is as good as it gets with this little import example. You can also put SQL tuning hints into
your queries to take advantage of certain join operations that optimize the DML statement.

SQL Tracing
Oracle provides the ability to trace SQL activities. SQL tracing involves two key steps:

 ■ Begin tracing in a current session or in another session

 ■ Generate meaningful information from a trace file using the tkprof tool

Refer to Appendix D for an easy way to obtain live stats on queries. It outlines how to snap
live statistics within a session.

The next two subsections show you how to start (and stop) tracing and how to convert the
proprietary tracing file into a readable output report.

14-AppA.indd 690 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 691

Tracing Session Statements
You have a number of options for how you start tracing session data. For example, you can do any
one of the following:

 ■ Issue a command from your application code to trace the current session

 ■ Issue a command to trace another session

 ■ Leverage the DBMS_MONITOR package to specify sessions for automatic tracing

 ■ Issue a command from a login trigger to trace the current session

You can enable session tracing with a SQL command or by calling one of the procedures in the
DBMS_SESSION package. The DBMS_MONITOR package lets you enable tracing in another session.

Enable Tracing in the Current Session
The simplest way to start tracing in your current working session is to enter the following, which
starts a basic trace:

ALTER SESSION SET SQL_TRACE=TRUE;

A basic trace captures SQL statement execution statistics and plans, but it doesn’t capture
bind variables or the time spent on events during the session. The following sets the trace file’s
identifier for a session:

ALTER SESSION SET trace_file_identifier=MySession;

You can check for a vast number of events in trace files. The most useful code (10053) lets you
capture information about optimizer processing during query execution. The command to set this
event is

ALTER SESSION SET EVENTS '10053 trace name context forever';

You can get more information by using the DBMS_SESSION package. The prototype for the
DBMS_SESSION package is

DBMS_SESSION.SESSION_TRACE_ENABLE(
 waits IN BOOLEAN DEFAULT TRUE
 , binds IN BOOLEAN DEFAULT FALSE
 , plan_stat IN VARCHAR2 DEFAULT NULL);

You would call the DBMS_SESSION package to enable tracing with the following anonymous
PL/SQL block:

BEGIN
 dbms_session.session_trace_enable(waits => TRUE
 , binds => FALSE
 , plan_stat => 'all_executions');
END;
/

14-AppA.indd 691 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

692 Oracle Database 12c PL/SQL Programming

While the trace is ongoing, you can use the following SELECT statement to find any active
trace file for the current session:

SQL> SELECT p.tracefile
 2 FROM v$session s INNER JOIN v$process p
 3 ON p.addr = s.paddr
 4 WHERE s.audsid = USERENV('SESSIONID');

It returns

TRACEFILE

C:\APP\ORACLEDBA\diag\rdbms\orcl\orcl\trace\orcl_ora_4856.trc

Alternatively, you can simply browse the directory where the trace files are written. You can
find that directory with the following query:

SELECT value
FROM v$parameter
WHERE name = 'user_dump_dest';

It prints the following for an Oracle Database 12c database on Windows:

VALUE

C:\app\oracledba\diag\rdbms\orcl\orcl\trace

The user_dump_dest directory is where the raw trace files are stored. The location of the
physical directory may change, but the Oracle Database 12c database can always find it for you
with the preceding query.

Disable Tracing in the Current Session
After you start the trace process, you can stop it with this command:

ALTER SESSION SET SQL_TRACE=FALSE;

Alternatively, you can stop it with this call to the DBMS_SESSION package in an anonymous
block:

BEGIN
 dbms_session.session_trace_disable;
END;
/

Enable Tracing in Another Session
As mentioned previously, the DBMS_MONITOR package has the capability to start tracing in
another session. The prototype for the SESSION_TRACE_ENABLE procedure is

DBMS_MONITOR.SESSION_TRACE_ENABLE(
 session_id IN BINARY_INTEGER DEFAULT NULL
 , serial_num IN BINARY_INTEGER DEFAULT NULL

14-AppA.indd 692 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix A: Oracle Database Primer 693

 , waits IN BOOLEAN DEFAULT TRUE
 , binds IN BOOLEAN DEFAULT FALSE
 , plan_stat IN VARCHAR2 DEFAULT NULL);

NOTE
The PLAN_STAT parameter is only available from Oracle Database
11g forward.

The following shows a call to the SESSION_TRACE_ENABLE procedure in the DBMS_
MONITOR package:

SQL> BEGIN
 2 FOR i IN (SELECT s.sid
 3 , s.serial#
 4 FROM v$session s
 5 WHERE UPPER(s.program) LIKE '%SQLPLUS%') LOOP
 6 dbms_monitor.session_trace_enable(session_id => i.sid
 7 , serial_num => i.serial#
 8 , waits => FALSE
 9 , binds => TRUE);
 10 END LOOP;
 11 END;

You can also identify a specific SID and serial number. If you do so, you can enable tracing on
only one other session.

Convert Raw Trace Files to Readable Trace Files
You use the tkprof utility to convert a raw trace file from the user_dump_dest directory into
a readable trace file. The general prototype for the utility is

tkprof trace_file output_file explain=connection waits=key sort=(keys)

The prototype contains a trace file, an example of which (orcl_ora_4856.trc) appeared
in the preceding “Enable Tracing in the Current Session” section. Raw trace files have a .trc file
extension. The output file doesn’t require a specific file extension, but the Oracle convention uses
a .prf file extension. The explain= argument needs to be a user_name/password combination
that applies to the schema where you captured the raw trace data. The waits= argument takes a
yes or no string literal value. The sort= argument takes a parenthetical list of one to three sort
keys delimited by commas, like (key1, key2, key3).

Each sort key has two parts. The first part sorts on parse, execute, or fetch operations, while
the second part sorts on aspects of the statement, as qualified in Table A-8. The following sorts
parse, fetch, and execute sorts by elapsed time:

tkprof orcl_ora_4856.trc output.prf explain=student/student waits=yes
sort=(prsela,fchela,exeela)

14-AppA.indd 693 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

694 Oracle Database 12c PL/SQL Programming

There are several other tkprof options available, including the following:

 ■ aggregate= Lets you report identical SQL statements once with summed statistics

 ■ table= Lets you substitute a different table name for the plan_table default

 ■ print= Takes a number that limits the number of SQL statements printed to the
output file

 ■ sys= Lets you provide a nonstring literal to suppress SQL statements executed by the
sys user

 ■ record= Lets you designate the name of the file to which all the SQL statements from
the trace file are written

 ■ insert= Lets you designate the name of the file to which the tkprof utility can write
a script that lets you store and keep a record of the statements and their execution statistics

Summary
This appendix has given you a primer on the concepts of the Oracle 12c database, enabling you
to work in both the SQL Developer and SQL*Plus command-line interfaces and to understand
elements of user configuration, database constraints, database security, and SQL tuning and tracing.

Sort Key Part of Sort Key Description
prs 1st Sorts on values during parse calls
exe 1st Sorts on values during execute calls
fch 1st Sorts on values during fetch calls
cnt 2nd Sorts on number of calls
cpu 2nd Sorts on CPU consumption
ela 2nd Sorts on elapsed time
dsk 2nd Sorts on disk reads
qry 2nd Sorts on consistent reads
cu 2nd Sorts on current reads
mis 2nd Sorts on library cache misses
row 2nd Sorts on rows processed

TABLE A-8. tkprof Sort Options

14-AppA.indd 694 12/17/13 3:42 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

APPENDIX
B

SQL Primer

15-AppB.indd 695 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

696 Oracle Database 12c PL/SQL Programming

This primer supports the SQL SELECT, INSERT, UPDATE, and DELETE statements that
exist throughout the book. This primer a critical resource to avoid you choosing to use
PL/SQL to solve problems that are better solved with SQL. It’s provided for you because

all too often other developers resort to PL/SQL solutions when more effective SQL solutions are
available but unknown. PL/SQL should help you solve those problems that can’t be solved with
SQL alone.

I’ve made an effort in this primer to highlight the SQL concepts and best practices that support
key features of Oracle Database 12c. It seemed best to me to put complete discussions of SQL
solutions in this primer rather than to try to intermingle them in the discussion of PL/SQL features.
Throughout the book, I refer you to this primer to explore SQL alternatives or concepts. This SQL
primer should help you write better PL/SQL programs because you’ll know what’s available in SQL.

As mentioned in Chapter 1 and Appendix A, the client-side software is a command-line
console. The client submits requests to the server-side engine, which in turn sends results and
acknowledgement of success or failure back to the client. These requests are written in SQL
statements. SQL stands for Structured Query Language and was initially developed by IBM.

NOTE
IBM originally labeled its language Structured English Query Language
(SEQUEL), but SEQUEL as a name ran afoul of an existing trademark
of a British company, so IBM shortened it to SQL. IBM engineers
continued to use the pronunciation sequel rather than S-Q-L.

Although SQL is often labeled as a nonprocedural programming language, that’s technically
inaccurate. Nonprocedural languages are typically event-driven languages, such as Java. Instead,
SQL is a set-based declarative language. Declarative programming languages let developers state
what a program should do without qualifying how it will accomplish this. Declarative languages
are much like an automatic transmission in a car. High-level instructions map to detailed activities
hidden from the driver, such as accelerating and decelerating without having to use a clutch to
change gears.

Imperative languages change the state of variables and sets of variables for any assigned task.
Internally, the Oracle Database 12c engine supports imperative languages. Like the throttle or gas
pedal, SQL statements submit requests to a database engine. The engine receives the request,
determines the sequence of actions required to accomplish the task, and performs the task. On a
steep hill in San Francisco, I’d prefer an automatic transmission; and with a tight deadline for
developing a program, I’d prefer SQL over any imperative language.

SQL lets you interact with data, but it also lets you define and configure data structures without
dealing with the specific mechanics of operation. The SQL statement engine processes all SQL
statements. All means all, with no exceptions. SQL statements are events and fall into several
categories: Data Definition Language (DDL), Data Manipulation Language (DML), Data Control
Language (DCL), or Transaction Control Language (TCL).

Although there are many variations of how you use SQL commands, only 16 basic commands
exist. The DDL commands let you create and modify structures in the database via CREATE, ALTER,
DROP, RENAME, TRUNCATE, and COMMENT statements. DML commands let you query, add, modify,
or remove data in structures via SELECT, INSERT, UPDATE, and DELETE statements. These four
DML statements deliver classic CRUD (create, read, update, and delete) functionality, depicted in
Figure B-1 (CRUD corresponds, respectively, to INSERT, SELECT, UPDATE, and DELETE).

15-AppB.indd 696 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 697

CRUD functionality actually has lifecycles that hold low, medium, or high consequences
within application implementations. Consequences are determined by the volatility (or frequency
of change) of transactions.

In the CRUD lifecycle, some data is more crucial to the business than other data. For this reason,
many DBA teams create online archives of the data for rapid reference, if it is required. They store
the data either in partitions or in separate tables labeled with a timestamp, like SALES_JAN2013
for a data warehouse. These partitions or tables can be removed when they are no longer required.
If the data is critical enough, DBAs create offline archives (called tape backups) of the data before
it is removed from the transactional table. This ensures data constancy and keeps your transactional
system speedy.

The DML family of commands also includes the hybrid MERGE statement, which lets you insert
or update rows based on logic you embed in the statement. While you can tune MERGE statements,
they aren’t as efficient as ordinary INSERT statements because they insert or update data. Oracle
also provides a multiple-table INSERT statement, INSERT ALL, in which you embed logic that
determines which table should be the target for inserting each row of data.

When you transact across more than a single table, you use the TCL commands SAVEPOINT,
ROLLBACK, and COMMIT. Lastly, the GRANT and REVOKE DCL commands let you grant and
revoke privileges to act in the database.

Set-based declarative languages such as SQL don’t accomplish all that databases need to do,
which is why programmers write procedural programs and event-driven triggers in PL/SQL, write
object-oriented solutions in event-driven languages like Java or C#, and write web development
solutions using Perl, PHP, or Ruby.

Low Consequence High ConsequenceMedium Consequence

Data Lineage Volatility

Read
Update

MD

Truncate
or DeleteC

R
U

D
 L

ife
cy

cl
e 1

C
R

U
D

 L
ife

cy
cl

e 2

C
R

U
D

 L
ife

cy
cl

e 3

Create
MD

Read

Of�ine
archive

Update
MD

Archive

Truncate
or Delete

Historic and Reference Need Increases

Create
MD

Read

Of�ine
archive

Update
MD

Current

Online A1

Online A2

Archive

Truncate
or Delete

Create
MD

FIGURE B-1. Typical CRUD lifecycles

15-AppB.indd 697 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

698 Oracle Database 12c PL/SQL Programming

SQL implementations differ for many reasons. They vary in their level of compliance with
different ANSI standards. For example, Oracle SQL supports two semantic join models—one is
the Oracle proprietary method and the other is compliant with ANSI SQL:2003. Table B-1 covers
the SQL standards. By and large, Oracle Database complies with or surpasses more of the ANSI
standards than any other database.

Like Oracle Database 11g, Oracle Database 12c is ANSI SQL:2003 compliant, except in the
handling of parameters to PL/SQL (Oracle believes its approach is superior to the ANSI standards
in this regard). It should be noted that many improvements and efficiencies in merging XML and
XQuery have been made in the Oracle Database 12c. As to INSTEAD OF triggers and the
TRUNCATE statement in the ANSI SQL:2008 standard, Oracle has had most of those features
since the Oracle 7 database in 1993.

The appendix covers

 ■ Oracle SQL data types

 ■ Data Definition Language (DDL)

 ■ Data Manipulation Language (DML)

 ■ Transaction Control Language (TCL)

 ■ Queries: SELECT statements

 ■ Join Results

While the topics in this appendix are arranged for the beginner from start to finish, you should
be able to use individual sections as independent references if you already have a foundation in
SQL. Head First SQL by Lynn Beighley (O’Reilly, 2007) is a basic introduction to how SQL
statements work. A more complete treatment of Oracle SQL is found in Oracle Database 12c SQL

TABLE B-1. ANSI SQL Standards

Name Year Description

SQL-86 1986 This is the first standardized version of SQL. It was ratified by ISO in 1987.

SQL-89 1989 This is a minor revision of SQL-86.

SQL-92 1992 This is a major revision of SQL-89 and also known as SQL2.

SQL:1999 1999 This is a major revision of SQL-92 that added recursive queries, regular
expression handling, database triggers, nonscalar data types, and object-
oriented features.

SQL:2003 2003 This is a major revision of SQL:1999 that added auto-generated columns,
standardized sequences, window functions, and XML-related functions.

SQL:2006 2006 This includes ISO/IEC 9075-14:2006, which defines how SQL can work
with XML and XQuery. It also defines ways to import and store XML data
in a relational model.

SQL:2008 2008 This legalizes the ORDER BY clause outside of cursor definitions and adds
INSTEAD OF triggers and the TRUNCATE command to the standard.

SQL:2011 2011 This includes ISO/IEC 9075:2011, which revisited a number of elements
but significantly improves support for temporal databases.

15-AppB.indd 698 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 699

by Jason Price (Oracle Press, 2013). The comprehensive reference is the Oracle Database SQL
Reference 12c Release 1 manual, which has over 1,700 printed pages and is available online at
http://otn.oracle.com.The following sections cover the SQL building blocks. You start with DDL
statements because they build the tables, views, sequences, structures, and constraints. DML
statements let you control how you insert, update, or delete data. TCL statements let you manage
ACID-compliant transactions (combinations of insert, update, and/or delete statements) across
two or more tables or views. Queries, or SELECT statements, let you access unfiltered or filter
data, and joins let you combine data from different tables and views.

Oracle SQL Data Types
Oracle Database 12c supports character, numeric, timestamp, binary, spatial, XML, user-defined,
and row address data types. These types are declared in SQL and may also be declared in PL/SQL.
Table B-2 summarizes these SQL data types and qualifies two widely used data subtypes by groups.
While the list is not comprehensive of all subtypes, which can be found in the Oracle Database
SQL Reference 12c Release 1 manual, it should cover the most frequently used data subtypes.
Alternatively, you can look in the dbms_types package specification for the information found
in Table B-2.

TABLE B-2. SQL Data Types

Data Type
Raw
Code Description

CHAR 96 The CHAR data type column stores fixed-length character data in
bytes or characters. You can override the default by providing a
formal size parameter. The BYTE or CHAR qualification is optional
and will be applied from the NLS_LENGTH_SEMANTICS parameter
by default. It has the following prototype:
CHAR [(size [BYTE | CHAR])]

NCHAR 96 The NCHAR data type column stores fixed-length Unicode National
Character data in bytes or characters. Unicode variables require 2
or 3 bytes, depending on the character set, which is an encoding
schema. The AL16UTF16 character set requires 2 bytes, and UTF8
requires 3 bytes. You can override the default by providing a formal
size parameter. It has the following prototype:
NCHAR [(size)]

STRING 1 The STRING data type column is a subtype of VARCHAR2 and stores
variable-length strings in bytes or characters up to 32,767 bytes in
length with a MAX_STRING_SIZE value of EXTENDED. If BYTE or
CHAR is not specified, the type uses the NLS_LENGTH_SEMANTICS
parameter defined for the database instance. You define a VARCHAR2
data type by providing a required size parameter. It has the following
prototype:
STRING [(size [BYTE | CHAR])]

(continued)

15-AppB.indd 699 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

700 Oracle Database 12c PL/SQL Programming

TABLE B-2. SQL Data Types

Data Type
Raw
Code Description

VARCHAR 1 The VARCHAR data type column acts like a synonym for the VARCHAR2
data type. If you use it to define a column, Oracle implicitly converts it
to a VARCHAR2 data type. It has the following prototype:
VARCHAR [(size [BYTE | CHAR])]

VARCHAR2 1 The VARCHAR2 data type column stores variable-length strings in
bytes or characters. If BYTE or CHAR is not specified, the type uses
the NLS_LENGTH_SEMANTICS parameter defined for the database
instance. This value is 2 bytes for AL16UTF16 and 3 bytes for UTF8.
You define a VARCHAR2 data type by setting its maximum size
parameter. The maximum size differs based on the value of the MAX_
STRING_SIZE parameter. When the parameter is set to EXTENDED,
a VARCHAR2 can be 32,767 bytes; it can be only 4,000 bytes long
when the MAX_STRING_SIZE parameter is set to STANDARD. It has
the following prototype:
VARCHAR2 [(size [BYTE | CHAR])]

NVARCHAR2 1 The NVARCHAR2 data type is the Unicode equivalent of the
VARCHAR2 data type. The size per character is determined by
the Unicode setting for the database instance. You define an
NVARCHAR2 data type by setting its maximum size parameter. It has
the following prototype:
NVARCHAR2 (size)

CLOB 112 The CLOB data type column stands for Character Large Object. CLOB
columns store character strings up to 4GB in size. Variables with
Unicode character sets are also supported up to the same maximum
size. CLOB types are defined without any formal parameter for size. It
has the following prototype:
CLOB

NCLOB 112 The NCLOB data type column stands for Unicode National Character
Large Object. NCLOB columns store character strings up to 4GB in
size. Variables with Unicode character sets are also supported up
to the same maximum size. NCLOB types are defined without any
formal parameter for size. It has the following prototype:
NCLOB

LONG 8 The LONG data type column is provided for backward compatibility and
will soon become unavailable because the CLOB and NCLOB data types
are its future replacement types. (Note: Oracle recommends that you
begin migrating LONG data types, but has announced no firm date for its
deprecation.) It contains a variable-length string up to 2GB of characters
per row of data, which means you can have only one LONG data type
in a table definition. You define a LONG without any formal parameter. It
has the following prototype:
LONG

15-AppB.indd 700 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 701

TABLE B-2. SQL Data Types

Data Type
Raw
Code Description

BINARY_FLOAT 100 The BINARY_FLOAT is a 32-bit floating-point number data type that
takes 4 bytes of storage. It is defined without a formal parameter. It
has the following prototype:
BINARY_FLOAT

BINARY_DOUBLE 101 The BINARY_DOUBLE is a 64-bit floating-point number data type
that takes 8 bytes of storage. It is defined without a formal parameter.
It has the following prototype:
BINARY_DOUBLE

FLOAT 2 The FLOAT is a 126-position subtype of the NUMBER data type
column. You can define it without a formal parameter or with a
formal parameter of size. It has the following prototype:
FLOAT [(size)]

NUMBER 2 The NUMBER is a 38-position numeric data type column. You can
declare its precision (or size) and its scale (or number of digits to
the right of the decimal point). You can define it without a formal
parameter, with a single precision parameter, or with both precision
and scale parameters. It has the following prototype:
NUMBER [(precision [, scale])]

DATE 12 The DATE is a 7-byte column and represents a timestamp from
1 Jan 4712 b.c.e. to 31 Dec 9999 using a Gregorian calendar
representation. The default format mask, DD-MON-RR, is set as a
database parameter and found as the NLS_DATE_FORMAT parameter
in the V$PARAMETER table. It has the following prototype:
DATE

INTERVAL YEAR 182 The INTERVAL YEAR is a 5-byte column and represents a year and
month, and the default display is YYYY MM. You can define it with
or without a formal parameter of year. The year_precision is the
number of digits in the YEAR datetime field, and it can be between 0
and 9 digits, and the default is 2 digits. The default limits of the year
interval are –99 and 99. It has the following prototype:
INTERVAL YEAR [(year)] TO MONTH

INTERVAL DAY 183 The INTERVAL DAY is an 11-byte representation of days,
hours, minutes, and seconds in an interval. The default display
is DD HH:MI:SS, or days, hours, minutes, and seconds. The
day_precision is the maximum number of digits in the DAY
datetime field, between 0 and 9 digits, and the default is 2 digits. The
factional_seconds is the number of digits in the fractional part
of the SECOND field. Accepted values are between 0 to 9 digits, and
the default is 2 digits. It has the following prototype:
INTERVAL DAY [(day_precision)]
TO SECOND [(fractional_seconds)]

(continued)

15-AppB.indd 701 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

702 Oracle Database 12c PL/SQL Programming

TABLE B-2. SQL Data Types

Data Type
Raw
Code Description

TIMESTAMP 180 The TIMESTAMP is a 7- to 11-byte column and represents a date
and time, and it includes fractional seconds when you override the
default seconds parameter. The default seconds parameter returns
seconds without any fractional equivalent. The fractions of seconds
must be values between 0 and 9 and have a maximum display
precision of microseconds. It has the following prototype:
TIMESTAMP [(seconds)]

TIMESTAMP WITH
TIME ZONE

231 The TIMESTAMP WITH TIME ZONE is a 13-byte column and
represents a date and time including offset from UTC; it includes
fractional seconds when you override the default seconds parameter.
The default seconds parameter returns seconds without any fractional
equivalent. The fractions of seconds must be values between 0 and
9 and have a maximum display precision of microseconds. It has the
following prototype:
TIMESTAMP [(seconds)] WITH TIME ZONE

BLOB 113 The BLOB data type column may contain any type of unstructured
binary data up to a maximum size of 4GB. It has the following
prototype:
BLOB

BFILE 114 The BFILE data type column contains a reference to a file stored
externally on a file system. The file must not exceed 4GB in size. It
has the following prototype:
BFILE

RAW 23 The RAW data type column is provided for backward compatibility
and will soon become unavailable because the BLOB data type is
its future replacement. (Note: Oracle recommends that you begin
migrating RAW data types, but has announced no firm date for the
type’s deprecation.) It can contain a variable-length raw binary
stream up to 2,000 bytes per row of data, which means you can only
have one RAW data type in a table definition. It has the following
prototype:
RAW (size)

LONG RAW 24 The LONG RAW data type column is provided for backward
compatibility and will soon become unavailable because the BLOB
data type is its future replacement. (Note: Oracle recommends that
you begin migrating LONG RAW data types, but has announced no
firm date for the type’s deprecation.) It can contain a variable-length
raw binary stream up to 2GB bytes. It has the following prototype:
LONG RAW

15-AppB.indd 702 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 703

Spatial data types and user-defined data types don’t quite fit nicely into Table B-2. Spatial data
types are Oracle-provided object types. User-defined SQL data types fall into three categories:
object types (which may have methods), collections of a single column (or Attribute Data Types
[ADTs] according to Oracle’s documentation), and collections of object types (or user-defined
types [UDTs]). This appendix shows you how to implement and evolve basic object types, and
Chapter 11 shows you how to implement object types, subtypes, and their respective PL/SQL
object bodies.

You can also find examples using these Oracle SQL data types in the Oracle Database
Application Developer’s Guide – Fundamentals and Oracle Database Application Developer’s
Guide – Large Objects. The most frequently used data types are the BLOB, BFILE, CLOB, DATE,
FLOAT, NUMBER, STRING, TIMESTAMP, and VARCHAR2 data types. International
implementations also use the TIMESTAMP WITH LOCAL TIME ZONE data type to regionalize
Virtual Private Databases available in the Oracle Database 12c product family.

Data Definition Language (DDL)
The DDL commands let you create, replace, alter, drop, rename, and truncate database objects,
permissions, and settings. You require a database instance before you can create, replace, alter,
drop, rename, and truncate database objects. When you installed the Oracle database, the
installation script created a clone of a sample database. Alternatively, the installation program
could have used the CREATE command to build a database instance. After creating the database
instance, you can then use the ALTER command to change settings for the instance or for given
sessions. Sessions last the duration of a connection to the database instance.

TABLE B-2. SQL Data Types

Data Type
Raw
Code Description

ROWID 69 The ROWID data type column contains a 10-byte representation
of a Base 64 binary data representation retrieved as the ROWID
pseudocolumn. The ROWID pseudocolumn maps to a physical block
on the file system or raw partition. It has the following prototype:
ROWID

UROWID 208 The UROWID data type column contains a maximum of 4,000 bytes,
and it is the Base 64 binary data representation of the logical row in
an index-organized table. The optional size parameter sets the size in
bytes for the UROWID values. It has the following prototype:
UROWID [(size)]

XMLType 112 The XMLType data type column contains a maximum of 4,000
bytes, and it is the Base 64 binary data representation of the logical
row in an index-organized table. The optional size parameter sets the
size in bytes for the XMLType values. It has the following prototype:
XMLType [(size)]

15-AppB.indd 703 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

704 Oracle Database 12c PL/SQL Programming

The DDL section is organized into subsections and covers

 ■ CREATE statement

 ■ ALTER statement

 ■ RENAME statement

 ■ DROP statement

 ■ TRUNCATE statement

 ■ COMMENT statement

You will most frequently use DDL commands to manage tables, constraints, indexes, views,
sequences, and user-defined types. This section works through applications that apply to these
command uses.

CREATE Statement
The CREATE statement provides the DBA and Application DBA with the ability to create
databases, tablespaces, and users. It also provides you with the ability to create tables, sequences
and identity columns, constraints, indexes, views, functions, procedures, packages, object types,
external tables, user-defined types, partitioned tables, and synonyms.

In this section of the appendix, you cover how to create users, privileges, tables, sequences,
identity columns, nested collections, constraints, indexes, views, functions, procedures, packages,
object types, external types, and synonyms. Understanding how to use these types of commands
is important for all Oracle database programmers.

Users
Users are synonymous with schemas in an Oracle database, and sometimes schemas are labeled
as namespaces. A database or schema is a private work area, but it is also a container of tables.
Oracle Database 12c supports container databases (CDBs) and pluggable databases (PDBs).
Container users are the common schemas, like sys, system, and so forth. However, you can
create user-defined common users with a c## prefix, or local users for the pluggable databases.
You define local users with the same user name convention used by prior releases of the Oracle
database. User-defined common users shouldn’t have tables and shouldn’t serve administrative
purposes across multiple or single pluggable databases. You should define local users when you
want to create schemas to hold tables.

Users hold privileges to work in the database. Each database designates at least one default
superuser. The superuser enjoys all privileges in the database. The Oracle database defines two
superusers, sys and system, and follows the ANSI-SPARC architecture’s three-tiered model. This
architectural model divides the internal, conceptual, and external views of schemas or databases.

The internal view consists of the physical reality of how data is organized, which is specific to
any DBMS. The internal view also contains the editable data catalog that maintains all the data
about data, or metadata. This metadata contains all the definitions of users, databases, tables,
indexes, constraints, sequences, data types, and views. Inside the internal view and with the
proper credentials, a superuser can alter the contents of the data catalog with Data Manipulation
Language (DML) statements. That means an authorized user could use an INSERT, UPDATE, or
DELETE statement to change critical metadata outside the administrative barrier of system
privileges and Data Definition Language (DDL) statements.

15-AppB.indd 704 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 705

NOTE
Never use DML statements to change the data catalog values without
the express instruction of Oracle Support.

The conceptual view consists of the community view of data. The community view is defined
by the users with access privileges to the database, and it represents an administrator’s view of
data from the perspective of SQL. This view of data provides administrator-friendly views of data
stored in the data catalog.

It isn’t possible to change the contents of the metadata in the community view, except through
DDL statements such as ALTER, CREATE, and DROP statements. Developers can use only these
DDL statements against objects, or in the case of the ALTER statement, against system and
database environment settings. These types of environment settings enable such things as database
traces measuring behavior and performance. More on these types of DDL statements can be
found in the Oracle Database SQL Language Reference 12c Release.

Oracle implements the concept of a community view as a collection of striped views. Striped
views detect the user and allow them to see only things they have rights to access. These views
typically start with CDB_, DBA_, ALL_, and USER_ prefixes, and you access them as you would
any other table or view through queries with a SELECT statement. The ALL_ and DBA_ prefixed
views are accessible only to the Oracle superusers: sys, system, and user-defined accounts
granted super privileges. Every user has access to the community view prefixed with USER_.
Those views provide access to structures only in the user’s schema or personal work area.

The external view consists of access to the user’s schema or database, which is a private work
area. Users typically have complete control over the resources of their schema or database, but in
some advanced architectures, users can have restricted rights. In those models, the user may be
able to perform only the following tasks:

 ■ Create tables and sequences

 ■ Create or replace stored program units

 ■ Provide or rescind grants and synonyms

 ■ Limit access to memory, disk space, or network connections

Oracle’s sys and system users are synonymous with the two schemas for the internal and
conceptual views, respectively. The differences between the definition of the internal view and the
privileges conveyed when connecting as sys aren’t immediately visible. You cannot change
things in the sys schema when you connect as the sys user, unless you connect with the / as
sysoper (system operator) or / as sysdba (system DBA) privilege. You have full privileges as
the system DBA but only a subset of privileges as the system operator. Typically, the only thing
you perform with either of these responsibilities is routine maintenance or granting of specialized
privileges. Routine maintenance would include starting and stopping the database. Specialized
privileges include granting a user wider privileges or revoking privileges already granted, and
defining the internal Java permissions though the dbms_java package.

Although you can create new users and grant them privileges like the superuser, you shouldn’t
alter the predefined roles of the superusers. The next sections describe how you create users and
grant privileges to or revoke privileges from a user.

Creating an Oracle User Creating a user is synonymous with creating a schema in an Oracle
database. This section focuses on the aspects of authentication, profile, and account status for an
Oracle database user.

15-AppB.indd 705 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

706 Oracle Database 12c PL/SQL Programming

The SQL prototype to create a user allows you to identify the user with a password, an
external SSL-authenticated certificate name, or a globally identified user name based on a
Lightweight Directory Access Protocol (LDAP) entry. The following syntax (similar to that in
Appendix A) lets you create a PDB student user that is identified by a local database password:

CREATE USER student IDENTIFIED BY student;

Or, you can create a user-defined common user with this syntax:

CREATE USER c##plsql IDENTIFIED BY W0rk1ng2 CONTAINER=ALL;

Common users can also be restricted to a pluggable database by specifying it in the
CONTAINER clause, like

CREATE USER c##plsql IDENTIFIED BY W0rk1ng2 CONTAINER=HR;

One alternative to a local user is an SSL-authenticated certificate name, which would look
like this:

CREATE USER student IDENTIFIED EXTERNALLY AS 'certificate_name';

The LDAP alternative for a local user would look the same but use a different source:

CREATE USER student IDENTIFIED EXTERNALLY AS 'CN=miles,O=apple,C=us';

Oracle Password Rules and Recommendations
Oracle recommends that you comply with these rules when specifying a password:

 ■ Contains at least one lowercase letter.

 ■ Contains at least one uppercase letter.

 ■ Contains at least one digit.

 ■ Is at least eight characters in length.

 ■ Uses the database character set, which can include the underscore (_), dollar sign
($), and pound sign (#) characters.

 ■ Is enclosed with double-quotation marks if it contains special characters, including
a number or symbol beginning the password.

 ■ Should not be an actual word.

Likewise, you can’t use the old educational passwords:

 ■ The sys account password cannot be change_on_install (case insensitive).

 ■ The system account password cannot be manager (case insensitive).

 ■ The sysman account password cannot be sysman (case insensitive).

 ■ The dbsnmp account password cannot be dbsnmp (case insensitive).

 ■ If you choose to use the same password for all the accounts, then that password
cannot be change_on_install, manager, sysman, or dbsnmp (case insensitive).

15-AppB.indd 706 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 707

The certificate is an SSL (Secure Sockets Layer) file. It lets you encrypt your database credentials
to support secure data communication.

Any of the three syntax methods can be used to create a private student work area, which
is a schema. A number of other options are available for the default and temporary tablespaces of
the work area, and quota syntax is available to limit the space authorized for a schema.

Another clause allows you to assign a profile to users when you create them. That clause
generally follows any tablespace assignments and quota limits. An example that assumes default
assignment of tablespaces and quota limits would look like this with a local password:

CREATE USER student IDENTIFIED BY student
PROFILE profile_name;

Profiles allow you to restrict the number of concurrent user sessions, amount of CPU per call,
and so forth. Profiles also let you impose restrictions or overriding password functions. The latter
allows you to enhance the base security provided by the Oracle database, like surrounding the
castle gate with a moat.

You can also set a password as expired. With this setting, when the user signs on with a provided
password, he or she will be prompted to change it immediately. This is the best practice for issuing
user accounts. Accounts are unlocked by default, but sometimes an account should be locked.
For example, you might need to create the schema as a reference for development purposes in
another schema before planned use of the schema. These clauses generally follow all of those
previously discussed. A sample CREATE statement with these clauses would look like this:

CREATE USER student IDENTIFIED BY student
PROFILE profile_name
PASSWORD EXPIRE
ACCOUNT LOCK;

You can use an ALTER statement to unlock the user account when the time comes to activate
it. More details on that are provided in the “User” subsection of the “ALTER Statement” section.

Restricting access through the Oracle Transparent Network Substrate (TNS) is accomplished
by configuring the Oracle networking stack. For example, you can configure the sqlnet.ora
file to be used to restrict connections within a domain.

The following shows how to enable or exclude client machine access. The parameter lines go
in to the sqlnet.ora file on the server.

tcp.validnode_checking = yes
tcp.invited_nodes = (192.168.0.91)
tcp.excluded_nodes = (192.168.0.129)

The first parameter allows you to check whether the IP address is authorized or not. The second
line shows you how to authorize a client, and the third line shows you how to prohibit a client
from connecting to the Oracle database server.

After the user connects to the database, you can provide fine-grain access control through
SQL configuration. For example, you can restrict a user’s access down to the column level by
using the new invisible columns and dbms_redact package.

NOTE
You can find full documentation on Oracle networking in the Oracle
Database Net Services Reference 12c Release.

15-AppB.indd 707 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

708 Oracle Database 12c PL/SQL Programming

This concludes the basics of setting up a new user account. You can explore more on the
topic online in the Oracle Database SQL Language Reference 12c Release.

Granting Oracle Privileges
There are two types of security privileges. One type contains system privileges and the other
contains object privileges. System privileges don’t relate to a specific object or schema/database.
Object privileges provide specific permissions to work with individual objects or schemas/
databases.

System privileges allow wide-ranging actions and should be restricted to specific administrative
user accounts. These administrative accounts are common user accounts in Oracle Database 12c,
like sys, system, and any user-defined common account that starts with a c## prefix.

System privileges allow a common user to administer a system, create new privileges, change
the behavior of existing privileges, change the behavior of system resources, or manipulate any type
of object, such as tables, views, indexes, and so forth. DBAs have system privileges, and these
privileges are often frequently provided to developers in small test systems. When developers
package their code for integration testing and deployment, DBA system privileges run their code.

Object privileges grant specific access to a single user or set of users. These privileges often
allow the user to manipulate data objects such as tables or views: a user can select, insert,
update, or delete data. They also grant privileges to run or execute stored programs, such as stored
functions, procedures, and, in object-relational databases, instantiable objects. Object privileges
also are granted to the DBA during implementation, but they’re key components of application
architectures. They allow the application designer to segment sets of tables and programs into
separate schemas. These schemas act like packages in object-oriented programming languages.

Both system and object privileges can be revoked by the grantor or other superuser. Any work
the user does to the data while he or she had access to the system remains unaltered when
privileges are revoked. Therefore, privileges should be granted only where appropriate and their
use should be monitored.

The Oracle Database 12c database supports statements that let you grant and revoke
privileges. These commands are colloquially called Data Control Language (DCL) statements.

DCL statements can grant privileges to container users, like DBA or user-defined common
users. This is just the basic set of commands; you can find more in the Oracle Database SQL
Language Reference 12c Release.

NOTE
ANY is an optional keyword and provides wide-ranging permissions in
Oracle. This privilege shouldn’t be granted to anyone except a DBA or
container user.

The current section shows you how to grant and the subsequent section shows you how to
revoke a system privilege in the Oracle Database 12c database.

Creating an account in an Oracle database doesn’t automatically enable it for use. First you
must grant basic permissions to use a local account (one reserved for a pluggable database). The
system user or any common administrator account created with the CREATE ANY USER
privilege should run these commands.

You should only extend those basic privileges that users require, as a rule. You also must
manage the limits on access to physical space. You should note that privileges don’t work when

15-AppB.indd 708 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 709

you create a user without a DEFAULT clause and a TEMPORARY TABLESPACE clause, unless you
also grant UNLIMITED TABLESPACE as shown here:

GRANT create cluster, create indextype, create operator
, create procedure, create sequence, create session
, create table, create trigger, create type
, create view, unlimited tablespace TO student;

This type of GRANT statement lets you create a user in a small, developer-only environment,
but you shouldn’t do this in a production database. It works because you avoid assigning default
and temporary tablespaces by granting unlimited space rights. This is never a good thing to do,
except on your laptop! Some might say that you shouldn’t do it on your laptop either, but this is
something for you to decide.

Common users must be granted permissions for each or all pluggable databases by a privileged
superuser, like system. The following grants CONNECT and RESOURCE roles to a user-defined
c##dba user across the CDB:

GRANT CONNECT, RESOURCE TO c##dba CONTAINER=ALL;

Omitting CONTAINER=ALL from the statement means the user has granted only privileges to
the local CDB. For example, let’s say that the system user connects to an hr container, like so:

C:\> sqlplus /nolog
sqlplus> connect c##plsql@hr

The system user enters the password and grants the privilege without the CONTAINER=ALL
clause:

GRANT CONNECT, RESOURCE TO c##dba;

Then, the c##plsql user has only those permissions for the hr pluggable database.
Privileges and roles may be granted locally to users regardless of whether they are local or

common grantees, grantors, or roles. Table B-3 qualifies local grants; you can find more in the
Oracle Database Concepts 12c Release manual.

Privileges granted to common roles may be limited to the container where they were granted.
Privileges granted to local roles are limited to the container where they were granted. Roles are groups
of privileges. Refer to the Oracle Database 12c DBA Handbook for more information on roles.

Grantee May Grant Locally May Be Granted Locally
May Receive a Role or
Privilege Granted Locally

Common User Yes No Yes

Local User Yes No Yes

Common Role No Yes (rules apply) Yes

Local Role No Yes (rules apply) Yes

Privilege No Yes No

TABLE B-3. Local Grants

15-AppB.indd 709 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

710 Oracle Database 12c PL/SQL Programming

The ALTER statement also lets you assign a default tablespace and a temporary tablespace
after a user is created. Both the CREATE and ALTER statements let you assign quotas to the
default tablespace, but you can no longer assign a quota to the temporary tablespace. Any
attempt to do so raises an error. This change became effective with Oracle Database 10g.

Most commercial databases define user profiles and assign them when creating new users.
You can find out more about that in the Oracle Database 12c DBA Handbook.

NOTE
Beginning with Oracle Database 10g Release 2, you can no longer
assign a temporary tablespace quota.

A sample grant of select privileges, typically made by a user for his or her own schema
objects, would look like this:

GRANT SELECT ON some_tablename TO some_user;

Sometimes a user wants to grant privileges to another user with the privilege to extend that
privilege to a third party. This is the infrequent pattern of grants reserved for setting up administrative
users. You append a WITH GRANT OPTION clause to give another user the right to provide others
with the privileges you’ve conveyed to them:

GRANT SELECT ON some_tablename TO some_user WITH GRANT OPTION;

Oracle also supports the concept of a synonym, which simplifies how another user can access
your object. Without a synonym, the other user would need to put your user name and a dot (.)
in front of the object before accessing it. The dot is called a component selector. A synonym
creates an alias that maps the user name, component selector, and object name to a synonym
(alias) name in the user’s work area or schema.

You don’t need to use a component selector on objects that you create in your schema.
They’re natively available to you. The sys superuser has access to every object in the Oracle
Database 12c Server by simply addressing objects by their fully qualified location—schema
name, component selector, and object name. This makes perfect sense when you recall that the
user and schema names are synonymous.

You create a synonym like this:

CREATE SYNONYM some_tablename FOR some_user.some_tablename;

Typically, the local table name is the same as the table name in the other schema, but not
always. You can also grant privileges on a table to a PUBLIC account, which gives all other users
access to the table. Public synonyms also exist to simplify how those users access the table.

You would grant the SELECT privilege to the PUBLIC account with this syntax:

GRANT SELECT ON some_tablename TO PUBLIC;

After granting the privilege, you create a public synonym with this syntax:

CREATE PUBLIC SYNONYM some_tablename FOR some_user.some_tablename;

As a rule of thumb, use the PUBLIC account only when you’re granting privileges to invoker
rights stored programs. Appendix A discusses the default definer and invoker rights models.
Chapter 8 shows you how to define stored programs that run under definer or invoker rights models.

15-AppB.indd 710 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 711

Revoking Privileges
You can revoke any privilege from a user provided you or a peer superuser made the grant. Let’s
say you just finished reading the “ALTER Statement” section of this appendix and realized that you
should remove the UNLIMITED TABLESPACE privilege from the student user. That command
would look like this:

REVOKE unlimited tablespace FROM student;

The funny thing about this revocation is that it doesn’t immediately disable a user from writing
to the tablespace generally. That’s because revocation only disallows the allocation of another
extent to any table previously created by the user. An extent is a contiguous block of space inside
a tablespace. Extents are added when an INSERT or UPDATE statement can’t add anything more
in the allocated space. The number of extents allocated to a table is a measure of the fragmentation
of the table on disk. You can export table contents and the table definition and then re-create the
table with a new storage clause to defragment storage.

You can revoke privileges from the PUBLIC account with the same type of syntax:

REVOKE SELECT ON some_tablename FROM PUBLIC;

When you revoke privileges that include a WITH GRANT OPTION clause, make sure you
also revoke the granting option. There should be a routine process in place for validating the
grants and privileges to ensure that they comply with your company’s governance policy and
appropriate laws, such as the Sarbanes-Oxley Act in the United States. You can find more about
hardening in an application context in the Oracle Press book Oracle E-Business Suite Security.

Tables
Database tables are two-dimensional record structures that hold data. Grants of permissions to read
and write data are most often made to tables. Sometimes grants restrict access to columns in tables.

Although databases contain tables, tables contain data organized by data types. A data type is
the smallest container in this model. It defines what type of values can go into its container. Data
values such as numbers, strings, or dates belong, respectively, in columns defined as numeric,
variable-length string, and DATE data types. Data types that hold a single value are scalar data
types (or, to borrow some lingo from Java, primitive data types).

Tables are seldom defined by a single column. They are typically defined by a set of columns.
The set of columns that defines a table is a type of data structure. It is more complex than a single
data type because it contains a set of ordered data types. The position of the elements and their
data types define the structure of a table. The definition of this type of structure is formally a
record structure, and the elements are fields of the data structure.

This record structure description can be considered the first dimension of a two-dimensional
table. The rows in the table are the second dimension. Rows are organized as an unordered list
because relational operations should perform against all rows regardless of their positional order.

Tables are defined by the DDL CREATE TABLE command. The command provides names for
columns, data types, default values, and constraints. The column, data type, and default values
must always be defined on the same line, but constraints can be defined two places. Defining a
constraint on the same line as a table column is defining an inline constraint. This is the typical
pattern for column constraints, such as a not null or single-column PRIMARY KEY column. You
can opt to define column constraints after all columns are defined. When you do so, the constraints
are out-of-line constraints. Sometimes constraints involve more than one column. Constraints that
apply to two or more columns are table constraints.

15-AppB.indd 711 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

712 Oracle Database 12c PL/SQL Programming

A not null constraint is always a column constraint. The ANSI SQL standard requires that all
columns in tables be unconstrained by default. An unconstrained or nullable column is an optional
column when you insert or update a row. A not null column is a mandatory column when you
insert or update a row. The Oracle database adheres to this ANSI standard use. Note that Microsoft
SQL Server doesn’t adhere to the standard, because it makes all columns mandatory by default.

RDBMS implementations comprise five basic groups of data types: numbers, characters,
date-time intervals, large objects, and Boolean data types. The Boolean data type was added in
ANSI SQL:1999, and it includes three-valued logic: true, not true, and null. It adopts three-valued
logic because the ANSI SQL-89 standard and later accept that any column can be a null allowed—
or, simply put, a column can contain no value or be empty.

Although RDBMSs determine which data types they’ll support, they also determine how they’ll
implement them. Some data types are scalar or primitive data types, and others are built on those

Database Constraints
Assuming you are building a table for the first time as a structure where you will hold
information, you need to determine whether the table will have database constraints.
Database constraints are rules that define how you will allow users to insert and update rows
or records in the table. Five database constraints are available in an Oracle database: check,
foreign key, not null, primary key, and unique. Constraints restrict DML commands as follows:

 ■ Check constraints check whether a column value meets criteria before allowing
a value to be inserted or updated into a column. They check whether a value is
between two numbers, a value is greater than two numbers, or a combination of
logically related compound rules is met. Also, not null and unique constraints are
specialized types of check constraints.

 ■ Foreign key constraints check whether a column value is found in a list of values
in a column designated as a primary key column in the same or a different table.
Foreign key constraints are typically managed in the application programs, rather
than as database constraints, because of their adverse impact on throughput.

 ■ Not null constraints check whether a column value contains a value other than null.

 ■ Primary key constraints identify a column as the primary key for a table and impose
both a not null constraint and a unique constraint on the column. A foreign key can
only reference a valid primary key column.

 ■ Unique constraints check whether a column value will be unique among all rows
in a table.

Database constraints are assigned during the creation of a table or by using the ALTER
command after a table is created. You can include constraints in the CREATE statement by
using inline or out-of-line constraints. While some maintain that this is a matter of preference,
it is more often a matter of finding working examples. You should consider using out-of-line
constraints because they’re organized at the end of your table creation and can be grouped
for increased readability. Unfortunately, only inline not null constraints are visible when you
describe a table.

15-AppB.indd 712 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 713

primitive data types. Only Oracle (and PostgreSQL) supports building composite data types that
can be implemented as nested tables.

Like previous versions of Oracle, Oracle Database 12c does not support a Boolean data type.
The lack of a Boolean data type does sometimes cause problems, because standard comparison
operators don’t work with null values. Null values require the IS or IS NOT comparison operator,
which is a reference operator rather than a value comparison operator. Table design and
management should take into consideration the processing requirements to handle three-valued
logic of pseudo-Boolean data types effectively.

NOTE
Oracle SQL does not support calling of functions with Boolean
parameters or returns. Therefore, you must design them to return
numbers (0 or 1) or character strings ('TRUE' or 'FALSE') when
creating user-defined functions for use in SQL statements (see Chapter
7 of the Oracle Database SQL Language Reference 12c Release).

Oracle also supports cloning relational tables through a CREATE statement. The syntax to
create a relational table from existing data is

CREATE TABLE target_table_name AS SELECT * FROM source_table_name;

This syntax replicates the structure of an existing table in a new table. It also clones, or
copies, all the data from the source table to the target table. You can remove the cloned data if it’s
of no use by truncating the contents with this command:

TRUNCATE TABLE target_table_name;

You should know that the TRUNCATE statement doesn’t work when an enabled foreign key
constraint exists that references a column in the table. You must first disable or remove the foreign
key constraint before performing table maintenance with the TRUNCATE statement.

While you can create a relational database table from existing data, as just shown in an
example, you can’t create an object table that way. You can only create an object table by using
this type of definition:

CREATE TABLE target_table_name OF source_object_type;

Object tables appear like relational tables when you describe them. Object tables also let you
insert data like you would with an INSERT statement into a relational table, while letting you
insert object signatures of the base type or any subtype derived from the base type. More details
on this can be found later in the “Object Data Type” subsection of this section.

When you incorporate a storage clause in a CREATE statement, this process allows you to
disable constraints, move the table contents, drop the table, and re-create it with contiguous
space. Naturally, you should drop the extra copy after re-creating the table.

Oracle Database 12c provides the ability to create tables with invisible columns. Invisible
columns aren’t displayed when you describe a table from the command line, but their definition
can easily be found by querying the CDB_, DBA_, ALL_, or USER_TAB_COLUMNS views.

Oracle Database 12c provides two options when creating tables: create ordinary tables that
persist from session to session, or create temporary tables that exist only during the duration of the
session. As a rule, temporary tables are not liked by DBAs because they inherently fragment disks.

15-AppB.indd 713 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

714 Oracle Database 12c PL/SQL Programming

Can’t Clone, Migrate the Data
While you can’t clone object data into a new object table, you have two options that let
you migrate the object data. One moves the data from an object table or object column into
a standard relational structure, and the other moves the data into an existing object table
using the same object type or a generalized object type. A generalized object type is a
supertype of another type, and sometimes is referred to as a parent, grandparent, or
antecedent node in a class hierarchy. Class hierarchies are simply inverted tree structures.

Migrate from Objects to a Relational Table The subsequent example code migrates an
object type into a relational table by a pseudo-cloning operation, which is more or less
what you might use in an ETL (Extract, Transform, and Load) process. We use a pseudo-
cloning operation because we’re cloning the data but not the exact structure, which is why
we should call it migrating data. The example leverages object type examples from this
appendix and Chapter 3. For reference, without reprinting the code examples, the
hobbit_t data type is a subtype of the base_t object and contains information about
hobbits (a make-believe people taken from Tolkien’s The Hobbit or The Lord of the Rings).
The statement migrates the data from an object type column into a relational table:

SQL> CREATE TABLE hobbit AS
 2 SELECT *
 3 FROM TABLE(
 4 SELECT CAST(
 5 COLLECT(
 6 TREAT(log_object AS hobbit_t)) AS hobbit_c)
 7 FROM log_base
 8 WHERE log_object IS OF (hobbit_t)) t;

The foregoing statement is a fancy (or more appropriately, a very complex) approach
that uses the power of SQL to accomplish a task that might too often be written in PL/SQL
when it’s inappropriate to do so. SQL is a better solution because this statement can be
parallelized and run more efficiently than in a PL/SQL block. Check Appendix C for
explanations of how to use the TABLE, CAST, COLLECT, and TREAT functions.

Migrate a Subtype Set into a Table of That Subtype The other alternative lets you migrate a
hobbit_t subtype from a generalized base_t type composite table (a table with scalar
and object type columns). The syntax is simpler than the previous example:

SQL> CREATE TABLE hobbit AS
 2 SELECT b.log_object AS little_folk
 3 FROM log_base b
 4 WHERE b.log_object IS OF (hobbit_t);

It creates a table of an object type, which differs substantially from an object table. The
hobbit table has an object type structure rather than ordinary columns like an object table.

You could rewrite line 2 like this,

 2 SELECT TREAT(log_object AS hobbit_t) AS little_folk

15-AppB.indd 714 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 715

You should make sure that you work with your DBA when you opt for temporary tables because
the DBA might have created a special locally managed tablespace for temporary tables to
minimize impacts on other tables.

CAUTION
It’s a bad idea to create temporary tables without consulting the DBA
about them. This will ensure that you don’t inadvertently fragment the
production database.

The general and basic prototype for a relational table with the CREATE TABLE statement
without storage clause options follows, with Oracle Database 12c features in bold:

CREATE [GLOBAL] [TEMPORARY] TABLE [schema_name.] table_name
(column_name NUMBER [GENERATED [{ALWAYS] | BY DEFAULT}] AS IDENTITY
 [{START WITH number | INCREMENT BY number | NOCACHE}]]
 [{DEFAULT expression | AS (virtual_expression)}]
 [[CONSTRAINT] constraint_name constraint_type]
,[column_name data_type [INVISIBLE]
 [{DEFAULT expression | AS (virtual_expression)}]
 [[CONSTRAINT] constraint_name constraint_type]
,[...]
,[CONSTRAINT constraint_name constraint_type(column_list)
 [REFERENCES table_name(column_list)]]
,[...]);

The INVISIBLE keyword must follow the data type in all cases, which means the DEFAULT
expression, virtual expressions, and constraints must follow the INVISIBLE keyword.

but it wouldn’t do anything but add overhead because the WHERE predicate already
guarantees selection of only hobbit_t rows. You would need the TREAT function when
you drop the WHERE predicate because it would guarantee values are hobbit_t object
types, hobbit_t subtypes, or null values. Alternatively, you would use the TREAT function
together with the COLLECT function when gathering a set of object types into a collection
of object types.

A description of the new hobbit table returns:

SQL> DESC hobbit
 Name Null? Type
 ----------------------- -------- ----------
 LITTLE_FOLK HOBBIT_T

You can no longer insert a list of values in this hobbit table like you would in any
relational table. A table of an object type, like the hobbit table, requires that you only
insert object type constructor calls, or what’s known as a collapsed object signature. Check
the “Object Data Type” section later in this appendix for details or consult the glossary for
help with the terms.

15-AppB.indd 715 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

716 Oracle Database 12c PL/SQL Programming

The Invisible Column
Oracle Database 12c now provides you with the power to hide information easily by making
a column invisible. All columns are visible by default. An invisible column doesn’t display
when you describe a table. Likewise, you can’t provide a value for an invisible column in
an INSERT statement’s VALUES clause or subquery without providing the column’s name
explicitly in the column list. The column list overrides the data catalog’s published definition,
published column list, or default signature for an insert into a table.

You can use a hidden column as a partitioning key, as a virtual column, or as part of
a column expression. You can’t use invisible columns in external or temporary tables.

A small example helps visualize a hidden column:

SQL> CREATE TABLE secret
 2 (secret_id NUMBER CONSTRAINT secret_pk PRIMARY KEY
 3 , description VARCHAR2(20)
 4 , reality VARCHAR2(20) INVISIBLE);

You can see here that only visible columns are displayed when you describe the table:

SQL> DESCRIBE secret
Name Null? Type
 --------------------- -------- ------------
 SECRET_ID NOT NULL NUMBER
 DESCRIPTION VARCHAR2(20)

You can find the complete description of the table by querying the CDB_, DBA_, ALL_,
or USER_TAB_COLUMNS views. Visible columns have a valid COLUMN_ID value, while
invisible columns don’t have a value. The COLUMN_ID value denotes a column’s availability
for use in its default position within a VALUES clause or a SELECT list of an embedded
query. The following query against the CDB_, DBA_, ALL_, or USER_TAB_COLS
administrative view lets you see both visible and invisible columns:

SQL> COLUMN table_name FORMAT A15
SQL> COLUMN column_id FORMAT 999
SQL> COLUMN column_name FORMAT A14
SQL> SELECT table_name
 2 , column_id
 3 , column_name
 4 FROM user_tab_cols
 5 WHERE table_name = 'SECRET';

TABLE_NAME COLUMN_ID COLUMN_NAME
--------------- ---------- --------------
SECRET 1 SECRET_ID
SECRET 2 DESCRIPTION
SECRET REALITY

A salary column is naturally a great candidate for an invisible column, but please
remember that anybody with free reign in the schema can discover the invisible column
and then explicitly display its values. You must also redact the information to protect it from
prying eyes, which you do with the dbms_redact package.

15-AppB.indd 716 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 717

You would create a table like this, where the ellipses represents columns and constraints:

CREATE TABLE table_name (...);

You create a temporary table by inserting one keyword, like so:

CREATE TEMPORARY TABLE table_name (...);

Temporary tables have several restrictions: they can’t be partitioned, clustered, or index
organized; can’t hold foreign key constraints; can’t contain columns of nested tables; can’t specify
LOB, tablespace, storage, or logging clauses; can’t work with parallel UPDATE, DELETE, and
MERGE statements; can’t support distributed transactions and can’t support invisible columns.
There are also limitations with how you can use SEGMENT clause when creating a temporary
table, which you can find qualified in the Oracle Database Concepts 12c Release 1.

Temporary tables should be configured as locally managed.
Figure B-2 shows you how the CREATE TABLE statement defines a permanent table with

different types of column and table constraints. The figure is annotated to help you see available
possibilities when you create tables.

Inline constraints are always single-column constraints, and they apply to the column defined
on the same line. Out-of-line constraints are defined after the last column in a table. When an
out-of-line constraint applies to a single column, it is a column constraint. A table constraint is
an out-of-line constraint that applies to two or more columns defined in the table.

FIGURE B-2. Oracle CREATE TABLE statement

Inline column constraints

Out-of-line constraint; when these constraints apply
to more than one column, they’re also table level

15-AppB.indd 717 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

718 Oracle Database 12c PL/SQL Programming

Case-Sensitive Table and Column Names
Oracle Database 10g introduced the quoted identifier delimiter. This lets you define case-
sensitive table and column names in the database. The only problem with case-sensitive
table and column names is that you can only query them with special handling. You must
know the correct case and enclose case-sensitive table and column names inside two
quoted identifiers—double-quotation symbols.

You can create tables with all case-sensitive column names, all case-insensitive column
names, or a mix of both. The case of table and column names is found in the USER_TAB_
COLUMNS view or, if you enjoy DBA privileges, the ALL_TAB_COLUMNS and DBA_TAB_
COLUMNS views.

The following creates a table with a case-sensitive table name, two case-sensitive
column names, and one case-insensitive column name:

CREATE TABLE "CaseSensitive"
("CaseSensitiveId" NUMBER
, "CaseSensitive" VARCHAR2(30)
, case_insensitive VARCHAR2(30));

After you insert and commit the row, you can then query the record delimiting any
case-sensitive column and table names inside double quotes (the quoted identifier). This
query demonstrates the technique:

SELECT "CaseSensitiveId"
, "CaseSensitive"
, case_insensitive
FROM "CaseSensitive";

You can view the table definition by querying the TABLE_NAME and COLUMN_NAME
columns from the USER_TAB_COLUMNS view. You would use the following syntax to query
the database catalog view:

SELECT table_name, column_name
FROM user_tab_columns
WHERE table_name = 'CaseSensitive';

You’ll find that the stored definition is a mix of case sensitive and case insensitive, as
shown here:

TABLE_NAME COLUMN_NAME
--------------- ------------------
CaseSensitive CASE_INSENSITIVE
CaseSensitive CaseSensitive
CaseSensitive CaseSensitiveId

Double quotes must delimit case-sensitive strings, and case-insensitive strings can be
delimited by double quotes when you use uppercase text for their values.

15-AppB.indd 718 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 719

Oracle’s check constraint and generic primary key, unique, and foreign key constraints can
apply to more than a single column, and that makes them possible out-of-line constraints. As a
rule, when they address more than one column, they’re out-of-line constraints because they can
only be defined separately from individual columns.

The following shows you how to define a multiple column primary key:

SQL> CREATE TABLE essay
 2 (essay_name VARCHAR2(30)
 3 , essayist VARCHAR2(30)
 4 , published DATE
 5 , text CLOB
 6 , CONSTRAINT essay_pk
 7 PRIMARY KEY (essay_name, essayist, published));

The foregoing table uses a three-column natural key as the primary key, and defines an
out-of-line constraint that follows the column definitions of the table. Lines 6 and 7 show a
composite (concatenated, or multiple column) primary key. While the essay_pk out-of-line
constraint statement spans two lines for presentation convenience, you would generally write it
on a single line. It’s important to note that primary key constraints automatically create system-
named unique constraints that can’t be altered or dropped outside of altering or dropping the
primary key constraint.

You can assign a primary key’s unique index with the USING INDEX clause of the ALTER
statement when you defer creating a primary key constraint until after the table is built. This
approach is often used to associate the index with the table, but realistically it’s managed by the
scope of the primary key, and thus you should focus on managing the primary key constraint, not
the indirect index.

While it’s possible to use natural keys as the primary key, it’s better to map natural keys to a
surrogate key column (generated by a sequence) because any change to the natural key doesn’t
require changing join clauses, which typically depend on the surrogate key column.

NOTE
Natural keys can be one or more columns that uniquely qualify all
rows in a table.

For example, a magazine table would have three columns in a foreign key that points to the
essay table’s primary key, like

SQL> CREATE TABLE magazine
 2 (magazine_name VARCHAR2(30)
 3 , issue_date DATE
 4 , essay_name VARCHAR2(30)
 5 , essayist VARCHAR2(30)
 6 , published DATE
 7 , CONSTRAINT magazine_fk
 8 FOREIGN KEY (essay_name, essayist, published)
 9 REFERENCES essay (essay_name, essayist, published));

Like the earlier composite primary key, the composite foreign key definition runs over lines 7
to 9 to avoid wrapping in this text. You could just as easily put the entire foreign key constraint on
a single line.

15-AppB.indd 719 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

720 Oracle Database 12c PL/SQL Programming

Adding a surrogate key to the essay table lets you define a single-column foreign key. You
can define a single-column primary key to solve this problem with a surrogate key, which you see
in the “Sequences” section later in this appendix.

Scalar Data Type Columns Oracle supports only four of the five data type groups in SQL:
numbers, characters, date-time-intervals, and large objects. While a Boolean is available in Oracle’s
Procedural Language extension, PL/SQL, it isn’t provided for as a data type in SQL. Your only
alternative to a Boolean data type would be to implement a number data type that mimics a
Boolean, as you’ll see in the “Boolean” section a bit later.

NOTE
Remember that a Boolean doesn’t exist as a default type.

Oracle also supports ANSI-compliant data types that automatically map to native Oracle data
types. Writing scripts in the ANSI standard data types makes your scripts more portable to other
databases. Table B-4 shows you the data type mapping when you use the ANSI standard aliases.
Some types don’t exist in the Oracle ANSI set, such as TEXT for a character large object. Oracle
uses CLOB for that data type.

You also have support for both virtual columns, which are created by concatenating or
calculating values from other column values in the same row, and invisible columns. Virtual
columns, which became available in Oracle Database 11g, let you include expressions in your
table definition. Virtual columns can reference any other data columns in the same table.

As previously introduced, invisible columns became available in Oracle Database 12c.
Invisible columns let you hide columns from blanket queries using the * (asterisk). Virtual columns

TABLE B-4. Oracle ANSI SQL Data Type Map

ANSI Data Type Native Data Type Physical Size

BLOB BLOB 8 to 32 terabytes

CHAR(n) CHAR(n) 2,000 bytes

DATE DATE Date and time to hundredths of a second

DECIMAL(p,s) NUMBER(p,s) 1 × 1038

DOUBLE PRECISION FLOAT(126) 1 × 1026

FLOAT FLOAT(126) 1 × 1026

INT NUMBER(38) 1 × 1038

INTEGER NUMBER(38) 1 × 1038

NUMERIC(p,s) NUMBER(p,s) 1 × 1038

REAL FLOAT(63) 1 × 1063

SMALLINT NUMBER(38) 1 × 1038

TIMESTAMP TIMESTAMP(6) Date and time to hundredths of a second

VARCHAR(n) VARCHAR2(n) 4,000 or 32,767 bytes

15-AppB.indd 720 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 721

are typically scalar values, and they’re discussed later in this section. The discussion of invisible
columns is the last subsection in this section.

The last subsection discusses how to implement nested tables. It highlights an advanced
component of the Oracle database that leverages user-defined types (UDTs).

Number Data Type Numbers have four subgroups: three use proprietary Oracle math
libraries—binary integers, PLS_INTEGER, and NUMBER data types. The new IEEE 754 variable
data types use the operating system math libraries and are recommended when you want to do
more than financial mathematics. For example, a cube root of 27 has mixed results in PL/SQL
with the ** (double asterisks) exponential operator and a NUMBER data type, but it works perfectly
with a BINARY_DOUBLE data type.

You can put whole numbers or decimal numbers in any of the numeric data types except the
integer types—they only take integers.

Number data types allow you to qualify precision and scale. Precision is the total number of
allowed digits. Scale is the number of allowed digits that follow the decimal point. This same
concept applies to the DEC, DECIMAL, NUMERIC, BINARY_DOUBLE, and DOUBLE_PRECISION
data types. For example, the following sets 12 as the maximum number of digits, with 2 digits on
the right of the decimal point. You define the precision and scale for DECIMAL numbers inside
parentheses and separated by a comma (rather than a period), like this:

SQL> CREATE TABLE sample_number
 2 (column_name NUMBER(12,2));

You can inspect the table by describing it in a SQL*Plus session or by displaying it in
SQL*Developer. Here’s the SQL*Plus command:

DESCRIBE sample_number

It displays the following:

 Name Null? Type
 ------------------------- -------- --------------
 COLUMN_NAME NUMBER(12,2)

The preceding syntax creates a one-column table with a single numeric column. The column is
optional because it doesn’t have a column not null constraint, which would appear under the
Null? title header. That means you could insert in the table a row that consists of only null values.

You can create a table with a mandatory column by adding a not null constraint on the column.
The constraint can be added as an inline or out-of-line constraint. Here’s the inline constraint syntax
for a mandatory column with a system-generated constraint name:

SQL> CREATE TABLE sample_number
 2 (column_name NUMBER(12,2) NOT NULL);

As a matter of best practice, it is always better to name constraints. You would use a different
syntax to create a table with a named not null constraint. Named constraints are much easier to
find when you explore the Oracle Database 12c catalog. An example of the type of error raised
without a constraint name appears later in this section for a check constraint. The syntax for a
named constraint is as follows:

SQL> CREATE TABLE sample_number
 2 (column_name NUMBER(12,2) CONSTRAINT nn_sample1 NOT NULL);

15-AppB.indd 721 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

722 Oracle Database 12c PL/SQL Programming

The table with a not null constrained column looks like this:

 Name Null? Type
 ------------------------- -------- --------------
 COLUMN_NAME NOT NULL NUMBER(12,2)

Oracle Database 12c provides an alternative to a not null constraint because you can now
specify a default value for a null-entered column, like

SQL> CREATE TABLE sample_number
 2 (column_name NUMBER(12,2) DEFAULT ON NULL 3.1416);

The new DEFAULT ON NULL clause ensures any null value will insert a four-decimal constant
for Pi. Oracle Database 12c also lets you link sequences’ .nextval and .currval pseudocolumns
as default values in columns, which is covered in the “Sequences” section later in this appendix.

The table with a not null constraint requires a value, which means you can’t insert a null
value. While this appendix covers the INSERT statements later, you would insert a 12-digit number
with two placeholders to the right of the decimal point like this:

SQL> INSERT INTO sample_number
 2 VALUES (1234567890.99);

A different rule applies to the BINARY_FLOAT and FLOAT data types. They have only a
precision value and no scale. You can assign scales dynamically, or the values to the right of the
decimal point can vary. That’s because the nature of a floating decimal point allows for dynamic
values to the right of the decimal point.

You would define a floating data type like this:

SQL> CREATE TABLE sample_float
 2 (column_name FLOAT(12));

Inserting values follows this pattern:

SQL> INSERT INTO sample_float
 2 VALUES (12345678.0099);

Oracle doesn’t natively support an unsigned integer (positive integers). By design, Oracle
supports both positive and negative numbers in all numeric data types. You can create a numeric
data type and then use a check constraint to implement the equivalent of an unsigned integer. The
following table design shows that technique with an inline constraint:

SQL> CREATE TABLE unsigned_int
 2 (column_name NUMBER(38,0) CHECK (column_name >= 0));

This column definition allows entry of only a zero or positive integer. The check constraint is
entered as an inline constraint because it affects only a single column. Check constraints must be
entered as out-of-line constraints when they work with multiple columns. Multiple-column constraints
are table constraints. An exception is raised if you attempt to insert a negative integer, like this:

INSERT INTO unsigned_int VALUES (-1)
*
ERROR at line 1:
ORA-02290: check constraint (SCHEMA_NAME.SYS_C0020070) violated

15-AppB.indd 722 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 723

This type of error message isn’t as helpful as a named constraint, but you should know how to
read it. The SCHEMA_NAME (synonymous with the user name) is the first element of the error, and
the system-generated constraint name is the second element.

You can name check constraints in Oracle like this:

SQL> CREATE TABLE unsigned_int
 2 (column_name NUMBER(38,0)
 3 CONSTRAINT ck_unsigned_int_01 CHECK (column_name >= 0));

Although the constraint drops down to line 3, there is no comma separating the definition of
the column from the constraint. This means the constraint is an inline constraint, and it could be
written on a single line outside the confines of the book’s formatting. An out-of-line constraint in
this example would differ only by having a comma in line 3, like this:

SQL> CREATE TABLE unsigned_int
 2 (column_name NUMBER(38,0)
 3 , CONSTRAINT ck_unsigned_int_01 CHECK (column_name >= 0));

Then the same error is raised with this message:

INSERT INTO unsigned_int VALUES (-1)
*
ERROR at line 1:
ORA-02290: check constraint (STUDENT.CK_UNSIGNED_INT_01) violated

You also have a DEFAULT expression that lets you assign a default value. Modifying the
unsigned_int table, the next example makes the default 0:

SQL> CREATE TABLE unsigned_int
 2 (column_name NUMBER(38,0) DEFAULT 0
 3 , CONSTRAINT ck_unsigned_int_01 CHECK (column_name >= 0));

The DEFAULT expression can’t contain any PL/SQL functions, references to other column
values, the pseudocolumns LEVEL, PRIOR, and ROWNUM, or date constants that aren’t fully
qualified. You can eliminate the check constraint if you only want to guarantee that a null value
can’t be entered by appending the ON NULL to the DEFAULT expression, like

SQL> CREATE TABLE unsigned_int
 2 (column_name NUMBER(38,0) DEFAULT ON NULL 0);

Although this looks simpler, it does provide a change in logic. Now it’s impossible to insert a
null value, and any attempt inserts a 0, but it’s now possible to enter a negative number with an
INSERT statement.

By incorporating the name of the table in the constraint name, you can immediately identify
the violation without having to read the data catalog to associate it with a table and business rule.

DATE Data Type Dates and timestamps are DATE and TIMESTAMP data types respectively.
Their implementation is through complex or real numbers. The integer value represents the date,
and the decimal value implements time. The range of dates or timestamps is an epoch. An epoch
is a set of possible dates and date-times that are valid in the database server.

The DATE data type in an Oracle database is a date-time value. As such, you can assign a
date-time that is accurate to hundredths of a second. The default date format mask in an Oracle

15-AppB.indd 723 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

724 Oracle Database 12c PL/SQL Programming

database is dd-mon-rr or dd-mon-yyyy. The rr stands for relative date, and the database
server chooses whether the date belongs in the current or last century. The yyyy format mask
requires that you explicitly assign the four-digit year to dates.

Here’s the syntax to create a DATE column:

SQL> CREATE TABLE sample_date
 2 (column_name DATE DEFAULT SYSDATE);

A DATE data type can be assigned a date-time that is equal to midnight by enclosing the date
column in a TRUNC function. The TRUNC function shaves off any decimal value from the date-
time value. The SYSDATE is a current date-time function available inside an Oracle database. You
would define a date-only value as a default value with this syntax:

SQL> CREATE TABLE sample_date
 2 (column_name DATE DEFAULT TRUNC(SYSDATE));

A more accurate timestamp and timestamps with local or general time zone are also available
starting with the release of Oracle Database 11g. They’re more accurate because they measure
time beyond hundredths of a second. You would define a TIMESTAMP like this:

SQL> CREATE TABLE sample_timestamp
 2 (column_name TIMESTAMP DEFAULT SYSTIMESTAMP);

You also have INTERVAL DAY TO SECOND and INTERVAL DAY TO MONTH data types.
They measure intervening time (like the number of minutes or seconds between two timestamps),
which is similar to measuring the difference between two decimal parts of DATE data types.

Character Data Type Character data types have several subgroups in an Oracle database. They
can be summarized as fixed-length, long, Unicode, row identifiers, and variable-length strings. In
all cases, character data types work very much alike. You specify how many characters you plan
to store as the maximum number.

This is the syntax for a fixed-length string:

SQL> CREATE TABLE variable_string
 2 (column_name CHAR(20) CONSTRAINT nn_varstr_01 NOT NULL);

This variable-length string is the equivalent:

SQL> CREATE TABLE variable_string
 2 (column_name VARCHAR(20) CONSTRAINT nn_varstr_01 NOT NULL);

This definition allocates 20 bytes of space. An alternative syntax lets you define space by the
number of characters, which supports Unicode strings. That syntax requires including a CHAR flag
inside the parentheses. Here’s the syntax for a fixed-length string:

SQL> CREATE TABLE variable_string
 2 (column_name CHAR(20 CHAR) CONSTRAINT nn_varstr_01 NOT NULL);

The variable-length equivalent is shown here:

SQL> CREATE TABLE variable_string
 2 (column_name VARCHAR(20 CHAR) CONSTRAINT nn_varstr_01 NOT NULL);

15-AppB.indd 724 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 725

The Oracle database also includes national language character types. They are designed to
store Unicode and different character sets in the same database. The syntax for NCHAR or
NVARCHAR2 uses the same definition pattern. You specify the maximum size of the string in bytes
or characters inside parentheses. CHAR should be used when you define Unicode columns.

The maximum size of a fixed-length CHAR variable is 2,000 bytes, and the maximum length
of a VARCHAR2 is 4,000 or 32,767 bytes (that is when it’s an Oracle Database 12c database).
Whether its 4,000 or 32,767 bytes depends on the setting of the MAX_STRING_SIZE variable.
Beyond that, you can implement a LONG data type, which is 32,767 (the positive portion of 216)
bytes, but it’s soon to be deprecated. The last and best choice for a very long string is a Character
Large Object (CLOB), which has a maximum size of 8 terabytes when the block size is 8 kilobytes
and 32 terabytes when the block size is 32 kilobytes. Oracle makes these large object types
available through a built-in API, which you must use to work with these data types.

Large Strings You can define a table with a CLOB or NCLOB column similar to the following
example, but it lacks a physical maximum size and a name for the storage clause. The physical
size for a CLOB is set by the configuration of the database. As mentioned, the maximum size is set
by the block size and is typically 8 terabytes. The Oracle database assigns a system-generated
name, which can make calculating and maintaining its storage difficult for DBAs. This is true any
time you leave something to an implicit behavior, such as naming a constraint or internal storage.

Failing to specify LOB storage can cause enormous problems, and you should generally
always store LOB columns in a separate tablespace. This is doubly important when you forget to
specify DEDUPLICATE while creating a LOB column. The DEDUPLICATE keyword instructs the
database to eliminate duplicate copies of LOBs. Using a secure hash index to detect duplication,
the database coalesces LOBs with identical content into a single copy, reducing storage
consumption and simplifying storage management. You would define a generic CLOB column
without a specific tablespace that allows duplicates like this:

SQL> CREATE TABLE clob_table
 2 (column_id NUMBER
 3 , column_name CLOB DEFAULT '');

The DEFAULT keyword assigns an empty string to the column_name column, which is
equivalent to an INSERT or UPDATE statement putting a call to empty_clob in the column as
its value. The DEFAULT value places the default value in a column only when the INSERT
statement uses an overriding signature that excludes the column_name column, like so:

SQL> INSERT INTO clob_table (column_id) VALUES (1);

You can discover that storage clause by using the dbms_metadata package and the get_
dll function. The get_dll function reads the data catalog and provides the complete syntax for
creating the table. The easiest way to get this information is to run the command from the
SQL*Plus prompt. You’ll need to expand the default 80 characters of space allotted for displaying
a LONG data type before you run the query. Also, you’ll need to remember that Oracle stores all
metadata strings in uppercase, which means the actual parameters (or arguments) to the get_dll
function must be in uppercase for it to work.

Here are the SQL*Plus and SQL commands:

-- Reset the display value for a large string.
SET LONG 300000
-- Query the data catalog for the full create statement.
SELECT dbms_metadata.get_ddl('TABLE', 'CLOB_TABLE') FROM dual;

15-AppB.indd 725 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

726 Oracle Database 12c PL/SQL Programming

Some liberty has been taken with reformatting the output to increase readability of it for this
book, but this is what would be returned from the query:

CREATE TABLE "STUDENT"."CLOB_TABLE"
 ("COLUMN_NAME" CLOB DEFAULT '')
 PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255
 NOCOMPRESS NOLOGGING
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE "USERS"
 LOB ("COLUMN_NAME") STORE AS BASICFILE
 (TABLESPACE "USERS"
 ENABLE STORAGE IN ROW CHUNK 8192 RETENTION NOCACHE LOGGING
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT))

The better way to define a CLOB or BLOB column includes some explicit syntax and a name
for the BASICFILE. A BASICFILE means that the CLOB isn’t encrypted. The other option in this
syntax creates an encrypted file with the SECUREFILE keyword. You should note that a
SECUREFILE clause requires that you store the CLOB or BLOB column in a tablespace with
automatic segment-space management. Secured files also provide you with the ability to encrypt
and deduplicate data. Deduplication avoids creating two copies of a LOB in storage.

Finding and Fixing Duplicating LOBs
The Star Trek universe has a fictional animal known as a Tribble, which breeds until all food
supplies are exhausted. That’s all too close to what may happen when a DBA mismanages
LOB storage: As the number of LOB indexes and LOB segments grow without user-defined
STORAGE clause names, managing LOB storage becomes more difficult. This sidebar shows
you how to find system-generated names and storage requirements for LOB columns and
then shows you how to migrate and fix those columns.

I enjoyed Tom Kyte’s example of how you can find and match a LOB index to LOB
segment (Expert Oracle Database Architecture: 9i and 10g Programming Techniques and
Solutins, p. 542). I’ve noticed variations of it posted in various locations. While it works well
for sample schemas that have only one LOB, the following works for any number of LOBs
in any schema. This simplifies working with system- and user-defined segment names. The
first CASE statement ensures that joins between user-named segment names are possible.
The second CASE statement ensures two things:

 ■ Joins between system-generated segment names don’t throw an error when matching
unrelated system-generated return values found in the DBA_ or ALL_SEGEMENTS view.

 ■ Joins between named segments are possible and don’t throw an error.

15-AppB.indd 726 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 727

Provided you have inserted data into a LOB column, you can run the following script
from any schema with permissions to read the DBA_SEGMENTS view:

SQL> COL owner FORMAT A5 HEADING "Owner"
SQL> COL TABLE_NAME FORMAT A5 HEADING "Table|Name"
SQL> COL column_name FORMAT A10 HEADING "Column|Name"
SQL> COL segment_name FORMAT A26 HEADING "Segment Name"
SQL> COL segment_type FORMAT A10 HEADING "Segment|Type"
SQL> COL bytes HEADING "Segment|Bytes"
SQL> SELECT l.owner
 2 , l.table_name
 3 , l.column_name
 4 , s.segment_name
 5 , s.segment_type
 6 , s.bytes
 7 FROM dba_lobs l
 8 , dba_segments s
 9 WHERE REGEXP_SUBSTR(l.segment_name,'([[:alnum:]]|[[:punct:]])+'
 10 , CASE
 11 WHEN REGEXP_INSTR(s.segment_name,'[[:digit:]]',1) > 0
 12 THEN REGEXP_INSTR(s.segment_name,'[[:digit:]]',1)
 13 ELSE 1
 14 END) =
 15 REGEXP_SUBSTR(s.segment_name,'([[:alnum:]]|[[:punct:]])+'
 16 , CASE
 17 WHEN REGEXP_INSTR(s.segment_name,'[[:digit:]]',1) > 0
 18 THEN REGEXP_INSTR(s.segment_name,'[[:digit:]]',1)
 19 ELSE 1
 20 END)
 21 AND l.TABLE_NAME = UPPER('&table_name')
 22 AND l.owner = UPPER('&owner')
 23 ORDER BY l.column_name, s.segment_name;

Lines 21 and 22 force a SQL*Plus prompt for a table name and schema owner. The
script then finds all storage for that table. It would return output like the following for an
item table with two LOB columns:

Table Column Segment Segment
Name Name Segment Name Type Bytes
------ ---------- ------------------------- ---------- ---------
PLSQL ITEM_BLOB SYS_IL0000074435C00007$$ LOBINDEX 65,536
PLSQL ITEM_BLOB SYS_LOB0000074435C00007$$ LOBSEGMENT 2,097,152
PLSQL ITEM_DESC SYS_IL0000074435C00006$$ LOBINDEX 65,536
PLSQL ITEM_DESC SYS_LOB0000074435C00006$$ LOBSEGMENT 720,896

Unfortunately, you can’t simply modify a LOB column when it was configured incorrectly.
You must create a temporary column, move the data from the original column to the temporary

(continued)

15-AppB.indd 727 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

728 Oracle Database 12c PL/SQL Programming

column, drop the original column, re-create the original column correctly, move the data
back from the temporary column to the newly re-created column, and then drop the
temporary column.

You can move the data and remove duplicates in a single ALTER statement to a
lob_temp tablespace for LOB column storage. The following example creates a temporary
item_temp CLOB column with a hash index that eliminates duplicate storage segments:

SQL> ALTER TABLE item ADD (item_temp CLOB)
 2 LOB (item_temp) STORE AS SECUREFILE item_temp
 3 (TABLESPACE lob_temp ENABLE STORAGE IN ROW CHUNK 32768
 4 PCTVERSION 10 NOCACHE NOLOGGING DEDUPLICATE
 5 STORAGE (INITIAL 1048576
 6 NEXT 1048576
 7 MINEXTENTS 1
 8 MAXEXTENTS 2147483645));

You may see that the LOB is stored in a SECUREFILE tablespace, which is the Oracle
Database 12c default, and should be the default for most production databases. After
creating the new column, you can transfer the data with the following UPDATE statement,
which transfers the content of the item_desc column to the item_temp for every row in
the table:

SQL> UPDATE item SET item_temp = item_desc;

After moving the data from the non-deduplicated original column to a deduplicated
temporary column, you can drop the original column with this syntax:

SQL> ALTER TABLE item DROP COLUMN item_desc;

Next, you add back the original column with a user-defined LOB segment name, and
deduplication enabled:

SQL> ALTER TABLE item ADD (item_desc CLOB)
 2 LOB (item_desc) STORE AS SECUREFILE item_desc
 3 (TABLESPACE lob_temp ENABLE STORAGE IN ROW CHUNK 32768
 4 PCTVERSION 10 NOCACHE NOLOGGING DEDUPLICATE
 5 STORAGE (INITIAL 1048576
 6 NEXT 1048576
 7 MINEXTENTS 1
 8 MAXEXTENTS 2147483645));

Lastly, you move the data from the temporary column to the new item_desc column
and drop the item_temp column with the following two statements:

SQL> UPDATE item SET item_desc = item_temp;
SQL> ALTER TABLE item DROP COLUMN item_temp;

In the event of a table with two or more columns, you can repeat the process to fix all
columns. It’s best to only try to fix one column at a time.

15-AppB.indd 728 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 729

The right way to use a CREATE TABLE statement with a LOB is to name the CLOB or BLOB
file. This extra step makes your life easier later, as described in the “XMLTYPE Data Type” section
a bit later.

Here’s the syntax that assigns a user-defined SEGMENT_NAME at table creation:

SQL> CREATE TABLE sample_table
 2 (column_name CLOB DEFAULT '')
 3 LOB (column_name) STORE AS sample_table_clob
 4 (TABLESPACE users ENABLE STORAGE IN ROW CHUNK 32768
 5 PCTVERSION 10 NOCACHE NOLOGGING DEDUPLICATE
 6 STORAGE (INITIAL 1048576
 7 NEXT 1048576
 8 MINEXTENTS 1
 9 MAXEXTENTS 2147483645));

The additional four parameters in the storage clause will be appended by using the default
values as noted in the output from preceding call to the get_ddl function of the dbms_
metadata package. The company’s DBA should provide guidelines on the STORAGE clause
settings.

TIP
The default creates BLOB and CLOB storage with logging enabled. As a
rule, these types should have logging turned off.

Boolean It is possible to mimic a Boolean data type in an Oracle database. To accomplish this,
you define a number column and assign a table-level constraint on that column. The constraint
would allow only a 0 (for false) or 1 (for true). The syntax to implement a column that performs
like a Boolean data type is shown next:

SQL> CREATE TABLE sample_boolean
 2 (column_name NUMBER
 3 , CONSTRAINT boolean_values
 4 CHECK (column_name = 0 OR column_name = 1));

This type of column would allow only a null, 0, or 1 to be inserted into the table. Anything
else would trigger a constraint violation error, like this:

INSERT INTO sample_boolean VALUES (2)
*
ERROR at line 1:
ORA-02290: check constraint (STUDENT.BOOLEAN_VALUES) violated

After dropping the original sample_boolean table, you can re-create it with the addition of
a not null constraint. Now it implements two-valued logic, because it disallows the insertion of a
null value.

SQL> CREATE TABLE sample_boolean
 2 (column_name NUMBER CONSTRAINT no_null NOT NULL
 3 , CONSTRAINT boolean_values
 4 CHECK (column_name = 0 OR column_name = 1));

15-AppB.indd 729 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

730 Oracle Database 12c PL/SQL Programming

You can also use other comparison operators such as greater than, less than, greater than or
equal to, and so forth. It is also possible to use SQL lookup operators such as IN, =ANY, =SOME,
or =ALL. You can find examples of lookup operators in the “Multiple-Row Subqueries” section
later in this appendix.

Object Data Type Object types are an advanced element of the object-oriented portion of the
Oracle Database 12c database, and they let you create UDTs. You can use them as the definition
of the table’s structure, as a column in a table’s structure, or as a nested element in another object
type. A table that’s wholly based on an object type structure is also called an object table,
whereas a table with an embedded object type is simply a table with a UDT column. This
subsection shows you how to define and work with persistent object types, which are those
object types found in the structure of database tables.

Object types have two parts: an object type and a body. The object type acts like a package
specification by publishing the object type’s declaration, and the object body implements the
published object type by providing an implementation in PL/SQL. Chapter 11 discusses transient
and persistent object types and shows you how to implement them. Transient object types exist
solely in the scope of stored programs and object types, while persistent object types exist as
columns of tables.

Collections of object types are described in the “Nested Collection Tables” section later in this
appendix and in Chapter 11. You can also find more about creating object types in the “Object
Types” subsection of this section in the appendix, and more about how you can evolve object
types in the “Evolving an Object Type” section of this appendix.

Before we can explore how to declare and use object types, we need to define a basic object
type. Limiting our discussion here to object types appears to be the best way to keep our
discussion as simple as possible.

Here’s the base_t object type declaration:

SQL> CREATE OR REPLACE
 2 TYPE base_t IS OBJECT
 3 (obj_id NUMBER
 4 , obj_name VARCHAR2(30)
 5 , obj_ref REF base_t)
 6 NOT FINAL;
 7 /

Interface Definition Language (IDL)
IDL is a specification language that describes software interfaces. IDL is meant to be a
language-independent way of sharing values between programs. Oracle delivers IDL through
PL/SQL in the form of the published specifications of stand-alone functions and procedures,
package specifications, and object type definitions.

Most C and C++ programmers are familiar with IDL from the perspective of Remote
Procedure Calls (RPCs), while Java programmers know them through Remote Method
Invocation (RMI) calls. Publication of the prototype or signature for functions, procedures,
or object constructors guarantees what’s required when you call them in another programming
language. PL/SQL also serves as that IDL framework, which is why you use PL/SQL functions
and procedures to wrap Java libraries.

15-AppB.indd 730 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 731

The base_t object type lacks an implementation, but you’re able to construct instances of
the object type by using the object’s default constructor (at least you can in Oracle Database 11g).
Oracle Database 12c now requires you to implement object bodies because Oracle has added
many new features. The default constructor is a function that mirrors the list of columns by name
and data type.

You can describe the base_t object type like you describe a table:

SQL> DESCRIBE base_t
 base_t is NOT FINAL
 Name Null? Type
 --- -------- ---------------
 OBJ_ID NUMBER
 OBJ_NAME VARCHAR2(30)
 OBJ_REF REF OF BASE_T

The third field (or attribute) is designed to hold a reference or a unique indexing value to an
object view in the scope of the table. You can only populate the obj_ref column with a reference,
and then you can only do it after you’ve created the row with an INSERT statement.

Shortly, we create a table that uses the base_t object type as the definition of the table’s data
structure. There are three options that present themselves to us when we define a table based on
an object type:

 ■ A table without a primary key

 ■ A table with a primary key

 ■ A table with a primary key that is also an object view key

TIP
You can’t set the obj_ref value when you designate another column
as the object view’s key.

You define a table based exclusively on the base_t object type without a primary key
constraint with this syntax:

CREATE TABLE base OF base_t;

By default, all object tables and columns of object types are substitutable, which means you
can insert or update them with a variable that matches the object type of an object table, or
matches the object type of an object column. You can turn off default substitutability by appending
the following clause when you create the object table:

SQL> CREATE TABLE base OF base_t
 2 NOT SUBSTITUTABLE AT ALL LEVELS;

Alternatively, you can turn off substitutability for a specific attribute with the following statement:

SQL> CREATE TABLE base OF base_t
 2 COLUMN object_id NOT SUBSTITUTABLE AT ALL LEVELS;

You must choose between table and column substitutability because you can’t set both at the
same time. If you change your mind about your choice of substitutability for an object column,

15-AppB.indd 731 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

732 Oracle Database 12c PL/SQL Programming

you can’t use the ALTER statement to change the configuration because there’s no way to reset
the table’s substitutability after you create an object table.

You extend the definition to include a primary key constraint by adding the reference to one
of the columns in the object type, like

CREATE TABLE base OF base_t
(obj_id CONSTRAINT base_pk PRIMARY KEY);

The preceding table definition lets you later use the obj_ref column as a unique reference
to the object view. This works because using the obj_id attribute as a primary key column
doesn’t conflict with the use of the obj_ref as a unique object reference.

The obj_id column becomes a primary key and object identifier when you change the base
object table by adding the OBJECT IDENTIFIER IS PRIMARY KEY clause to the syntax:

SQL> CREATE TABLE base OF base_t
 2 (obj_id CONSTRAINT base_pk PRIMARY KEY)
 3 OBJECT IDENTIFIER IS PRIMARY KEY;

You can seed the object table with data by using the INSERT statement style shown next.
Inside the VALUES clause you embed a call to the base_t object type constructor. As mentioned
earlier, object type constructors share the object type’s name and have a function signature that
mirrors the object type’s list of columns.

INSERT INTO base VALUES (base_t(1, 'Dwalin',NULL));
INSERT INTO base VALUES (base_t(2, 'Borfur',NULL));
INSERT INTO base VALUES (base_t(3, 'Gloin',NULL));

You may note that the NULL value is inserted into the object type’s obj_ref field (or more
formally, attribute). While you can use named notation, you can’t exclude any field value from a
constructor’s function call.

Following is an example of named notation that inverts the obj_name and obj_ref
columns to construct an instance of the base_t object type:

SQL> INSERT INTO base
 2 VALUES (base_t(obj_id => 8, obj_ref => NULL, obj_name => 'Thorin'));

A query against the object table would show you that there aren’t any object references. You
can populate null object references with the following UPDATE statement, or exclude the WHERE
clause to populate and repopulate all object references:

SQL> UPDATE base b
 2 SET obj_ref = REF(b)
 3 WHERE obj_ref IS NULL;

The preceding UPDATE statement is one of the rare cases where you must use a table alias. If
you attempted to exclude the table alias and refer to the physical table in the REF function, you
would raise this exception:

SET obj_ref = REF(base)
 *
ERROR at line 2:
ORA-00904: "BASE": invalid identifier

15-AppB.indd 732 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 733

Another potential error occurs when the preceding UPDATE statement runs against a table
created with the OBJECT IDENTIFIER IS PRIMARY KEY clause. The error occurs because
the object identifier and reference compete to become the object view’s unique identifier.

UPDATE base b
 *
ERROR at line 1:
ORA-22979: cannot INSERT object view REF or user-defined REF

The competition between the object identifier and the reference leaves us with only one
choice when we want to use the obj_id field as a primary key and the obj_ref as the object’s
unique identifier: avoid using the OBJECT IDENTIFIER IS PRIMARY KEY clause.

You also can create a table that uses both ordinary column data types and the same base_t
object type as a column’s data type. The following creates a child table that includes an object
type column:

SQL> CREATE TABLE child
 2 (child_id NUMBER CONSTRAINT child_pk PRIMARY KEY
 3 , base_ref REF base_t SCOPE IS base
 4 , child_obj base_t);

After creating the child table, it’s helpful to see the definition by describing it:

SQL> desc child;
 Name Null? Type
 ------------------------- -------- ---------------
 CHILD_ID NOT NULL NUMBER
 BASE_REF REF OF BASE_T
 CHILD_OBJ BASE_T

The description of the child table shows that the base_ref column is a reference to a
base_t object type. Although you can’t see who owns the original reference by using the
dbms_metadata package’s get_ddl function, you can access the table description by setting
two SQL*Plus environment variables—LONG and PAGESIZE. The LONG environment variable sets
the display size of the CLOB data type returned by the get_ddl function call, and the PAGESIZE
variable avoids inadvertent page breaks.

Here are the SQL*Plus commands and the query to see the table definition and identify the
defining scope of the reference:

SQL> SET LONG 100000
SQL> SET PAGESIZE 999
SQL> SELECT dbms_metadata.get_ddl('TABLE','CHILD') AS TABLE_DEF
 2 FROM dual;

It returns a table definition, which I’ve shortened here by removing the storage information:

TABLE_DEF

CREATE TABLE "STUDENT"."CHILD"
("CHILD_ID" NUMBER,
 "BASE_REF" REF "STUDENT"."BASE_T",

15-AppB.indd 733 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

734 Oracle Database 12c PL/SQL Programming

 "CHILD_OBJ" "STUDENT"."BASE_T",
 SCOPE FOR ("BASE_REF") IS "STUDENT"."BASE",
 CONSTRAINT "CHILD_PK" PRIMARY KEY ("CHILD_ID")
...

As you can see, the description of the child table shows that the scope for its base_ref
column is the base table. The child_obj column therefore holds a copy of references from the
base table and enables it to act like a foreign key reference.

The child_id primary key is an ordinary scalar data type and unrelated to the embedded
object. You insert a row into the child table with the following statement:

SQL> INSERT INTO child
 2 SELECT 1, obj_ref, base_t(1, 'Gimli',b.obj_ref)
 3 FROM base b
 4 WHERE b.obj_name = 'Gloin';

The SELECT statement gets the REF value for the row where you’ve stored the values for
Gloin, Gimli’s father in Tolkien’s The Lord of the Rings. The reference inside the object lets us join
the row with Gloin from the base table to the row with Gimli in the child table. In this
scenario, we use the obj_ref column value in the base table as a primary key and use the
copied reference in the base_ref column of the child table as a foreign key. The join is a little
more complex because you must use a table alias and dot notation to reach the relative objects to
match in the base table row, as shown in the following query:

SQL> COLUMN father FORMAT A10
SQL> COLUMN son FORMAT A10
SQL> SELECT b.obj_name AS "Father"
 2 , c.child_obj.obj_name AS "Son"
 3 FROM base b INNER JOIN child c
 4 ON b.obj_ref = c.base_ref.obj_ref;

Line 2 uses a table alias to refer to its child_obj instances because it’s required. You should
take note of the join between the base and child tables. The b.obj_ref refers to a column of
the object table, and it maps directly to an attribute (or field) of the object type. The other obj_ref
isn’t quite so easy to reach. You must refer to the child table alias, then to the base_ref object
type column whose scope is the base table, and finally to the object type’s obj_ref field. Oracle
calls this type of dot notation chaining inner capture. You need to use inner capture mechanics
because a reference to the object type column would lead to an unqualified name error.

Your query returns the following data:

Father Son
---------- ----------
Gloin Gimli

If you forget to use a table alias in a query like this, you raise an exception like

ON b.obj_ref = base_ref.obj_ref
 *
ERROR at line 4:
ORA-00904: "BASE_REF"."OBJ_REF": invalid identifier

15-AppB.indd 734 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 735

The errors are returned from the end of the SELECT statements. That means you get the first
error due to a missing table alias on line 4. If you provide an alias on line 3 and use it on line 4,
preceding the base_ref column, the next exception thrown will be on line 2 because you also
need to put the table alias before the child_obj.obj_name column.

Object types also let you subclass or extend the behavior of a data type. Subclassing means
that you add fields (attributes) to the object and you can override methods of the parent class. The
discussion of subtypes requires an understanding of methods and thus it is presented in Chapter 11.

The last thing you need to understand about object types is how to gather them up from rows
into a collection. To accomplish this, you need one more preparation step. You need to create a
collection of the base object type, like

CREATE OR REPLACE TYPE base_c IS TABLE OF base_t;
/

After creating the collection type of your UDT type, you need the CAST, COLLECT, and
VALUE functions to transform your object data types into a collection type. The VALUE function
lets you return the flattened object type definition, which is the name of the object type and a list
of call parameters to construct an instance of the object type. The COLLECT function (you can
find more on this function in Appendix C) assembles the object types into a generic collection.
Lastly, the CAST function lets you transform the runtime collection into an already defined
collection data type, where the object type is a schema-level object type.

Together, they work like this:

SELECT CAST(COLLECT(VALUE(b)) AS base_c) FROM base b;

The query returns a collection that you can assign to a collection variable. The following
anonymous PL/SQL block collects and assigns the collection to a local variable:

SQL> DECLARE
 2 lv_collection BASE_C;
 3 BEGIN
 4 /* Collect the object table into a collection variable
 5 and assign it to a collection variable. */
 6 SELECT CAST(COLLECT(VALUE(b)) AS base_c)
 7 INTO lv_collection
 8 FROM base b;
 9
 10 /* Read through the collection of object types and print
 11 the attribute values. */
 12 FOR i IN 1..lv_collection.COUNT LOOP
 13 dbms_output.put('ID: ['||TO_CHAR(lv_collection(i).obj_id)||'] ');
 14 dbms_output.put_line('Name: ['||lv_collection(i).obj_name||']');
 15 END LOOP;
 16 END;
 17 /

Lines 6 through 8 hold the statement that converts a list of object types into a collection
before assigning the result to a local collection variable. The SELECT-INTO statement lets you
assign the result from the query directly to a collection variable.

15-AppB.indd 735 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

736 Oracle Database 12c PL/SQL Programming

NOTE
The COLLECT function only takes a VALUE function return while
working with an object table, which is a table of an object type.

You can find out more about how you create object types and object type collections in the
subsequent “Object Types” sections, and you can learn how to evolve (or change) data types
wherever they appear in your database tables or stored programs in the “Evolving an Object Type”
section later in this appendix.

BLOB Data Type The BLOB data type is very much like the CLOB data type. You can store a
binary signature for an image or document inside a BLOB data type. The maximum size is 8 to
32 terabytes, and the behaviors and syntax mirror those for the CLOB data type. I won’t repeat the
syntax here since it is the same as for the CLOB data type already discussed.

XMLTYPE Data Type The XMLTYPE is a specialized form of a CLOB data type. You use it as the
column data type, but then you provide a specialized storage clause that identifies its storage as a
CLOB data type. This process follows the pattern that Oracle databases use consistently between
subtypes and types.

Here’s the syntax to create an XMLTYPE column:

SQL> CREATE TABLE item
 2 (item_id NUMBER CONSTRAINT pk_item PRIMARY KEY
 3 , item_title VARCHAR2(30) CONSTRAINT nn_item_01 NOT NULL
 4 , item_description XMLTYPE)
 5 XMLTYPE item_description STORE AS CLOB item_desc_clob
 6 (TABLESPACE some_tablespace_name
 7 STORAGE (INITIAL 819200 NEXT 819200)
 8 CHUNK 8192 NOCACHE LOGGING);

The storage clause is highlighted in line 5 because a lot of the Oracle documentation simply
instructs you to use the STORE AS CLOB clause. Unfortunately, that fails to provide a meaningful
storage name for matching segments to LOBs in the data catalog. You join the CDB_, DBA_, ALL_,
and USER_LOBS view to the equivalent USER_SEGMENTS view on the SEGMENT_NAME column
value. The name of the CLOB in the storage clause facilitates that join. System-generated names
can be matched, but that match requires a complex regular expression in the SQL syntax. It’s
better to provide a name and simplify the DBA’s life upfront.

The use of XML inside the Oracle database continues to grow release by release. The XML
Developer’s Kit (XDK) for Oracle is complex and an awesome resource to delve into when you’re
going to use XML inside the Oracle database. I’d recommend you start by reading the Oracle XML
Developer’s Kit Programmer’s Guide 12c Release.

Virtual Columns Virtual columns are sometimes known as derived columns, but Oracle has
opted for virtual, and that’s what might crop up on a certification exam. A virtual column lets you
store a formula that joins strings from other columns in the same row together or a formula that
calculates values—the functions are stored in the table, not the values.

15-AppB.indd 736 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 737

Resolving LOB Storage with System-Generated Names
As previously discussed in the sidebar “Finding and Fixing Duplicating LOBs,” Tom Kyte
provided an example of how you find and match a LOB index to LOB segment in his Expert
Oracle Database Architecture on page 542. Over the years, I’ve noticed variations of it
posted in various locations. While it works well for sample schemas that have only one
LOB, it fails when you have multiple LOBs and schemas.

Matching LOB index and LOB segment is tricky when you forget to give them user-
defined names in the STORAGE clause. It’s even more tricky when you have a mix of
user-defined and system-assigned LOB index and LOB segment values. The following query
works for any number of LOBs in any schema because it’s designed to work with
administration privileges. This simplifies working with system- and user-defined segment
names.

COL owner FORMAT A5 HEADING "Owner"
COL TABLE_NAME FORMAT A5 HEADING "Table|Name"
COL column_name FORMAT A10 HEADING "Column|Name"
COL segment_name FORMAT A26 HEADING "Segment Name"
COL segment_type FORMAT A10 HEADING "Segment|Type"
COL bytes HEADING "Segment|Bytes"
SQL> SELECT l.owner
 2 , l.TABLE_NAME
 3 , l.column_name
 4 , s.segment_name
 5 , s.segment_type
 6 , s.bytes
 7 FROM dba_lobs l
 8 , dba_segments s
 9 WHERE REGEXP_SUBSTR(l.segment_name,'([[:alnum:]]|[[:punct:]])+'
 10 , CASE
 11 WHEN REGEXP_INSTR(s.segment_name,'[[:digit:]]',1) > 0
 12 THEN REGEXP_INSTR(s.segment_name,'[[:digit:]]',1)
 13 ELSE 1
 14 END) =
 15 REGEXP_SUBSTR(s.segment_name,'([[:alnum:]]|[[:punct:]])+'
 16 , CASE
 17 WHEN REGEXP_INSTR(s.segment_name,'[[:digit:]]',1) > 0
 18 THEN REGEXP_INSTR(s.segment_name,'[[:digit:]]',1)
 19 ELSE 1
 20 END)
 21 AND l.TABLE_NAME = UPPER('&table_name')
 22 AND l.owner = UPPER('&owner')
 23 ORDER BY l.column_name, s.segment_name;

The first CASE statement on lines 10 through 14 ensures that joins between user-named
segments are possible. The second CASE statement on lines 15 through 20 ensures two
things: joins between system-generated segment names don’t throw an error when matching
unrelated system-generated return values found in the DBA_SEGMENTS view, and joins

(continued)

15-AppB.indd 737 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

738 Oracle Database 12c PL/SQL Programming

between named segments are possible and don’t throw an error. If you’re new to regular
expressions in the Oracle database, please check the regular expression primer in Appendix E.

With the SQL*Plus formatting, it displays something like the following:

Table Column Segment Segment
Name Name Segment Name Type Bytes
------ ---------- ------------------------- ---------- ---------
PLSQL ITEM_BLOB SYS_IL0000074435C00007$$ LOBINDEX 65,536
PLSQL ITEM_BLOB SYS_LOB0000074435C00007$$ LOBSEGMENT 2,097,152
PLSQL ITEM_DESC SYS_IL0000074435C00006$$ LOBINDEX 65,536
PLSQL ITEM_DESC SYS_LOB0000074435C00006$$ LOBSEGMENT 720,896

This isn’t a preferred solution, but it’s the only solution when someone forgot to label
the LOB storage clause correctly. You can avoid it by always naming the LOB storage area
with the STORE AS clause when you create the table.

The following demonstrates the syntax to create a virtual column that concatenates strings:

SQL> CREATE TABLE employee
 2 (employee_id NUMBER
 3 , first_name VARCHAR2(20)
 4 , last_name VARCHAR2(20)
 5 , full_name VARCHAR2(40) AS (first_name || ' ' || last_name));

Line 5 is the virtual column. Instead of a column data type, two columns are joined together with
white space in between.

The next example demonstrates a virtual column that uses math operations against values in
other columns:

SQL> CREATE TABLE salary
 2 (salary_id NUMBER CONSTRAINT pk_salary PRIMARY KEY
 3 , salary NUMBER(15,2) CONSTRAINT nn_salary_01 NOT NULL
 4 , bonus NUMBER(15,2)
 5 , compensation NUMBER(15,2) AS (salary + bonus));

Line 5 in this example shows you how to use a math operation in a virtual column. Virtual
columns are marked in the database catalog. You can display the virtual_column in the CDB_,
DBA_, ALL_, or USER_TAB_COLS view or the USER_TAB_COLUMNS view to see if a column is
virtual. Any column that has a 'YES' entry is a virtual column. The formula for the virtual
column is in the data_default column of the same view.

Invisible Columns Oracle Database 12c provides the ability to create invisible columns. Columns
are visible by default and are shown when you describe a table, but when you define an invisible
column, the DESCRIBE command can’t display it. A SELECT statement with an * (asterisk) for all

15-AppB.indd 738 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 739

columns does not show invisible columns, but a SELECT statement that lists the invisible column
explicitly does display the column and its values. That means invisible columns are less apparent
but not secured.

NOTE
An * in a SELECT clause acts like a pointer to all columns of a table.

You secure access by redacting access to any column regardless of whether it is visible or
invisible. Redacting a column hides it from all but those who are white listed (given explicit
access) to see the column. Oracle Database 12c provides redaction through the dbms_redact
package.

The following makes the salary and compensation columns of the salary table
invisible, and it’s worth noting that salary is an ordinary column and compensation is a
virtual column and the result of an expression:

SQL> CREATE TABLE salary
 2 (salary_id NUMBER CONSTRAINT pk_salary PRIMARY KEY
 3 , salary NUMBER(15,2) INVISIBLE
 4 CONSTRAINT nn_salary_01 NOT NULL
 5 , bonus NUMBER(15,2)
 6 , compensation NUMBER(15,2) INVISIBLE AS (salary + bonus));

Note that the INVISIBLE keyword must come immediately after the data type for a column
definition (as mentioned earlier when discussing the prototype). If you forget that, and append the
INVISIBLE keyword at the end of a column definition, Oracle Database 12c raises this (perhaps
misleading) exception:

ERROR at line 4:
ORA-00907: missing right parenthesis

Describing the table shows you only the visible columns:

SQL> DESCRIBE salary
 Name Null? Type
 --------------------- -------- ------------
 SALARY_ID NOT NULL NUMBER
 BONUS NUMBER(15,2)

You can see why by querying the USER_TAB_COLUMNS view, like so:

SQL> COLUMN column_id FORMAT 999
SQL> COLUMN hidden_column FORMAT A4
SQL> COLUMN table_name FORMAT A20
SQL> COLUMN column_name FORMAT A20
SQL> SELECT column_id
 2 , hidden_column AS "HIDE"
 3 , table_name
 4 , column_name

15-AppB.indd 739 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

740 Oracle Database 12c PL/SQL Programming

 5 FROM user_tab_columns
 6 WHERE table_name = 'SALARY';

COLUMN_ID HIDE TABLE_NAME COLUMN_NAME
--------- ---- -------------------- --------------
 1 NO SALARY SALARY_ID
 YES SALARY SALARY
 2 NO SALARY BONUS
 YES SALARY COMPENSATION

The salary and compensation columns don’t have column_id values, which is a
characteristic of hidden columns. You also have a YES or NO value in the hidden_column column.
Positional numbering of columns is now reported by the internal_column_id column, which
is available in the CDB_, DBA_, ALL_, and USER_TAB_COLS views but not in the ALL_ and
USER_TAB_COLUMNS views. If you were wondering about the difference between the views
ending in _COLS and those ending in _COLUMNS, so was I. After a bit of research, it appears the
one ending in _COLS is intended for the DBA while the one ending in _COLUMNS is intended for
database developers.

SQL> SELECT column_id
 2 , internal_column_id
 3 , table_name
 4 , column_name
 5 FROM user_tab_cols
 6 WHERE table_name = 'SALARY'
 7 ORDER BY internal_column_id;

COLUMN_ID INTERNAL_COLUMN_ID TABLE_NAME COLUMN_NAME
--------- ------------------ ---------- --------------
 1 1 SALARY SALARY_ID
 2 SALARY SALARY
 2 3 SALARY BONUS
 4 SALARY COMPENSATION

While coverage of the INSERT statement appears later in this appendix, the following
INSERT statement is provided here to keep the flow of conversation smooth. Please note that you
must provide an override signature (also known as the column list in Oracle documentation) to
insert values into a table using an identity column.

SQL> INSERT INTO salary
 2 (salary_id, salary, bonus)
 3 VALUES
 4 (salary_s.nextval, 100000, 5000);

A query with the * in the SELECT clause yields only the results of visible columns:

SQL> SELECT * FROM salary;
 SALARY_ID BONUS
---------- ----------
 1 5000

15-AppB.indd 740 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 741

However, you can explicitly add the names of any hidden columns to the SELECT clause,
and the query returns a complete set of column values, like

SQL> SELECT salary_id
 2 , salary
 3 , bonus
 4 , compensation
 5 FROM salary;
 SALARY_ID SALARY BONUS COMPENSATION
---------- ---------- ---------- ------------
 1 100000 5000 105000

It’s important to note that invisible columns are also invisible to an old friend of most PL/SQL
developers—the %ROWTYPE attribute. You should avoid using the %ROWTYPE attribute to anchor
directly against a table unless you can guarantee the table won’t ever have an invisible column. A
complete example in the “Dynamic Explicit Cursors” section of Chapter 5 shows how you should
anchor against an explicit cursor that lists all desired (both mandatory and optional) columns.

TIP
You should always anchor PL/SQL structures to explicit cursors
because the SELECT list lets you manage changes in the table’s
published description.

Naturally, the largest benefit of column invisibility is hiding the existence of columns from
quick inspection of the database schema’s objects. Wrapping columns with an object table
function lets you return invisible column values without disclosing where they exist when you
obfuscate the stored function, package body, or object type. You can read more about object table
functions in Chapter 8 and read more about obfuscation in Appendix F.

NOTE
Any variable declared with a %ROWTYPE anchors to a table, view, or
cursor, but an invisible column in a table makes a view or cursor a
safer choice.

Sequences and Identity Columns
If you’ve used Oracle databases for years, you’re knowledgeable about sequences and the fact
that they act independently of tables that they may support. Until the Oracle Database 12c release,
all you had to work with were separate sequences and .nextval and .currval pseudocolumns,
unlike other databases that support identity columns. Oracle Database 12c now includes identity
columns.

This section covers both the old and new approaches. Discussion of the old approach with
sequences precedes that of the new identity columns because it appears that IT shops may take
some time to adopt the new approach—and if history is any guide, that may be several years.

Sequences Oracle Database 11g and its predecessors don’t support automatic numbering in
tables through identity columns. It provides a separate SEQUENCE data structure for use in surrogate
keys. Surrogate keys are artificial numbering sequence values that uniquely define rows. They’re
typically used in joins, because subsequent redefinition of a natural key doesn’t invalidate their

15-AppB.indd 741 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

742 Oracle Database 12c PL/SQL Programming

ability to support joins across tables. The “Indexes” section later in this appendix qualifies how to
use surrogate key columns with the natural key to define row uniqueness and optimize joins.

The prototype for sequences is

CREATE SEQUENCE sequence_name [INCREMENT BY increment_value]
 [MINVALUE minimum | NOMINVALUE]
 [MAXVALUE maximum | NOMAXVALUE]
 [CACHE | NOCACHE]
 [ORDER | NOORDER]

A typical sequence holds a starting number, an incrementing unit, and a buffer cycling value.
The naming convention is to use a table name and append _S to it. It should be noted that you
should only use a sequence for one table.

Each time you call the sequence with a sequence_name.nextval statement, the value of
the sequence increases by one (or whatever value was chosen as the INCREMENT BY value). This
occurs until the system consumes the last sequence value in the buffer cycle. When the last value
has been read from the buffer cache, a new cycle of values is provided to the instance. The default
for the cycle or sequence buffer is a set of 20 number values.

You create a SEQUENCE structure with the default values, like this:

CREATE SEQUENCE sequence_name;

Sometimes application development requires preseeding (inserting before releasing an
application to your customer base) rows in tables. Such inserts are done manually without the
sequence value or with a sequence starting at the default START WITH value of 1. After preseeding
the data, you drop the sequence to modify the START WITH value because Oracle doesn’t provide
an alternative to modifying it.

Preseeding generally inserts 10 to 100 rows of data, but after preseeding data, the START
WITH value is often set at 1001. This leaves developers an additional 900 rows for additional
post-implementation seeding of data. You create a sequence starting at that value like this:

CREATE SEQUENCE sequence_name START WITH 1001;

You also have the option of creating a sequence value that doesn’t leave gaps by suppressing
a buffered cache of values (not recommended). The syntax for that adds the NOCACHE keyword,
as follows:

CREATE SEQUENCE sequence_name START WITH 1001 NOCACHE;

Suppressing the buffered cache of sequence values has a substantial negative impact on performance,
so you are advised not to do it.

You use sequences by appending (with dot notation) two pseudocolumns to the sequence name:
.nextval and .currval. The .nextval pseudocolumn initializes the sequence in a session
and gets the next value, which is initially the START WITH value. After accessing the .nextval
pseudocolumn, you get the current value by using the .currval pseudocolumn. You receive an
ORA-08002 error when attempting to access the .currval pseudocolumn before having called
the .nextval pseudocolumn in a session. The error message says that you have tried to access
a sequence not defined in the session, because .nextval initializes or declares the sequence
in the session.

15-AppB.indd 742 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 743

There are several ways to access sequences with the .nextval pseudocolumn. The basic
starting point is querying the pseudo-table dual:

SELECT sequence_s.nextval
FROM dual;

Then, you can see the value again by querying

SELECT sequence_s.currval
FROM dual;

The number will be the same, provided you did not connect to another schema and/or
reconnect to a SQL*Plus session. You can also use the .nextval and .currval pseudocolumns
in the VALUES clause of an INSERT statement or inside a subquery feeding an INSERT statement.
The “INSERT Statement” section later in this appendix demonstrates how to use sequences.

TIP
Sequences are part of your world in Oracle Database 12c when you
implement user-defined types (UDTs), as qualified in Chapter 11,
because they don’t have identity attributes (or the equivalent of
columns in object types).

Oracle requires that you couple sequences with database triggers to mimic automatic numbering
in releases of the database prior to 12c. The “INSERT Statement” section later in this appendix
shows you how to call the sequence to insert values, and Chapter 13 shows you how to write the
necessary trigger that supports automatic numbering.

Identity Columns To Oracle-only developers, the identity operator may be revolutionary, but
it’s been around a long time in other databases. The good news is that Oracle now has an identity
operator; the better news is that the identity sequence generator has options others databases
don’t have, like the ALWAYS and BY DEFAULT keywords.

The basic identity column typically uses id as its label, and Oracle supports that convention
if you choose it. The following creates an identity column with the standard default values:

SQL> CREATE TABLE identity
 2 (id NUMBER GENERATED AS IDENTITY);

If you were to try and insert a null into the table, you’d discover that ALWAYS is the sequence
generator default value. That’s why ALWAYS is an optional clause in the earlier statement
prototype.

TIP
Using the table name with an _ID suffix as the identity column name
is a better practice than simply using ID as the identity column name.

For example, this INSERT statement attempts to insert a null value:

SQL> INSERT INTO identity VALUES (null);

15-AppB.indd 743 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

744 Oracle Database 12c PL/SQL Programming

It fails and raises this exception:

ERROR at line 1:
ORA-32795: cannot insert into a generated always identity column

More or less, the preceding definition is equivalent to this:

SQL> CREATE TABLE identity
 2 (id NUMBER GENERATED ALWAYS AS IDENTITY);

The present identity table example is as barebones as it gets because the default identity
behavior is ALWAYS. ALWAYS means you can’t manually enter an identity value in the id
column, and since there are no other columns in the table, you can’t enter a row. You can only
insert rows into a table with an identity column when the table has two or more columns in it.
Fortunately, most real-world tables have two or more columns.

Here’s a new identity table with two columns:

SQL> CREATE TABLE identity
 2 (id NUMBER GENERATED AS IDENTITY
 3 , text VARCHAR2(10) CONSTRAINT identity_nn1 NOT NULL);

If you’re coming from MySQL or Microsoft SQL Server, you might try something like this:

SQL> INSERT INTO identity VALUES ('One');

It fails with the following error:

ERROR at line 1:
ORA-00947: not enough values

You must use an override signature to insert into a table with an identity column. An override
signature adds a column list between the table name and VALUES or subquery clauses. This column
list can refer only to the text column because you can’t submit into the id identity column any
value that includes a null. You can try it for yourself if you want to, but you’ll get an ORA-32795
error.

The correct way to work with an INSERT statement to this type of table excludes the id
identity column from the column list, like this:

SQL> INSERT INTO identity (text) VALUES ('One');

Why did Oracle choose ALWAYS as the default? The documentation doesn’t indicate why, but
let me venture a guess. If you use BY DEFAULT and enter a number higher than the current
generated sequence value, you can duplicate a column value without a primary key or unique
constraint and cause an insert into the table to fail when it has a primary key or unique constraint.

A small change to the identity table lets you test the preceding scenario, where the id
identity column is a primary key column, which is typically the use of an identity column. An
identity column is also typically a surrogate key column, or stand-in for the natural key. For reference,
an identity column should always have a one-to-one mapping to the natural key in the same table.
Likewise, it should never be used to make rows unique because you wouldn’t be able to figure out
what the natural key is!

15-AppB.indd 744 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 745

Mapping Identity Columns to Sequences
Identity columns are helpful because they can eliminate the task of controlling sequence
values for primary key columns. However, they are simply a link to a sequence that gets
created with a system-generated name.

You can map a table to its sequence when you have access to the obj$ and idnseq$
administrative tables. Superuser accounts, like sys or system, have access to these. You
can map the table to an internal sequence value with the following query:

SQL> COLUMN table_name FORMAT A20
SQL> COLUMN sequence_name FORMAT A20
SQL> SELECT o1.name AS "TABLE_NAME"
 2 , o2.name AS "SEQUENCE_NAME"
 3 FROM sys.obj$ o1 INNER JOIN sys.idnseq$ s
 4 ON o1.obj# = s.obj# INNER JOIN sys.obj$ o2
 5 ON o2.obj# = s.seqobj#
 6 WHERE o1.name = 'IDENTITY';

It returns the following information for an identity table:

TABLE_NAME SEQUENCE_NAME
-------------------- ---------------
IDENTITY ISEQ$$_91929

While this is a sequence, it’s an indirect sequence. Like an indirect index created by a
unique database constraint, you can’t DROP or RENAME this indirect sequence. You can query
information about it from the data catalog as shown here:

SQL> SELECT sequence_name
 2 FROM dba_sequences
 3 WHERE sequence_name = 'ISEQ$$_91929';

It returns

SEQUENCE_NAME

ISEQ$$_91929

As mentioned, any attempt to remove this indirectly created sequence with a

SQL> DROP SEQUENCE ISEQ$$_91929;

raises an exception that says

ERROR at line 1:
ORA-02289: sequence does not exist

Identity columns are simply reserved and internally managed sequences. They guarantee
numeric ordering when bulk inserts don’t use them, which avoids some of the problems that
can occur with sequence values.

15-AppB.indd 745 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

746 Oracle Database 12c PL/SQL Programming

The following creates an identity table redefined with the id column renamed to the table
name plus _id (a common convention in database application design) and an identity_pk
primary key constraint. It demonstrates there’s no magic to or restriction on an identity column name.

SQL> CREATE TABLE identity
 2 (identity_id NUMBER GENERATED BY DEFAULT AS IDENTITY
 3 CONSTRAINT identity_pk PRIMARY KEY
 4 , text VARCHAR2(10) CONSTRAINT identity_nn1 NOT NULL);

The use case (or test case) to prove the problem with using the BY DEFAULT option requires
three INSERT statements, as follows:

SQL> INSERT INTO identity VALUES (2,'One');
SQL> INSERT INTO identity (text) VALUES ('Two');
SQL> INSERT INTO identity (text) VALUES ('Three');

The first INSERT statement inserts a row with an identity_id column value of 2. The
second INSERT statement inserts a row with an identity_id column value of 1, because that’s
the first value from the sequence generator unless you add a START WITH clause and another
integer value. The third INSERT statement attempts to insert a row with an identity_id
column value of 2, because that’s the next number in the sequence, but it fails with this error:

ERROR at line 1:
ORA-00001: unique constraint (STUDENT.IDENTITY_PK) violated

Assuming you choose ALWAYS over BY DEFAULT, sequences work well as surrogate keys.
There is another role for identity columns, and that is to provide the value that you then consume
as a foreign key value.

Let’s examine a transaction between two tables using identity columns. The unconstrained
table, created here, holds the primary key for itself and doesn’t have a foreign key column to any
other table, which makes it an independent table:

SQL> CREATE TABLE unconstrained
 2 (unconstrained_id NUMBER GENERATED AS IDENTITY
 3 , text VARCHAR2(10)
 4 , CONSTRAINT unconstrained_pk PRIMARY KEY(unconstrained_id));

The constrained table, created next, holds a primary key column and a foreign key
column that references the primary key column of the unconstrained table. The foreign key
makes the constrained table a dependent table.

SQL> CREATE TABLE constrained
 2 (constrained_id NUMBER GENERATED AS IDENTITY
 3 , unconstrained_id NUMBER
 4 , text VARCHAR2(10)
 5 , CONSTRAINT constrained_fk FOREIGN KEY (unconstrained_id)
 6 REFERENCES unconstrained(unconstrained_id));

Using the RETURNING INTO clause of the INSERT statement, you return the automatically
generated value of the unconstrained table’s primary key, which comes from a hidden

15-AppB.indd 746 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 747

(or abstracted) sequence into a local variable. In this example, we’ll use a SQL*Plus seq_value
variable.

SQL> VARIABLE seq_value NUMBER
SQL> INSERT INTO unconstrained (text) VALUES ('One')
 2 RETURNING unconstrained_id INTO :seq_value;

Next, you use the local :seq_value variable as the foreign key value in an INSERT
statement to the constrained table, like

SQL> INSERT INTO constrained (unconstrained_id, text)
 2 VALUES (:seq_value,'One');

This approach lets you pass an unknown and system-generated primary key value to the
foreign key in a transaction context. It works the same way in scripting languages, like PHP, or in
object-oriented programming languages, like Java.

If you’re an experienced Oracle developer, you may notice that identity columns work like
sequences. Unfortunately, rather than using the .nextval and .currval pseudocolumns, you
should use the following clause with any table inserting an identity column value:

RETURNING column_value INTO local_variable

Therefore, I’d strongly recommend you opt for the ALWAYS default with identity columns and
ensure that all identity columns are primary key constrained to guarantee unique constraint violations.

Nested Collection Types
This section shows you how to create single-level and multiple-level nested collections within
tables. Oracle Database 11g supports nested table data types, but many other databases don’t.
Oracle documentation calls the nesting of tables within nested tables a multilevel collection.

Nested tables are tables within a column inside a row of another table. These are object types
must be defined in SQL before they can become data types for columns in a table. The definition
can be a one- or two-step process. It’s a one-step process when you create an object type that is a
collection of a scalar data type. It’s a two-step process when you create an object type that contains
a set of variables. The set of variables in this case becomes a record structure. Elements of record
structures are fields. You create an object type (or record structure) as a schema-level object type
and then you create a collection of the object type.

As an object relational database management system (ORDBMS), Oracle databases let you
define object types. Object types have two roles in Oracle databases. One role is as a SQL data
type, which you see in this chapter as a nested table. The other role acts like a traditional object type
inside an object-oriented programming language (OOPL) such as Java, C#, or C++. Instantiable
object types are advanced PL/SQL concepts. You can find a full description of how you can
define and work with object types in Chapter 11.

Two possible syntaxes can be used for creating a collection of a scalar data type. One creates
an array, which has a fixed size; the other creates a list, which has no fixed size. Oracle names
these collections of scalar data types Attribute Data Types (ADTs).

The syntax to create a varray ADT is

SQL> CREATE OR REPLACE
 2 TYPE street_array IS VARRAY(3) OF VARCHAR2(30);
 3 /

15-AppB.indd 747 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

748 Oracle Database 12c PL/SQL Programming

The statement creates an array of no more than three 30-character variable-length strings. The
forward slash (/) is required to execute the statement terminated by a semicolon. This is a case
where the semicolon acts like a statement terminator, not an execution command. The forward
slash executes the creation or replacement of a data type.

It’s important to note that you can’t change an existing data type when it has type dependents.
Type dependents are any types, functions, procedures, packages, tables, or views (stored queries)
that use the data type or a type that depends on its earlier definition.

You can then define a table that uses the STREET_ARRAY ADT as a column data type. The
following defines an address table by using it to capture one to at most three street addresses
for an address:

SQL> CREATE TABLE address
 2 (address_id NUMBER
 3 , street_address STREET_ARRAY
 4 , city VARCHAR2(30)
 5 , state VARCHAR2(2)
 6 , postal_code VARCHAR2(10));

Array or List?
The terms array and list both refer to a collection of the same type of data, which can be a
scalar data type or a record structure. An array is a structure that has a fixed maximum
number of elements that is uniquely indexed by a sequential set of numbers. A sequential
set of numbers is also known as a densely populated index. Programmers iterate (move
across arrays one by one) using sequential index values.

A list is like an array but different. A list has no maximum number of elements and can
be indexed by a sequential or nonsequential index. A nonsequential set of numbers or
strings acts like a sparsely populated index. Programmers must iterate through elements of
the list by using an iterator to traverse the links between each element from the first until the
last. This behavior is similar to a singly linked list in the C/C++ programming languages.

The elements in arrays or lists can be ordered or unordered. More often than not, arrays
are ordered sets. Lists are more frequently unordered sets. The closest corollary to a
database table is an unordered list.

Storage Considerations for Varrays
The size of a stored varray depends on the count and size of elements plus the overhead
required to manage null elements. Oracle stores varrays as either raw values or LOBs.

Oracle decides how to store varray columns when they’re defined by a CREATE statement.
Oracle stores the varray inline as raw values or as a LOB when the cumulative size is less
than 4,000 bytes, and stores the varray out-of-line as a LOB when the cumulative size is
more than 4,000 bytes.

15-AppB.indd 748 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 749

You don’t require a special storage clause when you embed a varray ADT because the database
allocates space on the basis of the number of items and required size of the base scalar data type.

Alternatively, you can create a list of 30 character variable-length strings with this:

SQL> CREATE OR REPLACE
 2 TYPE street_list IS TABLE OF VARCHAR2(30);
 3 /

You can then define a table that uses the UDT street_list as a column data type. Although
a nested table ADT appears like the varray ADT, a nested table acts like a list, not an array. A list
has no fixed size, which means that you can’t create a table without designating a NESTED
TABLE STORAGE clause.

The following defines an address table by using it to capture one to however many street
addresses might be required by an address:

SQL> CREATE TABLE address
 2 (address_id NUMBER
 3 , street_address STREET_LIST
 4 , city VARCHAR2(30)
 5 , state VARCHAR2(2)
 6 , postal_code VARCHAR2(10))
 7 NESTED TABLE street_address STORE AS street_table;

As mentioned, a nested table like the street_list ADT on line 3 requires you to add a
NESTED TABLE clause to the CREATE TABLE statement. Line 7 defines a street_table
storage name for the street_address column. The “INSERT Statement” section shows examples
of how you insert into nested tables.

A question some ask is, “How do you create a nested table within a nested table?” Oracle’s
documentation labels nesting a table within a table as a multilevel collection. The most difficult
part of nesting a table within a nested table is learning how to write the storage clause. Then, the
storage clause syntax is straightforward.

The following extends the original design by changing the address table into an object type
and then nesting it in an employee table. The first step in this example creates an address_
type, like this:

SQL> CREATE OR REPLACE TYPE address_type AS OBJECT
 2 (address_id NUMBER
 3 , street_address STREET_LIST
 4 , city VARCHAR2(30)
 5 , state VARCHAR2(2)
 6 , postal_code VARCHAR2(10));
 7 /

You create a list collection of the address_type with the following syntax:

SQL> CREATE OR REPLACE TYPE address_list AS TABLE OF address_type;
 2 /

15-AppB.indd 749 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

750 Oracle Database 12c PL/SQL Programming

The employee table holds a nested table of the address_type, which in turn holds a
nested table of street_address, as shown next:

SQL> CREATE TABLE employee
 2 (employee_id NUMBER
 3 , first_name VARCHAR2(20)
 4 , middle_name VARCHAR2(20)
 5 , last_name VARCHAR2(20)
 6 , home_address ADDRESS_LIST)
 7 NESTED TABLE home_address STORE AS address_table
 8 (NESTED TABLE street_address STORE AS street_table);

Line 7 defines the nested table storage for the address_type, associated with the home_
address column. The parentheses on line 8 indicate that the nested table for street_address
is part of the previous nested table (or a multilevel collection). Embedding one table collection
inside another is a form of type chaining, which becomes more noticeable when you unnest
the data in a query. There’s an internally managed link that connects the employee table with the
nested home_address table and another link that connects the street_address table to
the home_address column (or nested table).

It’s also possible to construct the nested collection differently when you need to create the
multilevel collection for access through the OCI collection functions. You can store the nested
collection as a locator value by appending the RETURN AS LOCATOR clause, as shown:

SQL> CREATE TABLE employee
 2 (employee_id NUMBER
 3 , first_name VARCHAR2(20)
 4 , middle_name VARCHAR2(20)
 5 , last_name VARCHAR2(20)
 6 , home_address ADDRESS_LIST)
 7 NESTED TABLE home_address STORE AS address_table
 8 (NESTED TABLE street_address STORE AS street_table
 9 RETURN AS LOCATOR);

Line 9 designates that retrieving data from the nested table can use a locator reference, but
you can also ignore the locator reference with a performance loss. Locator references allow you
to recover the contents of nested tables more quickly, so they should be your choice when the
nested collection has a large number of elements. You use a NESTED_TABLE_GET_REFS hint
when writing a query that uses the locator references, which is shown in the “Unnesting Queries”
section later in this appendix.

Although you’ve seen how to implement nested tables, they’re complex and not very flexible
to changing business requirements. Use them only when they meet a specific need that can’t be
met by normal primary-to-foreign key relationships. For more information on nested tables, check
the Oracle Database SQL Language Reference 12c Release.

Constraints
Table constraints can apply to a single column or against multiple columns. That’s because table
constraints are defined by their position in the CREATE TABLE statement syntax. They occur after
the last column definition. However, that really makes them out-of-line constraints. Table
constraints apply against multiple columns or impose a unique constraint across rows.

15-AppB.indd 750 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 751

While seldom written as an out-of-line constraint, you can write a single-column primary key
that way. The reason they’re uncommon is that a single primary key constraint imposes both a not
null constraint and a unique column constraint, and they’re the only constraints that would
displace an inline primary key. The syntax requires that you provide the column name as an
argument to the constraint. You have two options, as with inline constraints: one uses a system-
generated constraint name, and the other uses a user-defined constraint name.

Here’s an out-of-line primary key constraint with a system-generated constraint name:

, PRIMARY KEY(system_user_id)

And here’s the same constraint with a user-defined name:

, CONSTRAINT pk_system_user PRIMARY KEY(system_user_id)

A multiple-column primary key constraint would look like this:

, CONSTRAINT pk_contact PRIMARY KEY(first_name, last_name)

Check constraints often occur as out-of-line constraints because the columns involved can
hold other inline constraints, such as a not null constraint. A check constraint with a system-
generated constraint name looks like this:

, CHECK(salary > 0 AND salary < 50000)

Adding a user-defined name, the constraint looks like this:

, CONSTRAINT ck_employee_01 CHECK(salary > 0 AND salary < 50000)

A table constraint on multiple columns would look like the following:

, CONSTRAINT ck_employee_02 CHECK
 ((salary BETWEEN 0 AND 49999.99 AND employee_class = 'NON-EXEMPT')
OR (salary BETWEEN 50000 AND 249999.99 AND employee_class = 'EXEMPT')
OR (salary BETWEEN 250000 AND 999999.99 AND employee_class = 'EXECUTIVE'))

The Nested Table Design Pattern
Nested tables are an advanced implementation made possible by the Oracle Object
Relational Model (ORM). They provide an internal connection between tables that acts like
an inner class in OOPLs.

Like inner classes in OOPLs, there’s no way to go directly to the inner class. You must
first go through the outer (or container) class. This type of relationship between tables in
database design is known as an ID-dependent relationship. The only way to discover the ID
is through the table holding the key to the nested tables.

If subsequent discovery of the business model identifies a use for nested table data, the
design must be changed to open up access to the nested data. That means removing the
nested table and making it an ordinary table connected by a primary-to-foreign key
relationship. That type of change is typically expensive. Ordinary table primary-to-foreign
key relationships are more flexible (and for the curious, their official label is non–ID-
dependent relationships).

15-AppB.indd 751 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

752 Oracle Database 12c PL/SQL Programming

You create a unique constraint as an out-of-line constraint in two cases. The first case occurs
when you’ve applied a not null inline constraint and you want to create a unique single-column
constraint. The second is when you want to create a multiple-column unique constraint.

Here’s the syntax for a single-column unique constraint:

, UNIQUE(common_lookup_id)

The multiple-column syntax isn’t much different for a unique constraint. The only difference is
a comma-delimited list of column names in lieu of a single column. This syntax example includes
a user-defined constraint name:

, CONSTRAINT un_lookup
 UNIQUE(common_lookup_table, common_lookup_column, common_lookup_type)

The most popular table-level constraint is a FOREIGN KEY constraint. You must provide the
FOREIGN KEY phrase in an out-of-line constraint, unlike the inline version that starts with the
REFERENCES keyword. Here’s an example of a FOREIGN KEY constraint without a user-defined
constraint name:

, FOREIGN KEY(system_id) REFERENCES common_lookup(common_lookup_id)

The system_id column name identifies the column in the table that becomes constrained
by the FOREIGN KEY. The REFERENCES clause identifies the table and column inside the
parentheses where the constraint looks to find the list of primary key values.

You would add a CONSTRAINT keyword and a user-defined constraint name when you name
a FOREIGN KEY constraint. The syntax would look like this:

, CONSTRAINT fk_system_01 FOREIGN KEY(system_id)
 REFERENCES common_lookup(common_lookup_id)

Like a unique constraint, you can provide a single-column reference or a comma-delimited
list of columns. Single-column FOREIGN KEY constraints generally refer to surrogate keys that
are generated values from a sequence. Multiple-column FOREIGN KEY values relate to the
multiple-column (or composite) natural key of the table. Composite primary keys have a primary
key constraint, and they also have an implicitly created unique constraint.

This concludes how you define constraints in the CREATE TABLE statement syntax. You also
have the option of adding, dropping, disabling, or enabling constraints with the ALTER TABLE
statement. The “Adding, Modifying, and Dropping Columns” section later in this appendix covers
how you use the ALTER TABLE statement. The next section shows you the syntax to create
partitioned tables.

Indexes
Indexes are separate data structures that provide alternate pathways to finding data. They can and
do generally speed up the processing of queries and other DML commands, like the INSERT,
UPDATE, MERGE, and DELETE statements. Indexes are also called fast access paths.

The Oracle Database 12c database maintains the integrity of indexes after you create them.
The upside of indexes is that they can improve SQL statement performance. The downside is that
they impose overhead on every INSERT, UPDATE, MERGE, and DELETE statement because the
database maintains them by inserting, updating, or deleting items for each related change in the
tables that the indexes support.

15-AppB.indd 752 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 753

Indexes have two key properties—usability and visibility. Indexes are both usable and visible
by default. That means they are visible to the Oracle Database 12c cost-based optimizer and
usable when statements run against the tables they support.

You have the ability to make any index invisible, in which case queries and DML statements
won’t use the index because they won’t see it. However, the cost-based optimizer still sees the
index and maintains it with any DML statement change. That means making an index invisible isn’t
quite like making the index unusable or like dropping it temporarily. An invisible index becomes
overhead and thus is typically a short-term solution to run a resource-intensive statement that
behaves better without the index while avoiding the cost of rebuilding it after the statement runs.

It is also possible to make an index unusable, in which case it stops collecting information
and becomes obsolete and the database drops its index segment. You rebuild the index when you
change it back to a usable index.

Indexes work on the principal of a key. A key is typically a set of columns or expressions on
which you can build an index, but it’s possible that a key can be a single column. An index based
on a set of columns is a composite, or concatenated, index.

Indexes can be unique or nonunique. You create a unique index anytime you constrain a
column by assigning a primary key or unique constraint, but they’re indirect indexes. You create a
direct unique index on a single column with the following syntax against two nonunique columns:

CREATE INDEX common_lookup_nuidx
ON common_lookup (common_lookup_table);

You could convert this to a nonunique index on two columns by using this syntax:

CREATE INDEX common_lookup_nuidx
ON common_lookup (common_lookup_table, common_lookup_column);

Making the index unique is straightforward; you only need to add a unique keyword to the
CREATE INDEX statement, like

CREATE UNIQUE INDEX common_lookup_nuidx
ON common_lookup (common_lookup_table
 , common_lookup_column
 , common_lookup_type);

Most indexes use a B-tree (balanced tree). A B-tree is composed of three types of blocks—a
root branch block for searching next-level blocks, branch blocks for searching other branch
blocks, and leaf blocks that store pointers to row values. B-trees are balanced because all leaf-
blocks are at the same level, which means the length of search is the same to any element in the
tree. All branch blocks store the minimum key prefix required to make branching decisions
through the B-tree.

There are six schemas for creating B-tree indexes and a couple of schemas for creating bitmap
indexes. The B-tree schemas are described first, followed by a description of a single bitmap schema.

Index-Organized Tables Index-organized tables are stored in a variation of a B-tree index
structure. The rows of an index-organized table are stored in an index defined by the primary key
for the table. Each index entry in the B-tree also holds the values of non-key columns. Index-
organized tables provide faster access to the table rows through the primary key, and the presence
of non-key columns of the row foregoes additional data block I/O.

15-AppB.indd 753 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

754 Oracle Database 12c PL/SQL Programming

Reverse Key Indexes A reverse key index is a type of B-tree index that reverses the physical
byte order of each index key while keeping columns in sequence. Reversing the key solves
contention problems for leaf blocks in the right side of a B-tree index. Moreover, a reversal of the
byte order distributes inserts across all leaf keys in the index.

Ascending and Descending Indexes Ascending indexes are the Oracle default, and they store
character data by their binary values, store numeric data from smallest to largest number, and
store dates from earliest to latest value. A descending index reverses the sort order.

You create a composite nonunique descending index by appending the DESC keyword to the
creation statement:

CREATE INDEX common_lookup_nuidx
ON common_lookup (common_lookup_table, common_lookup_column) DESC;

Descending indexes are most useful when queries sort some columns in ascending order and
other columns in descending order. The Oracle database searches key values to find and then use
the associated ROWID values.

B-tree Cluster Indexes A B-tree cluster index is a table cluster that uses a cluster key to find data.
You must create a cluster before you create the tables. The following shows how to create a cluster:

CREATE CLUSTER sales_records (cost_center_id NUMBER(4)) SIZE 512;

The syntax to create the index is

CREATE INDEX sales_uidx ON CLUSTER sales_records;

Finally, you’d create the tables like this:

CREATE TABLE eastern_region (<column_list>)
CLUSTER sales_records (cost_center_id);
CREATE TABLE western_region (<column_list>)
CLUSTER sales_records (cost_center_id);

This type of configuration ensures rows from both tables are written inside the same file block.
The database then stores the rows in a heap and locates them with the index.

Function-based Indexes Function-based indexes are efficient for evaluating statements that
contain functions in their WHERE clauses. The Oracle Database 12c database only uses the
function-based index when queries use functions in the WHERE clause.

You create a function-based index with the following syntax:

CREATE INDEX employee_uidx
ON employee (salary + commission_percent, salary, commission_percent);

The function is triggered when a query includes a like arithmetic expression:

SELECT employee_id
, first_name
, last_name
, (salary + commission_percent) AS annual_salary
FROM employee e

15-AppB.indd 754 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 755

WHERE (salary + commission_percent) > 100000
ORDER BY annual_salary DESC;

The optimizer can use an index range scan on a function-based index for queries with an
expression in the WHERE clause. The range scan access path has better benefits when the WHERE
clause has low selectivity. Selectivity is calculated by dividing cardinality by the number of records in
a table. For example, a column with 75 distinct values and 5,000 records has a 1.5 percent selectivity.

Application Domain Indexes An application domain index is a customized index designed to
support an application. Oracle Database 12c provides extensible indexing to do the following:

 ■ Work with indexes on customized, complex data types such as documents, spatial data,
images, video clips, and other unstructured data

 ■ Make use of specialized indexing techniques

You use a cartridge to control the structure and content of a domain index. The database
interacts with the application to build, maintain, and search the domain index.

Bitmap Indexes A bitmap index stores a bit array for each index key. Bitmap indexes are best
suited to data warehousing systems where queries are ad hoc, and work against tables with low
cardinality. Bitmapped indexes are expensive and ill suited to read-write tables with frequent
changes to the data. Bitmaps work best with data that is either read-only or not subject to
significant changes.

Views
Oracle supports ordinary views that are read-only or read-writeable. Here’s the basic prototype
for creating a view in Oracle:

CREATE [OR REPLACE] [[NO] FORCE] VIEW view_name
[(column_name [inline_constraint] [, ...]
[,CONSTRAINT constraint_name
 UNIQUE (column_name) RELY DISABLE NONVALIDATE]
[,CONSTRAINT constraint_name
 PRIMARY KEY (column_list) RELY DISABLE NONVALIDATE]
AS select_statement
[WITH {READ ONLY | CHECK OPTION}]

The OR REPLACE clause is very helpful because you don’t have to drop the previous view
before re-creating it with a new definition. Although NO FORCE is the default, FORCE tells the
DBMS to create the view even when the query references things that aren’t in the database. This
is handy when you’re doing a major upgrade because you can compile the views concurrently
with scripts that change the definition of tables.

You can query the data catalog to find invalid views. This query returns a list of all invalid
views in a user’s schema:

SQL> SELECT object_name
 2 , object_type
 3 , status
 4 FROM user_objects
 5 WHERE status = 'INVALID';

15-AppB.indd 755 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

756 Oracle Database 12c PL/SQL Programming

Read-writeable Views A read-writeable view exists when all columns are simply references to
a single table, which occurs when a view typically stripes data. A striped view occurs when you
implement a filter or virtual private databases (VPDs). Filters can be as simple as a WHERE clause
statement that checks whether the current time is between a start_date and end_date
column, which is known as temporal striping (striping to a time epoch, and nothing to do with
time travel, Star Trek: The Next Generation, or the character “Q” from the same TV series).

You have two alternatives for VPDs—the schema-level security model or the user-level
security model. The schema-level security model is based on a database user or schema, while
the user-level security model requires you to use an access control list (ACL) and to filter
authenticated users by using context information in the session metadata. An ACL is typically a
table that lists individual users and their access privileges, and typically all users connect through
the same Oracle database user account. Both require you to use the dbms_rls package to add,
maintain, and remove security policies.

A temporally bound view is the simplest read-writeable view to illustrate, and it returns all
columns for a range of rows stored in the table. You can compare the range of rows to the
complete set of rows like a piece of pie from the whole pie, as shown in Figure B-3.

An example of a temporal view is

SQL> CREATE OR REPLACE VIEW item_view AS
 2 SELECT *
 3 FROM item i
 4 WHERE SYSDATE
 5 BETWEEN TRUNC(i.start_date) AND NVL(i.end_date,TRUNC(SYSDATE) + 1);

An important thing to note about the BETWEEN operator is that the lookup value and both the
starting and ending values can’t be null values. Since Oracle doesn’t provide a DATE data type,

FIGURE B-3. Virtual private databases

User #1 User #3

User #4User #2

15-AppB.indd 756 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 757

you can create one by using the TRUNC function, which shaves off the hours and minutes of a
date (the values to the right of the decimal point). You find tomorrow by simply adding 1 (or one
day) to the truncated SYSDATE value, as shown in the preceding temporal view example.

Read-only Views A read-only view occurs when the query (SELECT statement) contains a
subquery, collection expression, selectivity operator (DECODE function or CASE operator), or
DISTINCT operator in the SELECT list; or when the query uses a join, set operator, aggregate
function, or GROUP BY, ORDER BY, MODEL, CONNECT BY, or START WITH clause. The last
two clauses are hybrid Oracle clauses that support recursive queries. You can’t write to base rows
when views perform these types of operations. However, you can deploy INSTEAD OF triggers
in Oracle that unwind the logic of the query and let you write to the base rows.

The following is an example of a read-only view:

SQL> CREATE OR REPLACE VIEW employee_view
 2 (employee_id
 3 , employee_name
 4 , employee_status
 5 , CONSTRAINT pk_employee
 6 PRIMARY KEY (employee_id) RELY DISABLE NOVALIDATE)
 7 AS
 8 SELECT c.contact_id AS employee_id
 9 , c.last_name || ', ' || c.first_name ||
 10 CASE
 11 WHEN c.middle_name IS NULL
 12 THEN ' '
 13 ELSE ' '||c.middle_name
 14 END AS employee_name
 15 , CASE
 16 WHEN c.contact_type = common_lookup_id
 17 THEN 'Active'
 18 ELSE 'Inactive'
 19 END AS employee_status
 20 FROM contact c INNER JOIN common_lookup cl
 21 ON common_lookup_table = 'CONTACT'
 22 AND common_lookup_column = 'CONTACT_TYPE'
 23 AND common_lookup_type = 'EMPLOYEE';

Line 6 has a primary key constraint on employee_id, which maps inside the subquery to
the primary key contact_id column for the contact table. The employee_name column is
selectively concatenated from other columns in the contact table, and the employee_status
column is fabricated through the combination of an INNER JOIN operator and a CASE operator.
While this is intended as a read-only view, only the sales_tax and total columns are
nonupdatable, as you can see in the CDB_, DBA_, ALL_ or USER_UPDATABLE_COLUMNS
administrative view.

A read-write trigger can contain derived columns or expressions, but you cannot write to those
specific columns. You can write through the transaction_view to the underlying transaction
table through an INSTEAD OF trigger (see Chapter 13 for more details on INSTEAD OF triggers).

15-AppB.indd 757 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

758 Oracle Database 12c PL/SQL Programming

The following creates a view with two derived and nonupdatable columns:

SQL> CREATE OR REPLACE VIEW transaction_view AS
 2 SELECT t.transaction_id AS id
 3 , t.transaction_account AS account
 4 , t.transaction_type AS purchase_type
 5 , t.transaction_date AS purchase_date
 6 , t.transaction_amount AS retail_amount
 7 , t.transaction_amount * .0875 AS sales_tax
 8 , t.transaction_amount * 1.0875 AS total
 9 , t.rental_id AS rental_id
 10 , t.payment_method_type AS payment_type
 11 , t.payment_account_number AS account_number
 12 , t.created_by
 13 , t.creation_date
 14 , t.last_updated_by
 15 , t.last_update_date
 16 FROM transaction t;

Lines 7 and 8 contain results from a calculation based on column values multiplied by numeric
constants. You can write to the base table through this view by providing an override signature
that excludes the two derived columns. This appendix discusses the mechanics of using override
signatures in the “INSERT Statement” section.

Object Table Function View Beyond an ordinary query, you can create a view that uses a
PL/SQL object table function. An object table function returns a collection of an ADT or of a UDT.
You can read more about ADTs and UDTs in the “Object Types” section later in this appendix.
You can also find the UDT object structure and table of the UDT used in the object table function
in the “Object Types” section.

You can create object table views to embed calls to autonomous functions or procedures that
can record information about the user’s credentials, time of access, and records viewed. This type
of approach gives you the opportunity to create pseudo-triggers behind functional query views,
and is quite handy when you need to ensure employee compliance with privacy rules, such as those
contained in the U.S. Sarbanes-Oxley Act (SOX), Health Insurance Portability and Accountability
Act (HIPPA), or Family Educational Rights and Privacy Act (FERPA).

The first step for this type of trigger requires creating a SQL UDT, like the one declared in the
“Object Types” section later in this appendix. The second step requires creating a SQL collection
of the UDT, which you’ll also find in the “Object Types” section. The third step requires creating
an autonomous procedure that can record who accessed what, and when. This is more or less a
“who done it” audit without the private eye of fiction—the object table function and autonomous
view replace the detective. That third step requires a logging table with a nested table for an
unknown number of records and an autonomous procedure to insert the records.

Business Use Case
Object table function views enable you to capture who queries data and which data they
query. They enable you to more fully comply with privacy rules by monitoring which
records are accessed.

15-AppB.indd 758 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 759

Here’s the CREATE statement to build the table:

SQL> CREATE TABLE item_looked_up
 2 (looked_up_id NUMBER GENERATED ALWAYS AS IDENTITY
 3 , looked_up ITEM_LOOKUP)
 4 NESTED TABLE looked_up STORE AS looked_up_table;

The item_looked_up table is narrowly scoped to keep this sample to as few moving parts
as possible. If you create an object type hierarchy—a base type and subtypes (which are
specializations of the base type)—there’s no reason you couldn’t write any type of object type
data to the base type or generalized object type. An implementation of this type of architecture is
in Chapter 11.

While the following autonomous transaction procedure writes only the data queried by the
view, it could readily include session-level data to support a Virtual Private Database (VPD)
implementation. The PRAGMA (a PL/SQL precompiler instruction) for an autonomous transaction
and embedded commit are covered in the “DML-Enabled Pass-by-Value Functions” section of
Chapter 8. You also can extend this logic to run an autonomous procedure.

SQL> CREATE OR REPLACE PROCEDURE log_item_lookup
 2 (pv_item_lookup ITEM_LOOKUP) IS
 3
 4 -- Declare the procedure as an autonomous procedure.
 5 PRAGMA AUTONOMOUS_TRANSACTION;
 6 BEGIN
 7 INSERT INTO item_looked_up (looked_up)
 8 VALUES (pv_item_lookup);
 9 COMMIT; -- Autonomous transactions require a commit.
 10 END;
 11 /

Line 5 declares a precompiler instruction that enables the log_item_lookup procedure to
work within the scope of a query and to write data to the item_looked_up table in a separate
session. The COMMIT statement on line 9 makes permanent the write to the log table.

NOTE
The embedded INSERT statement relies on an identity column, which
is only available in Oracle Database 12c forward.

After creating the UDTs, logging table, and procedure, you create an object table function
that returns a UDT collection like this:

SQL> CREATE OR REPLACE FUNCTION get_item_types RETURN item_lookup IS
 2
 3 -- Declare a variable that uses the record structure.
 4 lv_counter PLS_INTEGER := 1;
 5
 6 -- Declare a variable that uses the record structure.
 7 lv_lookup_table ITEM_LOOKUP := item_lookup();
 8
 9 -- Declare static cursor structure.

15-AppB.indd 759 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

760 Oracle Database 12c PL/SQL Programming

 10 CURSOR c IS
 11 SELECT cl.common_lookup_id AS lookup_id
 12 , SUBSTR(cl.common_lookup_meaning,1,60) AS lookup_meaning
 13 FROM common_lookup cl
 14 WHERE cl.common_lookup_table = 'ITEM'
 15 AND cl.common_lookup_column = 'ITEM_TYPE'
 16 AND SYSDATE BETWEEN
 17 cl.start_date and NVL(cl.end_date,TRUNC(SYSDATE) + 1)
 18 ORDER BY cl.common_lookup_meaning;
 19
 20 BEGIN
 21
 22 FOR i IN c LOOP
 23 lv_lookup_table.EXTEND;
 24
 25 /* The assignment pattern for a SQL collection is
 26 incompatible with the cursor return type, and you
 27 must construct an instance of the object type before
 28 assigning it to a collection. */
 29 lv_lookup_table(lv_counter) := item_structure(i.lookup_id
 30 , i.lookup_meaning
 31 , user);
 32
 33 lv_counter := lv_counter + 1;
 34 END LOOP;
 35
 36 /* Call an autonomous procedure to log the queried values. */
 37 log_item_lookup(lv_lookup_table);
 38
 39 RETURN lv_lookup_table;
 40 END;
 41 /

A best practice is to use a SQL collection UDT when you want to store the value set in a
table, which is what the call to log_item_lookup on line 36 does. You could use a PL/SQL
UDT, but then you’d require a CAST operation inside the autonomous procedure.

SQL> CREATE OR REPLACE VIEW item_lookup_view AS
 2 SELECT *
 3 FROM TABLE(get_item_types);

Lastly, we can use the following query to confirm that our embedded procedure works after
we query the view:

SQL> SELECT looked_up_id
 2 , log.id
 3 , log.lookup
 4 FROM item_looked_up ilu CROSS JOIN TABLE(ilu.looked_up) log;

15-AppB.indd 760 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 761

It returns the following data:

LOOKED_UP_ID ID LOOKUP USER_NAME
------------ ---------- ------------------- ---------
 1 1013 DVD: Full Screen STUDENT
 1 1014 DVD: Wide Screen STUDENT
 1 1017 DVD: XBOX STUDENT
 1 1015 Nintendo GameCube STUDENT
 1 1016 PlayStation2 STUDENT

The object table function isn’t an updatable view. You would need to create an INSTEAD OF
trigger when you wanted to write to the view. The object table function view does provide you
with the ability to record the information seen by users when they query data from this type of
view. Object table function views also provide an improved means of monitoring compliance
against laws like the U.S. SOX, HIPPA, and FERPA statutes. Naturally, the dbms_fga package
provides facilities to manage this type of information too.

Updatable Columns in a View A view’s updatable columns are columns that map directly to a
table’s columns. All other columns are nonupdatable, which means virtual (or defined) columns,
or columns used to group aggregated results. Views with both updatable and nonupdatable
columns aren’t read-writeable, and they require you to create INSTEAD OF triggers to manage
writes to the view. You can read more about this in Chapter 13, which covers database triggers.

You can see which columns are updatable with the following query (formatted with SQL*Plus
commands):

COLUMN column_name FORMAT A20
COLUMN updatable FORMAT A9
SQL> SELECT column_name
 2 , updatable
 3 FROM user_updatable_columns
 4 WHERE table_name = 'TRANSACTION_VIEW'
 5 AND updatable = 'NO';

It would return the two derived columns:

COLUMN_NAME UPDATABLE
-------------------- ---------
SALES_TAX NO
TOTAL NO

The WITH CHECK OPTION clause limits the rows that you can change with an UPDATE
statement or delete from the table with a DELETE FROM statement. It does so by applying a rule
that allows you to touch only those rows that you can see in the view.

If a view becomes invalid, you can query the USER_DEPENDENCIES concept view. It shows
you which dependencies are missing. Replacing the dependencies allows the next DML against
the view to work.

The following query finds dependencies for a view:

SQL> SELECT name
 2 , referenced_owner||'.'||referenced_name AS reference
 3 , referenced_type

15-AppB.indd 761 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

762 Oracle Database 12c PL/SQL Programming

 4 FROM user_dependencies
 5 WHERE type = 'VIEW'
 6 AND name = 'view_name';

Views are powerful and complex. Although the views you’ve seen only store queries and rules,
Oracle also supports materialized views, which are query results stored in the database. The results
in materialized views are often not current with the moment and can be hours or even a day or
more old. Materialized views are created when the cost of returning a result set is very high and
places an inordinate load on the server during normal operational windows. Materialized views
are often used in data marts and warehouses.

Functions, Procedures, and Packages
Functions, procedures, and packages, all of which are stored programs, are the principal subject
of this book. Stored programs in Oracle are written in the PL/SQL programming language or other
languages with PL/SQL wrappers. You can build libraries in C/C++, C#, or Java programming
languages.

You use CREATE OR REPLACE syntax to build functions, procedures, and packages. Packages
contain functions, procedures, and user-defined types. However, you can’t use the CREATE OR
REPLACE syntax when changing a function to a procedure or vice versa. The general prototype
for a function is

CREATE OR REPLACE FUNCTION function_name;

The general prototype for a procedure is

CREATE OR REPLACE PROCEDURE procedure_name;

The general prototype for a package specification is

CREATE OR REPLACE PACKAGE package_name;

and this for a package body:

CREATE OR REPLACE PACKAGE BODY package_name;

It’s important to note that the published list of functions and procedures in the specification
must agree exactly with the implementations in the package body.

Stored programs cannot be renamed, but they can be dropped from the database and re-
created under a new name. Let’s look at a small example of the problem. We’ll create a procedure
that only prints “Hello World!”, and then we’ll try to convert it to a function with a CREATE OR
REPLACE clause. It will raise an exception when we try it because we can’t replace a procedure
with a function.

Here’s the hello_world procedure:

SQL> CREATE OR REPLACE PROCEDURE hello_world IS
 2 BEGIN
 3 dbms_output.put_line('Hello World!');
 4 END;
 5 /

15-AppB.indd 762 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 763

Now, let’s try to replace it with a function that uses the same name in the data catalog:

SQL> CREATE OR REPLACE FUNCTION hello_world RETURNS VARCHAR2 IS
 2 BEGIN
 3 RETURN 'Hello World!';
 4 END;
 5 /

It raises the following exception:

CREATE OR REPLACE FUNCTION hello_world RETURNS VARCHAR2 IS
*
ERROR at line 1:
ORA-00955: name is already used by an existing object

It requires that we drop the existing hello_world procedure before we attempt to create the
hello_world function. That’s one little trick that new PL/SQL programmers seem to encounter
all too often.

You can find much more information about stored programs in Chapters 4, 8, and 9.

Object Types
While object types are largely a discussion for PL/SQL because their type body implementations
are written in PL/SQL, object types may also be defined as SQL-level objects without an
implementation. SQL-level objects are UDTs, and any UDT can be

 ■ A set of positioning-related attributes grouped into an object type

 ■ Without user-defined constructors and member functions and procedures

 ■ With user-defined constructors and member functions and procedures

 ■ An array or list of scalar data types, which are known as attribute data types (ADTs)

 ■ A collection of UDT objects

A non-collection UDT object type without user-defined constructor functions or any member
functions or procedures is more like a free-floating row of data, which is equivalent to a record
structure in computer science. The fields of the record structure are more frequently known as
attributes because that’s what object-oriented analysis and design (OOAD) calls them. A collection
of a single attribute scalar data type is called an Attribute Data Type (ADT).

ADTs and UDTs can be parameters, return types, or local variables in functions, procedures,
and objects. Oracle Database 12c has promoted PL/SQL object types from their previous
limitations within an exclusively PL/SQL scope. Although promoted, they haven’t replaced SQL
object types, which can also be the data type of a column in a table. How that column may
evolve is described in the “Object Types” subsection of the “ALTER Statement” section later in
this appendix.

Oracle Database 12c qualifies object types as either persistent or transient objects. Any
parameter to a function or procedure, return data type of a function or procedure, or local
variable in a named or unnamed block is a transient object. Transient objects are short-lived
because their life span is constrained by the life time of the program unit using them. Persistent
objects are long-lived because they are used inside a table as a column’s data type, which is
unlikely to change.

15-AppB.indd 763 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

764 Oracle Database 12c PL/SQL Programming

The first step in using object types is to create the structure in SQL or PL/SQL. Since our
object table function requires an object type, that’s what we’ll develop in this section.

Our item_structure example holds a surrogate key id column, a descriptive lookup
text field, and a user_name column that will hold the schema name responsible for querying an
object table function view. You can find PL/SQL implementation of the object table function view
in the earlier section “Object Table Function View.”

SQL> CREATE OR REPLACE
 2 TYPE item_structure IS OBJECT
 3 (id NUMBER
 4 , lookup VARCHAR2(30)
 5 , user_name VARCHAR2(30));
 6 /

You may notice that the preceding statement creates an object type by breaking up the syntax
to illustrate the SQL and PL/SQL elements. The CREATE OR REPLACE on line 1 and the /
(forward slash) are SQL elements, and the definitions on lines 2 through 4 are PL/SQL elements.
More or less, the only difference between a PL/SQL record and a SQL object is the choice of
OBJECT as a keyword after IS on line 2. A PL/SQL record structure uses IS RECORD. The design
calls for inserting the current USER value into the user_name column.

As shown in the preceding “Object Types” section, you can describe the object type like you
would a table from the SQL*Plus command line. For example, the following describes the
item_structure object:

SQL> DESCRIBE item_structure
 Name Null? Type
 ------------------------- -------- --------------
 ID NUMBER
 LOOKUP VARCHAR2(30)
 USER_NAME VARCHAR2(30)

Chapter 11 covers object types and bodies with methods, but here we’ll leave it as simply a
structure to hold data. After creating the object type, you can create a collection of the object
type with the following syntax:

SQL> CREATE OR REPLACE
 2 TYPE item_lookup IS TABLE OF item_structure;
 3 /

Business Use Case
UDTs enable you to create data structures and collections with a default constructor like table
definitions create a default signature for INSERT statements—a positional signature by data
type. You can also define methods for these object types as you would in any object-oriented
programming language. UDT data types can be passed as object instances with data between
SQL and PL/SQL stored programs, with one restriction. A UDT can’t be read in a SQL
SELECT-list unless you use the COLLECT built-in to put it in a varray or table collection before
you use the TABLE built-in to read it into a query’s result set, and since Oracle supports object
type evolution, they can become general-purpose column data types.

15-AppB.indd 764 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 765

Like the preceding example, the syntax to create a collection of the structure has SQL and
PL/SQL elements. Lines 1 and 3 are the SQL elements, and line 2 is the PL/SQL object type
structure. A structure like this without an object body has a default constructor, and it follows the
pattern of a table for an INSERT statement. You insert elements (or, in OOPL lingo, attributes) in
the same positional order in which you defined them when you created the structure, with one
exception: PL/SQL supports named notation that lets you mix up the order because you’re labeling
the parameters as you go.

Likewise, you can describe the item_lookup collection UDT:

SQL> DESCRIBE item_lookup
 item_lookup TABLE OF ITEM_STRUCTURE
 Name Null? Type
 --------------------- -------- --------------
 ID NUMBER
 LOOKUP VARCHAR2(30)
 USER_NAME VARCHAR2(30)

You should notice that a description of the UDT collection includes a line that identifies that
it is a TABLE OF another UDT type. The balance of the SQL*Plus DESCRIBE statement displays
the base item_structure UDT.

You can see examples of using a UDT collection as a nested table in the preceding “Nested
Collection Types” section. The alternative approach uses the object table inside a PL/SQL block,
as discussed in the earlier “Object Table Function View” section.

External Tables
Oracle lets you define externally organized tables. Externally organized tables appear like ordinary
tables in the database but are structures that read-only or read and write files from the operating
system. Read-only files can be comma-separated value (CSV), tab-separated value (TSV), or
position-specific files. Read and write files are stored in an Oracle Data Pump proprietary format.
However, both of these file types are known as flat files.

Feature or Fluke in Oracle Database 11g?
While it fails to appear anywhere in the documentation, Oracle Database 11g provides the
ability to insert into a base object type when you define only a base object type specification
and specializations that extend the attribute list of the base object type. This means you
don’t need to implement object type bodies to accomplish overloading of a column using
the base type.

Oracle Database 12c removes that behavior, and any attempt to overload an object
column without implementing object type bodies raises the following exception:

ERROR at line 1:
ORA-04067: not executed, type body "STUDENT.ITYPE" does not exist
ORA-06508: PL/SQL: could not find program unit being called: "STUDENT.ITYPE"
ORA-06512: at line 1

Oracle Database 12c does allow you to overload a column of a base object type when
you’ve implement the object type bodies with proper constructors.

15-AppB.indd 765 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

766 Oracle Database 12c PL/SQL Programming

Oracle SQL*Loader lets you read these flat files with a SELECT statement from what appear
as standard tables. Like Oracle SQL*Loader, Oracle Data Pump lets you read with a SELECT
statement, but Oracle Data Pump also lets you write with an INSERT statement. The write creates
a proprietary formatted file, and the read extracts the data from the file.

Two key preparation steps are required whether you’re working with externally organized
read-only or read-write files. These steps help you create virtual directories and grant database
privileges to read from and write to them. The first subsection shows you those preparation steps,
and the next two show you how to work with read-only and read-write files.

Virtual Directories Virtual directories are structures in the Oracle database, and they’re stored
in the data catalog. They map virtual directory names to physical operating system directories.
Virtual directories make a few assumptions, which can become critical fail points. For the
database grants to work successfully, the physical directories must be accessible to the operating
system user who installed the Oracle Server. That means the operating system user should have
read and write privileges to the related physical directories.

As the sys, system, or authorized CDB administrator account, you create a virtual directory
with the following syntax:

SQL> CREATE DIRECTORY upload AS 'C:\Data\Upload';

After you create the virtual directory, you must grant permissions to read from and write to the
directory. This is true whether you’re deploying a read-only file or a read-write file because both
types of files typically write error, discard, and log files to the same directory.

SQL> GRANT READ, WRITE ON DIRECTORY upload TO importer;

After creating a virtual directory, you find the mapping of virtual directories to operating system
directories in the DBA_DIRECTORIES view. Only a sys or system superuser can gain access to this
conceptual view. Unlike many other administrative views, there is no USER_DIRECTORIES view.

For reference, virtual directories are also used for BFILE data types. Web developers need to
know the list of virtual directories and their physical directories. They need that information to
ensure their programs place the uploaded files where they belong.

Oracle SQL*Loader Files After the preparation steps, you can define an externally organized
table that uses a read-only file. Line 6 sets the TYPE value as Oracle SQL*Loader and line 7 sets
the DEFAULT DIRECTORY as the virtual directory name you created previously:

SQL> CREATE TABLE CHARACTER
 2 (character_id NUMBER
 3 , first_name VARCHAR2(20)
 4 , last_name VARCHAR2(20))
 5 ORGANIZATION EXTERNAL
 6 (TYPE oracle_loader
 7 DEFAULT DIRECTORY upload
 8 ACCESS PARAMETERS
 9 (RECORDS DELIMITED BY NEWLINE CHARACTERSET US7ASCII
 10 BADFILE 'UPLOAD':'character.bad'
 11 DISCARDFILE 'UPLOAD':'character.dis'
 12 LOGFILE 'UPLOAD':'character.log'
 13 FIELDS TERMINATED BY ','

15-AppB.indd 766 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 767

 14 OPTIONALLY ENCLOSED BY "'"
 15 MISSING FIELD VALUES ARE NULL)
 16 LOCATION ('character.csv'))
 17 REJECT LIMIT UNLIMITED;

Lines 10 through 12 set the virtual directory and log files for any read from the externally
organized table. Logs are written with each SELECT statement against the character table
when data fails to conform to the definition. After the log file setup, the delimiters define how to
read the data in the external file. Line 13 sets the delimiter, FIELD TERMINATED BY, as a
comma. Line 14 sets the optional delimiter, OPTIONALLY ENCLOSED BY, as a single quote
mark or apostrophe—this is important when you have a comma in a string.

The character file reads a file that follows this format:

1,'Indiana','Jones'
2,'Ravenwood','Marion'
3,'Marcus','Brody'
4,'Rene','Belloq'

Sometimes, you don’t want to use CSV files because you’ve received position-specific files.
That’s the case frequently when the information comes from mainframe exports. You can create a
position-specific table with the following syntax:

SQL> CREATE TABLE grocery
 2 (grocery_id NUMBER
 3 , item_name VARCHAR2(20)
 4 , item_amount NUMBER(4,2))
 5 ORGANIZATION EXTERNAL
 6 (TYPE oracle_loader
 7 DEFAULT DIRECTORY upload
 8 ACCESS PARAMETERS
 9 (RECORDS DELIMITED BY NEWLINE CHARACTERSET US7ASCII
 10 BADFILE 'UPLOAD':'grocery.bad'
 11 LOGFILE 'UPLOAD':'grocery.log'
 12 FIELDS
 13 MISSING FIELD VALUES ARE NULL
 14 (grocery_id CHAR(3)
 15 , item_name CHAR(20)
 16 , item_amount CHAR(4)))
 17 LOCATION ('grocery.csv'))
 18 REJECT LIMIT UNLIMITED;

The major difference between the CSV-enabled table and a positionally organized external
table is the source signature on lines 14 through 16. The CHAR data type specifies fixed-length
strings, which can be implicitly cast to number data types. When a SELECT statement reads the
external source, it casts the values from fixed-length strings to their designated numeric and
variable-length string data types.

An alternative position-specific syntax replaces lines 14 through 16 with exact positional
references, like this:

 14 (grocery_id POSITION(1:3)
 15 , item_name POSITION(4:23)
 16 , item_amount POSITION(24:27)))

15-AppB.indd 767 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

768 Oracle Database 12c PL/SQL Programming

The casting issue works the same way because POSITION(1:3) expects to find a fixed-length
string. The value in the flat file can be cast successfully only when it is a number.

The grocery table reads values from a flat file, like this:

1 Apple 1.49
2 Orange 2

These are the preferred solutions when importing large amounts of data. Many data imports
include values that belong in multiple tables. Import sources that include data for multiple tables
are composite import files. Most import source files generally ignore or exclude surrogate key
values because they’ll change in the new database. Importing the data is important, but taking
data from the externally managed table into the normalized business model can be tricky. The
MERGE statement lets you import data, and, based on some logic, you can determine whether it’s
new or existing information. The MERGE statement then lets you insert new information or update
rows of existing data.

Oracle Data Pump Files Oracle Data Pump lets you read and write data in a proprietary format.
It is most often used for backup and recovery. You have import files for reading proprietary
formatted files and export tables for saving data in a proprietary format.

The next example requires you to create a new download virtual directory and grant the
directory read and write permissions. The following creates a table that exports data to an Oracle
Data Pump–formatted file:

SQL> CREATE TABLE item_export
 2 ORGANIZATION EXTERNAL
 3 (TYPE oracle_datapump
 4 DEFAULT DIRECTORY download
 5 LOCATION ('item_export.dmp')
 6) AS
 7 SELECT item_id
 8 , item_barcode
 9 , item_type
 10 , item_title
 11 , item_subtitle
 12 , item_rating
 13 , item_rating_agency
 14 , item_release_date
 15 , created_by
 16 , creation_date
 17 , last_updated_by
 18 , last_update_date
 19 FROM item;

The exporting process with externally organized tables has only one very noticeable problem,
which is that it throws a nasty error when the file already exists, like so:

CREATE TABLE item_export
*
ERROR at line 1:
ORA-29913: error IN executing ODCIEXTTABLEOPEN callout
ORA-29400: DATA cartridge error
KUP-11012: file item_export.dmp IN C:\DATA\Download already EXISTS

15-AppB.indd 768 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 769

My advice on this type of process is that you create an operating system script, a Java
application, or a web solution that checks for the existence of the file before inserting data into
the item_export table. Alternatively, you can create a set of utilities in Java libraries. You deploy
the libraries inside the database and wrap them with PL/SQL function definitions. They can clean
up the file system for you if you call them before you query the table.

NOTE
Java libraries work only in the Standard and Enterprise Editions of
Oracle Database 12c.

Reversing the process and importing from the external file source isn’t complex. There are a
few modifications to the CREATE TABLE statement. Here’s a sample:

SQL> CREATE TABLE item_import
 2 (item_id NUMBER
 3 , item_barcode VARCHAR2(20)
 4 , item_type NUMBER
 5 , item_title VARCHAR2(60)
 6 , item_subtitle VARCHAR2(60)
 7 , item_rating VARCHAR2(8)
 8 , item_rating_agency VARCHAR2(4)
 9 , item_release_date DATE
 10 , created_by NUMBER
 11 , creation_date DATE
 12 , last_updated_by NUMBER
 13 , last_update_date DATE)
 14 ORGANIZATION EXTERNAL
 15 (TYPE oracle_datapump
 16 DEFAULT DIRECTORY upload
 17 LOCATION ('item_export.dmp'));

Notice that the table definition mirrors the source file. This means you must know the source
before you can define the external table CREATE TABLE statement.

Partitioned Tables
Partitioning is the process of breaking up a data source into a series of data sources. Partitioned
tables are faster to access and transact against. Partitioning data becomes necessary as the amount
of data grows in any table. It speeds the search to find rows and insert, update, or delete rows. Oracle
Database 12c supports four types of table partitioning: list, range, hash, and composite partitioning.

List Partitioning A list partition works by identifying a column that contains a value, such as a
state column in an address table. Partitioning clauses follow the list of columns and constraints.

A list partition could use a state column, like the following (the complete example is avoided
to conserve space, and the three dots represent the balance of partitions not shown):

CREATE TABLE franchise
(franchise_id NUMBER CONSTRAINT pk_franchise PRIMARY KEY
, franchise_name VARCHAR(20)
, city VARCHAR(20)

15-AppB.indd 769 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

770 Oracle Database 12c PL/SQL Programming

, state VARCHAR(20))
PARTITION BY LIST(state)
(PARTITION offshore VALUES('Alaska', 'Hawaii')
, PARTITION west VALUES('California', 'Oregon', 'Washington')
, PARTITION desert VALUES ('Arizona','New Mexico')
, PARTITION rockies VALUES ('Colorado', 'Idaho', 'Montana', 'Wyoming')
, ...);

This can be used with other values such as ZIP codes with great effect, but the maintenance of
list partitioning can be considered costly. Cost occurs when the list of values changes over time.
Infrequent change means low cost, while frequent change means high cost. In the latter case, you
should consider other partitioning strategies.

Range Partitioning Range partitioning is very helpful on any column that contains a continuous
metric, such as dates or time. It works by stating a minimum set that is less than a certain value and
then a group of sets of higher values until you reach the topmost set of values. This type of partition
helps you improve performance by letting you search ranges rather than complete data sets.

A range example based on dates could look like this:

PARTITION BY RANGE(rental_date)
(PARTITION rental_jan2011
 VALUES LESS THAN TO_DATE('31-JAN-11','DD-MON-YY')
, PARTITION rental_feb2011
 VALUES LESS THAN TO_DATE('28-FEB-11','DD-MON-YY')
, PARTITION rental_mar2011
 VALUES LESS THAN TO_DATE('31-MAR-11','DD-MON-YY')
, ...);

The problem with this type of partitioning, however, is that the new months require constant
management. Many North American businesses simply add partitions for all months in the year as
an annual maintenance task during the holidays in November or December. Companies that opt
for bigger range increments reap search and access benefits from range partitioning while
minimizing ongoing maintenance expenses.

Hash Partitioning Hash partitioning is much easier to implement than list or range partitioning.
Many DBAs favor it because it avoids the manual maintenance of list and range partitioning. Oracle
Database 12c documentation recommends that you implement a hash for the following reasons:

 ■ There is no concrete knowledge about how much data maps to a partitioning range.

 ■ The sizes of partitions are unknown at the outset and difficult to balance as data is added
to the database.

 ■ A range partition might cluster data in an ineffective way.

This next statement creates eight partitions and stores them respectively in one of the eight
tablespaces. The hash partition manages nodes and attempts to balance the distribution of rows
across the rows.

PARTITION BY HASH(store)
PARTITIONS 8
STORE IN (tablespace1, tablespace2, tablespace3, tablespace4
 ,tablespace5, tablespace6, tablespace7, tablespace8);

15-AppB.indd 770 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 771

As you can imagine, the maintenance for this type of partitioning is low. Some DBAs choose
this method to get an initial sizing before adopting a list or range partitioning plan. Other DBAs
report that partition pruning doesn’t work as well with hash partitioning as it does with range
partitioning, and they point to Oracle’s cost-based optimizer (CBO) opting for full table scans
when using hash partitioning.

Maximizing the physical resources of the machine ultimately rests with the DBAs who manage
the system. Developers need to stand ready to assist DBAs with analysis and syntax support.

Composite Partitioning Composite partitioning requires a partition and subpartition. The
composites are combinations of two types of partitioning—typically, list and range composite
partitioning, or range and hash composite partitioning. Which of these you should choose
depends on a few considerations. List and range composite partitioning is done for historical
information and is well suited for data warehouses. This method lets you partition on unordered
or unrelated column values.

A composite partition like this uses the range as the partition and the list as the subpartition,
like the following:

PARTITION BY RANGE (rental_date)
 SUBPARTITION BY LIST (state)
 (PARTITION FQ1_1999 VALUES LESS THAN (TO_DATE('1-APR-2011','DD-MON-YYYY'))
 (SUBPARTITION offshore VALUES('Alaska', 'Hawaii')
 , SUBPARTITION west VALUES('California', 'Oregon', 'Washington')
 , SUBPARTITION desert VALUES ('Arizona','New Mexico')
 , SUBPARTITION rockies VALUES ('Colorado', 'Idaho', 'Montana', 'Wyoming')
 , ...)
,(PARTITION FQ2_1999 VALUES LESS THAN (TO_DATE('1-APR-2011','DD-MON-YYYY'))
 (SUBPARTITION offshore VALUES('Alaska', 'Hawaii')
 , SUBPARTITION west VALUES('California', 'Oregon', 'Washington')
 , SUBPARTITION desert VALUES ('Arizona','New Mexico')
 , SUBPARTITION rockies VALUES ('Colorado', 'Idaho', 'Montana', 'Wyoming')
 , ...)
, ...)

Range and hash composite partitioning is done for historical information when you also need
to stripe data. Striping is the process of creating an attribute in a table that acts as a natural subtype
or separator of data. Users typically view data sets of one subtype, which means organizing the
data by stripes (subtypes) can speed access based on user access patterns.

A composite partition like this typically uses the range as the partition and the hash as the
subpartition. The syntax for this type of partition is shown next:

PARTITION BY RANGE (rental_date)
 SUBPARTITION BY HASH(store)
 SUBPARTITIONS 8 STORE IN (tablespace1, tablespace2, tablespace3
 ,tablespace4, tablespace5, tablespace6
 ,tablespace7, tablespace8)
 (PARTITION rental_jan2011
 VALUES LESS THAN TO_DATE('31-JAN-11','DD-MON-YY')
 , PARTITION rental_feb2011
 VALUES LESS THAN TO_DATE('28-FEB-11','DD-MON-YY')
 , PARTITION rental_mar2011
 VALUES LESS THAN TO_DATE('31-MAR-11','DD-MON-YY')
 , ...)

15-AppB.indd 771 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

772 Oracle Database 12c PL/SQL Programming

NOTE
Developers need to understand techniques, but DBAs often have
major decision-making authority in partitioning. Partitioning effectively
requires an understanding of the underlying choices made by DBAs in
organizing the database.

Synonyms
Oracle supports the concept of a synonym, which simplifies how another user can access your
objects after you’ve granted them privileges to select, insert, update, or delete data in a table, or to
execute a stored program unit—function, procedure, package, or object type. Without a synonym,
the other user would need to put your user name and a dot (.) in front of the object before accessing
it. The dot is called a component selector. A synonym creates an alias that maps the user name,
component selector, and object name to a synonym (alias) name in the user’s work area or schema.

You don’t need to use a component selector on objects that you create in your schema. They’re
natively available to you. The sys superuser has access to every object in the Oracle Database 12c
Server by simply addressing objects by their fully qualified location—schema name, component
selector, and object name. This makes perfect sense when you recall that the user and schema
names are synonymous.

NOTE
The Oracle Database 12c SYS user’s visibility to columns within tables
can be restricted by redacting access with the dbms_redact built-in
package.

You create a synonym like this:

CREATE SYNONYM some_tablename FOR some_user.some_tablename;

Typically, the local table name is the same as the table name in the other schema, but not
always. You can also grant privileges on a table to a PUBLIC account in a CDB, which gives all
other users access to the table. Public synonyms also exist to simplify how those users access the
table. Alternatively, you can grant privileges on a table to a PUBLIC account in a PDB, which
limits access to only the pluggable database.

NOTE
You can also restrict synonyms by designating them as EDITIONABLE or
NONEDITIONABLE when you’re using edition-based redefinition (EBR).

You would grant the SELECT privilege to the PUBLIC account with this syntax:

GRANT SELECT ON some_tablename TO PUBLIC;

After granting the privilege, you create a public synonym with this syntax:

CREATE PUBLIC SYNONYM some_tablename FOR some_user.some_tablename;

15-AppB.indd 772 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 773

As a rule of thumb, use the PUBLIC account only when you’re granting privileges to invoker
rights stored programs. Appendix A shows you how to define and implement stored programs that
run under definer or invoker rights models using synonyms.

ALTER Statement
This section focuses on how you can use the ALTER statement to change users, databases, tables,
and indexes you’ve created in the database, and it explores how you can change your session to
meet your needs in Oracle. The section is organized by the following topics:

 ■ Users

 ■ Tables

 ■ Indexes

 ■ Object Types

As explained earlier, users are synonymous with schemas in an Oracle database. Databases
are private work areas, and changes to them remain until you remove or change a database again.
Connections to your database management system are sessions, and a session lasts only for the
duration of your connection to a database or schema. Any changes to a session are lost when you
break the connection by logging out or by connecting as another user to another database. Tables
are permanent structures unless you define them as temporary tables. Changes made to tables,
like databases, last until you drop the table, undo the changes, or make new changes. As with
tables, indexes exist as long as the table they reference exists, unless you drop or alter the table.
Although users can modify index structures, content changes in the index occur only through
changes in the referenced tables.

NOTE
User accounts don’t technically own a schema until they’ve been
granted a quota and the privilege to create tables.

The following sections discuss how you can the Oracle ALTER statement to alter users, tables,
indexes, and object types. You’ll learn what a developer needs to know to work with these
structures in Oracle. You won’t find an exhaustive listing of all the things you can do with or to
databases, because entire books are written on that, but I’ve tried to give you the basics to effectively
use the ALTER statement in an Oracle database.

Users
The user and schema are inseparable in an Oracle DBMS. They share the same names, and the
user generally holds all definer privileges on the schema. That means you must change a user to
change a schema or database. Commands that change the database are actually changing accounts
on the Oracle server.

Oracle users typically don’t have privileges that let them change their user or schema properties
unless they’ve been granted superuser privileges. That means commands that change users or
schemas are run typically by the system user. Dropping a user is a rare occasion in most Oracle
databases, but changing properties of the user occurs routinely.

15-AppB.indd 773 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

774 Oracle Database 12c PL/SQL Programming

The prototype for the ALTER USER statement lets you change properties of a user, such as
their role, profile, storage, password, and account status. The generic prototype for the ALTER
USER statement is shown here:

ALTER USER user_name
[IDENTIFIED
{[BY current_password REPLACE new_password] |
 [EXTERNALLY AS 'certificate_name'] |
 [GLOBALLY AS 'directory_name']]}
[DEFAULT TABLESPACE tablespace_name]
[TEMPORARY TABLESPACE {tablespace_name | tablespace_group }]
[QUOTA {size_clause | UNLIMITED} ON tablespace_name]
[PROFILE profile_name]
[DEFAULT ROLE {role_name | ALL EXCEPT role_name | NONE}]
[PASSWORD EXPIRE]
[ACCOUNT {LOCK | UNLOCK}]
[{GRANT | REVOKE} CONNECT THROUGH
 {ENTERPRISE USERS |
 WITH {ROLE {role_name | ALL EXCEPT role_name} |
 NO ROLES} [AUTHENTICATION REQUIRED]}]

Using the ALTER USER statement, you can configure one of three different authentication types
for a user: password, Secure Sockets Layer (SSL) certificate, and Lightweight Directory Access
Protocol (LDAP) certificate. You also have the security options to expire a password (useful when
terminating employees) and locking an account.

The other clauses let you change default or temporary tablespaces, or a quota, profile, role, or
pass-through authentication, none of which occurs frequently. These changes are also seldom
made by developers because doing so is the DBA’s responsibility.

If a user loses a password, you could change a container database (CDB) user’s password
like this:

ALTER USER student IDENTIFIED BY P0lici3s;

Then you’d need to let the user know the new password and hope somebody doesn’t crack it
before the user logs in to change it.

Better yet, you can go one more step by expiring the password after changing it. An expired
password prompts the user for a new password when he or she logs in. You expire a password like this:

ALTER USER student PASSWORD EXPIRE;

The user would try to connect like this,

sqlplus student/P0lici3s

and would then see the following messages and prompts at the command-line interface to
SQL*Plus, where the user would enter a new password:

C:\data\oracle>sqlplus student/P0lici3s
SQL*Plus: Release 12.1.0.0.2 Beta on Tue Mar 19 22:38:33 2013
Copyright (c) 1982, 2012, Oracle. All rights reserved.
Last Successful login time: Sun Mar 17 2013 00:01:54 -06:00

15-AppB.indd 774 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 775

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.0.2 - 64bit Beta
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing
ERROR:
ORA-28001: the password has expired

Changing password for P0lici3s
New password:
Retype new password:
Password changed

Assuming you’ve configured the database to use LDAP authentication and provided a wallet,
you can also change a login to an LDAP validation, like this:

ALTER USER student IDENTIFIED GLOBALLY AS 'CN=miles,O=apple,C=US'

A user can change his/her password with the ALTER USER statement. The following syntax
requires that the user know his/her current password:

ALTER USER student IDENTIFIED BY P0lici3s REPLACE Beatles1964;

The only problem with the preceding syntax is that it discloses the user’s new password in
plain text. Unfortunately, there’s no way around that syntax limitation. More often than not,
individual users remember their passwords and can change it like this:

SQL> password
Changing password for STUDENT
Old password:
New password:
Retype new password:
Password changed

The reason changes of tablespaces, roles, and profiles aren’t done by developers is that they
are managed by the superuser accounts. These superuser accounts are owned by DBAs
who administer the physical resources of the database. Developers work closely with the system
administrators to ensure that adequate disk space and processing resources are available for the
database on any server.

A key DBA activity that you should know how to perform while working in your laptop
development databases is locking and unlocking accounts, such as the oe sample or the legacy
scott schemas. You would unlock the oe schema with this syntax:

ALTER USER student ACCOUNT UNLOCK;

Alternatively, you can open an account and change the password with a single command
like this:

ALTER USER student ACCOUNT UNLOCK IDENTIFIED BY Backl0gs;

After you’re done with a sample schema like these, you can lock them away by typing this:

ALTER USER student ACCOUNT LOCK;

15-AppB.indd 775 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

776 Oracle Database 12c PL/SQL Programming

You should never leave user schemas open (unlocked) when you’re not actively using them.
It’s simply a best practice to lock unused schemas that you might need to reopen and likewise to
drop obsolete schemas.

Tables
Table definitions and constraints change over time for many reasons. These changes occur
because developers discover more information about the business model, which requires changes
to table definitions. This section examines how you can add, modify, and remove columns or
constraints; rename tables, columns, or constraints; and drop tables.

First, however, you need to understand how table definitions are stored in the data catalogs.
When you understand the rules of these structures and how they’re stored, you can appreciate
why SQL is able to let you change so much, so easily.

Data Catalog Table Definitions The data catalog stores everything by the numbers, which
happens to be through surrogate primary keys. The database also maintains a unique index on
object names, which means that you can use a name only once per schema in an Oracle
database. This list of unique values is known as the schema’s namespace.

As discussed, Oracle maintains the data catalog in the sys schema and provides access to
administrative views, which are prefaced by CDB_, DBA_, ALL_, and USER_. The USER_ prefix is
available to every schema for objects that a user owns. The CDB_ prefix is for the new container
database views. The ALL_ and DBA_ prefixes give you access to objects owned by others, and
only superusers or administrative users have access privileges to these views.

Many developer tools can easily display information from the data catalog views, such as
Oracle SQL Developer, Quest’s Toad for Oracle, or Oracle CASE tools. Sometimes you need to
explore a database for specific information, and the fastest way would be to launch a few quick
queries against the data catalog. The catalog view that lets you explore column definitions,
including for invisible columns, is the USER_TAB_COLUMNS view. The catalog view that lets you
explore column definitions only for visible columns is the USER_TAB_COLS view. Another
catalog USER_TAB_COLS view lets you explore only visible columns (short for table’s columns).

The following query leverages some SQL*Plus formatting to let you find the definition of a
specific table and display it in a single-page format:

SQL> COLUMN column_id FORMAT 999 HEADING "Column|ID #"
SQL> COLUMN table_name FORMAT A12 HEADING "Table Name"
SQL> COLUMN column_name FORMAT A18 HEADING "Column Name"
SQL> COLUMN data_type FORMAT A10 HEADING "Data Type"
SQL> COLUMN csize FORMAT 999 HEADING "Column|Size"
SQL> SELECT utc.column_id
 2 , utc.table_name
 3 , utc.column_name
 4 , utc.data_type
 5 , NVL(utc.data_length,utc.data_precision) AS csize
 6 FROM user_tab_columns utc
 7 WHERE utc.table_name = 'CONTACT';

The table name is in uppercase because Oracle maintains metadata text in an uppercase
string. You could replace line 7 with the following line that uses the UPPER function to promote
the text case before comparison, if you prefer to type table names and other metadata values in
lowercase or mixed case:

 7 WHERE utc.table_name = UPPER('contact');

15-AppB.indd 776 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 777

It displays the following:

Column Column
 ID # Table Name Column Name Data Type Size
------ ------------ ------------------ ---------- ------
 1 CONTACT CONTACT_ID NUMBER 22
 2 CONTACT MEMBER_ID NUMBER 22
 3 CONTACT CONTACT_TYPE NUMBER 22
 4 CONTACT FIRST_NAME VARCHAR2 20
 5 CONTACT MIDDLE_NAME VARCHAR2 20
 6 CONTACT LAST_NAME VARCHAR2 20
 7 CONTACT CREATED_BY NUMBER 22
 8 CONTACT CREATION_DATE DATE 7
 9 CONTACT LAST_UPDATED_BY NUMBER 22
 10 CONTACT LAST_UPDATE_DATE DATE 7

The column_id value identifies the position of columns for INSERT statements. The ordered
list is set when you define a table with the CREATE TABLE statement or is reset when you modify
it with an ALTER TABLE statement. Columns keep the position location when you change the
columns’ name or data type. Columns lose their position when you remove them from a table’s
definition, and when you add them back, they appear at the end of the positional list of values.
There’s no way to shift their position in an Oracle database without dropping and re-creating the
table.

Each column has a data type that defines its physical size. The foregoing example shows that
NUMBER data types take up to 22 characters, the strings take 20 characters, and the dates take 7
characters. As you learned in Chapter 4, numbers can also have a specification (the values to the
right of the decimal point) that fits within the maximum length (or precision) of the data type.

The USER_CONSTRAINTS and USER_CONS_COLUMNS views hold information about
constraints. The USER_CONSTRAINTS view holds the descriptive information about the type
of constraint, and the USER_CONS_COLUMNS view holds the list of columns participating in the
constraint.

You would use a query like this to discover constraints and columns (formatting provided by
the SQL*Plus commands):

SQL> COLUMN table_name FORMAT A12 HEADING "Table Name"
SQL> COLUMN constraint_name FORMAT A16 HEADING "Constraint|Name"
SQL> COLUMN position FORMAT A8 HEADING "Position"
SQL> COLUMN column_name FORMAT A18 HEADING "Column Name"
SQL> SELECT ucc.table_name
 2 , ucc.constraint_name
 3 , uc.constraint_type ||':'|| ucc.position AS position
 4 , ucc.column_name
 5 FROM user_constraints uc JOIN user_cons_columns ucc
 6 ON uc.table_name = ucc.table_name
 7 AND uc.constraint_name = ucc.constraint_name
 8 WHERE ucc.table_name = 'CONTACT'
 9 ORDER BY ucc.constraint_name
 10 , ucc.position;

15-AppB.indd 777 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

778 Oracle Database 12c PL/SQL Programming

It would produce the following output:

 Constraint
Table Name Name Position Column Name
-------------- ------------------ -------- ------------------
CONTACT PK_CONTACT_1 P:1 CONTACT_ID
CONTACT UNIQUE_NAME U:1 MEMBER_ID
CONTACT UNIQUE_NAME U:2 FIRST_NAME
CONTACT UNIQUE_NAME U:3 MIDDLE_NAME
CONTACT UNIQUE_NAME U:4 LAST_NAME

The first line of output reports a single-column primary key, which is most often a surrogate
primary key. You can tell that because a constraint_type column value represents the code
for a primary key constraint, as qualified in Table B-5. In the query, the position column is the
concatenated result of the constraint type code and position number related to the column name.
The remaining lines report a unique constraint that spans four columns, which is the natural key
for the table. It’s an imperfect third-normal form (3NF) key for the subject of the table, but it’s an
adequate natural key for our demonstration purposes.

The material in this section has described how you find definitions for tables and constraints.
You’ll find this information helpful when you need to change definitions or remove them from tables.

Adding, Modifying, and Dropping Columns Database tables should be designed to hold a
single subject, and when they hold a single subject, they help you normalize information that
supports business, research, or engineering processes. In the real world, requirements change,
and eventually modifying a table becomes necessary. Some of these changes are relatively trivial,
such as changing a column name or data type. Some changes are less trivial, such as when some
descriptive item (column) is overlooked, a column isn’t large enough to hold a large number or
string, or a column of data needs to be renamed or moved to another column. You can make any
of these changes using the ALTER TABLE statement.

More involved changes occur in three situations:

 ■ When you must change a column’s data type when it contains rows of data

 ■ When you rename a column when existing SQL statements already use the older column

 ■ When you shift the position of adjoining columns that share the same data type

Constraint Code Constraint Meaning
C Represents a check or not null constraint
P Represents a primary key constraint
R Represents a foreign key, which is really referential integrity between

tables and is why an R is the code value
U Represents a unique constraint

TABLE B-5. Constraint Codes and Types

15-AppB.indd 778 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 779

When you need to change the data type of a column that contains data, you need to develop
a data migration plan. Small-scale data migration might entail adding a new column, moving the
contents from one column to the other, and then dropping the original column. Unless the database
supports an implicit casting operation from the current to future data type, you will need a SQL
statement to change the data type explicitly and put it into the new column.

Changing the name of a column in a table seems a trifling thing, but it’s not insignificant
when application software uses that column name in SQL statements. Any change to the column
name will break the application software. You need to identify all dependent code artifacts and
ensure that they’re changed at the same time you make the changes to the column in the table.
A full regression-testing plan needs to occur when columns are renamed in tables that support
working application software. You can start by querying the ALL_, DBA_, or USER_
DEPENDENCIES views that preserve dependencies about tables and stored program units.

Shifting the position of columns can have two different types of impacts. One potential impact
is that you break INSERT statements that don’t use a column list before the VALUES clause or
subquery. This happens when the columns have different data types, because the INSERT
statements will fail and raise errors. The other potential impact is much worse, because it produces
corrupt data. This happens when you change the position of two columns that share the same
data type. The change doesn’t break INSERT statements in an easily detectable way, as did the
other scenario, because it simply inverts the data into the wrong columns. The fix is the same as
when you change the positions of columns that have different data types, but the fix depends on
when you notice the problem and how much corrupt data you need to sanitize (fix).

Release Engineering
Release engineering is a component of software engineering, and it focuses on how you plan
and control the creation and evolution of software—in other words, how you set, enforce,
evaluate, and manage software standards. The more time you take to avoid problems, the less
time you’ll spend fixing them.

During the course of normal product release cycles, release engineers manage multiple
code branches and dependency trees. Good release engineers invest proactively in software
configuration management, because they know it helps identify where problems exist. In a
proactive model, you examine process and software dependencies to identify and manage
risk exposure. You take corrective action before the event occurs in this approach, which
requires you to set and enforce standards that prevent errors.

For example, in a database-centric application, you would check the impact of table
definition changes before making them. That’s because those types of changes can destabilize
your application software. You flag all code modules that depend on existing table and view
definitions so you can have them changed concurrently as part of the project. Identifying
errors before regression testing by quality and assurance teams is less expensive.

This type of good release engineering requires a code repository that tracks
dependencies and prevents check-ins that would break other code modules. You need to
understand the dependencies in your software process to create an effective process, and
you need process automation to manage it. Like any good application that prevents a user
from entering garbage data, release management should prevent dependency invalidation.
Sometimes this means disallowing changes until you understand their full impacts.

15-AppB.indd 779 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

780 Oracle Database 12c PL/SQL Programming

These risks should be managed by your company’s release engineering team and should be
subject to careful software configuration management of your code repository. You can leverage the
CDB_, ALL_, DBA_, and USER_DEPENDENCIES views to check on dependencies in your software.

The prototypes discussed in the next two sections qualify how you make these types of
changes in Oracle Database 12c.

Column Maintenance The ALTER TABLE statement allows you to add columns or constraints,
to modify properties of columns and constraints, and to drop columns or constraints. A number of
DBA-type properties are excluded from the ALTER TABLE prototype, and the focus here is on
those features that support relational tables.

Here’s the basic prototype for the ALTER TABLE statement:

ALTER TABLE [schema_name.]table_name
[RENAME TO new_table_name]
[READ ONLY]
[READ WRITE]
[{NO PARALLEL | PARALLEL n}]
[ADD
 ({column_name data_type [SORT][DEFAULT value][ENCRYPT key] |
 virtual_column_name} data_type [GENERATED][ALWAYS] AS (expression)}
 ,{column_name data_type [SORT][DEFAULT value][ENCRYPT key] |
 virtual_column_name} data_type [GENERATED][ALWAYS] AS (expression)}
 [, ...])]
[MODIFY
 ({column_name data_type [SORT][DEFAULT value][ENCRYPT key] |
 virtual_column_name} data_type [GENERATED][ALWAYS] AS (expression)}
 ,{column_name data_type [SORT][DEFAULT value][ENCRYPT key] |
 virtual_column_name} data_type [GENERATED][ALWAYS] AS (expression)}
 [, ...])]
[DROP
 (column_name {CASCADE CONSTRAINTS | INVALIDATE} [CHECKPOINT n]
 ,column_name {CASCADE CONSTRAINTS | INVALIDATE} [CHECKPOINT n]
 [, ...])]
[ADD [CONSTRAINT constraint_name]
 {PRIMARY KEY (column_name [,column_name [, ...]) |
 UNIQUE (column_name [,column_name [, ...]) |
 CHECK (check_condition) |
 FOREIGN KEY (column_name [,column_name [, ...])
 REFERENCES table_name (column_name [,column_name [, ...])}]
[MODIFY data_type [SORT][DEFAULT value][ENCRYPT key] |
 virtual_column_name} data_type [GENERATED][ALWAYS] AS (expression)}
 [, ...])]
[RENAME COLUMN old_column_name TO new_column_name]
[RENAME CONSTRAINT old_constraint_name TO new_constraint_name]

The following sections provide working examples that add, modify, rename, and drop
columns and constraints. Notice that you don’t add a not null constraint to a column, but you
modify the property of an existing column.

15-AppB.indd 780 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 781

Adding Columns and Constraints—This section shows you how to add columns and constraints.
It also provides some guidance on when you can constrain a column as not null.

Here’s how you add a new column to a table:

SQL> ALTER TABLE rental_item
 2 ADD (rental_item_price NUMBER);

If the table contains no data, you could also add the column with a not null constraint, like this:

SQL> ALTER TABLE rental_item ADD
 2 (rental_item_price NUMBER CONSTRAINT nn1_rental_item NOT NULL);

Adding a column with a not null constraint fails when rows are included in the table because
when you add the column, its values are empty in all the table rows. The attempt would raise the
following error message:

ALTER TABLE rental_item
 *
ERROR at line 1:
ORA-01758: table must be empty to add mandatory (NOT NULL) column

You can disable the constraint until you’ve entered any missing values and then you can
re-enable the constraint. After you’ve added values to all rows of a nullable column, you can
constrain the column to disallow null values. The syntax requires you to modify the column, like so:

SQL> ALTER TABLE rental_item MODIFY
 2 (rental_item_price NUMBER CONSTRAINT nn1_rental_item NOT NULL);

You can also add more than one column at a time with the ALTER TABLE statement. The
following would add two columns:

SQL> ALTER TABLE rental_item
 2 ADD (rental_item_price NUMBER)
 3 ADD (rental_item_type NUMBER);

Notice that no comma appears between the two ADD clauses.
That’s it for columns. Now you’ll see how to add the four constraints that work with the ADD

clause: primay key, check, not null, unique, and foreign key. Note that you can raise errors with
these statements when you already have data in a table and it fails to meet the rule of the constraint.

All the following examples work when tables are empty or conform to the constraint rules.
After all, what would be the point of a database constraint that didn’t constrain behaviors?

This example adds a primary key constraint to a surrogate key column. A primary key in this
case restricts a single column’s behavior. Here’s the syntax:

SQL> ALTER TABLE calendar
 2 ADD PRIMARY KEY (calendar_id);

The alternative would be to add a primary key constraint on the natural key columns, like this:

SQL> ALTER TABLE calendar
 2 ADD PRIMARY KEY (month_name, start_date, end_date);

15-AppB.indd 781 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

782 Oracle Database 12c PL/SQL Programming

The check constraint is very powerful in Oracle, because it lets you enforce a single rule or
a complex set of rules. In the following example, you add the column and then an out-of-line
constraint on the new column:

SQL> ALTER TABLE calendar
 2 ADD (month_type VARCHAR2(1))
 3 ADD CONSTRAINT ck_month_type
 4 CHECK(month_type = 'S' AND month_shortname = 'FEB'
 5 OR month_type = 'M' AND month_shortname IN ('APR','JUN','SEP')
 6 OR month_type = 'L')

The check constraint verifies that a month_type value must correspond to a combination of
its value and the value of the month_shortname column. Any month with less than 30 days
holds an S (short), with 30 days holds an M (medium), and with 31 days holds an L (long).

The following unique constraint guarantees that no start_date and end_date
combination can exist twice in a calendar table:

SQL> ALTER TABLE calendar
 2 ADD CONSTRAINT un_california UNIQUE (start_date, end_date);

A foreign key constraint works with surrogate or natural keys by referencing the table and
column or columns that are in its primary key. The next example sets the two foreign keys in a
translation table between the rental and item tables:

SQL> ALTER TABLE rental_item
 2 ADD CONSTRAINT fk_rental_id_1
 3 FOREIGN KEY (rental_id) REFERENCES rentals (rental_id)
 4 ADD CONSTRAINT fk_rental_id_2
 5 FOREIGN KEY (item_id) REFERENCES items (item_id);

The next example sets a foreign key on the natural key of the contact table, as shown earlier
in this chapter. Foreign keys composed of more than one column are composite foreign keys
(outside of Oracle documentation, these may also be labeled as compound keys). This references
three natural columns and one foreign key column:

SQL> ALTER TABLE delegate
 2 ADD CONSTRAINT fk_natural_contact
 3 FOREIGN KEY (member_id, first_name, middle_name, last_name)
 4 REFERENCES contact (member_id, first_name, middle_name, last_name);

NOTE
Composite foreign keys are limited to no more than 32 columns in
Oracle Database 12c.

The key concept is that you can add both column- and table-level (that is, multiple column)
constraints with the ALTER TABLE statement. As shown, you can also add the column and then
the constraint that goes with it.

15-AppB.indd 782 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 783

Modifying Columns and Constraints Oracle lets you change column names, data types, and
constraints with the ALTER TABLE statement. Although column names and data types change
routinely during major software upgrades, these changes can and do cause problems because
existing code can depend on the type or names of columns and encounter failures when they
change unexpectedly.

The following examples demonstrate what you’re likely to encounter when working with
modifying tables. The first example lets you change the name of a column:

SQL> ALTER TABLE calendar
 2 RENAME COLUMN calendar_name TO full_month_name;

It’s also possible to make more than one change with a single ALTER statement, like

SQL> ALTER TABLE calendar
 2 ADD (month_name VARCHAR2(9))
 3 ADD (short_name VARCHAR2(3) CONSTRAINT calendar_nn1 NOT NULL);

The ALTER statement supports a superuser, or a common user who has been granted the
ALTER ANY TABLE privilege to change the column name of another schema’s table to change
the column name of another schema’s table when they have the ALTER ANY TABLE privilege.
While you can make multiple changes to columns in a single ALTER statement, there’s an
exception to that rule when renaming multiple columns.

If you wanted to change the names of two or more columns in one ALTER STATEMENT, you
would try something like this:

SQL> ALTER TABLE calendar
 2 RENAME COLUMN calendar_name TO full_month_name
 3 RENAME COLUMN calendar_short_name TO short_month_name;

but that would fail and raise an ORA-23290 error:

ALTER TABLE calendar
*
ERROR at line 1:
ORA-23290: This operation may not be combined with any other operation

The failure occurs because you can’t combine a RENAME clause with any other clause in an
ALTER TABLE statement. It’s simply disallowed, with no further elaboration provided in the
Oracle Database Administrator’s Guide 12c Release.

Data type changes are straightforward when the table contains no data, but you can’t change
the type when data exists in the column. A quick example attempts to change a start_date
column using a DATE data type to using a VARCHAR2 data type. The following syntax works when
no data is included in the column but fails when data exists:

SQL> ALTER TABLE calendar
 2 MODIFY (start_date VARCHAR2(9));

With data in the column, it raises this error message:

MODIFY (start_date VARCHAR2(9))
 *
ERROR at line 2:
ORA-01439: column to be modified must be empty to change datatype

15-AppB.indd 783 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

784 Oracle Database 12c PL/SQL Programming

You would add a not null constraint to the start_date column with the following DML
statement:

SQL> ALTER TABLE calendar
 2 MODIFY (start_date DATE NOT NULL);

The only problem with the foregoing statement is that it creates a not null constraint with a
system-generated name. The best practice would assign the constraint a name, like so:

SQL> ALTER TABLE calendar
 2 MODIFY (start_date DATE CONSTRAINT nn_calendar_1 NOT NULL);

Now you know how to rename columns and change column data types. The next section
shows you how to drop columns and constraints.

Dropping Columns and Constraints You drop columns from tables rarely, but the syntax is easy.
You would drop the following short_month_name column from the calendar table with this:

SQL> ALTER TABLE calendar
 2 DROP COLUMN short_month_name;

You would encounter a problem dropping a column when the column is involved in a table
constraint (a constraint across two or more columns). For example, attempting to drop a middle_
name column from the contact table fails when the columns referenced by a multiple-column
unique constraint. The statement would look like this:

SQL> ALTER TABLE contact
 2 DROP COLUMN middle_name;

It would raise the following error message:

DROP COLUMN middle_name
 *
ERROR at line 2:
ORA-12991: column is referenced in a multi-column constraint

Oracle Database 12c and its predecessors disallow you from dropping a column that’s a
member of a multiple-column unique constraint. You must drop the constraint before you drop
the column and then create a new unique constraint across any remaining columns.

NOTE
Dropping columns when the table contains data can fragment the
storage in physical files.

Dropping constraints is easy, because all you need to know is a constraint’s name. The
following drops the unique_name constraint from the contact table:

SQL> ALTER TABLE contact
 2 DROP CONSTRAINT unique_name;

This concludes the discussion about adding, modifying, and dropping columns and
constraints in an Oracle database.

15-AppB.indd 784 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 785

Indexes
Indexes are structures that hold search trees that help SQL statements find rows of interest faster.
These search trees can be balanced trees (B-trees), hash maps, and other mapping data structures.

The following are some of the major reasons for fixing indexes in Oracle, all of which you
perform with an ALTER statement:

 ■ Rebuilding or coalescing an existing index

 ■ Deallocating unused space or allocating new space

 ■ Enabling and specifying the degree of parallelism for storing the index

 ■ Changing storage parameters to improve index performance

 ■ Enabling or disabling logging

 ■ Enabling or disabling key compression

 ■ Marking the index as unusable

 ■ Making the index invisible

 ■ Renaming the index

 ■ Starting or stopping index usage monitoring

The next subsections review some basics of using indexes from a developer’s perspective.
Clearly, storage and parallel optimization belong to the DBAs, because they know the critical
resources of CPUs, memory, and disk space.

Prototype and Usage of Indexes The Oracle ALTER INDEX statement lets you manage
indexes, and the DROP INDEX statement lets you remove indexes. You can also use the ALTER
TABLE statement to enable primary key column(s) to use indexes.

The prototype for the ALTER INDEX statement, minus the DBA options, is shown here:

ALTER INDEX [schema_name.]index_name [COMPILE] |
[{ENABLE | DISABLE}] |
[UNUSABLE] |
[REBUILD [{PARTITION partition_clause |
 SUBPARTITION subpartition_clause |
 [{REVERSE | NOREVERSE}]}] |
[{VISIBLE | INVISIBLE}] |
[RENAME TO new_index_name] |
[COALESCE] |
[{MONITORING | NOMONITORING} USAGE] |

The first thing developers want to do when they’ve discovered poor throughput in a query is
disable the index to see what impact it has on their code. I’ll show you how to do that, but it’s
generally better done by modifying the query so that it doesn’t run the index by concatenating an
empty string to a string or by adding a 0 to a number or date.

Enable and Disable Indexes You can enable an index as follows when necessary:

ALTER INDEX nk_rental_item ENABLE;

15-AppB.indd 785 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

786 Oracle Database 12c PL/SQL Programming

Or you can disable it:

ALTER INDEX nk_rental_item DISABLE;

Sometimes you want to mark an index to rebuild it. You do that with the UNUSABLE keyword:

ALTER INDEX nk_rental_item UNUSABLE;

Rebuild and Coalesce Indexes You can rebuild an index, provided it isn’t partitioned, with this:

ALTER INDEX nk_rental_item REBUILD;

If you don’t have the space to rebuild an index online, you can try offline rebuilding, or
coalescing the index. Coalescing is like defragmenting a disk. When you coalesce an index, it
reorganizes the data and maintains fully free blocks, which eliminates the cost of releasing and
reallocating blocks. Many DBAs choose to coalesce indexes because of the speed, absence of
locking, and minimal incremental disk space requirements.

This syntax coalesces an index:

ALTER INDEX nk_rental_item COALESCE;

Visible and Invisible Indexes The idea of visibility or invisibility might seem odd, but the
VISIBLE and INVISIBLE keywords make an index visible or invisible to the cost-based optimizer
for queries. DML statements, such as INSERT, UPDATE, and DELETE statements, maintain an
invisible index, but queries don’t use it. As a rule, from Oracle Database 11g forward, you want
the optimizer to see indexes. You can discover whether an index is invisible by checking the
visibility column in the ALL_, DBA_, or USER_INDEXES view.

TIP
Setting an index to INVISIBLE is without merit when the DBA has
set the OPTIMIZER_USE_INVISIBLE_INDEXES parameter to true
because it makes all invisible indexes visible.

You make an index visible with this:

ALTER INDEX nk_rental_item VISIBLE;

Rename Indexes Renaming an index is something to consider if you originally chose a poorly
descriptive index name. Here’s the syntax:

ALTER INDEX nk_rental_item RENAME TO naturalkey_rental_item;

Use Existing Indexes You can use the ALTER TABLE statement to let a table’s primary key
column use an existing index, like so:

ALTER TABLE rental_item ENABLE PRIMARY KEY USING nk_rental_item;

Don’t forget that some views in the data catalog let you see the indexes you’ve already created.

15-AppB.indd 786 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 787

Object Types
As a refresher, Oracle provides three types of object types—known as user-defined types (UDTs).
Oracle provides three categories of user-defined SQL data types: object types (which may have
methods), ADTs (collections of a single column), and UDTs (collections of object types).

This section discusses how you can modify an existing object type, even when the object type
has dependent objects that use it. An object type with dependents means that after we built one
user-defined type, we built another on top of it. This is similar to a child class inheriting from its
parent class by adding new attributes (or fields) and methods. That creates a dependency, much
like a foundation to a house (parent class) limits where load-bearing walls (child classes) can be
built. Fortunately, Oracle 9i forward provides us with the capability to evolve data types even
when they have objects built on top of them. Extending the house analogy, this capability enables
us to do what builders can’t do: build load-bearing walls where there isn’t a concrete foundation
because the concrete foundation magically extends itself beneath our walls.

As described in Chapter 11, object types may be transient objects or persistent objects. A
transient object is one that lets our functions, procedures, packages, or object types use it. A transient
object gets promoted to a permanent object when we use it as a column’s data type in a table. Only
a persistent object holds a unique identifier in the scope of the database instance that creates it.

This section describes how you modify object types rather than collections of object types,
because collections are discrete forms of object types. The functionality of object types offers us
greater flexibility and the set functionality of collections (check Chapter 6 for details on
collections). Although, the negative side of the final functionality of collections is that we can’t
store collections of specializations (object types that build on top of other object types) in
ordinary collections. We can, however, create object types that take an ordinary collection as a
constructor parameter. That approach subsequently requires us to write an accessor method, a
fancy term for getter method, to return a collection data type from our object type itself. This type
of object acts like a tortoise shell that protects the collection from access without an explicit call
to our getter method, which means encapsulating (hiding the details) of our code in the object.

 The syntax for creating object types is provided earlier in this appendix in the “Object Type”
subsection of the “CREATE Statement” section. However, I use a different object type in this
section to show you how to evolve types. The base type in this example becomes a platform for us
to build on, like a concrete foundation for a house. Base types have the least amount of
information and the fewest methods to ensure they’re more flexible to extension. You extend them
by creating object types that build on top of them.

You have three options when evolving an object type:

 ■ Adding or dropping an attribute (or field)

 ■ Modifying the length, precision, or scale of an attribute

 ■ Changing the finality of a type from FINAL to NOT FINAL or vice versa

To show you how to extend functionality, the example builds the minimum unit first and uses
the ALTER statement to add attributes (equivalent to columns in a table) and methods to the
object type.

The smallest possible object type that we can build in this case is

SQL> CREATE OR REPLACE
 2 TYPE base_t IS OBJECT
 3 (obj_id NUMBER)
 4 NOT FINAL;
 5 /

15-AppB.indd 787 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

788 Oracle Database 12c PL/SQL Programming

The NOT FINAL clause is a SQL-only syntax, and its presence pushes the semicolon that
ends the block from line 3 to line 4. NOT FINAL means that you can build on top of this object
type, which means it’s extensible in object-oriented speak. You must explicitly define any objects
that should be extensible by appending the NOT FINAL clause.

After defining the object type, you can describe it like you would a table:

SQL> DESCRIBE base_t
 Name Null? Type
 ----------------------- -------- --------
 OBJ_ID NUMBER

An obj_id attribute by itself isn’t too useful, so let’s evolve it by adding an obj_name
attribute to it. The ALTER statement syntax is

SQL> ALTER TYPE base_t
 2 ADD ATTRIBUTE (obj_name VARCHAR2(30))
 3 CASCADE INCLUDING TABLE DATA;

Type altered.

You should note that the ALTER statement worked, and that should mean our type has evolved.
Unfortunately, as with Oracle 9i, 10g, and 11g, Oracle Database 12c returns an error when you
try to DESCRIBE the altered object type in the same session context:

SQL> DESCRIBE base_t
ERROR:
ORA-22337: the type of accessed object has been evolved

Likewise, a query against the evolved type,

SQL> SELECT base_t(1,'Hello World!') FROM dual;

returns this error because the type was evolved during the current session:

ERROR:
ORA-22337: the type of accessed object has been evolved

While tedious and perhaps annoying to some during testing as you’re making changes to object
types, there’s no easy work-around to the ORA-22337 error. The problem occurs when you evolve
any type because its very evolution makes the type unavailable to display during the same session
(or connection) that made the change. You must disconnect from your current session and
re-create another to avoid the error.

After you log off and reconnect to the server, you’re able to DESCRIBE the evolved object type:

SQL> DESCRIBE base_t
 base_t is NOT FINAL
 Name Null? Type
 ------------------------- -------- -------------
 OBJ_ID NUMBER
 OBJ_NAME VARCHAR2(30)

15-AppB.indd 788 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 789

You can also query the object type, as shown here:

SQL> SELECT base_t(1,'Hello World!') FROM dual;

This produces the following results:

BASE_T(1,'BASE_T')(OBJ_ID, OBJ_NAME)

BASE_T(1, 'BASE_T')

You should note that the output from a query against a base type prints the flattened object—
the object type name with the construction call parameters in parentheses—and, new in Oracle
Database 12c, renders the object signature. The object signature is the formal parameter list for
the default constructor. The default constructor exists for any object type until you define a
constructor function and implement it in the object body.

Adding a constructor function is straightforward, but dropping one among several constructor
functions isn’t quite as simple. So, we’re going to create one constructor function that we’ll remove
later, and create another constructor function that we’ll keep. This is the one that we will drop:

SQL> ALTER TYPE base_t
 2 ADD
 3 CONSTRUCTOR FUNCTION base_t
 4 (obj_id NUMBER) RETURN SELF AS RESULT
 5 CASCADE INCLUDING TABLE DATA;
 6 /

Here’s how you add a constructor function that lets you set both of the columns in the
base_t object type:

SQL> ALTER TYPE base_t
 2 ADD
 3 CONSTRUCTOR FUNCTION base_t
 4 (obj_id NUMBER
 5 , obj_name VARCHAR2) RETURN SELF AS RESULT
 6 CASCADE INCLUDING TABLE DATA;
 7 /

You can also add a member function with the following syntax:

ALTER TYPE base_t
 ADD MEMBER FUNCTION to_string RETURN VARCHAR2
 CASCADE INCLUDING TABLE DATA;

Disconnecting and reconnecting to the database lets us DESCRIBE the object type:

SQL> desc base_t;
 base_t is NOT FINAL
 Name Null? Type
 ------------------------- -------- -------------------
 OBJ_ID NUMBER
 OBJ_NAME VARCHAR2(30)

15-AppB.indd 789 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

790 Oracle Database 12c PL/SQL Programming

METHOD

 FINAL CONSTRUCTOR FUNCTION BASE_T RETURNS SELF AS RESULT
 Argument Name Type In/Out Default?
 ------------------------- ------------- ------ --------
 OBJ_ID NUMBER IN

METHOD

 FINAL CONSTRUCTOR FUNCTION BASE_T RETURNS SELF AS RESULT
 Argument Name Type In/Out Default?
 ------------------------- ------------- ------ --------
 OBJ_ID NUMBER IN
 OBJ_NAME VARCHAR2 IN

METHOD

 MEMBER FUNCTION TO_STRING RETURNS VARCHAR2

You can now drop the base_t constructor function that uses only an obj_id attribute. The
syntax to drop the constructor function requires only a semicolon (;) or forward slash, but not
both, similar to what you need to do when adding attributes, constructor functions, or member
functions and procedures.

The syntax to drop a constructor function includes the parameter list to ensure that only one
of the possibly many overloaded functions or procedures is dropped:

SQL> ALTER TYPE base_t
 2 DROP CONSTRUCTOR FUNCTION base_t (obj_id NUMBER)
 3 RETURN SELF AS RESULT
 4 CASCADE INCLUDING TABLE DATA;

After dropping the constructor function, you will see that the base_t object type now has
only one constructor function. Oracle Database 12c requires that you define an object body to
use it. Here’s a quick program that shows how to implement an object body:

CREATE OR REPLACE TYPE BODY base_t IS
 CONSTRUCTOR FUNCTION base_t
 (obj_id NUMBER, obj_name VARCHAR2)
 RETURN SELF AS RESULT IS
 BEGIN
 self.obj_id := obj_id;
 self.obj_name := obj_name;
 RETURN;
 END base_t;
 MEMBER FUNCTION to_string RETURN VARCHAR2 IS
 BEGIN
 RETURN '['||obj_id||']['||obj_name||']';
 END to_string;
END;
/

15-AppB.indd 790 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 791

You can then query the object and return formatted output from the to_string method, like

SQL> SELECT
 2 TREAT(
 3 base_t(1,'Sample BASE_T') AS base_t).to_string() AS "BASE_T"
 4 FROM dual;

It would display the data as follows:

BASE_T

[1][Sample BASE_T]

The TREAT function lets you instantiate an object instance in SQL. Once it is instantiated,
you’re able to use any of the nonstatic functions to manipulate data inside the object instance.

When altering or dropping attributes, you can limit changes to only transient dependent
types. You do this by using the NOT operator before the INCLUDING TABLE DATA clause to the
attribute change, like

SQL> ALTER TYPE base_t
 2 DROP ATTRIBUTE (obj_unnecessary_field VARCHAR2(30))
 3 CASCADE NOT INCLUDING TABLE DATA;

Type altered.

Line 3 tells the database to drop the obj_unnecessary_field attribute but to defer
performing that action on object columns of that base_t object type or any of its dependent
object types until they’re accessed. This type of behavior is known as a lazy compile. Lazy
compilation defers changes from the DDL event making the change to the first time the object is
run after the change. While you can access the prior obj_unnecessary_field values, they
cease to be available when you save the now modified object type.

You also have an INVALIDATE option that bypasses all the type and table checks when you
drop a method. It lets you defer subtype changes until you access the respective type dependents.
The default is VALIDATE, and it’s rare that you should choose to defer type dependent validation.

Check Chapter 11 for more details on how you implement and work with object types and
subtypes. I’d wager (but not gamble) more developers implement object types now that Oracle
has significantly simplified the maintenance of user-defined object types by letting you evolve
them throughout their usage in the database. Object types seem quite ready for primetime use in
PL/SQL solutions if you’re ready to adopt OOPL thinking.

RENAME Statement
The RENAME statement lets you rename database tables, synonyms, and views. You can’t rename
object types or change column names. The syntax to rename the supported object is

RENAME employee_view TO employee_v;

The RENAME statement can’t be used by a common user to rename an object in another
schema; for example,

SQL> RENAME student.calendar TO student.monthly_calendar;

15-AppB.indd 791 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

792 Oracle Database 12c PL/SQL Programming

raises the following exception:

RENAME student.calendar TO student.monthly_calendar
 *
ERROR at line 1:
ORA-01765: specifying owner's name of the table is not allowed

It’s a useful command to illustrate that the database really keeps track of all objects by their
object identifier, not by their name. Table, view, and synonym names are like aliases and are
changeable without altering the underlying structure.

DROP Statement
Oracle provides you with the ability to drop users, tablespaces, tables, indexes, views, functions,
procedures, packages, and object types.

DROP USER Statement
Dropping a user is a big step, and generally a developer only performs this task in a development
database. The syntax is simple unless there are grants and privileges previously extended to other
database users.

You drop a self-contained user (one without grants to others) with the following syntax:

DROP USER user_name;

You drop a user with grants to others with the CASCADE keyword, like

DROP USER user_name CASCADE;

You should note that when you drop the user, you remove the workspace allocated but not
the space. That requires dropping a tablespace and its attached files.

DROP TABLESPACE Statement
Tablespaces are logical repositories that map to one or more physical data files. As covered earlier
in the appendix, you have locally managed tablespaces and catalog managed tablespaces. You
can drop a tablespace after you’ve taken it offline, as follows:

DROP TABLESPACE tablespace_name;

After you have dropped the tablespace, you need to remove the physical files from the
operating system that were associated with the tablespace.

DROP TABLE Statement
You use the DROP TABLE statement to remove tables from the database. The DROP TABLE
statement can fail when other tables or views have referential integrity (foreign key) dependencies
on the table or view.

Oracle lets you drop only a single table with a DROP TABLE statement. You can drop tables
when they contain data or when they’re empty. This statement also drops global temporary tables.
You can set aside referential integrity by using the CASCADE CONSTRAINTS clause.

The prototype for the DROP TABLE statement is shown here:

DROP TABLE [schema_name.]table_name [CASCADE CONSTRAINTS] [PURGE];

15-AppB.indd 792 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 793

A DROP TABLE statement against a table that has foreign keys referencing it raises an
exception:

DROP TABLE parent
 *
ERROR at line 1:
ORA-02449: unique/primary keys in table referenced by foreign keys

The CASCADE CONSTRAINTS clause removes dependencies from other tables, such as
foreign key constraints that reference the table. It does not remove the data from the other table’s
previous foreign key column, which is important if you plan on re-creating the table and re-
importing data. Any re-import of data would need to ensure that primary key values would map
to existing foreign key values.

The PURGE keyword is optional for tables but is required when you’re dropping a partitioned
table. The PURGE keyword starts a series of subtransactions that drop all the partitions of the table.
The first successful subtransaction marks the table as UNUSABLE in the data catalog. This flag in the
data catalog ensures that only a DROP TABLE statement works against the remnants of the table.
If you encounter a problem trying to access a table, you can query the status column value to
see if it’s unusable. The UNUSABLE column is in the CDB_, DBA_, ALL_, and USER_TABLES,
administrative views and in the USER_PART_TABLES, USER_ALL_TABLES, USER_OBJECT_
TABLES, and USER_OBJECTS administrative views.

DROP INDEX Statement
Indexes are sometimes dropped because they no longer apply or because the cost of dropping
and re-creating them is less than the cost of altering it. You drop an index with the following
syntax:

DROP INDEX index_name;

After dropping an obsolete index, it’s always a good idea to verify the impact of removing an
index by testing SQL statements that previously used the index.

DROP VIEW Statement
Dropping a view works much like dropping a table. The syntax is simple:

DROP VIEW view_name;

DROP FUNCTION Statement
Dropping a function also works much like dropping a table. The syntax is simple:

DROP FUNCTION function_name;

DROP PROCEDURE Statement
Dropping a procedure also works much like dropping a table. The syntax is simple:

DROP PROCEDURE procedure_name;

15-AppB.indd 793 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

794 Oracle Database 12c PL/SQL Programming

DROP PACKAGE Statement
Dropping a package has two variants. You can drop the package and package body, or only drop
a package body. The syntax to drop both is

DROP PACKAGE package_name;

You can drop the implementation, which means all dependencies on the package specification
aren’t invalidated. This is convenient when you’re making changes to the implementation of the
package body without changing the specification. The syntax to drop only the package body is

DROP PACKAGE BODY package_name;

DROP TYPE Statement
Dropping an object type has two versions: one where the type has no dependents and another
where the type has dependents. Oracle Database 12c has simplified dropping types by adding
the FORCE keyword to the DROP TYPE statement.

You would drop a type without any type dependents with the following syntax:

DROP TYPE type_name;

You would drop a type with type dependents with the FORCE keyword, which in turn removes
dependent types and columns from tables that use that type or any of its dependents. Therefore,
you should be absolutely sure you understand the consequences before you attempt this command
with the FORCE option.

DROP TYPE type_name FORCE;

For more on evolving object types, check the “Evolving an Object Type” section earlier in this
appendix.

TRUNCATE Statement
The TRUNCATE statement gives you the ability to remove data from any table without writing
changes to a redo log file, or any archive log file. The TRUNCATE statement deallocates all space
previously used by the removed rows of a table in a dictionary-managed tablespace. The TRUNCATE
statement leaves the MINEXTENTS storage parameter and resets the NEXT storage parameter to the
size of the last extent removed from the segment where the data was stored. The TRUNCATE statement
doesn’t shrink the size of the tablespace, which is where the internal segments and extents that
manage data are stored. You can find more on the logical storage structures or Oracle Database
12c in the Oracle Database Concepts 12c manual.

The TRUNCATE statement removes all data from the item table with the following:

TRUNCATE TABLE item;

You should use the TRUNCATE statement when you want to remove data without a recovery
point. It is very fast and DBAs typically use it when they’ve already copied data somewhere else.
The DBA then removes the data with the TRUNCATE statement and restructure the STORAGE
clause of the table.

15-AppB.indd 794 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 795

COMMENT Statement
The COMMENT statement provides you with the ability to place comments on tables, columns,
operators, indextypes, materialized views, and mining models. The prototype for the COMMENT
command is

COMMENT ON
{TABLE schema_name.{table_name | view_name}
|COLUMN schema_name.{table_name | view_name |
 materialized_view_name}.column_name}
|OPERATOR schema_name.operator
|INDEXTYPE schema_name.indextype
|MATERIALIZED VIEW materialized_view_name
|MINING MODEL schema_name.model} IS 'comment';

You would add a comment to the item table with the following syntax:

SQL> COMMENT ON TABLE item
 2 IS 'Video Store Items.';

You add a comment to the item_title column of the item table with this:

SQL> COMMENT ON COLUMN
 2 item.item_title IS 'A Video Item Title.';

It’s helpful to provide comments generally, but it’s critical when the column or table has special
meaning or purpose in the context of your data model. The same can be said for operators, index
types, materialized views (like the periodicity of refresh), and mining models. I strongly recommend
the use of comments to document your data models.

Data Manipulation Language (DML)
DML statements add data to, change data in, and remove data from tables. This section examines
four DML statements—the INSERT, UPDATE, DELETE, and MERGE statements—and builds on
concepts in the “Data Transactions” section of Appendix A. The INSERT statement adds new data,
the UPDATE statement changes data, the DELETE statement removes data from the database, and
the MERGE statement either adds new data or changes existing data.

As mentioned in the “Data Transactions” section of Appendix A, any INSERT, UPDATE,
MERGE, or DELETE SQL statement that adds, updates, or deletes rows in a table locks rows in a
table and hides the information until the change is committed or undone (that is, rolled back).
This is the nature of ACID-compliant SQL statements. Locks prevent other sessions from making a
change while a current session is working with the data. Locks also restrict other sessions from
seeing any changes until they’re made permanent. The database keeps two copies of rows that are
undergoing change. One copy of the rows with pending changes is visible to the current session,
while the other displays committed changes only.

ACID Compliant Transactions
ACID compliance relies on a two-phase commit (2PC) protocol and ensures that the current session
is the only one that can see new inserts, updated column values, and the absence of deleted rows.
Other sessions run by the same or different users can’t see the changes until you commit them.

15-AppB.indd 795 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

796 Oracle Database 12c PL/SQL Programming

ACID Compliant INSERT Statements
The INSERT statement adds rows to existing tables and uses a 2PC protocol to implement ACID-
compliant guarantees. The SQL INSERT statement is a DML statement that adds one or more
rows to a table. Oracle supports a VALUES clause when adding a single-row, and support a
subquery when adding one to many rows.

Figure B-4 shows a flow chart depicting an INSERT statement. The process of adding one or
more rows to a table occurs during the first phase of an INSERT statement. Adding the rows exhibits
both atomic and consistent properties. Atomic means all or nothing: it adds one or more rows and
succeeds, or it doesn’t add any rows and fails. Consistent means that the addition of rows is guaranteed
whether the database engine adds them sequentially or concurrently in threads.

Concurrent behaviors happen when the database parallelizes DML statements. This is similar
to the concept of threads as lightweight processes that work under the direction of a single process.
The parallel actions of a single SQL statement delegate and manage work sent to separate threads.
Oracle supports all ACID properties and implements threaded execution as parallel operations.
All tables support parallelization.

After adding the rows to a table, the isolation property prevents any other session from seeing
the new rows—that means another session started by the same user or by another user with access
to the same table. The atomic, consistent, and isolation properties occur in the first phase of any

FIGURE B-4. 2PC INSERT statement

Existing
Rows

Y

N

Insert

Error
Raised?

Commit

V
is

ib
le

New
&

Existing
Rows

V
is

ib
le

R
ol

l b
ac

k

Fi
rs

t P
ha

se
Se

co
nd

Ph
as

e

Table ResourceDML Statement2PC Other Sessions

Atomic & Consistent

Isolated

Durable

New Row

15-AppB.indd 796 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 797

INSERT statement. The durable property is exclusively part of the second phase of an INSERT
statement, and rows become durable when the COMMIT statement ratifies the insertion of the
new data.

ACID Compliant UPDATE Statements
An UPDATE statement changes column values in one-to-many rows. With a WHERE clause, you
update only rows of interest, but if you forget the WHERE clause, an UPDATE statement would run
against all rows in a table. Although you can update any column in a row, it’s generally bad
practice to update a primary or foreign key column because you can break referential integrity.
You should only update non-key data in tables—that is, the data that doesn’t make a row unique
within a table.

Changes to column values are atomic when they work. For scalability reasons, the database
implementation of updates to many rows is often concurrent, in threads through parallelization.
This process can span multiple process threads and uses a transaction paradigm that coordinates
changes across the threads. The entire UPDATE statement fails when any one thread fails.

Similar to the INSERT statement, UPDATE statement changes to column values are also
hidden until they are made permanent with the application of the isolation property. The changes
are hidden from other sessions, including sessions begun by the same database user.

It’s possible that another session might attempt to lock or change data in a modified but
uncommitted row. When this happens, the second DML statement encounters a lock and goes
into a wait state until the row becomes available for changes. If you neglected to set a timeout
value for the wait state, such as this clause, the FOR UPDATE clause waits until the target rows
are unlocked:

WAIT n

As Figure B-5 shows, actual updates are first-phase commit elements. While an UPDATE
statement changes data, it changes only the current session values until it is made permanent by a
COMMIT statement. Like the INSERT statement, the atomic, consistent, and isolation properties of
an UPDATE statement occur during the first phase of a 2PC process. Changes to column values
are atomic when they work. Any column changes are hidden from other sessions until the
UPDATE statement is made permanent by a COMMIT or ROLLBACK statement, which is an example
of the isolation property.

Any changes to column values can be modified by an ON UPDATE trigger before a COMMIT
statement. ON UPDATE triggers run inside the first phase of the 2PC process. A COMMIT or
ROLLBACK statement ends the transaction scope of the UPDATE statement.

The Oracle database engine can dispatch changes to many threads when an UPDATE statement
works against many rows. UPDATE statements are consistent when these changes work in a single
thread-of-control or across multiple threads with the same results.

As with the INSERT statement, the atomic, consistent, and isolation properties occur during
the first phase of any UPDATE statement, and the COMMIT statement is the sole activity of the second
phase. Column value changes become durable only with the execution of a COMMIT statement.

ACID Compliant DELETE Statements
A DELETE statement removes rows from a table. Like an UPDATE statement, the absence of a
WHERE clause in a DELETE statement deletes all rows in a table. Deleted rows remain visible
outside of the transaction scope where it has been removed. However, any attempts to UPDATE
those deleted rows are held in a pending status until they are committed or rolled back.

15-AppB.indd 797 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

798 Oracle Database 12c PL/SQL Programming

You delete rows when they’re no longer useful. Deleting rows can be problematic when rows
in another table have a dependency on the deleted rows. Consider, for example, a customer
table that contains a list of cell phone contacts and an address table that contains the addresses
for some but not all of the contacts. If you delete a row from the customer table that still has
related rows in the address table, those address table rows are now orphaned and useless.

As a rule, you delete data from the most dependent table to the least dependent table, which
is the opposite of the insertion process. Basically, you delete the child record before you delete
the parent record. The parent record holds the primary key value, and the child record holds the
foreign key value. You drop the foreign key value, which is a copy of the primary key, before you
drop the primary key record. For example, you would insert a row in the customer table before
you insert a row in the address table, and you delete rows from the address table before you
delete rows in the customer table.

Figure B-6 shows the logic behind a DELETE statement. Like the INSERT and UPDATE
statements, acid, consistency, and isolation properties of the ACID-compliant transaction are
managed during the first phase of a 2PC. The durability property is managed by the COMMIT or
ROLLBACK statement.

There’s no discussion or diagrams for the MERGE statement because it does either an INSERT
or UPDATE statement based on it’s internal logic (shown in the “MERGE Statement” section later

FIGURE B-5. 2PC UPDATE statement

Existing
Rows

Y

N

Update

Error
Raised?

Commit
V

is
ib

le

Modi�ed
&

Existing
Rows

V
is

ib
le

R
ol

l b
ac

k

Fi
rs

t P
ha

se
Se

co
nd

Ph
as

e

Table ResourceDML Statement2PC Other Sessions

Atomic & Consistent

Isolated

Durable

Altered Row

Original Row

15-AppB.indd 798 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 799

in this appendix). That means a MERGE statement is ACID compliant like an INSERT or UPDATE
statement.

The following subsections cover the INSERT, UPDATE, DELETE, and MERGE DML statements
in more detail and provide real-world examples.

INSERT Statement
The INSERT statement lets you enter data into tables and views in two ways: via an INSERT
statement with a VALUES clause and via an INSERT statement with a query. The VALUES clause
takes a list of literal values (strings, numbers, and dates represented as strings), expression values
(return values from functions), or variable values.

Query values are results from SELECT statements that are subqueries (covered earlier in this
appendix). INSERT statements work with scalar, single-row, and multiple-row subqueries. The list
of columns in the VALUES clause or SELECT clause of a query (a SELECT list) must map to the
positional list of columns that defines the table. That list is found in the data dictionary or catalog.
Alternatively to the list of columns from the data catalog, you can provide a named list of those
columns. The named list overrides the positional (or default) order from the data catalog and must
provide at least all mandatory columns in the table definition. Mandatory columns are those that
are not null constrained.

FIGURE B-6. 2PC DELETE statement

Existing
Rows

Y

N

Delete

Error
Raised?

Commit

V
is

ib
le

Remaining
Rows V

is
ib

le

R
ol

l b
ac

k

Fi
rs

t P
ha

se
Se

co
nd

Ph
as

e

Table ResourceDML Statement2PC Other Sessions

Atomic & Consistent

Isolated

Durable

Deleted Row

15-AppB.indd 799 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

800 Oracle Database 12c PL/SQL Programming

Oracle databases differ from other databases in how they implement the INSERT statement.
Oracle doesn’t support multiple-row inserts with a VALUES clause. Oracle does support default
and override signatures as qualified in the ANSI SQL standards. Oracle also provides a multiple-
table INSERT statement. This section covers how you enter data with an INSERT statement that
is based on a VALUES clause or a subquery result statement. It also covers multiple-table INSERT
statements.

The INSERT statement has one significant limitation: its default signature. The default signature
is the list of columns that defines the table in the data catalog. The list is defined by the position
and data type of columns. The CREATE statement defines the initial default signature, and the
ALTER statement can change the number, data types, or ordering of columns in the default
signature.

The default prototype for an INSERT statement allows for an optional column list that overrides
the default list of columns. Like methods in OOPLs, an INSERT statement without the optional
column list constructs an instance (or row) of the table using the default constructor. The override
constructor for a row is defined by any INSERT statement when you provide an optional column
list. That’s because it overrides the default constructor.

Overriding vs. Overloading
OOPLs have special vocabularies. You define a class in OOPLs by writing a program that
outlines the rules for how to create an instance of a class and the methods available for any
instance of that class.

Objects have special methods known as constructors that let you create instances. The
default constructor generally has no formal parameters. When writing the code for a class,
you can define constructors that override the default constructor’s behavior. These user-
defined constructors are known as overriding constructors. Objects also have methods that
perform actions against the instance, and some of these methods are overloaded, which
means a given method name supports different lists of formal parameters. This is known as
method overloading.

The list of parameters in an overriding constructor is also known as the overriding
signature, defined as something that serves to set apart or identify. The same logic makes the
formal parameter list of any method a signature of that method.

The class is also known as an object type, which is a data type. A table in a database is
an object type, because it contains a definition of what it can include. Every row is an
instance of that object type.

As qualified in the introduction to this appendix, SQL is a set-based declarative
language. Declarative languages hide the implementation details while providing a means
for the developer to state what should happen. The default signature to enter a row of data
is read from the data catalog and compared against the list of values in a VALUES clause or
query. The INSERT statement’s optional column list lets you override the default signature
to enter a row of data, but the database checks to ensure that you conform to any not-null
column-level constraints.

15-AppB.indd 800 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 801

The generic prototype for an INSERT statement is confusing when it tries to capture both the
VALUES clause and the result set from a query. Therefore, I’ve opted to provide two generic
prototypes. The first uses the VALUES clause:

INSERT
INTO table_name
[(column1, column2, column3, ...)]
VALUES
(value1, value2, value3, ...);

Notice that the prototype for an INSERT statement with the result set from a query doesn’t
use the VALUES clause at all. A parsing error occurs when the VALUES clause and query both
occur in an INSERT statement.

The second prototype uses a query and excludes the VALUES clause. The subquery may
return one to many rows of data. The operative rule is that all columns in the query return the
same number of rows of data, because query results should be rectangles—rectangles made up of
one to many rows of columns. Here’s the prototype for an INSERT statement that uses a query:

INSERT
INTO table_name
[(column1, column2, column3, ...)]
(SELECT value1, value2, value3, ... FROM table_name WHERE ...);

A query, or SELECT statement, returns a SELECT list. The SELECT list is the list of columns,
and it’s evaluated by position and data type. The SELECT list must match the definition of the
table or the override signature provided.

Default signatures present a risk of data corruption through insertion anomalies, which occur
when you enter bad data in tables. Mistakes transposing or misplacing values can occur more
frequently with a default signature, because the underlying table structure can change. As a best
practice, always use named notation by providing the optional list of values; this should help you
avoid putting the right data in the wrong place.

TIP
Inserts should always rely on named notation to help you avoid
adding data in the wrong columns.

The following subsections provide examples that use the default and override syntax for
INSERT statements in Oracle databases. The subsections also cover multiple-table INSERT
statements and a RETURNING INTO clause, which is an extension of the ANSI SQL standard.
Oracle uses the RETURNING INTO clause to manage large objects, to return autogenerated
identity column values, and to support some of the features of Oracle’s dynamic SQL. Note that
Oracle also supports a bulk INSERT statement, which is covered in Chapter 5 because it requires
knowledge of PL/SQL.

Insert by Values
Inserting by the VALUES clause is the most common type of INSERT statement. It’s most useful
when interacting with single-row inserts. You typically use this type of INSERT statement when

15-AppB.indd 801 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

802 Oracle Database 12c PL/SQL Programming

working with data entered through end-user web forms. In some cases, users can enter more than
one row of data using a form, which occurs, for example, when a user places a meal order in a
restaurant and the meal and drink are treated as order items. The restaurant order entry system
would enter a single-row in the order table and two rows in the order_item table (one for the
meal and the other for the drink). PL/SQL programmers usually handle the insertion of related
rows typically inside a loop structure when they use dynamic INSERT statements. Dynamic
inserts are typically performed using NDS (Native Dynamic SQL) statements.

Oracle supports only a single-row insert through the VALUES clause. Multiple-row inserts
require an INSERT statement from a query.

The VALUES clause of an INSERT statement accepts scalar values, such as strings, numbers,
and dates. It also accepts calls to arrays, lists, or user-defined object types, which are called
flattened objects. Oracle supports VARRAY as arrays and nested tables as lists. They can both
contain elements of a scalar data type or user-defined object type.

The following sections discuss how you use the VALUES clause with scalar data types, how
you convert various data types, and how you use the VALUES clause with nested tables and
user-defined object data types.

Inserting Scalar Data Types The basic syntax for an INSERT statement with a VALUES clause
can include an optional override signature between the table name and VALUES keyword. With
an override signature, you designate the column names and the order of entry for the VALUES
clause elements. Without an override signature, the INSERT signature checks the definition of the
table in the database catalog. The positional order of the column in the data catalog defines the
positional, or default, signature for the INSERT statement. As shown previously, you can discover
the structure of a table in Oracle with the DESCRIBE command issued at the SQL*Plus command
line:

DESCRIBE table_name

You’ll see the following after describing the rental table in SQL*Plus:

Name Null? Type
 ------------------------------------ -------- --------
 RENTAL_ID NOT NULL NUMBER
 CUSTOMER_ID NOT NULL NUMBER
 CHECK_OUT_DATE NOT NULL DATE
 RETURN_DATE DATE
 CREATED_BY NOT NULL NUMBER
 CREATION_DATE NOT NULL DATE
 LAST_UPDATED_BY NOT NULL NUMBER
 LAST_UPDATE_DATE NOT NULL DATE

The rental_id column is a surrogate key, or an artificial numbering sequence. The combination
of the customer_id and check_out_date columns serves as a natural key because a DATE
data type is a date-time value. If it were only a date, the customer would be limited to a single
entry for each day, and limiting customer rentals to one per day isn’t a good business model.

15-AppB.indd 802 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 803

The basic INSERT statement would require that you look up the next sequence value before
using it. You should also look up the surrogate key column value that maps to the row where your
unique customer is stored in the contact table. For this example, assume the following facts:

 ■ Next sequence value is 1086

 ■ Customer’s surrogate key value is 1009

 ■ Current date-time is represented by the value from the SYSDATE function

 ■ Return date is the fifth date from today

 ■ User adding and updating the row has a primary (surrogate) key value of 1

 ■ Creation and last update date are the value returned from the SYSDATE function.

An INSERT statement must include a list of values that match the positional data types of the
database catalog, or it must use an override signature for all mandatory columns.

You can now write the following INSERT statement, which relies on the default signature:

SQL> INSERT INTO rental
 2 VALUES
 3 (1086
 4 , 1009
 5 , SYSDATE
 6 , TRUNC(SYSDATE + 5)
 7 , 1
 8 , SYSDATE
 9 , 1
 10 , SYSDATE);

If you weren’t using SYSDATE for the date-time value on line 5, you could manually enter a
date-time with the following Oracle proprietary syntax:

 5 , TO_DATE('15-APR-2011 12:53:01','DD-MON-YYYY HH24:MI:SS')

The TO_DATE function is an Oracle-specific function. The generic conversion function would
be the CAST function. The problem with a CAST function by itself is that it can’t handle a format
mask other than the database defaults ('DD-MON-RR' or 'DD-MON-YYYY'). For example,
consider this syntax:

 5 , CAST('15-APR-2011 12:53:02' AS DATE)

It raises the following error:

 5 , CAST('15-APR-2011 12:53:02' AS DATE) FROM dual
 *
ERROR at line 1:
ORA-01830: date format picture ends before converting entire input string

You actually need to double cast this type of format mask when you want to store it as a DATE
data type. The working syntax casts the date-time string as a TIMESTAMP data type before
recasting the TIMESTAMP to a DATE, like

 5 , CAST(CAST('15-APR-2011 12:53:02' AS TIMESTAMP) AS DATE)

15-AppB.indd 803 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

804 Oracle Database 12c PL/SQL Programming

Before you could write the preceding INSERT statement, you would need to run some
queries to find the values. You would secure the next value from a rental_s1 sequence in an
Oracle database with the following command:

SQL> SELECT rental_s1.nextval FROM dual;

This assumes two things, because sequences are separate objects from tables. First, code from
which the values in a table’s surrogate key column come must appear in the correct sequence.
Second, a sequence value is inserted only once into a table as a primary key value.

In place of a query that finds the next sequence value, you would simply use a call against the
.nextval pseudocolumn in the VALUES clause. You would replace line 3 with this:

 3 (rental_s1.nextval

The .nextval is a pseudocolumn, and it instantiates an instance of a sequence in the
current session. After a call to a sequence with the .nextval pseudocolumn, you can also call
back the prior sequence value with the .currval pseudocolumn.

NOTE
Sequences are separate objects from tables, and the code ensures that
only the appropriate sequence maps to the correct table.

Assuming the following query would return a single-row, you can use the contact_id value
as the customer_id value in the rental table:

SQL> SELECT contact_id
 2 FROM contact
 3 WHERE last_name = 'Potter'
 4 AND first_name = 'Harry';

Taking three steps like this is unnecessary, however, because you can call the next sequence
value and find the valid customer_id value inside the VALUES clause of the INSERT
statement. The following INSERT statement uses an override signature and calls for the next
sequence value on line 11. It also uses a scalar subquery to look up the correct customer_id
value with a scalar subquery on lines 12 through 15.

SQL> INSERT INTO rental
 2 (rental_id
 3 , customer_id
 4 , check_out_date
 5 , return_date
 6 , created_by
 7 , creation_date
 8 , last_updated_by
 9 , last_update_date)
 10 VALUES
 11 (rental_s1.nextval
 12 ,(SELECT contact_id
 13 FROM contact
 14 WHERE last_name = 'Potter'

15-AppB.indd 804 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 805

 15 AND first_name = 'Harry')
 16 , SYSDATE
 17 , TRUNC(SYSDATE + 5)
 18 , 1
 19 , SYSDATE
 20 , 3
 21 , SYSDATE);

When a subquery returns two or more rows because the conditions in the WHERE clause
failed to find and return a unique row, the INSERT statement would fail with the following
message:

,(SELECT contact_id
 *
ERROR at line 3:
ORA-01427: single-row subquery returns more than one row

In fact, the statement could fail when there are two or more “Harry Potter” names in the data
set because three columns make up the natural key of the contact table. The third column is the
member_id, and all three should be qualified inside a scalar subquery to guarantee that it returns
only one row of data.

Handling Oracle’s Large Objects—Oracle’s large objects present a small problem when
they’re not null constrained in the table definition. You must insert empty object containers
or references when you perform an INSERT statement.

Assume, for example, that you have the following three large object columns in a table:

 Name Null? Type
 ------------------------------- -------- -----------------------
 ITEM_DESC NOT NULL CLOB
 ITEM_ICON NOT NULL BLOB
 ITEM_PHOTO BINARY FILE LOB

The item_desc column uses a CLOB (Character Large Object) data type, and it is a required
column; it could hold a lengthy description of a movie, for example. The item_icon column
uses a BLOB (Binary Large Object) data type, and it is also a required column. It could hold a
graphic image. The item_photo column uses a binary file (an externally managed file) but is
fortunately null allowed or an optional column in any INSERT statement. It can hold a null or a
reference to an external graphic image.

Oracle provides two functions that let you enter an empty large object, and both are covered
in Appendix C:

empty_blob()
empty_clob()

Although you could insert a null value in the item_photo column, you can also enter a
reference to an Oracle database virtual directory file. Here’s the syntax to enter a valid BFILE
name with the BFILENAME function call:

 10 , BFILENAME('VIRTUAL_DIRECTORY_NAME', 'file_name.png')

15-AppB.indd 805 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

806 Oracle Database 12c PL/SQL Programming

You can insert a large character or binary stream into BLOB and CLOB data types by using the
stored procedures and functions available in the dbms_lob package. Chapter 13 covers the
dbms_lob package.

You can use an empty_clob function or a string literal up to 32,767 bytes long in a VALUES
clause. You must use the dbms_lob package when you insert a string that is longer than 32,767
bytes. That also changes the nature of the INSERT statement and requires that you append the
RETURNING INTO clause. Here’s the prototype for this Oracle proprietary syntax:

INSERT INTO some_table
[(column1, column2, column3, ...)]
VALUES
(value1, value2, value3, ...)
RETURNING column1 INTO local_variable;

The local_variable is a reference to a procedural programming language. It lets you
insert a character stream into a target CLOB column or insert a binary stream into a BLOB column.

Capturing the Last Sequence Value—Sometimes you insert into a series of tables in the scope
of a transaction. In this scenario, one table gets the new sequence value (with a call to
sequence_name.nextval) and enters it as the surrogate primary key, and another table
needs a copy of that primary key to enter into a foreign key column. While scalar subqueries
can solve this problem, Oracle provides the .currval pseudocolumn for this purpose.

The steps to demonstrate this behavior require a parent table and a child table. The parent
table is defined as follows:

 Name Null? Type
 ------------------------------------ -------- --------------
 PARENT_ID NOT NULL NUMBER
 PARENT_NAME VARCHAR2(10)

The parent_id column is the primary key for the parent table. You include the parent_
id column in the child table. In the child table, the parent_id column holds a copy of a
valid primary key column value as a foreign key to the parent table.

 Name Null? Type
 ------------------------------------ -------- --------------
 CHILD_ID NOT NULL NUMBER
 PARENT_ID NUMBER
 PARENT_NAME VARCHAR2(10)

DBA Heads-up on Large Object Storage
CLOB and BLOB columns are stored with the rest of a row when they’re smaller than
4,000 bytes. Larger versions are stored out-of-line, which means they’re placed in a
contiguous space that is away from the rest of the related row.

DBAs often designate a special tablespace for the storage clauses of BLOB and CLOB
columns. This extra step is beneficial, because large objects change less frequently and
consume a lot of storage. They’re also generally on different backup schedules than other
transactional columns in a table.

15-AppB.indd 806 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 807

After creating the two tables, you can manage inserts into them with the .nextval and
.currval pseudocolumns. The sequence calls with the .nextval pseudocolumn insert primary
key values, and the sequence calls with the .currval pseudocolumn insert foreign key values.

You would perform these two INSERT statements as a group:

SQL> INSERT INTO parent
 2 VALUES
 3 (parent_s1.nextval
 4 ,'One Parent');

SQL> INSERT INTO child
 2 VALUES
 3 (child_s1.nextval
 4 , parent_s1.currval
 5 ,'One Child');

The .currval pseudocolumn for any sequence fetches the value placed in memory by call
to the .nextval pseudocolumn. Any attempt to call the .currval pseudocolumn before the
.nextval pseudocolumn raises an ORA-02289 exception. The text message for that error says
the sequence doesn’t exist, which actually means that it doesn’t exist in the scope of the current
session. Line 4 in the insert into the child table depends on line 3 in the insert into the parent
table.

You can use comments in INSERT statements to map to columns in the table. For example,
the following shows the technique for the child table from the preceding example:

SQL> INSERT INTO child
 2 VALUES
 3 (child_s1.nextval -- CHILD_ID
 4 , parent_s1.currval -- PARENT_ID
 5 ,'One Child') -- CHILD_NAME
 6 /

Comments on the lines of the VALUES clause identify the columns where the values are
inserted. A semicolon doesn’t execute this statement, because a trailing comment would trigger a
runtime exception. You must use the semicolon or forward slash on the line below the last
VALUES element to include the last comment.

TIP
A comment on the last line of any statement requires that you exclude
the semicolon and place it or a forward slash on the next line.

Data Type Conversions Oracle supports a series of conversion functions that let you convert
data types from one type to another. The generic SQL conversion function is CAST, which lets you
convert the following data types:

 ■ Convert from BINARY_FLOAT or BINARY_DOUBLE data type to BINARY_FLOAT,
BINARY_DOUBLE, CHAR, VARCHAR2, NUMBER, DATE, TIMESTAMP, NCHAR, NVARCHAR.

15-AppB.indd 807 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

808 Oracle Database 12c PL/SQL Programming

 ■ Convert from CHAR or VARCHAR2 data type to BINARY_FLOAT, BINARY_DOUBLE,
CHAR, VARCHAR2, NUMBER, DATE, TIMESTAMP, DATE, TIMESTAMP, INTERVAL, RAW,
ROWID, UROWID, NCHAR, NVARCHAR. Here’s an example of converting a string literal
date into a timestamp:

CAST('14-FEB-2011' AS TIMESTAMP WITH LOCAL TIME ZONE)

 This example works because the date literal conforms to the default format mask for a
date in an Oracle database. A nonconforming date literal would raise a conversion error.
Many possibilities are available, because you can organize the valid elements of dates
many ways. A nonconforming date literal should be converted by using the TO_DATE
or TO_TIMESTAMP function, because each of these lets you specify an overriding date
format mask value, such as this conversion to a DATE data type:

TO_DATE('2011-02-14', 'YYYY-MM-DD')

 or this conversion to a TIMESTAMP data type:

TO_TIMESTAMP('2011-02-14 18:11:28.1500', 'YYYY-MM-DD HH24:MI:SS.FF')

 Converting to an INTERVAL data type is covered in the next bullet because you first
must extract a time property as a number. It’s also possible that implicit casting of a
numeric string can change the base data type to an integer for you. The method of
implicit or explicit conversion depends on how you get the initial data value.

 ■ Convert from NUMBER data type to BINARY_FLOAT, BINARY_DOUBLE, CHAR,
VARCHAR2, NUMBER, DATE, TIMESTAMP, NCHAR, NVARCHAR. Interval conversions are a
bit more complex, because you need more than one function to convert them. Typically,
you pull the value from a DATE or TIMESTAMP data type and EXTRACT the element
of time by identifying its type before converting that value to an INTERVAL type. The
following provides an example:

NUMTODSINTERVAL(EXTRACT(MINUTE FROM some_date), 'MINUTE')

 You will use this type of built-in function layering frequently in some situations. It’s
always a better approach to understand and use the built-in functions before you write
your own stored functions.

 ■ Convert from DATETIME or INTERVAL data type to CHAR, VARCHAR2, DATE,
TIMESTAMP, DATE, TIMESTAMP, INTERVAL, NCHAR, NVARCHAR.

 ■ Convert from RAW data type to CHAR, VARCHAR2, RAW, NCHAR, NVARCHAR.

 ■ Convert from ROWID or UROWID data type to CHAR, VARCHAR2, ROWID, UROWID,
NCHAR, NVARCHAR.

NOTE
You cannot cast a UROWID to a ROWID in the UROWID of an index-
organized table.

 ■ Convert from NCHAR or NVARCHAR2 data type to BINARY_FLOAT, BINARY_DOUBLE,
NUMBER, NCHAR, NVARCHAR.

15-AppB.indd 808 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 809

Inserting Arrays and Nested Tables The ability to insert arrays and nested tables in an Oracle
database is an important feature made possible by the object-relational technology of the
database. You can access these embedded structures only through the containing table, which
makes them much like inner classes in object-oriented programming. From a database modeling
perspective, they’re ID-dependent data sets, because the only relationship is through the row of
the containing table.

You can walk through a simple design and development by creating a collection of a scalar
data type, a table that contains the data type, and then an INSERT statement to populate the table
with data. You create the user-defined collection data type of a scalar data type by using this
syntax:

CREATE TYPE number_array IS VARRAY(10) OF NUMBER;

A collection of scalar variables like the number_array is a specialized collection known as
an Attribute Data Type (ADT). After you have the user-defined ADT collection type, create a table
that uses it and a sequence for an automatic numbering column, like so:

SQL> CREATE TABLE sample_nester
 2 (nester_id NUMBER
 3 , array_column NUMBER_ARRAY);
SQL> CREATE SEQUENCE sample_nester_s1;

You enter values into the table by calling a collection constructor. Calls are made to the data
type name, not the column name, like so:

SQL> INSERT INTO sample_nester
 2 VALUES
 3 (sample_nester_s1.nextval
 4 , NUMBER_ARRAY(0,1,2,3,4,5,6,7,8,9));

Here are formatting instructions and an ordinary query against this table:

SQL> COLUMN array_column FORMAT A44
SQL> SELECT * from sample_nester;

It returns the following:

 NESTER_ID ARRAY_COLUMN
---------- --
 1 NUMBER_ARRAY(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

The value in the array_column is a call to the user-defined ADT collection data type’s
constructor. This collection is a simple array of ten numbers. You can join the nester_id
column against all ten elements in the collection with the following syntax:

SQL> SELECT nester_id
 2 , collection.column_value
 3 FROM sample_nester CROSS JOIN TABLE(array_column) collection;

The TABLE function extracts the element of the collection into a SQL result set, which can
then be treated like a normal set of rows from any table. Oracle always returns collections of base

15-AppB.indd 809 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

810 Oracle Database 12c PL/SQL Programming

scalar data types into a column_value column, which is a hidden column for ADTs. The results
from the sample query follow:

 NESTER_ID COLUMN_VALUE
---------- ------------
 1 0
 1 1
 1 2
 ...
 1 8
 1 9

Here’s a multilevel INSERT statement based on the employee table. The following inserts a
single-row that contains an address_list collection of two instances of the address_type
user-defined object type, which in turn holds a collection of a street_list nested table of
variable-length strings:

SQL> INSERT INTO employee
 2 (employee_id
 3 , first_name
 4 , last_name
 5 , home_address)
 6 VALUES
 7 (employee_s1.nextval
 8 ,'Sam'
 9 ,'Yosemite'
 10 , address_list(
 11 address_type(1
 12 , street_list('1111 Broadway','Suite 322')
 13 ,'Oakland'
 14 ,'CA'
 15 ,'94612')
 16 , address_type(2
 17 , street_list('1111 Broadway','Suite 525')
 18 ,'Oakland'
 19 ,'CA'
 20 ,'94612')));

Lines 10 through 20 insert a nested table (list) of two address_type instances. The
sequence numbers are manually entered because this type of design would always start elements
with the nested table with a sequence value of 1. This is an implementation of an ID-dependent
relationship. The nested table is accessible only through the row of a table, and as such, it acts
only when connected with the containing row.

NOTE
Nested tables are complex to access and model. As mentioned earlier
in this appendix, they also create type chaining, which presents
maintenance headaches during major software releases. If you opt
to use nested tables, you should have a good reason for adding the
complexity.

15-AppB.indd 810 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 811

The next INSERT statement inserts a second record in the employee table. It differs because
there’s no street_address instance value inserted for Wile E Coyote (he’s too busy chasing the
Road Runner). The omission of a street_address instance helps to demonstrate the difference
between unnesting queries with or without collection instance values in the “Unnesting Queries”
section later in this appendix.

SQL> INSERT INTO employee
 2 (employee_id
 3 , first_name
 4 , middle_name
 5 , last_name
 6 , home_address)
 7 VALUES
 8 (employee_s1.nextval
 9 ,'Wile'
 10 ,'E'
 11 ,'Coyote'
 12 , address_list(
 13 address_type(1
 14 , NULL
 15 ,'Phoenix'
 16 ,'AZ'
 17 ,'85087')));

Line 14 enters a null instead of inserting an instance of the street_list data type. A null
differs from an empty instance. An empty instance occurs when the object type’s attributes (or
fields) are all null. More or less, as qualified in Chapter 11, persistent object types have three
possible states—null, empty, or constructed. Null instances require a special operation when you
want to show the containing table or collection values matched against a null record. I’ve put that
code in the “Unnesting Queries” section later in this appendix.

Multiple-Table Insert Statements
As mentioned earlier, Oracle SQL syntax provides you with the ability to perform multiple table
inserts with the INSERT statement. A multiple-table INSERT statement can be useful when you
receive an import source file that belongs in more than one table. There are some caveats with
this type of multiple-table insert. There must be a one-to-one map between all the data in the
same row. When you have a one-to-many relationship between columns in the single import
source table, the MERGE statement is a better solution, as shown in Chapter 11.

The prototype for the multiple-table INSERT statement is

INSERT {ALL | FIRST}
 [WHEN comparison_clause THEN]
 INSERT INTO table_name_1
 (column_list)
 VALUES
 (value_list)
[[WHEN comparison_cluase THEN]
 INSERT INTO table_name_2
 (column_list)
 VALUES

15-AppB.indd 811 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

812 Oracle Database 12c PL/SQL Programming

 (value_list)]
 [...]
 [ELSE
 INSERT INTO table_name_else
 (column_list)
 VALUES
 (value_list)]
 query_statement;

There are three ways to perform a multiple-table insert. One uses the ALL keyword but
excludes the WHEN clauses. The second uses the ALL keyword while including the WHEN clauses.
The last one uses the FIRST keyword instead of the ALL keyword and inserts so many rows to the
first table before moving to the second, and so forth.

The multiple-table INSERT statement variations are discussed in the following subsections,
but they’re all supported by the following three tables and sequences.

The rank_index is the first table, and it contains a string for the military service, such as
Army, Navy, Marines, or Air Force, with the accompanying abbreviated and full-titled ranks:

-- Create the rank_index table and sequence.
CREATE TABLE rank_index
(rank_id NUMBER
, rank_service VARCHAR2(10)
, rank_short_name VARCHAR2(4)
, rank_full_name VARCHAR2(30));
CREATE SEQUENCE rank_index_s;

The soldier and sailor tables are target tables for the inserts from the multiple-table
INSERT statement. They contain the rank and name of soldiers and sailors, respectively:

-- Create the soldier table and sequence.
CREATE TABLE soldier
(soldier_id NUMBER
, soldier_rank VARCHAR2(4)
, soldier_name VARCHAR2(20));
CREATE SEQUENCE soldier_s;

-- Create the sailor table and sequence.
CREATE TABLE sailor
(sailor_id NUMBER
, sailor_rank VARCHAR2(4)
, sailor_name VARCHAR2(20));
CREATE SEQUENCE sailor_s;

All the examples get their data from a SELECT statement that uses the dual pseudo-table and
a fabricated result set. The INSERT ALL or INSERT FIRST statement inserts the data into one
or both of the target tables. The tables are unconstrained because constraints aren’t required for
the examples.

Multiple-Table INSERT ALL Without WHEN Clauses The first example shows you how to
insert into multiple tables without any qualifications. Values from each row returned by the query

15-AppB.indd 812 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 813

are inserted into the soldier and sailor tables. Unfiltered multiple-table INSERT statements
put rows into all tables referenced by an INTO clause. In this regard, the INSERT ALL statement
works like a switch statement with fall-through in C#, C++, or Java. (Fall-through is the principal
that after meeting the condition of one CASE statement, all subsequent CASE statements are valid
and their code blocks also run.)

SQL> INSERT ALL
 2 INTO soldier
 3 VALUES
 4 (soldier_s.nextval,service_rank,service_member_name)
 5 INTO sailor VALUES
 6 (sailor_s.nextval,service_rank,service_member_name)
 7 SELECT 'MSG' AS service_rank
 8 , 'Ernest G. Bilko' AS service_member_name FROM dual
 9 UNION ALL
 10 SELECT 'CPO' AS service_rank
 11 , 'David Vaught' AS service_member_name FROM dual;

This example has no ELSE block. This type of statement would also run the ELSE block and
perform any INSERT statement found in it.

Queries against the target tables show you that both rows are inserted into both tables:

SQL> SELECT * FROM soldier;

SOLDIER_ID SOLD SOLDIER_NAME
---------- ---- --------------------
 1 MSG Ernest G. Bilko
 2 CPO David Vaught

SQL> SELECT * FROM sailor;

 SAILOR_ID SAIL SAILOR_NAME
---------- ---- --------------------
 1 MSG Ernest G. Bilko
 2 CPO David Vaught

This type of statement is useful when you want to put data from one row of a table or view
into multiple tables. Unfiltered INSERT ALL statements don’t let you choose among a set of
tables (like a filtered INSERT ALL statement), and they’re used less often than filtered statements.

Multiple-Table INSERT ALL with WHEN Clauses The multiple-table INSERT ALL statement
also works with WHEN clauses that determine which table they’ll insert into. The logic can include
subqueries, as shown in this example:

SQL> INSERT ALL
 2 WHEN service_rank IN (SELECT rank_short_name
 3 FROM rank_index
 4 WHERE rank_service = 'ARMY') THEN
 5 INTO soldier
 6 VALUES

15-AppB.indd 813 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

814 Oracle Database 12c PL/SQL Programming

 7 (soldier_s.nextval,service_rank,service_member_name)
 8 WHEN service_rank IN (SELECT rank_short_name
 9 FROM rank_index
 10 WHERE rank_service = 'NAVY') THEN
 11 INTO sailor
 12 VALUES
 13 (sailor_s.nextval,service_rank,service_member_name)
 14 SELECT 'MSG' AS service_rank
 15 , 'Ernest G. Bilko' AS service_member_name FROM dual
 16 UNION ALL
 17 SELECT 'CPO' AS service_rank
 18 , 'David Vaught' AS service_member_name FROM dual;

The WHEN clause on line 2 checks whether the service rank belongs in the Army. It inserts into
the soldier table any row in which the query’s service_rank value matches the subquery’s
rank_short_name value. The second WHEN clause does the same kind of evaluation against
Navy ranks. Any rows that don’t match one of the two criteria are discarded because there’s no
ELSE clause.

Queries against the target tables yield the following results:

SQL> SELECT * FROM soldier;

SOLDIER_ID SOLD SOLDIER_NAME
---------- ---- --------------------
 1 MSG Ernest G. Bilko

SQL> SELECT * FROM sailor;

 SAILOR_ID SAIL SAILOR_NAME
---------- ---- --------------------
 2 CPO David Vaught

The filtered INSERT ALL places rows from one source query into one or only the correct
tables. This is the best practice, or at least the most frequently used version of the statement.

Multiple-Table INSERT FIRST with WHEN Clauses The INSERT FIRST statement works
differently from the INSERT ALL statement. The INSERT FIRST statement inserts data into the
first table only when it meets a WHEN clause condition. This means it performs like a switch
statement in C#, C++, or Java where fall-through is disabled. For your reference (in case you don’t
write programs in those languages), you disable fall-through by putting a break statement in each
CASE statement’s code bock. The break statement signals completion and forces an exit from the
switch statement. The FIRST keyword effectively does that for all WHEN clause statement blocks.

Here’s an example using the concept of conscripts (draftees). The first conscript goes to the
Army (line 2), the next four go to the Navy (line 6), and any others get to go home without serving
in the military:

SQL> INSERT FIRST
 2 WHEN id < 2 THEN
 3 INTO soldier
 4 VALUES

15-AppB.indd 814 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 815

 5 (soldier_s.nextval,'PVT',draftee)
 6 WHEN id BETWEEN 2 AND 5 THEN
 7 INTO sailor
 8 VALUES
 9 (sailor_s.nextval,'SR',draftee)
 10 SELECT 1 AS ID,'John Sanchez' AS draftee FROM dual
 11 UNION ALL
 12 SELECT 2 AS ID,'Michael Deegan' AS draftee
 13 FROM dual
 14 UNION ALL
 15 SELECT 3 AS ID,'Jon Voight' AS draftee FROM dual;

You’ll see in the result set that only two went into the Navy, so there weren’t enough drafted
today. The statement will need to be rewritten tomorrow for the new batch of draftees unless the
rules change every day. The queries and results are

SQL> SELECT * FROM soldier;

SOLDIER_ID SOLD SOLDIER_NAME
---------- ---- --------------------
 1 PVT John Sanchez

SQL> SELECT * FROM sailor;

 SAILOR_ID SAIL SAILOR_NAME
---------- ---- --------------------
 2 SR Michael Deegan
 3 SR Jon Voight

My suggestion is that the INSERT FIRST statement is probably suited to dynamic creation
inside Native Dynamic SQL (NDS). You can see examples of NDS in Chapter 13.

UPDATE Statement
The UPDATE statement lets you change data in tables and views by resetting values in one or
more columns. A single UPDATE statement can change one, many, or all rows in a table. The new
values can come from literal values, variables, or correlated query results. Correlation is the
matching of one set of data with another through join operations. This section discusses equijoin
(equality value joins); later in this appendix we’ll examine join options in detail in the “Join
Results” section.

Oracle implements the basic UPDATE statement syntax in an ANSI-compliant way, but Oracle
supports both a record update and a large object update (through the dbms_lob package). The
large object update appends the RETURNING INTO clause to UPDATE statements.

This section covers how you do the following:

 ■ Update by values and queries

 ■ Update by correlated queries

An UPDATE statement’s most important behavior is that it works against all rows in a table
unless a WHERE clause or a correlated join limits the number of rows. This means you should

15-AppB.indd 815 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

816 Oracle Database 12c PL/SQL Programming

always limit which rows should be changed by providing a WHERE clause or a correlated join.
The list of columns in the SET clause of an UPDATE statement is the expression list.

Changes by the UPDATE statement are hidden until committed in an Oracle database, but are
immediately visible in nontransactional databases. Oracle is always in transaction mode by default.

Generic Update by Values and Queries
Some UPDATE statements use date, numeric, or string literals in the SET subclause. The SET
subclause can work with one to all columns in a table, but you should never update a primary
surrogate key column. Any update of the externally known identifier column risks compromising
the referential integrity of primary and foreign keys.

The generic UPDATE statement prototype with values resetting column values looks like this:

 UPDATE some_table
 SET column_name = 'expression'
[, column_name = 'expression' [, ...]
 WHERE [NOT] column_name {{= | <> | > | >= | < | <=} |
 [NOT] {{IN | EXISTS} | IS NULL}} 'expression'
[{AND | OR } [NOT] comparison_operation] [...];

The target table of an UPDATE statement can be a table or updateable view. An expression
can be a numeric or string literal or the return value from a function or subquery. The function
or subquery must return only a single-row of data that matches the data type of the assignment
target. The right operand of the assignment may contain a different data type when its type can
be implicitly cast to the column’s data type, or explicitly cast to it with the CAST function. In the
generic example, a subquery needs to return a single column and row (this type of subquery is
a scalar subquery or SQL expression). Ellipses replace multiple listings in the SET and WHERE
clauses.

The WHERE clause lets you evaluate truth or non-truth, which is the purpose of each comparison
operation. The comparison operators in the prototype are broken into sets of related operators by
using curly braces: first the math comparisons, then the set and correlation comparisons, and finally
the null comparison. The AND, OR, and NOT are logical operators. The AND operator evaluates the
truth of two comparisons or, with enclosing parentheses, the truth of sets of comparison operations.
The OR operator evaluates the truth of one or the other comparison operator, and it employs
short-circuit evaluation (the statement is true when the first comparison is true). The negation
operator (NOT) checks whether a statement is false.

An actual UPDATE statement against an item table would look like this when you enter the
actual movie name in lieu of a placeholder value:

SQL> UPDATE item
 2 SET item_title = 'Pirates of the Caribbean: On Stranger Tides'
 3 , item_rating = 'PG-13'
 4 WHERE item_title = 'Pirates of the Caribbean 4';

Variations to this syntax exist in Oracle, but this is the basic form for UPDATE statements.
Specifics for how Oracle handles it are provided in the following section.

Oracle Update by Values and Queries
The biggest difference between Oracle and other databases is that Oracle allows you to reset
record structures, not just columns. Recall from the discussion of tables earlier in this appendix

15-AppB.indd 816 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 817

that the definition of a table is equivalent to the definition of a record structure, and a record
structure is a combination of two or more columns (or fields).

The prototype of an UPDATE statement for Oracle differs from the generic profile, as you can see:

UPDATE {some_table | TABLE(query_statement)}
 SET {column_name = 'expression' | (column_list) = 'expression_list'}
[, {column_name = 'expression' | (column_list) = 'expression_list'}
[, ...]]
 WHERE [NOT] {column_name | (column_list)}
 {{= | <> | > | >= | < | <=} |
 [NOT] {IN | =ANY | =SOME | =ALL } |
 [NOT] {IS NULL | IS SET} | [NOT] EXISTS} 'expression'
[{AND | OR } [NOT] comparison_operation] [...]
[RETURNING {column_name | (column_list)}
 INTO {local_variable | (variable_list)}];

Oracle extends the target of the UPDATE statement from a table or view (traditionally a named
query inside the data catalog) to a result set. In Oracle’s lexicon, the result set is formally an
aggregate result set, which is a fancy way of saying that the result set acts like a normal query’s
return set in processing memory (inside the System Global Area, or SGA). The TABLE function
makes this possible. (The TABLE function was previously known as the THE function—that’s
ancient history from Oracle 8i, although some error message have never been updated and still
reflect this relic.)

Oracle also extends the behavior of assignment in the SET operator by allowing you to assign
a record structure to another record structure. A (data) record structure in the SET operator is any
list of two or more columns from the table definition, which is less than the complete data structure
of the table or its definition in the data catalog. Ellipses replace continuing the list of possible
elements in the SET and WHERE clauses.

The WHERE clause comparison operators are also expanded in an Oracle database. They’re
separated by curly braces, like the generic prototype, with math comparisons, set comparisons,
null comparisons, and correlation. Set comparisons act as lookup operators, and correlation is
explained in the “Update by Correlated Queries” section of this appendix.

The RETURNING INTO clause allows you to shift a reference to columns that you’ve updated
but not committed into variables. Those variables are critical to how you update large objects in
the database.

Here’s an example of how you would use Oracle’s record structure assignment operation in a
SET clause:

SQL> UPDATE item
 2 SET (item_title, item_rating) =
 3 (SELECT 'Pirates of the Caribbean: On Stranger Tides'
 4 , 'PG-13'
 5 FROM dual)
 6 WHERE item_title = 'Pirates of the Caribbean 4';

The values reset the columns item_title and item_rating on all lines where item_
title is “Pirates of the Caribbean 4.” The subquery uses string literals inside a query against the
dual table. This is straightforward and not much different from the comma-delimited SET clauses
for each column. You might wonder why you should bother with implementing this twist on the

15-AppB.indd 817 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

818 Oracle Database 12c PL/SQL Programming

other syntax. That’s a great question! There’s not much added value with date, numeric, or string
literals from the pseudo-table dual; rather, the value occurs when the source is a row returned
from a query. The record structure syntax allows you to assign a row’s return values directly from a
single-row subquery with multiple columns to a row of the target table.

Here’s an example of an assignment from a subquery to record structure:

SQL> UPDATE item
 2 SET (item_title, item_rating) =
 3 (SELECT item_title, item_rating
 4 FROM import_item ii
 5 WHERE item_barcode = 'B004A8ZWUG')
 6 WHERE item_title = 'Pirates of the Caribbean 4';

The item_title and item_rating values from the subquery are assigned to the
equivalent columns in the item table when the item_title column holds the string literal
value. The power of this type of assignment increases when you add correlation, because you can
process sets of data in a single UPDATE statement. (That’s covered in the “Update by Correlated
Queries” section later in the chapter.)

Two specialized forms of UPDATE statements are included in the Oracle Database 12c
database. One works with collections of object types, and the other works with scalar and large
object types. The ability to use the result of the TABLE function inside an UPDATE statement lets
you update nested tables (collections of object types). A RETURNING INTO clause supports
scalar and large objects by returning the values or references from the UPDATE statement to the
calling scope. The calling scope is the SQL*Plus session in the examples but could be an external
program written in PL/SQL or C, C++, C#, or Java. This technique provides you with access to
recently updated values without requerying the table, and in the case of large objects this
technique allows you to read and write to large objects through a web application.

RETURNING INTO Clause You can append the RETURNING INTO clause to any UPDATE
statement. The RETURNING INTO clause lets you retrieve updated column values into locally
scoped variables. This lets you avoid requerying the columns after the UPDATE statement.

We can use a brief example to demonstrate this concept because even the shortest example
can use session-level bind variables. The bind variables eliminate the need for a procedural
programming language such as Java or PHP to demonstrate the concept. As Appendix A describes,
SQL*Plus commands declare session-level bind variables. This example requires a pair of session-
level variables to act as the target of the RETURNING INTO clause. You can declare these two
bind variables with this syntax:

SQL> VARIABLE bv_title VARCHAR2(60)
SQL> VARIABLE bv_rating VARCHAR2(60)

The following demonstrates an UPDATE statement that uses the RETURNING INTO phrase:

SQL> UPDATE item
 2 SET (item_title,item_rating) =
 3 (SELECT 'Pirates of the Caribbean: On Stranger Tides'
 4 , 'PG-13'

15-AppB.indd 818 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 819

 5 FROM dual)
 6 WHERE item_title = 'Pirates of the Caribbean 4'
 7 RETURNING item_title, item_rating INTO :bv_title, :bv_rating;

The values updated into the table are returned in the local variables. They can be displayed by
using SQL*Plus formatting and a query:

COLUMN bv_title FORMAT A44 HEADING ":bv_title"
COLUMN bv_rating FORMAT A12 HEADING ":bv_rating"
SELECT :bv_title AS bv_title, :bv_rating AS bv_rating FROM dual;

The HEADING value is enclosed in double quotes so that a colon can be used in the column
titles. This returns the literal values from the query against the dual table:

:bv_title :bv_rating
-- ------------
Pirates of the Caribbean: On Stranger Tides PG-13

Note that the RETURNING INTO phrase has several restrictions:

 ■ It fails when updating more than a single-row.

 ■ It fails when the expression list includes a primary key or other not null column when a
BEFORE UPDATE trigger is defined on the table.

 ■ It fails when the expression list includes a LONG data type.

 ■ It fails when the UPDATE statement is parallel processing or working against a remote
object.

 ■ It is disallowed when updating a view that has an INSTEAD OF trigger.

Returning scalar, BLOB, or CLOB data types is the most effective way to leverage the
RETURNING INTO phrase. The RETURNING INTO phrase is very advantageous in web
applications. A web application would implement a stored procedure to start a transaction
context and pass a reference for updating a CLOB column.

SQL> CREATE OR REPLACE PROCEDURE web_load_clob_from_file
 2 (pv_item_id IN NUMBER
 3 , pv_descriptor IN OUT CLOB) IS
 4 BEGIN
 5 -- A FOR UPDATE makes this a DML transaction.
 6 UPDATE item
 7 SET item_desc = empty_clob()
 8 WHERE item_id = pv_item_id
 9 RETURNING item_desc INTO pv_descriptor;
 10 END web_load_clob_from_file;
 11 /

The pv_descriptor parameter in the procedure’s signature on line 3 uses an IN OUT
mode of operation, which is a pass-by-reference mechanism. It effectively enables sending a
reference to the CLOB column out to the calling program. The RETURNING INTO clause assigns
the reference to the parameter on line 9. With the reference, the external program can then
update the CLOB column.

15-AppB.indd 819 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

820 Oracle Database 12c PL/SQL Programming

How to Write to a CLOB Column from PHP
Although this book isn’t about how you write PHP to work with an Oracle database, an
example using PHP can show you how to capture the handle from the web_load_clob_
from file procedure.

The PHP function to write a large file to a CLOB column is

if ($c = @oci_connect(SCHEMA,PASSWD,TNS_ID)) {
 // Declare input variables.
 (isset($_POST['id'])) ? $id = (int) $_POST['id'] : $id = 1021;
 (isset($_POST['title'])) ? $title = $_POST['title'] : $title = "Harry #1";

 // Declare a PL/SQL statement and parse it.
 $stmt = "BEGIN web_load_clob_from_file(:id,:item_desc); END;";
 $s = oci_parse($c,$stmt);

 // Define a descriptor for a CLOB and variable for CLOB descriptor.
 $rlob = oci_new_descriptor($c,OCI_D_LOB);
 oci_define_by_name($s,':item_desc',$rlob,SQLT_CLOB);

 // Bind PHP variables to the OCI types.
 oci_bind_by_name($s,':id',$id);
 oci_bind_by_name($s,':item_desc',$rlob,-1,SQLT_CLOB);

 // Execute the PL/SQL statement.
 if (oci_execute($s,OCI_DEFAULT)) {
 $rlob->save($item_desc);
 oci_commit($c); }

 // Release statement resources and disconnect from database.
 oci_free_statement($s);
 oci_close($c); }
else {
 // Assign the OCI error and manage error.
 $errorMessage = oci_error();
 print htmlentities($errorMessage['message'])."
";
 die(); }

The four boldfaced lines make reading and writing to the CLOB column possible. The
lines, respectively, define an anonymous PL/SQL block as a statement, create a socket, map
the placeholder and the statement to the socket, and write the CLOB through the socket to
the file.

If you’re interested in learning more about PHP and the Oracle database, you can check
Oracle Database 10g Express Edition PHP Web Programming (Oracle Press). The first
12 chapters cover PHP and the last 3 cover Oracle’s OCI library. Alternatively, you can refer
to the Oracle Database 2 Day + PHP Developer’s Guide 12c Release on Oracle’s website.

15-AppB.indd 820 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 821

You can check Chapter 10 for the details on how to write this type of programming logic to
support web applications and large objects in Oracle Database 12c.

Nested Table Updates Nested tables are lists, which are like arrays but without a maximum
number of rows. As such, lists mimic database tables when they’re defined by object types.
Object types act like record data structures in an Oracle database. This is possible because Oracle
is an object relational database.

The original SQL design didn’t consider the concept of object types or collections of object
types. This leaves Oracle with the responsibility to fit calls to these object types within SQL
extensions. The interface is rather straightforward but has limitations as to what you can perform
on nested tables and arrays through INSERT and UPDATE statements. You can insert or update
complete nested tables, but you cannot replace only certain elements of the nested tables. PL/SQL
lets you access and manipulate the elements of nested tables and arrays. Chapter 8 show you how
to perform that type of change to an existing nested table.

NOTE
A collection of a scalar type is an ADT, while a collection of a SQL
structure is a UDT.

This example revisits the employee table from earlier in this appendix. Here’s the definition
of the table:

 Name Null? Type
 --- -------- ------------------
 EMPLOYEE_ID NUMBER
 FIRST_NAME VARCHAR2(20)
 MIDDLE_NAME VARCHAR2(20)
 LAST_NAME VARCHAR2(20)
 HOME_ADDRESS ADDRESS_LIST

The home_address column is a UDT collection named address_list. To save flipping
back to an earlier section of this appendix, the address_list UDT holds an address_type
UDT (object type that acts like a record data structure), and the address_type UDT holds
another nested table of a scalar variable. This means the table holds a multiple nested table.

You can also describe the address_list UDTs with the DESCRIBE command in SQL*Plus:

 address_list TABLE OF ADDRESS_TYPE
 Name Null? Type
 --- -------- ------------------
 ADDRESS_ID NUMBER
 STREET_ADDRESS STREET_LIST
 CITY VARCHAR2(30)
 STATE VARCHAR2(2)
 POSTAL_CODE VARCHAR2(10)

This collection is a nested table. You can tell that because it says TABLE OF. An ADT or UDT
array would print a VARRAY(n) OF phrase before the respective object structure’s name. This

15-AppB.indd 821 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

822 Oracle Database 12c PL/SQL Programming

example includes a nested street_list table collection, which is an ADT. You can describe it
the same way and it shows the following:

 street_list TABLE OF VARCHAR2(30)

As mentioned, this type of table structure is called multiple table nesting. It is inherently
complex. This type of design also presents migration issues when you want to modify the UDTs.
You must put the data some place, drop the table, and then add the UDTs in the reverse order of
how you created them—at least until you arrive at the UDT that you want to change. After making
the change, you’ll need to re-create all data types and tables and migrate the data back into the
new table.

When you perform an update, you need to replace the entire nested table element. You can
read out what’s there and identify where the change goes through PL/SQL or some other
procedural language that leverages the Oracle Call Interface (OCI), Open Database Connectivity
(ODBC), or Java Database Connectivity (JDBC). This assumes you’ve written the code logic to
capture all existing data and dynamically construct an UPDATE statement. NDS lets you
dynamically create these types of SQL statements. You can read about NDS in Chapter 13.

Earlier in this appendix, we inserted a row into the employee table. Here’s how you would
extract the information from the nested tables into an ordinary result set of scalar columns:

-- These SQL*Plus commands format the columns for display.
COLUMN employee_id FORMAT 999 HEADING "ID|EMP"
COLUMN full_name FORMAT A16 HEADING "Full Name"
COLUMN address_id FORMAT 999 HEADING "ID|UDT"
COLUMN st_address FORMAT A16 HEADING "Street Address"
COLUMN city FORMAT A8 HEADING "City"
COLUMN state FORMAT A5 HEADING "State"
COLUMN postal_code FORMAT A5 HEADING "Zip|Code"

SQL> SELECT e.employee_id
 2 , e.first_name || ' ' || e.last_name AS full_name
 3 , st.address_id
 4 , sa.column_value AS st_address
 5 , st.city
 6 , st.state
 7 , st.postal_code
 8 FROM employee e CROSS JOIN
 9 TABLE(e.home_address) st CROSS JOIN
 10 TABLE(street_address) sa
 11 ORDER BY 2, 3, 4;

It uses the cross join to extract nested table material to the single containing row that holds it. In
this process, the cross join makes copies of the content of the single-row for each row of the
nested table. This example first unwinds street_address within home_address and then
home_address within the container employee table. It returns four rows, because there are
two rows in each of the nested tables and only one row in the sample table. Cross joins yield
Cartesian products, which are the number of rows in one set times the number of rows in the

15-AppB.indd 822 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 823

other set, or in this case the multiplied product of rows in three sets (1 × 2 × 2 = 4). It renders the
following output:

 ID ID Zip
 EMP Full Name UDT Street Address City State Code
---- ---------------- ---- ---------------- -------- ----- -----
 1 Sam Yosemite 1 1111 Broadway Oakland CA 94612
 1 Sam Yosemite 1 Suite 322 Oakland CA 94612
 1 Sam Yosemite 2 1111 Broadway Oakland CA 94612
 1 Sam Yosemite 2 Suite 525 Oakland CA 94612

Let’s assume you want to change Suite 525 in the second row to Suite 521. The UPDATE
statement would look like this when you replace the entire structure:

SQL> UPDATE employee e
 2 SET e.home_address =
 3 address_list(
 4 address_type(1
 5 , street_list('1111 Broadway','Suite 322')
 6 ,'Oakland'
 7 ,'CA'
 8 ,'94612')
 9 , address_type(2
 10 , street_list('1111 Broadway','Suite 521')
 11 ,'Oakland'
 12 ,'CA'
 13 ,'94612'))
 14 WHERE e.first_name = 'Sam'
 15 AND e.last_name = 'Yosemite';

The syntax to replace the content of a UDT is to use the name of the data type as an object
constructor and then provide a list. Lines 4 to 8 are highlighted to demonstrate the constructor for
an address_type UDT. Lines 5 and 10 are separately highlighted to show the constructor for a
street_list ADT. In the preceding statement, a comma-delimited list lets you construct nested
tables. Of course, you probably want to nest only data that changes infrequently and that fails to
merit its own table.

You can also replace only an element of the nested address_type UDT by using some
complex UPDATE syntax. The UPDATE statement is complex because it uses a query to find a
nested table in one row of the employee table. The TABLE function then casts the object
collection into a SQL result set (formally, an aggregate result set). This type of result set may also
be called an inline view, runtime table, derived table, or common table expression. The UPDATE
statement lets you change the city value for the first element of the address_type UDT in the
address_list collection:

SQL> UPDATE TABLE (SELECT e.home_address
 2 FROM employee e
 3 WHERE e.employee_id = 1) e
 4 SET e.city = 'Fremont'
 5 WHERE e.address_id = 1;

15-AppB.indd 823 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

824 Oracle Database 12c PL/SQL Programming

Line 3 refers to a row in the employee table where the employee_id column value is
equal to 1. Line 5 refers to the home_address object collection column’s address_id column
value where it is equal to 1. Unfortunately, although the city is correct for the address, Suite 521
is wrong. It should be Suite 522. There is no way to replace only one element of a varray or nested
table of a scalar data type in SQL by itself. An attempt would use the same cross-joining logic
shown earlier in the query that unfolds nested tables, like so:

SQL> UPDATE TABLE(SELECT addr.street_address
 2 FROM employee e CROSS JOIN TABLE(e.home_address) addr
 3 WHERE e.employee_id = 1
 4 AND addr.address_id = 1)
 5 SET column_value = 'Suite 522'
 6 WHERE column_value = 'Suite 521';

Although the query returns the expected result set, the assignment in the SET clause fails. You
can’t make an assignment to the default column_value column returned by an unwound nested
table of a scalar data type. It raises an ORA-25015 error:

SET column_value = 'Suite 522'
 *
ERROR at line 5:
ORA-25015: cannot perform DML ON this nested TABLE VIEW COLUMN

The error documentation does not seem to explain why it doesn’t work. Hazarding a guess,
I think that collections of scalar data types, or ADTs, are handled differently than collections of
UDTs. At least, there’s a difference between them: scalar collections work in the result cache
PL/SQL functions, while collections of UDTs don’t.

The following lets you reset the city and replaces the nested address element by replacing the
entire street_list instance:

SQL> UPDATE TABLE (SELECT e.home_address
 2 FROM employee e
 3 WHERE e.employee_id = 1) e
 4 SET e.street_address = street_list('1111 Broadway','Suite 522')
 5 , e.city = 'Oakland'
 6 WHERE e.address_id = 1;

Line 4 stores a complete constructor of the scalar collection. It’s not terribly difficult when
only a few elements exist, but it becomes tedious with long lists. The alternative to an UPDATE
statement like these is to use PL/SQL, which allows you to navigate the collections element-by-
element and then process the individual list elements.

You have the option of writing PL/SQL functions that let you insert, update, or delete elements
of ADT collection columns. A function to insert an element should check whether an empty or
populated collection exists before adding one, and when the insert function finds a null value in
the collection column, the function should initialize the collection before adding an element. An
update function is the easiest way to update of a nested ADT column. That’s true because you can
guarantee an initialized collection inside the function before you try to append or change an
element of an ADT column. This capability inside a function helps you manage the issues with
potential null values. You should check the “PL/SQL to the Rescue of Updating an ADT Element”
sidebar for more complete coverage of how to make it work. A delete element function should

15-AppB.indd 824 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 825

remove the element and leave a populated collection, or, in the case of having removed the last
element, an empty collection. A separate function should let you remove an empty collection, at
least if you approach the problem in a solid OOAD manner.

In general, with collections, you store nested tables, varrays, and object types the same
way—with a call to their object type, which serves as a constructor method. You pass values
inside the parentheses as actual parameters (also called arguments). The TREAT function lets you
instantiate these in memory.

PL/SQL to the Rescue of Updating an ADT Element
PL/SQL can help remedy the UPDATE statement’s inability to insert, update, or delete a
value in an ADT, which is any varray or nested table collection of a scalar data type. You
can develop a PL/SQL function that lets you insert, update, or replace elements in an ADT
collection.

The following is an example of a function that succeeds when we focus on test cases
with nested ADT values and forget the test cases for a null value in the ADT column. It
updates an element in an initialize collection of the same street_list element shown in
the “Nested Table Updates” section examples:

SQL> CREATE OR REPLACE FUNCTION update_collection
 2 (old_element_collection STREET_LIST
 3 , old_element_value VARCHAR2
 4 , new_element_value VARCHAR2) RETURN STREET_LIST IS
 5
 6 -- Declare and initial a new counter.
 7 lv_counter NUMBER := 1;
 8
 9 -- Declare local return collection variable.
 10 lv_element_collection STREET_LIST := street_list();
 11
 12 BEGIN
 13 FOR i IN 1..old_element_collection.COUNT LOOP
 14 IF NOT old_element_collection(i) = old_element_value THEN
 15 lv_element_collection.EXTEND; -- Allocate space.
 16 lv_element_collection(lv_counter) := old_element_collection(i);
 17 ELSE
 18 lv_element_collection.EXTEND; -- Allocate space.
 19 lv_element_collection(lv_counter) := new_element_value;
 20 END IF;
 21 lv_counter := lv_counter + 1;
 22 END LOOP;
 23
 24 RETURN lv_element_collection;
 25 END update_collection;
 26 /

(continued)

15-AppB.indd 825 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

826 Oracle Database 12c PL/SQL Programming

This appears a sound solution because you can successfully replace a nested ADT value
with it in the unnesting UPDATE statement, like

SQL> UPDATE TABLE (SELECT e.home_address
 2 FROM employee e
 3 WHERE e.employee_id = 1) e
 4 SET e.street_address =
 5 update_collection(e.street_address, 'Suite 525','Suite 522')
 5 , e.city = 'Oakland'
 6 WHERE e.address_id = 1;

The preceding UPDATE statement works because the nested ADT column value is an
initialized and populated collection. Unfortunately, when we change the UPDATE statement
to work with the data set for our Wile E Coyote example (found in the “Inserting Arrays and
Nested Tables” section earlier in the appendix), it fails with the following message:

SET e.street_address =
 update_collection(e.street_address, 'Suite 525','Suite 522')
 *
ERROR at line 4:
ORA-06531: Reference to uninitialized collection
ORA-06512: at "STUDENT.UPDATE_COLLECTION", line 13

The failure occurs because the original update_collection function makes an
unfortunate assumption—that all collections are initialized. We can rewrite the example to
manage both uninitialized and initialized collections by checking whether the nested table
column is null or not. The change is made in the following code:

SQL> CREATE OR REPLACE FUNCTION update_collection
 2 (old_element_collection STREET_LIST
 3 , old_element_value VARCHAR2
 4 , new_element_value VARCHAR2) RETURN STREET_LIST IS
 ...
 12 BEGIN
 13 IF old_element_collection IS NOT NULL THEN
 14 FOR i IN 1..old_element_collection.COUNT LOOP
 ...
 23 END LOOP;
 24 END IF;
 25
 26 RETURN lv_element_collection;
 27 END update_collection;
 28 /

Lines 13 and 24 enclose the replacement logic with a check for a null element in the
object collection column. The check prevents an uninitialized collection error but it does
replace the null value with an empty collection. It’s attractive because it makes the function
more cohesive and less subject to failure, but it changes the column’s value from a null
value to an initialized empty collection.

15-AppB.indd 826 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 827

NOTE
Chapter 11 shows you how to implement a basic object type, and it
and the SQL statements that support it are discussed there.

Large Objects Large objects present complexity in Oracle because you need to load them by
segments. After all, they can grow to 32 terabytes in size. The BLOB and the CLOB are the only
two data types stored physically inside the database. The other large object type, the BFILE, is a
locator that points to an external directory location (see the “External Tables” section earlier in the
appendix) and filename. The first argument is a call to a virtual directory that you’ve created in the
database, and the second argument is the relative filename.

While that solution typically works for most business solutions, it may not work for all
business problems. Assuming you leave the function with an inability to manage null values
as the call parameter to the old_element_collection parameter, you could handle the
logic in your UPDATE statement, like this with a CASE statement:

SQL> UPDATE TABLE (SELECT e.home_address
 2 FROM employee e
 3 WHERE e.employee_id = 2) e
 4 SET e.street_address =
 5 CASE
 6 WHEN e.street_address IS NOT NULL THEN
 7 update_collection(e.street_address, 'value1','value2')
 8 ELSE
 9 NULL
 10 END
 11 , e.city = 'Phoenix'
 12 WHERE e.address_id = 1

Lines 4 through 10 show how to implement a CASE statement to handle the null
condition, and I would argue it’s the right approach. Writing a PL/SQL function to manage
something that should be written in SQL is simply bad coding, and unfortunately, overreaching
solutions like that can give PL/SQL a bad rap because they’re done too often. The preceding
UPDATE statement ensures you don’t replace a null with an initialized collection.

While you can solve this with an Oracle proprietary DECODE statement, you shouldn’t.
If you haven’t already, you should start moving your SQL code toward the generic ANSI
components, like the CASE statement.

This sidebar has shown you how PL/SQL can bridge limits in SQL syntax, and that you
can overuse PL/SQL when SQL solutions are available. As a rule of thumb, try to use SQL
where it works, because it’s generally faster in those cases.

15-AppB.indd 827 12/17/13 3:44 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

828 Oracle Database 12c PL/SQL Programming

An ordinary UPDATE statement handles changes to BFILE locators like this:

SET = bfilename('virtual_directory_name', 'relative_file_name')

The BLOB and CLOB data types require special handling. The most common need is to
overwrite the column value. That’s because these are binary or character streams and they’re
seldom simply edited.

The following illustration shows you how to update a BLOB column. BLOB columns larger
than 4KB are stored out-of-line from the transactional table because they’re infrequently changed
and less frequently backed up. It is also common practice to change these columns by themselves,
after any updates to the scalar columns of a table.

UPDATE table_name

SET column_name = expression

[, column_name = empty_clob()

[, ...]])

RETURNING column_name INTO local_variable;

Sets the initial
column value.

Sets the local
variable name.

Inherits datatype
of the referenced

column.

This prototype statement demonstrates the syntax if you were to update all columns at the
same time. The first step of an update to a BLOB column is reinitialization, which occurs with an
empty_blob function call. The second step maps the column name in a row to an external stream
(receiving end), which uses the column name as an identifier. The third step assigns the stream
(originating end) to a local program variable. Basically, this is a socket communication between a
program and the database, and it lasts until all segments have been loaded into the column.

The local variable in this example can be a PL/SQL variable or any external OCI, ODBC, or
JDBC programming language variable. The local variable data type must support a mapped
relationship to the native Oracle data type.

The CLOB data type works the same way, and, as you can see in the next illustration, there’s
no SQL statement difference. Only the call to the empty_clob differs, but it’s an important
difference that you shouldn’t overlook.

UPDATE table_name

SET column_name = expression

[, column_name = empty_blob()

[, ...]])

RETURNING column_name INTO local_variable;

Sets the initial
column value.

Sets the local
variable name.

Inherits datatype
of the referenced

column.

The XML_TYPE data types use the empty_clob function to clear the columns’ contents.
After all, XML_TYPE columns are specializations of the CLOB data type.

15-AppB.indd 828 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 829

Update by Correlated Queries
A correlated query is a specialized subquery that contains a join to an outer query. An UPDATE
statement can contain a correlated in the SET clause, which allows the UPDATE statement to
change multiple rows with potentially different values.

SQL> UPDATE rental_item ri
 2 SET rental_item_type =
 3 (SELECT cl.common_lookup_id
 4 FROM common_lookup cl
 5 WHERE cl.common_lookup_code =
 6 (SELECT TO_CHAR(r.return_date - r.check_out_date)
 7 FROM rental r
 8 WHERE r.rental_id = ri.rental_id));

Line 1 designates the rental_item table as the target of the UPDATE statement, and line 1
assigns a ri table alias to the rental_item table. Line 2 assigns the result of a correlated
subquery to the rental_item_type column. Line 8 matches the rows to update in the
rental_item table with the rental table based on matching the primary key value to the
foreign key value. The rental_id column is the surrogate and primary key column of the
rental table, while the rental_id column in the rental_item table is a foreign key
column.

DELETE Statement
The DELETE statement lets you remove data from tables and views. There are two types of
DELETE statements: one uses literal values or subquery comparisons in a WHERE clause; the other
uses correlated results from a subquery. It is also possible to combine values or subquery results
with correlated results in the WHERE clause. This section covers how you use both statements.

Like the UPDATE statement, a DELETE statement removes all rows found in a table unless you
filter what you want to remove in a WHERE clause. A DELETE statement also writes redo logs,
similar to INSERT and UPDATE statements, and supports bulk processing options inside Oracle’s
PL/SQL blocks.

The DELETE statement has a closely related cousin, the DDL TRUNCATE statement. DBAs
often disable constraints, copy a table’s contents to a temporary table, TRUNCATE or DROP the
table, re-create the table with a new storage clause, and then INSERT the old records from the
temporary table. The TRUNCATE statement doesn’t log deletions; it simply removes the allocated
storage space in a tablespace, which makes it much faster for routine DBA maintenance tasks.

NOTE
Earlier in this appendix you learned how to use the CREATE TABLE
statement to clone a table.

The DELETE statement also works on nested tables in the Oracle database. Deleting nested
tables without removing the row from the table is the exception rather than the rule for a DELETE
statement, as you’ll see in the next section.

The following two sections demonstrate the syntax for deleting rows by value matches and by
correlation between two or more tables. Value matches can be literal values or ordinary
subqueries. Correlation between two or more tables requires joins between tables.

15-AppB.indd 829 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

830 Oracle Database 12c PL/SQL Programming

Delete by Value Matches
This DELETE statement uses a table name and a WHERE clause that allows you to filter which
rows you want to remove from a table. The WHERE clause works with date, numeric, and string
literal values.

Here’s the basic prototype for a DELETE statement:

DELETE FROM table_name
WHERE [NOT] column_name {{= | <> | > | >= | < | <=} |
 [NOT] {{IN | EXISTS} | IS NULL}} 'expression'
[{AND | OR } [NOT] comparison_operation] [...];

An actual DELETE statement would look like this:

SQL> DELETE FROM item
 2 WHERE item_title = 'Pirates of the Caribbean: On Stranger Tides'
 3 AND item_rating = 'PG-13';

The first line sets the target table for the deletion operation. Lines 2 and 3 filter the rows to find
those that will be deleted. All rows meeting those two criteria are removed from the table and
immediately become invisible to the current user in transaction mode. As explained in Appendix
A, in the two-phase commit (2PC) model, the first phase removes rows from the current user’s
view, and the second phase removes them from the system. Between the first and second phases,
other users see the deleted rows and can make decisions based on their existence—unless you’ve
locked them in the context of a transaction.

You should lock rows that are possibly subject to deletion before running DELETE statements.
This is straightforward in a transactional database such as Oracle. You can use SQL cursors to lock
rows when deletions run inside PL/SQL stored program units. You lock the rows in a SQL cursor
by appending a FOR UPDATE clause. Regardless of your method of operation, failure to lock
rows before deleting them can lead to insertion, update, or deletion anomalies. The anomalies
can occur because other DML statements can make decisions on the unaltered rows, which are
visible to other sessions before a COMMIT statement.

Transaction Management
The basis for a transaction doesn’t require specialized steps in an Oracle database, because
Oracle statements are natively transactional and use a 2PC process to insert, update, or
delete rows in tables. However, you want to bracket more than a single INSERT, UPDATE,
or DELETE statement in transaction logic. That means

1. Setting a SAVEPOINT before starting the transaction.

2. Firing the COMMIT only when all DML statements in the set of statements are
successful.

3. Firing the ROLLBACK when any individual DML statement fails.

In the scope of the transaction, no other session can see the inserted values until the
COMMIT statement ends the transaction and makes changes permanent. You could substitute
DELETE statements for the INSERT statements, and no one would be able to see the deleted
row until you have committed the changes.

15-AppB.indd 830 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 831

In addition to using literal values in the WHERE clause, you can use ordinary subqueries.
Ordinary subqueries aren’t joined to the target table of the outer DELETE statement. These
subqueries do have a restriction: they can return only a single-row when you use an equality
comparison operator, such as the equal (=) operator. You can also use multiple-row subqueries,
but they require a lookup operator. SQL has four lookup operators you can use: IN, =ANY,
=SOME, and =ALL. The IN, =ANY, and =SOME operators behave similarly. They allow you to
compare a column value in a row against a list of column values, and they return true if one value
matches—this is like an OR logical operator in a procedural IF statement. The =ALL operator also
allows you to compare a column value in a row against a list of column values, and it returns true
when all values in the list match the single column value. The =ALL operator performs like an
AND logical operator in a procedural IF statement. For reference, there is no standard exclusive
OR operator in SQL.

Inside the WHERE clause, you can use AND or OR logical operators. The order of precedence
requires that a group of logical comparisons connected by the AND logical operator be processed
as a block before anything connected later by an OR logical operator.

Modifying the preceding example, let’s add an OR logical comparison based on the release
date. The following statement uses the default order of operation in the WHERE clause:

SQL> DELETE FROM item
 2 WHERE item_title = 'Pirates of the Caribbean: On Stranger Tides'
 3 AND item_rating = 'PG-13'
 4 OR TRUNC(item_release_date) < TRUNC(SYSDATE,'YY');

This removes all rows where the literal values match the item_title and item_rating or all
rows where the item_release_date precedes the first day of the year. You must use
parentheses to change the order of operation.

Let’s say the business rule changes and now requires that the item_title match the literal
value and that either the item_rating match the literal value or the item_release_date be
less than the first day of the current year. A modified statement would look like this:

SQL> DELETE FROM item
 2 WHERE item_title = 'Pirates of the Caribbean: On Stranger Tides'
 3 AND (item_rating = 'PG-13'
 4 OR TRUNC(item_release_date) < TRUNC(SYSDATE,'YY'));

The parentheses on lines 3 and 4 change the order of operation and remove only rows with
matching item_title values and matches in other criteria.

Alternatives to values in the WHERE clause can be subqueries that return one or more column
values. You can write a DELETE statement when the query returns only one row, like this:

SQL> DELETE FROM item
 2 WHERE (item_title,item_rating) =
 3 (SELECT 'Pirates of the Caribbean: On Stranger Tides'
 4 , 'PG-13'
 5 FROM dual);

Line 2 contains an equal (=) comparison operator that works only when a single-row is returned
by the subquery. All queries from the dual pseudo-table return one row unless a UNION or
UNION ALL set operator fabricates a multiple-row set.

15-AppB.indd 831 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

832 Oracle Database 12c PL/SQL Programming

The IN, =ANY, and =SOME lookup operators work when the subquery returns one or more
rows. It’s always best to use a lookup operator unless you want to raise an exception when the
subquery returns more than one row. This type of exception signals when a prior business rule has
been violated—the rule that the subquery supports.

The following demonstrates a DELETE statement with a lookup operator:

SQL> DELETE FROM item
 2 WHERE (item_title,item_rating) IN
 3 (SELECT 'Pirates of the Caribbean: On Stranger Tides'
 4 , 'PG-13'
 5 FROM error_item);

In addition to supporting the DELETE syntax variations demonstrated in this section, Oracle
supports the use of a DELETE statement when you’re working with nested table elements in rows
of a table, as covered next.

Delete Nested Table Row Elements
As mentioned, nested tables are object relational database management system (ORDBMS)
structures. The “Nested Collection Types” section earlier in this appendix showed you how to
create and alter tables with nested tables. The “Inserting Arrays and Nested Tables” section
showed you how to insert nested tables, and the “Nested Table Updates” section showed you
how to update nested tables.

NOTE
You can only use an UPDATE statement and a user-defined function to
delete an element from an ADT column.

The following example builds on the employee table introduced in “Nested Collection
Types” section earlier in this appendix. The following data should be included in the table by the
steps covered in the “Inserting Arrays and Nested Tables” section earlier in this appendix, but it
won’t be formatted like the following (which was reformatted to fit on the printed page):

 ID Full Name Street Address Nested Table
---- ------------- ---
 1 Yosemite Sam ADDRESS_LIST
 (ADDRESS_TYPE
 (1,STREET_LIST(...),'Oakland','CA','94612')
 , ADDRESS_TYPE
 (2,STREET_LIST(...),'Oakland','CA','94612')
)
 2 Bugs Bunny ADDRESS_LIST
 (ADDRESS_TYPE
 (1,STREET_LIST(...),'Beverly Hills','CA','90210')
 , ADDRESS_TYPE
 (2,STREET_LIST(...),'Beverly Hills','CA','90210')
)

Previous DELETE statements would let you remove the row with Yosemite Sam or Bugs Bunny
but not an element of the nested employee table. The DELETE statement applied against a view
of the nested table would let you remove a row.

15-AppB.indd 832 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 833

The following statement lets you remove a row element from the nested table:

DELETE FROM TABLE (SELECT e.home_address
 FROM employee e
 WHERE e.employee_id = 1) ha
WHERE ha.address_id = 1;

This works only on a collection of user-defined object types. It doesn’t work for nested tables
built as collections of a scalar data type, such as a date, number, or string. You must replace the
collection of a scalar data type with a new collection that doesn’t include the undesired element.
PL/SQL lets you read through and eliminate undesired elements from any nested table structure.
While reading the records, you can capture all the records you want to keep, and then update the
table’s collection with the locally stored collection values.

After the preceding DELETE statement, you would hold the following in the employee table:

 ID Full Name Street Address Nested Table
---- ------------- ---
 1 Yosemite Sam ADDRESS_LIST
 (ADDRESS_TYPE
 (2,STREET_LIST(...),'Oakland','CA','94612')
)
 2 Bugs Bunny ADDRESS_LIST
 (ADDRESS_TYPE
 (1,STREET_LIST(...),'Beverly Hills','CA','90210')
 , ADDRESS_TYPE
 (2,STREET_LIST(...),'Beverly Hills','CA','90210')
)

Notice that the first nested row has been removed from the nested table in the Yosemite Sam
row. Maintenance on nested tables is possible when they are collections of object types, but it’s
not possible when they are collections of scalar variables.

Delete by Correlated Queries
Although deletions can remove one to many rows when the conditions of the WHERE clause are
met, they can also work with joins between tables. Like the UPDATE statement, the DELETE
statement supports correlated joins that allow you to work with multiple tables when deleting rows.

Correlated joins use the EXISTS keyword in the WHERE clause. The actual equality or
inequality of the join is in the WHERE clause of the subquery. The subquery has scope access to
the target table of the DELETE statement, which makes referencing it in the subquery possible.

The return value
from the SELECT
clause isn’t used.

price p CROSS JOIN rental r
p.item_id = ri.item_id
p.price_type = ri.rental_item_type
r.rental_id = ri.rental_id
r.check_out_date

DELETE FROM rental_item ri
WHERE EXISTS (SELECT

FROM
WHERE
AND
AND
AND

BETWEEN p.start_date
AND NVL(p.end_date,TRUNC(SYSDATE)));

NULL

Correlation between
subquery and DELETE

statement.

15-AppB.indd 833 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

834 Oracle Database 12c PL/SQL Programming

Correlated subqueries in the WHERE clause don’t return a value, because the match occurs in
the subquery’s WHERE clause. That’s why a NULL is frequently returned from correlated subqueries,
but you can return anything you’d like. In the preceding example, two columns from the price
table and one column from the rental table match three columns in the target table of the
DELETE FROM statement. The three columns from the rental_item table are the natural key.
Together they uniquely identify rows as the natural key. A match between the three columns
guarantees unique row deletions.

MERGE Statement
Sometimes you need to insert new data and update existing data to relational tables during a bulk
import of a physical file. You can accomplish this type of insert or update activity using a MERGE
statement in Oracle.

Data import files often present interesting challenges because they frequently contain rows of
data that belong in multiple tables (denormalized data sets). Import processes have to deal with
this reality and discover the rules in order to break them up into normalized data sets. Only
normalized data sets fit into the merge processes, because they work with single tables.

You need to understand why these files contain data from multiple tables. Although data
modelers normalize information into single subject tables to avoid insertion, deletion, and update
anomalies, analysts seldom use information in isolation because the data is useful to them only
when it’s been assembled into information. Analysts typically apply business rules against data
from a set of related tables. This means that they get these denormalized records sets from a query.
As qualified earlier in this appendix, queries let you assemble data into meaningful and actionable
information, which makes the information as a whole greater than the sum of its data parts.

As developers of database-centric applications, we seldom have control over the origin of
these files. Although it’s not critical that we know where the files come from and why they’re
important, it can be helpful. Typically called flat, loader, or batch import files, these files are
import sources that feed corrections and additions into our data repositories.

Import sources come from many places, such as from business staff who sanitize data
(analyzing data against business rules and fixing it) or from other business partners. Business
partners can be organizations within the corporation or company, or other companies with whom
your company does business. The business staff sanitizing or exchanging data within the company
are intra-company import sources.

Intra-company imports can come from other IT organizations or from finance departments
without professional IT staff. Those coming from other IT organizations are considered business-
to-business (B2B) exchanges, and they package their outgoing files as export files. These export
files support order management systems or financial systems.

Professionally packaged export files are typically formatted in an agreed upon XML
(eXtensible Markup Language) or EDI (Electronic Data Interchange) formats. Those coming from
your company’s internal finance, accounting, or operations departments are considered
consumer-to-business (C2B) exchanges. That label works because the import files are typically
comma-separated value (CSV) files from Microsoft Excel, which is what you would expect from
a consumer (internal information consumer). These XML files are typically managed by procedural
programming interfaces.

This section demonstrates importing and merging data based on CSV and XML files on an ad
hoc basis. This section shows you how to use the MERGE statement with Oracle external tables as
source files for the import source. You can flip back to the “External Tables” section if you need to
recall how to set up external tables.

15-AppB.indd 834 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 835

The MERGE statement in Oracle works similarly to the INSERT ALL statement presented
earlier in this appendix. It merges data from a query into a target table based on criteria evaluated
in the ON subclause. The query in the subclause can be described as the source result set. The
result set is like a virtual table, and virtual tables can be composed of data from multiple tables or
a subset of data from one table. The results from a query can be thought of as the source table.
The MERGE and INSERT ALL statements are different in two ways: the WHEN clause is limited to
two logical conditions, MATCHED and NOT MATCHED, and the MERGE statement works with only
one target table.

The MERGE statement has the following prototype:

MERGE INTO table_name
USING (select_statement) query_alias
ON (condition_match [{AND | OR } condition_match [...]])
WHEN MATCHED THEN
update_statement
WHEN NOT MATCHED THEN
insert_statement;

Merging data from a source table to a target table requires that you know the columns that
define the natural key of the target table, and in some cases the natural keys of all tables
collapsed into the import source file. It also requires an outer join based on the natural key held
between the source and target tables, to ensure that it returns the relative complement of the
target table. The relative complement would be all the rows found in the source table that aren’t
found in the target table. The set of rows in the relative complement exists only when you’re
adding new rows from an import source file.

External data sets seldom have a copy of surrogate keys, because those columns aren’t useful
to analysts working with the data. The absence of surrogate keys means that you need to use the
natural keys to determine how to get parts of the import source into their respective normalized
tables. An outer join based on the natural key in the source query always returns a null value as
the surrogate key. This is helpful for two reasons: the lack of a surrogate key identifies new rows,
and surrogate keys can be auto-generated by available sequences. You attempt a surrogate key
match in the ON clause of a MERGE statement. New rows that fail to match are inserted, while
those that match are updated. New rows are assigned new surrogate key values.

Although not all import source files contain new rows, most do. The following sections
contain the steps necessary for importing or modifying data through bulk uploads. Bulk imports
are frequently accomplished through the use of externally organized tables. As introduced earlier
in this appendix, an externally organized table is a table that points to a flat file (often a CSV file)
deployed on the operating system. External tables in Oracle require that a DBA set up virtual
directories and grants.

Step 1: Create a Virtual Directory The process of creating a virtual directory was covered
earlier in the appendix, but it’s repeated here as a setup step for your convenience. You must
create at least one virtual directory to use external tables. Creating virtual directories and granting
privileges to read and write to them is reserved to the sys or system superuser. The following
lets a superuser create an upload virtual directory and grant privileges to the student user to
read and write to the directory:

CREATE DIRECTORY upload AS 'C:\import\upload';
GRANT READ, WRITE ON DIRECTORY upload TO student;

15-AppB.indd 835 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

836 Oracle Database 12c PL/SQL Programming

In this example, both read and write privileges are granted to the student user because the
file needs to read the import source file and write log files to the same directory. Reading and
writing files from the same virtual directory isn’t recommended as a best practice, however. You
should create badfile, discard, and log virtual directories to hold their respective output
files and then grant only read privilege to the upload directory. You should grant read and write
privileges to the badfile, discard, and log virtual directories, especially if you’re writing
modules to let your business users confirm the upload of data.

Step 2: Position Your Physical CSV File After you create the upload virtual directory in the
database, you need to create the physical directory in the file system of the server’s operating
system. Creating the physical directory after the virtual directory should help show you that a
virtual directory’s definition is independent of its physical directory. Virtual directories only store
data that maps the virtual directory name to a physical directory, and they do not validate the
existence of that location until you try to use it.

This example uses a kingdom_import.csv file that holds data for the kingdom and
knight tables. The data in the file describe two epochs of the mythical kingdom of Narnia:

'Narnia',77600,'Peter the Magnificent','20-MAR-1272','19-JUN-1292',
'Narnia',77600,'Edmund the Just','20-MAR-1272','19-JUN-1292',
'Narnia',77600,'Susan the Gentle','20-MAR-1272','19-JUN-1292',
'Narnia',77600,'Lucy the Valiant','20-MAR-1272','19-JUN-1292',
'Narnia',42100,'Peter the Magnificent','12-APR-1531','31-MAY-1531',
'Narnia',42100,'Edmund the Just','12-APR-1531','31-MAY-1531',
'Narnia',42100,'Susan the Gentle','12-APR-1531','31-MAY-1531',
'Narnia',42100,'Lucy the Valiant','12-APR-1531','31-MAY-1531',

Notice that there are no surrogate key values in the data set. This means that the MERGE statement
needs to provide them.

Step 3: Create Example Tables You should now connect to the student schema in the
database. As the student user, create two internally defined tables, kingdom and knight, and
then create one externally defined table, kingdom_knight_import. The kingdom table is the
parent and the knight table is the child in this relationship. This means a column in the knight
table holds a foreign key that references (points back to) a column in the kingdom table. The
kingdom_id column is the primary key in the kingdom table, and the kingdom_
allegiance_id column holds the copy of the primary key value as a foreign key in the
knight table.

Here’s the CREATE TABLE statement for the kingdom table:

SQL> CREATE TABLE kingdom
 2 (kingdom_id NUMBER
 3 , kingdom_name VARCHAR2(20)
 4 , population NUMBER);

And here is its sequence:

CREATE SEQUENCE kingdom_s1;

15-AppB.indd 836 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 837

Here’s the CREATE TABLE statement for the knight table:

SQL> CREATE TABLE knight
 2 (knight_id NUMBER
 3 , knight_name VARCHAR2(24)
 4 , kingdom_allegiance_id NUMBER
 5 , allegiance_start_date DATE
 6 , allegiance_end_date DATE);

Here is its sequence:

CREATE SEQUENCE knight_s1;

Here is the CREATE TABLE statement for the kingdom_knight_import table:

SQL> CREATE TABLE kingdom_knight_import
 2 (kingdom_name VARCHAR2(8)
 3 , population NUMBER
 4 , knight_name VARCHAR2(24)
 5 , allegiance_start_date DATE
 6 , allegiance_end_date DATE)
 7 ORGANIZATION EXTERNAL
 8 (TYPE oracle_loader
 9 DEFAULT DIRECTORY upload
 10 ACCESS PARAMETERS
 11 (RECORDS DELIMITED BY NEWLINE CHARACTERSET US7ASCII
 12 BADFILE 'UPLOAD':'kingdom_import.bad'
 13 DISCARDFILE 'UPLOAD':'kingdom_import.dis'
 14 LOGFILE 'UPLOAD':'kingdom_import.log'
 15 FIELDS TERMINATED BY ','
 16 OPTIONALLY ENCLOSED BY "'"
 17 MISSING FIELD VALUES ARE NULL)
 18 LOCATION ('kingdom_import.csv'))
 19 REJECT LIMIT UNLIMITED;

There is no sequence for an external table. Recall that there is also no surrogate key in the
data set or the definition of this externally managed table. Likewise, you can’t assign an identity
column to an externally managed table.

Step 4: Test Configuration You should be able to query from the externally managed table after
the first three steps have completed successfully. This query should return eight rows:

SQL> SELECT kingdom_name AS kingdom
 2 , population
 3 , knight_name
 4 , TO_CHAR(allegiance_start_date,'DD-MON-YYYY') AS start_date
 5 , TO_CHAR(allegiance_end_date,'DD-MON-YYYY') AS end_date
 6 FROM kingdom_knight_import;

15-AppB.indd 837 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

838 Oracle Database 12c PL/SQL Programming

You should get the following data set if it works:

KINGDOM POPULATION KNIGHT_NAME START_DATE END_DATE
-------- ---------- ---------------------- ----------- -----------
Narnia 77600 Peter the Magnificent 20-MAR-1272 19-JUN-1292
Narnia 77600 Edmund the Just 20-MAR-1272 19-JUN-1292
Narnia 77600 Susan the Gentle 20-MAR-1272 19-JUN-1292
Narnia 77600 Lucy the Valiant 20-MAR-1272 19-JUN-1292
Narnia 42100 Peter the Magnificent 12-APR-1531 31-MAY-1531
Narnia 42100 Edmund the Just 12-APR-1531 31-MAY-1531
Narnia 42100 Susan the Gentle 12-APR-1531 31-MAY-1531
Narnia 42100 Lucy the Valiant 12-APR-1531 31-MAY-1531

An error like the following occurs if you failed in setting up the physical directory or file, the
virtual directory, or the grant of permissions:

SELECT kingdom_name
*
ERROR at line 1:
ORA-29913: error in executing ODCIEXTTABLEOPEN callout
ORA-29400: data cartridge error
KUP-04040: file kingdom_import.csv in UPLOAD not found

You need to fix whatever piece is broken before continuing.

CAUTION
Oracle assumes that any physical directory is on the local system disks.
It is possible that you could run into the error shown in the example if
the physical directory is a virtual directory itself.

Step 5: Merge the Import Source Merges work with one table at a time, and they must start
with the least dependent table. The kingdom table is the one without dependencies and should
be the first table in which data is included. In a real situation, the MERGE statements would be
bundled into a stored procedure and wrapped in Transaction Control Language (TCL) commands
to make sure both statements worked or failed. TCL would require a SAVEPOINT before the first
MERGE statement and a COMMIT after the last MERGE statement, and the following should appear
in an exception handler in the event one MERGE statement failed:

ROLLBACK TO savepoint_name;

The following MERGE statement reads data from the externally managed kingdom_knight_
import table and performs a LEFT JOIN operation between a copy of the target and source tables:

SQL> MERGE INTO kingdom target
 2 USING
 3 (SELECT DISTINCT
 4 k.kingdom_id
 5 , kki.kingdom_name

15-AppB.indd 838 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 839

 6 , kki.population
 7 FROM kingdom_knight_import kki LEFT JOIN kingdom k
 8 ON kki.kingdom_name = k.kingdom_name
 9 AND kki.population = k.population) SOURCE
 10 ON (target.kingdom_id = SOURCE.kingdom_id)
 11 WHEN MATCHED THEN
 12 UPDATE SET kingdom_name = SOURCE.kingdom_name
 13 WHEN NOT MATCHED THEN
 14 INSERT VALUES
 15 (kingdom_s1.nextval
 16 , SOURCE.kingdom_name
 17 , SOURCE.population);

The only time line 4 returns a kingdom_id value from the kingdom table is when the row
already exists. The row can exist only when the natural key values match, which means the
surrogate keys on line 10 also match. The UPDATE statement on line 12 doesn’t change anything,
because when line 10 matches, the kingdom_name column values also match on line 8. The
INSERT statement on lines 14–17 runs when there is no match between the natural keys. Notice
that the INSERT statement excludes a target table name, because it works with the target table
of the MERGE statement. The source values in the INSERT statement come from the relative
complement of the kingdom table, which is the kingdom_knight_import table. These are
new rows from the import source file.

The merge should report the number of rows merged, which might exceed the number of new
rows inserted into the table. You confirm the number of rows inserted with the following query:

SQL> SELECT * FROM kingdom;

It returns the following:

KINGDOM_ID KINGDOM_NAME POPULATION
---------- -------------------- ----------
 1 Narnia 42100
 2 Narnia 77600

Note that the ON subclause should use the natural key, and the nested UPDATE statement
must SET a column not found in the ON clause. Changing line 12 from kingdom_name to
kingdom_id raises this error message:

 ON (target.kingdom_id = SOURCE.kingdom_id)
 *
ERROR at line 9:
ORA-38104: Columns referenced in the ON Clause cannot be updated:
"TARGET"."KINGDOM_ID"

The second MERGE statement can work only when there are matching rows in the kingdom
table for new rows in the import source file. That’s why it performs an INNER JOIN operation
between the kingdom and kingdom_knight_import tables before it performs an outer join
against the knight table.

15-AppB.indd 839 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

840 Oracle Database 12c PL/SQL Programming

Here is the second MERGE statement:

SQL> MERGE INTO knight target
 2 USING
 3 (SELECT kn.knight_id
 4 , k.kingdom_id
 5 , kki.knight_name
 6 , kki.allegiance_start_date
 7 , kki.allegiance_end_date
 8 FROM kingdom_knight_import kki INNER JOIN kingdom k
 9 ON kki.kingdom_name = k.kingdom_name
 10 AND kki.population = k.population LEFT JOIN knight kn
 11 ON k.kingdom_id = kn.kingdom_allegiance_id
 12 AND kki.knight_name = kn.knight_name
 13 AND kki.allegiance_start_date = kn.allegiance_start_date
 14 AND kki.allegiance_end_date = kn.allegiance_end_date) source
 15 ON (target.knight_id = source.knight_id)
 16 WHEN MATCHED THEN
 17 UPDATE SET target.knight_name = source.knight_name
 18 WHEN NOT MATCHED THEN
 19 INSERT
 20 (knight_id
 21 , knight_name
 22 , kingdom_allegiance_id
 23 , allegiance_start_date
 24 , allegiance_end_date)
 25 VALUES
 26 (knight_s1.nextval
 27 , source.knight_name
 28 , source.kingdom_id
 29 , source.allegiance_start_date
 30 , source.allegiance_end_date);

Although it works like the last MERGE statement, the query that provides the source uses an
INNER JOIN operator to confirm that a matching kingdom exists. It checks whether a new
knight exists in the import source only when a valid kingdom for that knight exists. The
matching criterion on line 15 is the surrogate key value of the knight table. This is the same rule
as for the prior MERGE statement.

Lines 20–24 show an overriding signature for the INSERT statement. Other than the absence
of a target table name, the INSERT statement works as it does on its own. A query for this data set
requires a couple of SQL*Plus formatting commands to make it fit nicely here in the book, like so:

COLUMN knight_id FORMAT 999 HEADING "Knight|ID #"
COLUMN knight_name FORMAT A22 HEADING "Knight Name"
COLUMN kingdom_allegiance_id FORMAT 999 HEADING "Allegiance|ID #"
COLUMN allegiance_start_date FORMAT A9 HEADING "Start|Date"
COLUMN allegiance_end_date FORMAT A9 HEADING "End|Date"

The query would be as follows:

SQL> SELECT * FROM knight;

15-AppB.indd 840 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 841

The knight table should yield the following rows:

Knight Allegiance Start End
 ID # Knight Name ID # Date Date
------ ---------------------- ---------- --------- ---------
 1 Peter the Magnificent 2 20-MAR-72 19-JUN-92
 2 Edmund the Just 2 20-MAR-72 19-JUN-92
 3 Susan the Gentle 2 20-MAR-72 19-JUN-92
 4 Lucy the Valiant 2 20-MAR-72 19-JUN-92
 5 Peter the Magnificent 1 12-APR-31 31-MAY-31
 6 Edmund the Just 1 12-APR-31 31-MAY-31
 7 Susan the Gentle 1 12-APR-31 31-MAY-31
 8 Lucy the Valiant 1 12-APR-31 31-MAY-31

At the end of this step, you see the results from the kingdom and knight tables. There
should be two rows in the kingdom table for two epochs of Narnia and eight rows in the
knight table for the two visits by the four Pevensie children, who become kings and queens in
this mythical land (at least in the first two books).

A verification of the ability to merge data can be achieved by adding a single-row to the
kingdom_import.csv file, which would give it this extra line for Caspian X:

'Narnia',40100,'Caspian X','31-MAY-1531','30-SEP-1601',

Rerunning the MERGE statements, you would see one row added to the previous two rows in the
kingdom table and one row added to the previous eight rows in the knight table. The UPDATE
clause of the statement assigns the existing knight_id surrogate key value back to the same
column, which results in no net change.

Transaction Control Language (TCL)
Transaction Control Language (TCL) is the ability to guarantee an all-or-nothing approach when
changing data in more than one table. Table B-6 covers the key commands involved in TCL to
manage transactions.

A good programming practice is to set a SAVEPOINT statement before beginning a set of
DML statements to change related data. Then, if you encounter a failure in one of the DML
statements, you can use the ROLLBACK statement to undo the DML statements that completed.
You use the COMMIT command to make the changes permanent when all changes have been
made successfully.

The following shows an example of writing to two tables in the scope of a PL/SQL procedure:

SQL> CREATE OR REPLACE PROCEDURE tandem
 2 (pv_parent_text VARCHAR2
 3 , pv_child_text VARCHAR2) IS
 4
 5 -- Declare local variable to hold primary key for later use.
 6 lv_foreign_key NUMBER;
 7
 8 BEGIN

15-AppB.indd 841 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

842 Oracle Database 12c PL/SQL Programming

 9
 10 -- Set savepoint.
 11 SAVEPOINT all_or_none;
 12
 13 -- Insert into the first table.
 14 INSERT INTO unconstrained (text)
 15 VALUES (pv_parent_text)
 16 RETURNING unconstrained_id INTO lv_foreign_key;
 17
 18 -- Insert into the second table.
 19 INSERT INTO constrained (unconstrained_id, text)
 20 VALUES (lv_foreign_key, pv_child_text);
 21
 22 -- Commit the work.
 23 COMMIT;
 24
 25 EXCEPTION
 26 WHEN OTHERS THEN
 27 ROLLBACK TO all_or_none;
 28 END;
 29 /

Statement Description
COMMIT The COMMIT statement makes permanent all DML changes to data up

to that point in the user session. Once you commit data changes, they
are permanent unless you perform some form of point-in-time database
recovery. It has the following prototype:
COMMIT

ROLLBACK The ROLLBACK statement reverses changes to data that have not yet
become permanent through being committed during a user session. The
ROLLBACK makes sure all changes are undone from the most recent DML
statement to the oldest one in the current user session, or since the last
commit action. Alternatively, when a SAVEPOINT has been set during the
user session, the ROLLBACK can undo transactions only since either that
SAVEPOINT or the last commit. It has the following prototype:
ROLLBACK [TO savepoint_name]

SAVEPOINT The SAVEPOINT statement sets a point-in-time marker in a current
user session. It enables the ROLLBACK command to only roll back all
transactions after the SAVEPOINT is set. It has the following prototype:
SAVEPOINT savepoint_name

TABLE B-6. Transaction Control Language Statements

15-AppB.indd 842 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 843

The tandem procedure sets a SAVEPOINT on line 11 before inserting a row into the
unconstrained and constrained tables. It commits the work on line 23 when both inserts happen
and rolls back any insert to the first table if the insert fails to the second table. The EXCEPTION
block captures the error and rolls back to the previous SAVEPOINT. You should note that the
unconstrained and constrained tables use autogenerated identity columns, which means you must
snag the current sequence value when inserting a new record. That’s done by the RETURNING
INTO clause on line 16. The RETURNING INTO clause transfers the current value of a column
into the locally scoped lv_foreign_key variable.

Queries: SELECT Statements
A SELECT statement (query) reads differently from how it acts. In English, a query selects
something from a table, or a set of tables, where certain conditions are true or untrue. Translating
that English sentence into programming instructions is the beauty and complexity of SQL.
Although English seems straightforward, queries work in a different event order. The event order
also changes with different types of queries.

Queries can be divided into three basic types:

 ■ Queries that return columns or results from columns

 ■ Queries that aggregate, or queries that return columns or results from columns by adding,
averaging, or counting between rows

 ■ Queries that return columns or results selectively (filtered by conditional expressions
such as IF statements), and these types of queries may or may not aggregate result sets

You can return column values or expressions in the SELECT list. Column values are
straightforward, because they’re the values in a column. Expressions aren’t quite that simple.
Expressions are the results from calculations. Some calculations involve columns and string literal
values, such as concatenated results (strings joined together to make a big string), parsed results
(substrings), or mathematical results of columns, literal values, and function returns. Mathematical
results can be calculated on numeric or DATE data types and returned as function results from
several built-in functions in both databases.

You can also be selective in your SELECT list, which means you can perform if-then-else
logic in any column. The selectivity determines the resulting value in the final result set. Result
sets are also formally called aggregate results because they’ve been assembled by SELECT
statements.

Here’s the basic prototype for a SELECT list:

SELECT {column_name | literal_value | expression } AS alias [, {...}]]
WHERE [NOT] column_name {{= | <> | > | >= | < | <=} |
 [NOT] {{IN | EXISTS} | IS NULL}} 'expression'
[{AND | OR } [NOT] comparison_operation] [...];

You can return three things as an element in the SELECT list: a column value from a table or
view, a literal value, and an expression. The column value is easy to understand, because it’s the
value from the column—but what is its data type? A column returns the value in its native data
type when you call the query from a procedural programming language, such as C, C#, C++,

15-AppB.indd 843 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

844 Oracle Database 12c PL/SQL Programming

Java, or PL/SQL, or as a subquery. Subqueries are queries within queries and are covered in the
“Subqueries” section later in this appendix. A column returns a string when you call the query
from SQL*Plus, and it is written to a console or a file. Literal values must have a column alias
when you want to reuse the value in a procedural program or as a subquery result, and in those
cases they are a string or a number. Expressions are more difficult because they’re the result of
processing operations, such as concatenation or calculation, or they return results from built-in or
user-defined functions.

The SELECT list is determined by columns listed in the SELECT statement, which are
determined by the columns available in the set of tables qualified by the FROM clause. The FROM
clause requires that you query from the dual pseudo-table when returning a numeric or string
literal value, or a return value from a function without referencing a table. While other databases,
such as Microsoft SQL Server and MySQL, don’t require the dual pseudo-table to query literals
or function return values, Oracle does require it. The required and optional clauses of the SELECT
statement are shown in Table B-7.

All SELECT statements are parsed and planned before they’re run (or, more formally, executed).
Figure B-7 shows you the SQL statement processing steps. Parsing includes a syntax check, a
semantic check, and a shared pool check, all of which occur before statement execution. The
syntax check verifies that the identifiers, which are literal values, punctuation, operators, object
names, and keywords, are in the right order. The semantic check verifies that object names (such
as table, column, function, procedure, package, and object type names) are valid in the data
dictionary or catalog. The shared pool check looks to see if an exact match to the SELECT
statement has already been placed in the Oracle Database 12c database instance’s shared pool.
Oracle reruns a matching query from the shared pool rather than optimizing and planning the
statement’s execution again.

The Oracle Database 12c cost-based optimizer examines various plans to run the statement
and chooses the best query plan before statement execution. Unfortunately, that doesn’t guarantee
successful execution because it is possible to encounter a runtime failure.

The next three sections show you how the types of queries work. All examples use queries
from a single table to let you focus on the differences between types.

Clause Required Description
SELECT Yes A list of literal values, columns, or function return values.
FROM Yes A list of tables or views from which you get the data.
WHERE No A list of filters that determines which rows to include in the result set.
GROUP BY No A list of nonaggregated values, columns, or function return values

when one or more elements in the SELECT list are aggregated.
HAVING No A list of aggregation filters that filters the rows aggregated by the

GROUP BY clause.
ORDER BY No A list of columns or expressions that determines how rows are

sorted. The columns or expressions can be identified the column
name, alias, or numeric position in the SELECT list.

TABLE B-7. SELECT Statement Clauses

15-AppB.indd 844 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 845

Queries that Return Columns or Results from Columns
Figure B-8 shows how a query returns a result set of column values in the SELECT list. The figure
shows how the elements are labeled and processed and helps you to visualize table aliases,
column aliases, basic comparison operations, and the basic order of clauses within the SELECT
statement.

The following list qualifies the ANSI SQL pattern for processing a single table query:

 ■ It finds a table in the FROM clause.

 ■ It optionally assigns a table alias as a runtime placeholder for the table name.

 ■ It gets the table definition from the data catalog to know the valid column names, which
isn’t shown in the figure because it’s a hidden behavior.

 ■ If a table alias is present (and it is), it optionally maps the alias to the table’s data catalog
definition.

 ■ It filters rows into the result set based on the value of columns in the WHERE clause.

 ■ The list of columns in the SELECT clause filters the desired columns from the complete
set of columns in a row.

 ■ If an ORDER BY clause occurs in the query, rows are sorted by the designated columns.

FIGURE B-7. SQL statement processing steps

SQL Statement

Syntax Check

Semantic Check

Shared Pool Check

Optimization

Row Source
Generation

Execution

Parsing

Soft
Parse

Generation of
multiple execution

plans

Generation of
query plans

15-AppB.indd 845 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

846 Oracle Database 12c PL/SQL Programming

Figure B-8 also demonstrates table and column aliases. The table alias is generally unnecessary
when writing a query against a single table. It is useful and necessary when you want to avoid
typing complete table names to disambiguate column names that are the same in two or more
tables. Because the FROM clause is read first, all references to the item table are mapped to i in
the rest of the query. This means that a reference to item.item_title would not be found.

TIP
The AS keyword is optional when setting column aliases but ensures
clarity that an alias follows it. Consistent use increases typing but
decreases support costs.

Column aliases shorten the item_title and item_rating column names to title and
rating, respectively. Aliases let you use shorter or more descriptive words for columns in a specific
use case. Sometimes the shorter words aren’t appropriate as column names because they’re too
general, such as title. The AS keyword is optional in Oracle and other databases, but I recommend
that you use it, because the clarity can simplify maintenance of queries. Just note that AS works
only with column aliases and would create a statement parsing error if you tried to use before a
table alias.

NOTE
The AS keyword cannot precede a table alias; it can precede only a
column alias.

In our example, we can modify the SELECT list to return an expression by concatenating a
string literal of 'MPAA: ' (Motion Picture Association of America) to the item_rating column.
Concatenating string is like gluing them together to form a big string. It would look like this in
Oracle using a piped concatenation:

SELECT i.item_title AS title
, 'MPAA: ' || i.item_rating AS rating

FIGURE B-8. Queries that return columns or results from columns

1

2

3

4

The FROM clause �nds the sources (tables or
views) and then the WHERE clause �lters the
number of rows returned by the query.

Orders the returned rows by the number of
the column returned in the SELECT clause.

The SELECT clause �lters
the columns that should be
returned by the query.

An equality comparison
between a column and
string literal value.

A LIKE comparison operator
between a column and string
literal value with a multiple
character wildcard operator.

Column aliases.

SELECT i.item_title AS title
, i.item_rating AS rating
FROM item i
WHERE i.item_rating = 'PG'
AND i.item_title LIKE 'Star Wars%'
ORDER BY 1, 2;

15-AppB.indd 846 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 847

The two vertical bars (||) are pipes, and using them to glue strings together is known as piped
concatenation. This would return results like these:

TITLE RATING
------------------------- ----------
Star Wars I MPAA: PG
Star Wars II MPAA: PG
Star Wars II MPAA: PG

In another context, you can perform math operations and string formatting. The following
SELECT list retrieves a transaction_date column and a transaction_amount column
from the transaction table:

SQL> SELECT t.transaction_date
 2 , TO_CHAR(t.transaction_amount,'90.00') AS price
 3 , TO_CHAR(t.transaction_amount * .0875,'90.00') AS tax
 4 , TO_CHAR(t.transaction_amount * 1.0875,'90.00') AS total
 5 FROM transaction t
 6 WHERE t.transaction_date = '10-JAN-2009';

The TO_CHAR function formats the final number as a string. The 90.00 format mask instructs
the display as follows: a 9 means display a number when present and display a white space when
no number fits the placeholder; 0 means display a number when it is present and display a 0
when no number is present. Inside the TO_CHAR function on lines 3 and 4, the column value is
multiplied by numeric literals that represent sales tax and price plus sales tax. It would produce
output like so:

Date Price Tax Total
--------- ------ ------ ------
10-JAN-09 9.00 0.79 9.79
10-JAN-09 3.00 0.26 3.26
10-JAN-09 6.00 0.53 6.53

The output is left-aligned, which means it’s formatted as a number, because strings are displayed
as right-aligned.

The FROM clause takes a single table or a comma-separated list of tables when writing queries
in ANSI SQL-89 format. The FROM clause takes tables separated by join keywords and their join
criterion or criteria in ANSI SQL-92 syntax.

The WHERE clause performs two types of comparisons. One is an equality comparison of two
values, which can come from columns, literals, or expressions. The other is an inequality
comparison, which can check when one value is found in another (such as a substring of a larger
string); when one value is greater than, greater than or equal to, less than, or less than or equal to
another; when one value isn’t equal to another value; when one value is in a set of values; or
when one value is between two other values. You can also state a negative comparison, such as
WHERE NOT. The WHERE NOT comparison acts like a not equal to operation.

A specialized operator lets you limit the number of rows returned by a query. Oracle supports
a ROWNUM pseudocolumn. You use ROWNUM to retrieve only the top five rows, like this:

WHERE rownum <= 6;

15-AppB.indd 847 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

848 Oracle Database 12c PL/SQL Programming

This is a handy tool when you’ve presorted the data and know where to cut off the return set.
When you forget to sort, the results generally don’t fit what you’re looking for.

The data set in the table determines whether the query returns unique or nonunique data—
that is, there could be multiple-rows with an item_title of “Star Wars: A New Hope,” and they
would be returned because they match the criteria in the WHERE clause. You can use the
DISTINCT operator to suppress duplicates without altering the logic of the WHERE clause (see
Figure B-9).

The next two subsections discuss subqueries and inline views, also known as runtime or
derived tables.

Subqueries
Subqueries are any SELECT statement nested within another DML statement, such as INSERT,
UPDATE, DELETE, and SELECT statements. Subqueries have been demonstrated in earlier in this
appendix because they’re very useful.

Regular Expression Alternatives
The Oracle database provide regular expression alternatives to the LIKE comparison
operator. They aren’t cross-portable, which makes the LIKE comparison operator the more
generic or vendor-neutral approach.

Oracle Regular Expression Alternative Oracle provides a variation on that generic SQL
LIKE comparison with the REGEXP_LIKE function. The last line of the query in Figure B-8
could use the following in an Oracle database:

AND REGEXP_LIKE(i.item_title,'^Star Wars.*$');

Check Appendix E for more information on the regular expression functions provided
by Oracle Database. Regular expressions are much better solutions than the older wildcard
operators.

FIGURE B-9. Query that returns distinct columns or results from columns

Guarantees a unique set of rows.

SELECT DISTINCT
 i.item_title AS title
, i.item_rating AS rating
FROM item i
WHERE i.item_rating = 'PG'
AND i.item_title LIKE 'Star Wars%'
ORDER BY 1, 2;

15-AppB.indd 848 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 849

Four types of basic subqueries can be used:

 ■ Scalar subqueries Return only one column and one row of data

 ■ Single-row subqueries Return one or more columns in one row of data

 ■ Multiple-row subqueries, ordinary subqueries, or subqueries Return one or more
columns in one or more rows of data

 ■ Correlated subqueries Return nothing, but they effect a join between the outer DML
statement and the correlated subquery

Another subquery can be used inside the FROM clause of a SELECT statement. This type of
subquery is actually a runtime view, or derived table. It isn’t technically a subquery. The following
sections describe the uses and occurrences of subqueries in DML statements.

Scalar Subqueries Scalar subqueries return only one thing: one column from one row. They
return a single value from a query. That’s because scalar variables are numbers, dates, strings, and
timestamps. Scalar data types are like primitive data types in the Java programming language.

Scalar subqueries are much like functions. You put comparative statements in the WHERE
clause to find a single-row, similar to defining formal parameters in a function. Then you return a
single column in the SELECT clause, which inherits its data type from the data catalog. The
SELECT clause designates the return data type of a function just like the return keyword in
procedural programming languages.

You can use scalar subqueries in the following places in DML statements:

 ■ The VALUES clause of an INSERT statement

 ■ The SELECT clause of a SELECT statement

 ■ The SET clause of an UPDATE statement

 ■ The WHERE clause of a SELECT, UPDATE, or DELETE statement

Single-Row Subqueries Single-row subqueries return one or more columns from a single-row.
This is more or less like returning a record data type. You can apply the same analogy of
comparative statements in the WHERE clause mapping to formal parameter definitions and the
return type mapping to the list of columns in the SELECT clause. When you exclude the scalar
behaviors of a single-row subquery, the following uses remain:

 ■ The SET clause of an UPDATE statement

 ■ The WHERE clause of a SELECT, UPDATE, or DELETE statement

Multiple-Row Subqueries Multiple-row subqueries are frequently called ordinary subqueries,
or just subqueries. These subqueries return one to many columns and rows of data. That means
they return result sets that mimic two-dimensional tables.

You can use multiple-row subqueries only in the WHERE clause of SELECT, UPDATE, or DELETE
statements. You also must use a valid lookup comparison operator, such as the IN, =ANY, =SOME,
or =ALL operator. These operators act like a chain of logical OR comparisons in a WHERE clause,

15-AppB.indd 849 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

850 Oracle Database 12c PL/SQL Programming

because they look to see if the leftmost operand in the comparison is found in the list of possible
values. The leftmost operand can be a single column or a record data type comprising two or
more columns.

A couple of quick examples to qualify these behaviors might help. These examples use the
dual pseudo-table to keep them bare bones. The list of values inside a set of parentheses is the
same as the value set returned by a multiple-row subquery. Here’s a standard use of a logical or
lookup comparison that deals with a single column:

SELECT 'True Statement' FROM dual
WHERE 'Lancelot' IN ('Arthur','Galahad','Lancelot');

This is equivalent to the chaining of logical OR statements in the WHERE clause, like this:

SELECT 'True Statement' FROM dual
WHERE 'Lancelot' = 'Arthur'
OR 'Lancelot' = 'Galahad'
OR 'Lancelot' = 'Lancelot';

The syntax doesn’t change much when you make the comparison of a record type to a list of
record types. The only other change is the substitution of the =ANY lookup operator for the IN
operator. As you can see, the lookup operators work the same way in this example:

SELECT 'True Statement' FROM dual
WHERE ('Harry Potter and the Chamber of Secrets','PG') =ANY
 (('Harry Potter and the Sorcerer's Stone','PG')
 ,('Harry Potter and the Chamber of Secrets','PG')
 ,('Harry Potter and the Prisoner of Azkaban','PG'));

which would work like this with a set of logical OR comparisons:

SELECT 'True Statement' FROM dual
WHERE (('Harry Potter and the Order of the Phoenix','PG-13') =
 ('Harry Potter and the Sorcerer's Stone','PG')
OR ('Harry Potter and the Order of the Phoenix','PG-13') =
 ('Harry Potter and the Chamber of Secrets','PG')
OR ('Harry Potter and the Order of the Phoenix','PG-13') =
 ('Harry Potter and the Prisoner of Azkaban','PG'));

The =ALL lookup operator is different because it checks whether a scalar or record data type
is found in all instances of a list. This means it works on a logical AND comparison basis. This
statement

SELECT 'True Statement' FROM dual
WHERE 'Lancelot' =ALL ('Lancelot','Lancelot','Lancelot');

is roughly equivalent to this:

SELECT 'True Statement' FROM dual
WHERE 'Lancelot' = 'Lancelot'
AND 'Lancelot' = 'Lancelot'
AND 'Lancelot' = 'Lancelot';

15-AppB.indd 850 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 851

Although these examples use lists of literal values, you could substitute multiple-row
subqueries. In many cases, this type of comparison is unnecessary because the same logic can be
resolved through ordinary join statements.

The only problem with lookup comparison operators is that they don’t easily extend the
behavior of the LIKE comparison operator. Figure B-9 introduced a LIKE operator against a
string literal with a wildcard operator. When the literal value is replaced by a subquery, the
comparison no longer works when the query returns more than one row. It would fail with an
ORA-01427 error in Oracle, which tells you a “single-row subquery returns more than one row.”

You can fix this behavior by doing two things: substitute an IN, =ANY, or =SOME lookup
comparison operator for the LIKE comparison operator, and use the SUBSTR function to make
the comparison against exact matches. This allows you to match the substrings that should be the
same. This particular match (shown in Figure B-10) starts at the first character, which is position 1,
because characters in strings are 1-based, not 0-based, in databases, and use the first nine
characters.

There are two natural wildcard characters in SQL. The multiple-character wildcard is the percent
symbol (%) and the single-character wildcard is an underscore (_) character. The dot (.) is only a
wildcard when used as part of a regular expression, which you can read about in Appendix E.

Oracle supports the SUBSTR function. The SUBSTR function is covered later in Appendix C.

Correlated Subqueries Correlated subqueries join the inside query to a value returned by each
row in the outer query. As such, correlated subqueries act as function calls made for each row
returned by the outer query. The rule of thumb on correlated subqueries requires that you join on
uniquely indexed columns for optimal results. Ordinary subqueries typically outperform
correlated subqueries when you can’t join on uniquely indexed columns.

Correlated subqueries appear to return something when they’re inside the SET clause of an
UPDATE statement. As you saw earlier in the “UPDATE Statement” section, a multiple-row
subquery actually returns values based on a match between the row being updated and a nested
correlated subquery. The actual update is performed by a multiple-row subquery, not a correlated
subquery. Correlated subqueries can’t return values through the SELECT list; they can only match
results in their WHERE clause.

FIGURE B-10. Wildcard comparison against multiple-row subquery

A match using a combination
of the SUBSTR function and a
lookup comparison operator.SELECT DISTINCT

 i.item_title AS title
, i.item_rating AS rating
FROM item i
WHERE i.item_rating = 'PG'
AND SUBSTR(i.item_title,1,9) =SOME
 (SELECT SUBSTR(ti.item_title,1,9)
 FROM temp_item ti)
ORDER BY 1, 2;

15-AppB.indd 851 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

852 Oracle Database 12c PL/SQL Programming

You can use correlated subqueries in the following:

 ■ The SELECT list

 ■ The WHERE clause of a SELECT, UPDATE, or DELETE statement

The multiple-row subquery example extends the behavior depicted in Figure B-9. The
multiple-row subquery runs once for the outer query and returns a list of values. The IN, =ANY, or
=SOME lookup operator lets you perform a lookup to determine whether a variable is found in the
list of values.

Although less efficient, a correlated subquery can be used to solve this type of problem.
Oracle lets you perform it with the REGEXP_LIKE function, like this:

AND EXISTS
 (SELECT NULL
 FROM temp_item ti
 WHERE REGEXP_LIKE(i.item_title,'^'||SUBSTR(ti.item_title,1,9)||'.+'));

In these correlated query examples, you see Oracle’s piped concatenation model. The
limitation of Oracle’s CONCAT function dictates that you should use piped concatenation, which
differs from other databases that use a recursive CONCAT function.

Inline Views
An inline view is a query inside the FROM clause of a query or inside a WITH clause. The WITH
clause is newer and was introduced in the ANSI SQL-1999 standard. Inline views are also labeled
a runtime or derived table, and Microsoft calls them Common Table Expressions (CTEs). Oracle
Database 12c documentation also calls them global temporary tables.

The query in a FROM or WITH clause dynamically creates a view at runtime. It’s possible that
the same inline view can be used in multiple places within a large query. When an inline view
appears in multiple places within a query, it is run multiple times. This is inefficient and
unnecessary when the WITH clause is supported in the database. The WITH clause provides an
inline view with a named reference, runs it only once, and lets you use the name reference in
more than one place in the query.

Here’s a sample of an inline view in the FROM clause:

SQL> SELECT c.first_name||' '||c.last_name AS person
 2 , inline.street_address
 3 , inline.city
 4 , inline.state_province
 5 FROM contact c INNER JOIN
 6 (SELECT a.contact_id
 7 , sa.street_address
 8 , a.city
 9 , a.state_province
 10 FROM address a INNER JOIN street_address sa
 11 ON a.address_id = sa.address_id) inline
 12 ON inline.contact_id = c.contact_id;

15-AppB.indd 852 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 853

The inline view is on lines 6 through 11, and the join between the il inline view and
contact table is on line 12. The inline view must return the foreign key column in the SELECT
list for it to be used later in the join on line 12. Failure to return the key column in the inline view
would leave nothing to use in a join statement.

The preceding inline view can be refactored to work with a WITH clause, like this:

SQL> WITH inline AS
 2 (SELECT a.contact_id
 3 , sa.street_address
 4 , a.city
 5 , a.state_province
 6 FROM address a INNER JOIN street_address sa
 7 ON a.address_id = sa.address_id)
 8 SELECT c.first_name||' '||c.last_name AS person
 9 , inline.street_address
 10 , inline.city
 11 , inline.state_province
 12 FROM contact c INNER JOIN inline inline
 13 ON inline.contact_id = c.contact_id;

Line 12 references the inline name of the inline view, which is on lines 1 to 7. Line 12
identifies an INNER JOIN between the contact table and the inline view, and line 13 provides
the criteria to match values between the table and the view. Large queries have a tendency to
reuse inline views in multiple places, which isn’t a good thing. Inline views must be run each
time they’re encountered in the query. The WITH clause fixes this performance nightmare because
the query is run once, given a name, and then the result sets are usable anywhere else in the
query. The WITH clause should always be your first choice for subqueries, especially when you
have two or more copies in the statement.

It’s also possible to have multiple inline views (or global temporary tables). You list them with
a designated name in a comma-delimited list. The following code shows a WITH clause with two
inline views:

SQL> WITH inline1 AS
 2 (SELECT a.contact_id
 3 , sa.street_address
 4 , a.city
 5 , a.state_province
 6 FROM address a INNER JOIN street_address sa
 7 ON a.address_id = sa.address_id)
 8 , inline2 AS
 9 (SELECT c.first_name || c.last_name AS person
 10 , i.street_address
 11 , i.city
 12 , i.state_province
 13 FROM contact c INNER JOIN inline1 i
 14 ON i.contact_id = c.contact_id)
 15 SELECT * FROM inline2;

15-AppB.indd 853 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

854 Oracle Database 12c PL/SQL Programming

Line 1 declares inline1 as a runtime view, while lines 2 through 7 implement a query that
joins both the address and street_address tables. Likewise, line 8 declares inline2 as a
runtime view, while lines 9 through 14 implement a join between the contact table and the
inline1 view. Line 15 holds a query based on the inline2 runtime view. Oracle Database
12c provides the new CROSS APPLY, OUTER APPLY, and LATERAL joins, as qualified in
Chapter 2. These new cross join operations let you rewrite the preceding WITH clause into a
correlated query between two runtime views.

Oracle Database 12c introduces PL/SQL functions inside the WITH clause. The only catch
comes when you try to run them, because they have embedded semicolons. Let’s say you run the
command from inside SQL*Plus. You would first disable the default SQL terminator, a semicolon
(;), with this SQL*Plus command:

SET SQLTERMINATOR OFF

Then, you can create a local function in your WITH statement, like this:

SQL> COLUMN person FORMAT A18
SQL> WITH
 2 FUNCTION glue
 3 (pv_first_name VARCHAR2
 4 , pv_last_name VARCHAR2) RETURN VARCHAR2 IS
 5 lv_full_name VARCHAR2(100);
 6 BEGIN
 7 lv_full_name := pv_first_name || ' ' || pv_last_name;
 8 RETURN lv_full_name;
 9 END;
 10 SELECT glue(a.first_name,a.last_name) AS person
 11 FROM actor a
 12 /

The function on lines 2 through 9 simply concatenates two strings with a single-character
white space between them. The semicolons are treated as ordinary characters in the query since
the default SQL terminator is disabled. You should also note that the SQL statement is run by the
SQL*Plus forward slash and that the complete statement doesn’t have a terminating semicolon on
line 11.

In this simple example, the actor table contains two actors’ names (from the Iron Man
franchise), and the query returns

PERSON

Robert Downey
Gwyneth Paltrow

You will encounter some parsing difficulty running queries like this when you submit them
through tools such as Oracle SQL Developer. The easiest fix to those problems is to wrap the
query in a view, because calls through tools to SQL*Plus disallow changing the SQLTERMINATOR
value. Only the interactive SQL*Plus mode lets you change the SQLTERMINATOR value. This
means you can’t write and run a dynamic SELECT statement with a WITH clause that has an
embedded PL/SQL function. Embedding this type of query inside a view is your only feasible
option to call them from your application software.

15-AppB.indd 854 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 855

The following DDL statement creates a view based on an embedded PL/SQL function within a
WITH statement:

SQL> CREATE OR REPLACE VIEW actor_v AS
 2 WITH
 3 FUNCTION glue
 4 (pv_first_name VARCHAR2
 5 , pv_last_name VARCHAR2) RETURN VARCHAR2 IS
 6 BEGIN
 7 RETURN pv_first_name || ' ' || pv_last_name;
 8 END;
 9 SELECT glue(a.first_name,a.last_name) AS person
 10 FROM actor a
 11 /

As you know, a view is nothing more than a stored query. The actor_v view shrinks the
glue function by two lines. It removes the declaration of lv_full_name and replaces the
assignment of the concatenated values with a direct return of the result on line 7.

If you want to run ordinary SQL commands with the default semicolon, you should reenable
the default SQL terminator:

SET SQLTERMINATOR ON

The obvious benefit of the WITH clause is that it runs once and can be used multiple times in
the scope of the query. Likewise, you can embed functions that have a local scope to a single
query. Some ask, why use a WITH clause when you can use the global temporary table? Tom Kyte
answered that in his Ask Tom column, stating more or less that the optimizer can merge the WITH
clause with the rest of the statement, while a global temporary table can’t.

Hierarchical Queries
You can use hierarchical queries to step through tree-like data stored in self-referencing tables,
like those shown in Figure B-11 for organizations and organizational structures. The org_
structure table in Figure B-11 contains two foreign keys (org_parent_id and org_child_
id), both of which reference the organization_id column.

The topmost node, or root node, contains 0 as an org_parent_id because organizations
start numbering at 1. You could also define the root node org_parent_id as a null value.
Bottom nodes, or leaf nodes, are those organizations that appear as org_child_id but not as
org_parent_id.

This section shows you four hierarchical query techniques:

 ■ How to navigate a complete tree from the top down and order by siblings

 ■ How to navigate from a leaf, or any intermediary, node up a tree to the root node and
how to limit the depth of traversal

 ■ How to find all leaf nodes and use the result to navigate several trees concurrently

 ■ How to use NOCYCLE to identify rows that cause an ORA-01436 error, which means the
tree-linking relationship is broken

15-AppB.indd 855 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

856 Oracle Database 12c PL/SQL Programming

As a quick caveat, the START WITH clause is technically optional. If you exclude it, all
nodes are root nodes and the default depth is only two. So, practically, it’s not optional for
meaningful work.

Down the Tree
This query allows you to navigate down the tree from the root node. You navigate down the tree
when the PRIOR keyword precedes the child or dependent node. The SQL*Plus formatting
commands generate the output shown.

COL org_id FORMAT A12
COL org_name FORMAT A12

SELECT LPAD(' ', 2*(LEVEL - 1)) || os.org_child_id AS org_id
, o.organization_name org_name
FROM organization o
, org_structure os
WHERE o.organization_id = os.org_child_id
START
WITH os.org_parent_id = 0
CONNECT
BY PRIOR os.org_child_id = os.org_parent_id;

It produces the following output:

ORG_ID ORG_NAME
------------ ------------
1 One
 2 Two

FIGURE B-11. Flexible organization hierarchy

ORGANIZATION ORG_STRUCTURE

#CONTACT_ID : NUMBER
#ORGANIZATION_ID : NUMBER
#ORGANIZATION_NAME : VARCHAR2
#CREATED_BY : NUMBER
#CREATION_DATE : DATE
#LAST_UPDATED_BY : NUMBER
#LAST_UPDATE_DATE : DATE

#ADDRESS_ID : NUMBER
#ORG_PARENT_ID : NUMBER
#ORG_CHILD_ID : NUMBER
#CREATED_BY : NUMBER
#CREATION_DATE : DATE
#LAST_UPDATED_BY : NUMBER
#LAST_UPDATE_DATE : DATE

#belongs to #is a child* 0..1

0..1

#belongs to #belongs to

#controls

#is a parent* *1

15-AppB.indd 856 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 857

 5 Five
 11 Eleven
 12 Twelve
 6 Six
 13 Thirteen
 14 Fourteen
 20 Twenty
 3 Three
 7 Seven
 15 Fifteen
 8 Eight
 16 Sixteen
 17 Seventeen
 4 Four
 9 Nine
 18 Eighteen
 19 Nineteen
 10 Ten

If there were an offending row in the table that didn’t have a connecting parent and child set
of foreign keys, you’d raise an ORA-01436 error. It means you can’t CONNECT BY PRIOR
because a row’s values are nonconforming. You can enter a row to break the hierarchy provided
that the org_parent_id and org_child_id have the same value. Then, this modified query
will identify the offending row for you:

SELECT LPAD(' ', 2*(LEVEL - 1)) || os.org_child_id AS org_id
, o.organization_name org_name
FROM organization o
, org_structure os
WHERE o.organization_id = os.org_child_id
START WITH os.org_parent_id = 0
CONNECT BY
NOCYCLE PRIOR os.org_child_id = os.org_parent_id;

The next query changes the output because it orders by siblings. This means that the numeric
ordering of the parent and child nodes is overridden.

SELECT LPAD(' ', 2*(LEVEL - 1)) || os.org_child_id AS org_id
, o.organization_name org_name
FROM organization o
, org_structure os
WHERE o.organization_id = os.org_child_id
START
WITH os.org_parent_id = 0
CONNECT
BY PRIOR os.org_child_id = os.org_parent_id
ORDER
SIBLINGS
BY o.organization_name;

15-AppB.indd 857 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

858 Oracle Database 12c PL/SQL Programming

The sort now represents a tree in alphabetical ordering of the organization name:

ORG_ID ORG_NAME
------------ ------------
1 One
 4 Four
 9 Nine
 18 Eighteen
 19 Nineteen
 10 Ten
 3 Three
 8 Eight
 17 Seventeen
 16 Sixteen
 7 Seven
 15 Fifteen
 2 Two
 5 Five
 11 Eleven
 12 Twelve
 6 Six
 14 Fourteen
 20 Twenty
 13 Thirteen

Up the Tree
The following query switches the position of the PRIOR keyword. It now precedes the parent
node. This means that it will go up the tree. The START WITH clause in this case starts with an
intermediary node.

SELECT LPAD(' ', 2*(LEVEL - 1)) || os.org_child_id AS org_id
, o.organization_name org_name
FROM organization o
, org_structure os
WHERE o.organization_id = os.org_child_id
START
WITH os.org_child_id = 6
CONNECT
BY os.org_child_id = PRIOR os.org_parent_id;

The output is

ORG_ID ORG_NAME
------------ ------------
6 Six
 2 Two
 1 One

15-AppB.indd 858 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 859

Restricting the Depth of Search
This is another up-the-tree hierarchical query. It starts from the bottommost leaf node, which is at
depth five from the root node. The query restricts upward navigation to three levels or the two
immediate parents (or, if you prefer, parent and grandparent).

SELECT LPAD(' ', 2*(LEVEL - 1)) || os.org_child_id AS org_id
, o.organization_name org_name
FROM organization o
, org_structure os
WHERE o.organization_id = os.org_child_id
AND LEVEL <= 3
START
WITH os.org_child_id = 20
CONNECT
BY os.org_child_id = PRIOR os.org_parent_id;

The output is

ORG_ID ORG_NAME
------------ ------------
20 Twenty
 14 Fourteen
 6 Six

Leaf Node Up
Traversing from a leaf node can start by inspecting which are leaf nodes first and then hard-coding
a value in the START WITH clause. A better approach is to use a subquery to identify leaf nodes
and then use a filter in the outer WHERE clause to limit the leaf nodes. The leaf nodes are plural in
both of these solutions.

This solution works prior to Oracle Database 10g and continues to work through Oracle
Database 12c:

SELECT LPAD(' ', 2*(LEVEL - 1)) || os.org_child_id AS org_id
, o.organization_name org_name
FROM organization o
, org_structure os
WHERE o.organization_id = os.org_child_id
START
WITH os.org_child_id IN (SELECT os1.org_child_id
FROM org_structure os1 LEFT JOIN org_structure os2
ON os2.org_parent_id = os1.org_child_id
MINUS
SELECT os1.org_child_id
FROM org_structure os1 JOIN org_structure os2
ON os2.org_parent_id = os1.org_child_id)
CONNECT
BY os.org_child_id = PRIOR os.org_parent_id;

15-AppB.indd 859 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

860 Oracle Database 12c PL/SQL Programming

The following solution uses the connect_by_leaf pseudocolumn (introduced in Oracle
Database 10g) to replace the outer join minus the join in the subquery. It also uses the ORDER
SIBLINGS BY clause to order the tree by the alphabetical organization_name column values.

SELECT LPAD(' ', 2*(LEVEL - 1)) || os.org_child_id AS org_id
, o.organization_name org_name
FROM organization o
, org_structure os
WHERE o.organization_id = os.org_child_id
START
WITH os.org_child_id IN (SELECT org_child_id
FROM org_structure
WHERE CONNECT_BY_ISLEAF = 1
START
WITH org_child_id = 1
CONNECT BY PRIOR org_child_id = org_parent_id)
CONNECT BY os.org_child_id = PRIOR os.org_parent_id
ORDER SIBLINGS BY o.organization_name;

The snapshot of output for the latter is

ORG_ID ORG_NAME
---------- ----------
18 Eighteen
 9 Nine
 4 Four
 1 One
11 Eleven
 5 Five
 2 Two
 1 One
15 Fifteen
 7 Seven
 3 Three
 1 One

 ... content removed for readability ...

12 Twelve
 5 Five
 2 Two
 1 One
20 Twenty
 14 Fourteen
 6 Six
 2 Two
 1 One

I did leave out the connect_by_root and sys_connect_by_path. You can find the two
missing functions in the Oracle Database SQL Language Reference 12c Release 1.

15-AppB.indd 860 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 861

Queries that Aggregate
Aggregation means counting, adding, and grouping results of COUNT, SUM, AVERAGE, MIN, and
MAX functions. Aggregation queries add one or two more clauses than those presented in Figure B-8.
Figure B-12 shows the GROUP BY and HAVING clauses.

The GROUP BY clause must refer to all nonaggregated columns in the SELECT list, because
they’re not unique, and there’s no sense in returning all the rows when you need only one row
with the nonunique columns and the aggregated result. The GROUP BY clause instructs the
database to do exactly that: return only distinct versions of nonunique columns with the aggregated
result columns. As you can see in Figure B-12, the GROUP BY clause runs after the query has
identified all rows and columns. The COUNT function takes an asterisk (*) as its single argument.
The * represents an indirection operator that points to rows returned by the query. The * is
equivalent to the ROWID pseudocolumn in Oracle. It counts rows whether a row contain any
values or not.

NOTE
The asterisk (*) is one of the places where the concept of indirection
and a pointer shows itself in databases.

After the database returns the aggregated result set, the HAVING clause filters the result set. In
the example, it returns only those aggregated results that have two or more rows in the table. The
ORDER BY clause then sorts the return set.

The following list qualifies the ANSI SQL pattern for processing a single table query with
aggregation and a GROUP BY and HAVING clause:

1. It finds a table in the FROM clause.

2. It optionally assigns a table alias as a runtime placeholder for the table name.

3. It gets the table definition from the data catalog to determine the valid column names.

FIGURE B-12. Order of operation on aggregate queries

1

2

3

4

The GROUP BY must refer to all non-aggregated columns returned by
the SELECT clause, and it must exclude column aliases.

SELECT i.item_title AS title
, i.item_rating AS rating
, COUNT(*) AS copies
FROM item i
WHERE i.item_rating = 'PG'
AND i.item_title LIKE 'Star Wars%'
GROUP BY i.item_title
, i.item_rating
HAVING COUNT(*) > 1
ORDER BY 1, 2;6

5

The HAVING clause acts like the WHERE
clause but applies to aggregated result sets.

15-AppB.indd 861 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

862 Oracle Database 12c PL/SQL Programming

4. If a table alias is present (and it is), it optionally maps the alias to the table’s data catalog
definition.

5. It filters rows into the result set based on the value of columns in the WHERE clause.

6. The list of columns in the SELECT clause filters the desired columns from the complete
set of columns in a row.

7. The aggregation function triggers a check for a GROUP BY clause when nonaggregated
columns are returned in the SELECT list and then aggregates results.

8. The HAVING operator filters the result set from the aggregation or the GROUP BY
aggregation.

9. If an ORDER BY clause occurs in the query, rows are sorted by the designated columns.

We’ll work through the basic aggregation steps most developers use frequently. They cover
the COUNT, SUM, AVERAGE, MAX, and MIN functions. The following discussions use two sets of
ordinal and cardinal numbers (some values are not displayed to save space) that are stored in the
ordinal table, like so:

 ID LIST_SET LIST_NAME LIST_VALUE
---------- -------------------- ---------- ----------
 1 Value Set A Zero 0
 2 Value Set A One 1
 3 Value Set A Two 2
 4 Value Set A Three 3
 5 Value Set A Four 4
 6 Value Set A Five 5
 7 Value Set A Six 6
 8 Value Set A Seven 7
 9 Value Set A Eight 8
 10 Value Set A Nine 9
 11 Value Set A
 12 Value Set B Zero 0
 13 Value Set B One 1
 ...
 21 Value Set B Nine 9
 22 Value Set B

You’ve been exposed to the data set to help you understand how the aggregation functions
work in the following subsections.

Aggregate Columns Only
The COUNT function has two behaviors: counting by reference and counting by value. They differ
on how they treat null values. You count the number of physical rows when you count by
reference, and you count the physical values when you count by value.

The count by reference example counts the number of rows in the ordinal table, like this:

SQL> SELECT COUNT(*) AS number_of_rows FROM ordinal;

15-AppB.indd 862 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 863

It returns the following:

NUMBER_OF_ROWS

 22

The count by value example counts the values in the list_value column. The list_
value column contains two null values. The column name is substituted for the asterisk, like this:

SQL> SELECT COUNT(list_value) AS number_of_values FROM ordinal;

It returns the following:

NUMBER_OF_VALUES

 20

The return set is two less than the number of rows because the COUNT function doesn’t count
null values. You can also count all values (which is the default performed in the preceding
example) or distinct values only. Both approaches exclude null values.

The following query demonstrates counting using the default, an explicit ALL, and DISTINCT
number of values found in the list_name and list_value columns:

SQL> SELECT COUNT(list_name) AS default_number
 2 , COUNT(ALL list_name) AS explicit_number
 3 , COUNT(DISTINCT list_value) AS distinct_number
 4 FROM ordinal;

Here are the results:

DEFAULT_NUMBER EXPLICIT_NUMBER DISTINCT_NUMBER
-------------- --------------- ---------------
 20 20 10

Notice that the COUNT function returns the same number with or without the ALL keyword.
That’s because the default is ALL, which is provided when you don’t use it. It also counts the
occurrences of strings or numbers. When ALL is specified, you count each individual element,
not just the unique set of elements. The DISTINCT keyword forces a unique sort of the data set
before counting the results.

The SUM, AVG, MAX, and MIN functions work only with numbers. The following demonstrates
the SUM and AVG functions against the list_value column:

SQL> SELECT SUM(ALL list_value) AS sum_all
 2 , SUM(DISTINCT list_value) AS sum_distinct
 3 , AVG(ALL list_value) AS avg_all
 4 , AVG(DISTINCT list_value) AS avg_distinct
 5 FROM ordinal;

15-AppB.indd 863 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

864 Oracle Database 12c PL/SQL Programming

Here’s the result set:

 SUM_ALL SUM_DISTINCT AVG_ALL AVG_DISTINCT
---------- ------------ ---------- ------------
 90 45 4.5 4.5

The sum of two sets of the ordinal numbers is 90, and the sum of one set is 45. The average of
all or the distinct set is naturally the same.

The next example runs the MAX and MIN functions:

SQL> SELECT MIN(ALL list_value) AS min_all
 2 , MIN(DISTINCT list_value) AS min_distinct
 3 , MAX(ALL list_value) AS max_all
 4 , MAX(DISTINCT list_value) AS max_distinct
 5 FROM ordinal;

It produces these results:

 MIN_ALL MIN_DISTINCT MAX_ALL MAX_DISTINCT
---------- ------------ ---------- ------------
 0 0 9 9

The minimum or maximum of two sets of the same group of numbers is always the same. The
minimum is 0 and the maximum is 9 for ordinal numbers.

Aggregate and Nonaggregate Columns
The principal of returning aggregate and nonaggregate columns starts with understanding that you
get only one row when you add a column of numbers. By extension, you get one row for every
type of thing you count. A real-world example of that would be counting a bag of fruit. You
separate the fruit into groups, such as apples, oranges, pears, and apricots. Then you count the
number of each type of fruit.

The following counts the number of rows and values for each unique value in the list_set
column:

SQL> SELECT list_set AS grouping_by_column
 2 , COUNT(*)
 3 , COUNT(list_value)
 4 FROM ordinal
 5 GROUP BY list_set;

And here are the results of this query:

GROUPING_BY_COLUMN COUNT(*) COUNT(LIST_VALUE)
-------------------- ---------- -----------------
Value Set A 11 10
Value Set B 11 10

The results tells you that you have 11 rows in each group and only 10 values, which means
each group has one row that contains a null value. You change the SELECT list and the GROUP
BY clause when you want to identify the rows with the null values.

15-AppB.indd 864 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 865

The following query returns a 0 when the value is null and returns a 1 otherwise:

SQL> SELECT list_set AS grouping_by_not_null
 2 , list_name AS group_by_null_too
 3 , COUNT(*)
 4 , COUNT(list_value)
 5 FROM ordinal
 6 WHERE list_set = 'Value Set A'
 7 GROUP BY list_set
 8 , list_name;

And here are the results from the query:

GROUPING_BY_NOT_NULL GROUP COUNT(*) COUNT(LIST_VALUE)
-------------------- ----- ---------- -----------------
Value Set A Zero 1 1
Value Set A Five 1 1
Value Set A Three 1 1
Value Set A Four 1 1
Value Set A One 1 1
Value Set A Two 1 1
Value Set A Eight 1 1
Value Set A Nine 1 1
Value Set A Seven 1 1
Value Set A Six 1 1
Value Set A 1 0

The only problem with the return set is that the cardinal numbers aren’t in numeric order. That
requires a special ORDER BY clause with a CASE statement. You could add the following to the
last query to get them sorted into numeric order:

 9 ORDER BY CASE
 10 WHEN list_name = 'Zero' THEN 0
 11 WHEN list_name = 'One' THEN 1
 12 WHEN list_name = 'Two' THEN 2
 13 WHEN list_name = 'Three' THEN 3
 14 WHEN list_name = 'Four' THEN 4
 15 WHEN list_name = 'Five' THEN 5
 16 WHEN list_name = 'Six' THEN 6
 17 WHEN list_name = 'Seven' THEN 7
 18 WHEN list_name = 'Eight' THEN 8
 19 WHEN list_name = 'Nine' THEN 9
 20 END;

This type of ORDER BY clause lets you achieve numeric ordering without changing any of the
data. Note that null values are always sorted last in an ascending sort and first in a descending sort.

NOTE
Ascending sorts put nulls last while descending sorts put nulls first.

15-AppB.indd 865 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

866 Oracle Database 12c PL/SQL Programming

The following query demonstrates the GROUP BY for the SUM, AVG, MAX, and MIN functions:

SQL> SELECT list_set AS grouping_by_not_null
 2 , SUM(list_value) AS ordinal_sum
 3 , AVG(list_value) AS ordinal_avg
 4 , MIN(list_value) AS ordinal_min
 5 , MAX(list_value) AS ordinal_max
 6 FROM ordinal
 7 GROUP BY list_set;

It displays the following:

GROUPING_BY_NOT_NULL ORDINAL_SUM ORDINAL_AVG ORDINAL_MIN ORDINAL_MAX
-------------------- ----------- ----------- ----------- -----------
Value Set A 45 4.5 0 9
Value Set B 45 4.5 0 9

This returns the expected result set from the functions. They naturally match for each set of
ordinal numbers. If you were to alter the data set, you could get different results.

Queries that Return Columns or Results Selectively
Queries that return columns or results selectively depend on conditional logic. Originally, SQL
wasn’t designed to contain any conditional logic. Oracle introduced conditional logic as an
extension to the definition in the 1980s by implementing the DECODE function. The ANSI SQL
definition added the CASE operator, which you saw illustrated in an ORDER BY clause in the
preceding section.

You need to understand the different proprietary solutions and the CASE operator before you
see an exhibit of selective aggregation. The following sections discuss the Oracle proprietary
DECODE function and the CASE statement before discussing selective aggregation.

Oracle Proprietary DECODE Statement
The DECODE function allows you to perform if-then-else logic on equality matches. It doesn’t
support inequalities except as the else condition of an equality comparison. You can nest DECODE
functions as call parameters to a DECODE function. The DECODE function is also not portable. As a
best practice, avoid the DECODE function. As a reality check, millions of lines of code use the
DECODE function, which makes its coverage essential and learning it unavoidable.

Here’s the prototype for the DECODE function:

DECODE(expression, search, result
 [, search, result [, ...]]
 [, default])

The function requires at least an expression or column return value, a search value, and a
result before an optional default value. You can also add any number of pairs of search values and
results before the optional default value.

Some SQL*Plus formatting is necessary to get a clean test in Oracle. You can check back to
Appendix A for instructions on these formatting commands:

-- Set null to a visible string.
SET NULL "<Null>"

15-AppB.indd 866 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 867

-- Set column formatting for an alphanumeric string.
COLUMN "Test 1" FORMAT A9
COLUMN "Test 2" FORMAT A9
COLUMN "Test 3" FORMAT A9
COLUMN "Test 4" FORMAT A9
COLUMN "Test 5" FORMAT A9
COLUMN "Test 6" FORMAT A9
COLUMN "Test 7" FORMAT A9

The following single test case covers the outcome possibilities of a DECODE function:

SQL> SELECT DECODE('One','One','Equal') AS "Test 1"
 2 , DECODE('One','Two','Equal') AS "Test 2"
 3 , DECODE('One','One','Equal','Not Equal') AS "Test 3"
 4 , DECODE('One','Two','Equal','Not Equal') AS "Test 4"
 5 , DECODE('One','Two','Equal'
 6 ,'Three','Equal') AS "Test 5"
 7 , DECODE('One','Two','Equal'
 8 ,'Three','Equal','Not Equal') AS "Test 6"
 9 , DECODE('One','Two','Equal'
 10 ,'Three','Equal'
 11 ,'One','Equal','Not Equal') AS "Test 7"
 12 FROM dual;

The query returns the following results:

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7
--------- --------- --------- --------- --------- --------- ---------
Equal <Null> Equal Not Equal <Null> Not Equal Equal

Tests 1 and 2 These tests use the DECODE function as an if-then block of code. The first call
parameter to the DECODE function is what you’re trying to match with the second call parameter.
When they match, the third call parameter is returned. When they fail to match, the null value is
returned.

TIP
The mnemonic for an if-then block is “three call parameters to the
DECODE function.”

This behavior is handy when you’re counting success in a selective aggregation model,
because the following would count only individuals who are single:

SQL> WITH inline AS
 2 (SELECT 'Single' AS marital_status FROM dual
 3 UNION ALL
 4 SELECT 'Single' AS marital_status FROM dual
 5 UNION ALL
 6 SELECT 'Married' AS marital_status FROM dual)
 7 SELECT COUNT(DECODE(inline.marital_status,'Single',1)) AS Single
 8 FROM inline;

15-AppB.indd 867 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

868 Oracle Database 12c PL/SQL Programming

It returns the number of rows in the single column:

 SINGLE

 2

This demonstrates that the DECODE function selectively counts results based on matches and
nonmatches in the fabricated table of three rows. What it can’t do is provide the count of nonmatches.

Tests 3 and 4 These tests use the DECODE function as an if-then-else block of code. The first,
second, and third call parameters work like tests 1 and 2. The thing that’s different with an else
condition is that something meaningful is returned when the compared values fail to match.

TIP
The mnemonic for an if-then-else block is “four call parameters to the
DECODE function.”

This behavior is even better than the results from tests 1 and 2 for selective aggregation. It lets
you count matches and nonmatches by using two columns instead of one in the SELECT list. You
can count the number of rows in the single column and in the married column, like so:

SQL> WITH inline AS
 2 (SELECT 'Single' AS marital_status FROM dual
 3 UNION ALL
 4 SELECT 'Single' AS marital_status FROM dual
 5 UNION ALL
 6 SELECT 'Married' AS marital_status FROM dual)
 7 SELECT COUNT(DECODE(inline.marital_status,'Single',1)) AS Single
 8 , COUNT(DECODE(inline.marital_status,'Married',1)) AS Married
 9 FROM inline;

The two columns now give us this more meaningful result:

 SINGLE MARRIED
---------- ----------
 2 1

This demonstrates that you can ask two sides of the same question by putting the results in
separate columns. This is a form of SQL transformation.

Tests 5, 6, and 7 These tests use the DECODE function as if-then-elseif and if-then-elseif-else
blocks of code. They act more or less like traditional switch statements, except Oracle doesn’t
support fall-through behavior. Fall-through behavior would return a result for the first and every
subsequent CASE statement where the conditions were met.

The first, second, and third call parameters work like tests 1 through 4, but call parameters 4
and 5, 6 and 7, 8 and 9, and so forth would be cases. The lack of an even number of parameters
means there’s no default case. That means an odd number of parameters 5 and above makes a
DECODE function into a switch statement without a default condition. Likewise, an even number of
parameters 6 and above makes a DECODE function into a switch statement with a default condition.

15-AppB.indd 868 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 869

TIP
The mnemonic for an if-then-elseif block is “five or any greater
odd number of call parameters to the DECODE function,” and the
mnemonic for an if-then-elseif-else block is “six or any greater even
number of call parameters to the DECODE function.”

This behavior allows us to test more than just two cases. The downside is that it becomes
verbose quickly. You can now count the number of rows in the single column, the divorced
column, and the married column, like so:

SQL> WITH inline AS
 2 (SELECT 'Single' AS marital_status FROM dual
 3 UNION ALL
 4 SELECT 'Single' AS marital_status FROM dual
 5 UNION ALL
 6 SELECT 'Divorced' AS marital_status FROM dual
 7 UNION ALL
 8 SELECT 'Annulled' AS marital_status FROM dual
 9 UNION ALL
 10 SELECT 'Married' AS marital_status FROM dual)
 11 SELECT COUNT(DECODE(inline.marital_status,'Single',1)) AS Single
 12 , COUNT(DECODE(inline.marital_status,'Divorced',1)) AS Divorced
 13 , COUNT(DECODE(inline.marital_status,'Married',1)) AS Married
 14 FROM inline;

The data set now has four classifications in the inline view but only three evaluations in the
SELECT list. Any person whose marital status is annulled is excluded from your SQL report. The
results would be the following:

 SINGLE DIVORCED MARRIED
---------- ---------- ----------
 2 1 1

You could capture the annulled marriages by some math operation, such as the following,
with the DECODE function:

 11 SELECT COUNT(DECODE(inline.marital_status,'Single',1)) AS Single
 12 , COUNT(DECODE(inline.marital_status,'Divorced',1)) AS Divorced
 13 , COUNT(DECODE(inline.marital_status,'Married',1)) AS Married
 14 , COUNT(inline.marital_status) -
 15 (COUNT(DECODE(inline.marital_status,'Single',1)) +
 16 COUNT(DECODE(inline.marital_status,'Divorced',1)) +
 17 COUNT(DECODE(inline.marital_status,'Married',1))) AS Other
 18 FROM inline

It would now give you this:

 SINGLE DIVORCED MARRIED OTHER
---------- ---------- ---------- ----------
 2 1 1 1

15-AppB.indd 869 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

870 Oracle Database 12c PL/SQL Programming

This is the limit of what you can do with the DECODE function, which is why using the CASE
operator is recommended.

ANSI SQL CASE Operator
The CASE operator is the most portable operator, and it allows for equality and inequality evaluation,
range comparisons, and in-set comparisons. It also supports multiple CASE statements, such as a
switch statement without fall-through characteristics. You can likewise use comparisons against
subqueries and correlated subqueries.

In an Oracle database, the following query matches case-insensitive strings from the inline
view against string literals for the primary colors on the color wheel:

SQL> SELECT inline.color_name
 2 , CASE
 3 WHEN UPPER(inline.color_name) = 'BLUE' THEN
 4 'Primary Color'
 5 WHEN UPPER(inline.color_name) = 'RED' THEN
 6 'Primary Color'
 7 WHEN UPPER(inline.color_name) = 'YELLOW' THEN
 8 'Primary Color'
 9 ELSE
 10 'Not Primary Color'
 11 END AS color_type
 12 FROM (SELECT 'Red' AS color_name FROM dual
 13 UNION ALL
 14 SELECT 'Blue' AS color_name FROM dual
 15 UNION ALL
 16 SELECT 'Purple' AS color_name FROM dual
 17 UNION ALL
 18 SELECT 'Green' AS color_name FROM dual
 19 UNION ALL
 20 SELECT 'Yellow' AS color_name FROM dual) inline
 21 ORDER BY 2 DESC, 1 ASC

The CASE operator includes several WHEN clauses that evaluate conditions and an ELSE
clause that acts as the default catchall for the CASE operator. Note that END by itself terminates a
CASE operator. If you were to put END CASE, the word CASE would become the column alias.

Although the sample evaluates only a single logical condition, each WHEN clause supports any
number of AND or OR logical operators. Any comparison phrase can use the standard equality and
inequality comparison operators; the IN, =ANY, =SOME, and =ALL lookup operators; and scalar,
single-row, multiple-row, and correlated subqueries.

You would get the following results from the preceding query in Oracle—at least you would
when you format the color_name column to an alphanumeric ten-character string in SQL*Plus
(check Appendix A for syntax):

COLOR_NAME COLOR_TYPE
---------- -----------------
Blue Primary Color
Red Primary Color
Yellow Primary Color
Green Not Primary Color
Purple Not Primary Color

15-AppB.indd 870 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 871

There’s a lot of power in using the CASE operator, but you need to understand the basics and
experiment. For example, you can write a query with a CASE operator that returns whether or not
an item is found in inventory, like this:

SELECT CASE
 WHEN 'Star Wars VII' IN (SELECT item_title FROM item)
 THEN 'In-stock'
 ELSE 'Out-of-stock'
 END AS yes_no_answer
FROM dual;

The CASE operator also allows you to validate complex math or date math. The following
subsection explains Oracle date math and provide a CASE statement that leverages date math in
the Oracle Database 12c.

Oracle Date Math Oracle’s date math is very straightforward. You simply add or subtract
numbers from a date to get a date in the future or past, respectively. The only twist in the model is
that the DATE data type is a date-time, not a date. You can shave off the hours and minutes of any
day with the TRUNC function and make the date-time equivalent to midnight the morning of a
date. This is the closest you have to a true DATE data type in an Oracle database.

The following example looks at yesterday, today, and tomorrow:

SQL> SELECT SYSDATE - 1 AS yesterday
 2 , SYSDATE AS today
 3 , SYSDATE + 1 AS tomorrow
 4 FROM dual;

The results are deceiving because Oracle automatically prints them as dates, like so:

YESTERDAY TODAY TOMORROW
--------- --------- ---------
19-JUN-11 20-JUN-11 21-JUN-11

If we convert the date-time values to strings with formatting instructions down to the second,
you would see the full date-time stamp. This query uses the Oracle proprietary TO_CHAR function
to do that:

SQL> SELECT TO_CHAR(SYSDATE - 1,'DD-MON-YYYY HH24:MI:SS') AS Yesterday
 2 , TO_CHAR(SYSDATE ,'DD-MON-YYYY HH24:MI:SS') AS Today
 3 , TO_CHAR(SYSDATE + 1,'DD-MON-YYYY HH24:MI:SS') AS Tomorrow
 4 FROM dual;

It yields the following:

 YESTERDAY TODAY TOMORROW
-------------------- -------------------- --------------------
19-JUN-2011 22:59:45 20-JUN-2011 22:59:45 21-JUN-2011 22:59:45

15-AppB.indd 871 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

872 Oracle Database 12c PL/SQL Programming

You could use the TRUNC function to shave the decimal portion of time, which would give
you 12 midnight in the morning of each day. The following query truncates the time from the
SYSDATE value:

SQL> SELECT TO_CHAR(TRUNC(SYSDATE)-1,'DD-MON-YYYY HH24:MI') AS Yesterday
 2 , TO_CHAR(TRUNC(SYSDATE) ,'DD-MON-YYYY HH24:MI:SS') AS Today
 3 , TO_CHAR(TRUNC(SYSDATE)+1,'DD-MON-YYYY HH24:MI:SS') AS Tomorrow
 4 FROM dual;

The results show that everything is now 12 midnight the morning of each day:

YESTERDAY TODAY TOMORROW
----------------- -------------------- --------------------
19-JUN-2011 00:00 20-JUN-2011 00:00:00 21-JUN-2011 00:00:00

This means any date plus an integer of 1 yields a day that is 24 hours in the future, and any date
minus an integer of 1 yields a day that is 24 hours behind the current date-time value. The TRUNC
function also lets you get the first day of a month or the first day of a year. It works like this:

SQL> SELECT TRUNC(SYSDATE,'MM') AS first_day_of_month
 2 , TRUNC(SYSDATE,'YY') AS first_day_of_year
 3 FROM dual;

Here are the results:

FIRST_DAY_OF_MONTH FIRST_DAY_OF_YEAR
------------------ ------------------
01-JUN-11 01-JAN-11

If you subtract two days, you get the number of days between them, like so:

SQL> SELECT TO_DATE('30-MAY-2011') - TO_DATE('14-FEB-2011') AS days
 2 FROM dual;

It would tell us the number of days between Valentine’s Day and Memorial Day, as shown
here:

 DAYS

 105

Although you can subtract days, you can’t add them. If you tried to add dates, the following
error would be raised:

SELECT TO_DATE('30-MAY-2011') + TO_DATE('14-FEB-2011')
 *
ERROR at line 1:
ORA-00975: date + date not allowed

Table B-8 provides a summary of additional built-in functions that can help when you’re
performing date math on an Oracle database. Although the table’s not inclusive of timestamp
functions, it covers those functions that work with dates. You can check the Oracle Database SQL
Language Reference 12c Release or Appendix D for more information on key built-ins.

15-AppB.indd 872 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 873

Date Function Description
ADD_MONTHS Lets you add or subtract months, like so:

SELECT ADD_MONTHS(SYSDATE, 3)
FROM dual;

CAST Lets you convert a string that uses the Oracle default date format masks of
DD-MON-RR or DD-MON-YYYY to a DATE data type. The example uses an
INSERT statement to show the conversion:
INSERT INTO some_table
VALUES
(CAST('15-APR-11' AS DATE));

CURRENT_DATE Finds the current system date:
SELECT CURRENT_DATE FROM dual;

GREATEST Finds the most forward date in a set of dates. It works like this to find
tomorrow:
SELECT GREATEST(SYSDATE,SYSDATE + 1)
FROM dual;

EXTRACT Lets you extract the integer that represents a year, month, day, hour, minute,
or second from a DATE data type. The following prototypes show you how
to grab the day, month, or year from a DATE data type:
SELECT EXTRACT(DAY FROM SYSDATE) AS dd
, EXTRACT(MONTH FROM SYSDATE) AS mm
, EXTRACT(YEAR FROM SYSDATE) AS yy
FROM dual;

LEAST Finds the most forward date in a set of dates. It works like this to find
yesterday:
SELECT LEAST(SYSDATE -1,SYSDATE)
FROM dual;

LAST_DAY Lets you find the last date of the month for any date, like so:
SELECT last_day(SYSDATE)
FROM dual;

LEAST Finds the most forward date in a set of dates. It works like this to find
yesterday:
SELECT LEAST(SYSDATE -1,SYSDATE)
FROM dual;

MONTHS_BETWEEN Lets you find the decimal value between two dates. The function returns a
positive number when the greater date is the first call parameter and returns
a negative number when it’s the second call parameter. Here’s an example:
SELECT MONTHS_BETWEEN('25-DEC-11',SYSDATE)
FROM dual;

NEXT_DAY Lets you find the date of the next day of the week, like so:
SELECT next_day(sysdate,'FRIDAY')
FROM dual;

(continued)

TABLE B-8. Oracle Built-in Date Functions

15-AppB.indd 873 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

874 Oracle Database 12c PL/SQL Programming

Date Function Description
ROUND Shaves off the decimal portion of a DATE when the current date-time is

before noon. Alternatively, it adds the complement of the decimal to make
the day midnight of the next day. Use it like this:
SELECT ROUND(SYSDATE) FROM dual;

SYSDATE Finds the current system date:
SELECT SYSDATE FROM dual;

TO_CHAR Lets you apply a format to a date, like so:
SELECT
 TO_CHAR(SYSDATE,'DD-MON-YYYY HH24:MI:SS')
FROM dual;
Supports the following format syntax:
DD – Two-digit day
MM – Two-digit month
MON – Three-character month, based on NLS_LANG value
YY – Two-digit year
YYYY – Two-digit absolute year
RR – Two-digit relative year
HH – Two-digit hour, values 1 to 12
HH24 – Two-digit hour, values 0 to 23
MI – Two-digit minutes, values 0 to 59
SS – Two-digit seconds, values 0 to 59

TO_DATE Converts a string to a DATE data type. Lets you convert to nonstandard DATE
format masks, which come from external import sources. The default format
masks of DD-MON-RR and DD-MON-YYYY also work with the TO_DATE
function but can be cast to a DATE with the CAST function. The TO_DATE
function would convert a Perl default format date string to a DATE with this
syntax:
SELECT TO_DATE('2011-07-14','YYYY-MM-DD') FROM dual;

TABLE B-8. Oracle Built-in Date Functions

The EXTRACT function lets you find an integer equivalent of a month, day, or year for any
DATE data type. Blending the conditional CASE operator with the EXTRACT date function, you
can write a statement that finds transaction_amount values for a given month. The following
is such a statement:

SQL> SELECT CASE
 2 WHEN EXTRACT(MONTH FROM transaction_date) = 1 AND
 3 EXTRACT(YEAR FROM transaction_date) = 2011 THEN
 4 transaction_amount
 5 END AS "January"
 6 FROM transaction;

15-AppB.indd 874 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 875

Lines 2 and 3 identify transaction amounts from a month and year, and only transaction_
amount values for January 2011 would be returned by the query. However, it would also return
null value rows for every other month and year present in the table. You need to filter the query
with a WHERE clause to restrict it to the interested data. The CASE operator in a SELECT list works
in tandem with the WHERE clause of a query.

Another approach could have you return a Y as an active_flag value when the item_
release_date values are less than or equal to 30 days before today, and return an N when the
values are greater than 30 days. You would write that CASE operator like this:

SQL> SELECT CASE
 2 WHEN (SYSDATE - i.release_date) <= 30 THEN 'Y'
 3 WHEN (SYSDATE - i.release_date) > 30 THEN 'N'
 4 END AS active_flag
 5 FROM item i;

In conclusion, the CASE operator is more flexible than the DECODE function or IF function.
The best practice is to write portable code with the CASE operator.

Selective Aggregation
Selective aggregation uses conditional logic, similar to the DECODE function, IF function, or
CASE operator inside aggregation functions. The conditional decision-making of these if-then-else
functions lets you filter what you count, sum, average, or take the maximum or minimum value
of. Understanding this is the first step toward transforming data into useful data sets for
accountants and other professional data analysts. The second step lets you transform aggregated
rows into column values, which you accomplish through column aliases.

The next example demonstrates transforming rows of data into a financial report where the
columns represent months, quarters, and year-to-date values and the rows represent account
numbers charged for various expenses. The following query returns a column of data for the
month of January 2011. Since all numbers are stored as positive values, a nested CASE operator
evaluates the transaction_type column in the same row to determine whether to add or
subtract the value. Debits are added and credits are subtracted, because this works with an asset
account.

SQL> SELECT t.transaction_account AS "Transaction"
 2 , LPAD(TO_CHAR
 3 (SUM
 4 (CASE
 5 WHEN EXTRACT(MONTH FROM transaction_date) = 1 AND
 6 EXTRACT(YEAR FROM transaction_date) = 2011 THEN
 7 CASE
 8 WHEN t.transaction_type = 'DEBIT' THEN
 9 t.transaction_amount
 10 ELSE
 11 t.transaction_amount * -1
 12 END
 13 END),'99,999.00'),10,' ') AS "JAN"
 14 FROM transaction t
 15 GROUP BY t.transaction_account;

15-AppB.indd 875 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

876 Oracle Database 12c PL/SQL Programming

You would see something like this when you expand beyond a single column, which has
been limited to the first three months of the year and the first two rows of data:

Transaction Jan Feb Mar
--------------- ---------- ---------- ----------
10-12-551234 2,671.20 4,270.74 5,371.02
10-14-551234 -690.06 -1,055.76 -1,405.56

The value passed to the SUM function is all rows that meet the selectivity criteria. The criteria are
the result of a CASE and nested CASE operator. The business result is the total expense grouped
by the transaction account number. The LPAD function right-aligns the string returned by the
TO_CHAR function, which formats the number always to have two decimal places, even when
it’s zero cents.

Line 5 could be replaced by the following to capture a first-quarter result:

 5 WHEN EXTRACT(MONTH FROM transaction_date) IN (1,2,3) AND

Moreover, you could generate a year-to-date report or year-end report for a completed year by
eliminating the validation criterion for the month.

Join Results
You can join tables (logical structures that store physical data) or views (logical structures that
store directions on how to find data stored in other views or tables) into larger result sets. Views
can be subsets of tables, filtered to show only some columns and rows. Views can also be the
result sets combined from two or more tables or views. You combine tables through join operations.

Although joins in procedural programming languages would involve an outer loop and an
inner loop to read two sets into memory, SQL doesn’t have loops. As a set-based declarative
language, SQL operates like an automatic transmission that hides the clutch and gear-changing
process. Imperative languages, on the other hand, are like standard transmissions. Imperative
languages require the developer to master the nature of manually switching gears. Managing the
clutch and gears would be equivalent to writing outer and inner loops and conditional logic to
join the results from two sets into one. SQL joins hide the complexity by letting the developer
state what he or she wants without specifying the implementation details.

You can perform several types of joins in SQL. They can be organized into an abstract Unified
Modeling Language (UML) inheritance diagram, which is a hierarchy, as shown in Figure B-13.
This type of hierarchy is also known as an inverted tree. The top of the hierarchy is the root node
and the bottom nodes are the leaf nodes. The root node is the parent node and is not derivative of
any other node. Nodes below the root (or parent) node are its child nodes. Leaf nodes aren’t
parents yet but may become so later; they are child nodes. Nodes between the root and leaf
nodes are both parent and child nodes.

Inheritance trees indicate that the most generalized behaviors are in the root node and the
most specialized behaviors are in child nodes. The inheritance tree tells us the following:

 ■ A cross join is the most generalized behavior in joins, and it inherits nothing but
implements the base behaviors for join operations in a set-based declarative language.

 ■ An inner join is the only child of a cross join, and it inherits the behaviors of a cross join
and provides some additional features (specialized behaviors) by extending the parent
class’s behaviors.

15-AppB.indd 876 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 877

 ■ A natural join is a child of an inner join, and it inherits and extends the parent class’s
behaviors. The natural join is also a leaf node, which means no other class extends its
behaviors.

 ■ An outer join is an abstract class, which means its implementations are available only to
subclasses, but it does extend the behavior of the parent class. Through the parent class,
it also extends the behavior of the root node or grandparent class.

 ■ A left join is a concrete class that extends its abstract parent class and all other classes
preceding its parent in the tree. It implements a left outer join behavior beyond the
inherited inner join operations.

 ■ A full join is a concrete class that extends its abstract parent class and all other classes
preceding its parent in the tree. It implements a full outer join behavior beyond the
inherited inner join operations.

 ■ A right join is a concrete class that extends its abstract parent class and all other classes
preceding its parent in the tree. It implements a right outer join behavior beyond the
inherited inner join operations.

FIGURE B-13. Join inheritance tree

+where() : �ltered rows

Cross Join

+on() : matched rows
+using() : matched rows

Inner Join

+using() : matched rows

Natural Join

+query() : unmatched rows

Outer Join

+query() : unmatched rows

Full Outer Join

+query() : unmatched rows

Left Outer Join

+query() : unmatched rows

Right Outer Join

15-AppB.indd 877 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

878 Oracle Database 12c PL/SQL Programming

The subsections qualify what the various join types do. Each section uses Venn diagrams to
depict the relationship of sets. Unlike basic sets with a list of elements, the rows in tables are
vectors, or record structures. A vector is often visualized as a line, and the line is made up of
points. A record structure is like a line when it’s labeled as a vector but isn’t composed of points.
The points in a record data structure are the elements, and each element of a row belongs to a
column in a table or view.

There are two types of joins between tables: one splices rows from one table together with
rows from another table, and the other splices like collections together. The spliced rows become
larger record structures. Splicing together two collections requires that both original collections
have the same record structure or table definition. The cross, inner, natural, and outer joins work
with splicing rows together. You use set operators to splice together collections of the same record
structure.

The next two subsections cover joins that splice rows together and joins that splice collections
together. They should be read sequentially because there are some dependencies between the
two sections.

Joins that Splice Together Rows
Tables should contain all the information that defines a single subject when the tables are
properly normalized. This section assumes you’re working with normalized tables. You’ll see the
differences between ANSI SQL-89 and ANSI SQL-92 joins throughout the subsequent sections.

TIP
You should learn both ANSI SQL-89 and ANSI SQL-92 join semantics.

As a refresher, normalized tables typically contain a set of columns that uniquely defines
every row in the table, and collectively these columns are the natural key of the table. Although
possible but rare, a single column can define the natural key. The best example of that use case is
a vehicle table with a vin (vehicle identification number) column. In the use case, you also
add surrogate key columns, which are artificial numbers generated through sequences. Surrogate
key columns don’t define anything about the data, but they uniquely define rows of a table and
should have a one-to-one relationship to the natural key of a table. Although the surrogate and
natural keys are both candidates to become the primary key of a table, you should always select
the surrogate key.

The primary key represents rows of the table externally, and you can copy it to another table
as a foreign key. Matches between the primary and foreign key columns let you join tables into
multiple-subject record structures. Joins between primary and foreign key values are known as
equijoins, or joins based on an equality match between columns. Joins that don’t match based on
the equality of columns are non-equijoins, and they’re filtered searches of a Cartesian product.
The “Cross Join” section that follows explains these types of joins.

The natural key differs from a surrogate key because it represents the columns that you use to
find a unique row in a table, and it contains descriptive values that define the unique subject of a
normalized table. When you write a query against a single table, you use the natural key columns
in the WHERE clause to find unique rows.

Cross joins are the most generalized form; outer joins are the most specialized.

15-AppB.indd 878 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 879

Cross Join
A cross join in SQL produces a Cartesian product, which is the rows of one table matched against
all the rows of another table. It is equivalent to a FOR loop reading one row from one collection
and then a nested FOR loop appending all rows from another collection to copies of that one row.
The operation is repeated for every row in the outer FOR loop.

A Venn diagram for a cross join is shown in the following illustration. The discrete math
represents that one set is multiplied by the other. For example, a cross join between a customer
table and an address table would return 32 rows when the customer table holds 4 rows and
the address table holds 8 rows.

A B´

"A,B | A ´ B = {(x,y) | x Î A Ù y Î B}

Cross joins are useful when you want to perform a non-equijoin match, such as looking up
transaction amounts based on their transaction dates within a calendar month. In this case, you’d
be filtering a Cartesian product to see when one column in a table holds a value between two
columns in the other table. This is also known as a filtered cross join statement.

The difference between ANSI SQL-89 and ANSI SQL-92 syntax for a cross join is that the
tables are comma-delimited in the FROM clause for ANSI SQL-89, whereas they’re bridged by a
CROSS JOIN operator in ANSI SQL-92.

ANSI SQL-89 Cross Join The following shows a filtered cross join between the transaction
and calendar tables:

SQL> SELECT c.month_short_name
 2 , t.transaction_amount
 3 FROM calendar c, transaction t
 4 WHERE t.transaction_date BETWEEN c.start_date AND c.end_date
 5 ORDER BY EXTRACT(MONTH FROM t.transaction_date);

Notice that the FROM clause on line 3 lists comma-delimited tables, and the WHERE clause on
line 4 doesn’t have an equality-based join between the primary and foreign key columns.

It would display the following type of result set:

Month
Name Amount
----- ------
JAN 32.87
JAN 38.99
MAR 9.99
APR 43.19

A GROUP BY clause on a line 5 combined with a SUM aggregation formula on line 2 would
return three rows of aggregated data, one row for each distinct month:

SQL> SELECT c.month_short_name
 2 , SUM(t.transaction_amount)
 3 FROM calendar c, transaction t

15-AppB.indd 879 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

880 Oracle Database 12c PL/SQL Programming

 4 WHERE t.transaction_date BETWEEN c.start_date AND c.end_date
 5 GROUP BY c.month_short_name
 6 ORDER BY EXTRACT(MONTH FROM t.transaction_date);

This type of cross join logic is extremely useful when you’re creating financial statements with
SQL queries. It filters results based on whether one table’s column is between two columns of
another table.

ANSI SQL-92 Cross Join Like the prior syntax example, this example shows a filtered cross join
between the transaction and calendar tables:

SQL> SELECT c.month_short_name
 2 , t.transaction_amount
 3 FROM calendar c CROSS JOIN transaction t
 4 WHERE t.transaction_date BETWEEN c.start_date AND c.end_date
 5 ORDER BY EXTRACT(MONTH FROM t.transaction_date);

It would return the same result set from the sample data found in the video store database (see
the Introduction to the book for details). Notice that in lieu of the comma-delimited tables on line
3, two tables are separated by the CROSS JOIN operator.

You also can refactor this query to use the following syntax:

SELECT c.month_short_name
, t.transaction_amount
FROM calendar c INNER JOIN transaction t
ON (t.transaction_date BETWEEN c.start_date AND c.end_date)
ORDER BY EXTRACT(MONTH FROM t.transaction_date);

Although this appears to be an inner join operation, it actually runs as a filtered cross join.
The ON subclause performs a range comparison that determines whether the transaction_
date column value is found between two columns from the calendar table. Why is the last
syntax important if it’s misleading and does the same thing? Because Oracle has included this on
the certification test recently. If you get the question on the Advanced SQL certification test, the
answer is that it’s an inner join.

Cross joins also let you add literal values to the rows of a table or to the rows of any other
type of join between two or more tables. Adding a literal column to a table lets you perform
calculations with the literal value against the other columns of the table.

Cartesian Product
A Cartesian product is the result of a cross join in SQL. The Cartesian product is named after
René Descartes, who is known for penning the phrase, “Cogito ergo sum.” Translated, it
means, “I think therefore I am.” He was also a 17th century mathematician who developed
the theory of analytical geometry, which lays the foundation for calculus and many aspects
of set theory. Set theory is a major foundational element for relational calculus and databases.

15-AppB.indd 880 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 881

Unnesting Queries Oracle calls joins between a table containing nested tables and its nested
tables unnesting queries. They work slightly differently than cross joins because they resolve
instances of a nested table against the containing row or the instance found in a containing
collection. The process works for both nested varrays and tables.

The following query uses two cross joins to get the rows from those values inserted earlier in
the “Inserting Arrays and Nested Tables” section of this appendix. Unnesting tables requires a
cross join against a table, and the TABLE function allows you to convert the nested table collection
into a SQL result set that works in a join operation.

SQL> COLUMN id FORMAT 999
SQL> COLUMN full_name FORMAT A20
SQL> COLUMN street FORMAT A20
SQL> COLUMN city_state FORMAT A20
SQL> SELECT e.employee_id
 2 , e.first_name
 3 || DECODE(e.middle_name,NULL,' ',' '||e.middle_name||' ')
 4 || e.last_name AS full_name
 5 , s.column_value AS street
 6 , n.city || ', ' || n.state AS city_state
 7 FROM employee e CROSS JOIN TABLE(e.home_address) n
 8 CROSS JOIN TABLE(n.street_address) s;

Lines 7 and 8 unnest the query by comparing results between containing rows and instances
of an ADT or UDT. The query displays

 ID FULL_NAME STREET CITY_STATE
---- -------------------- -------------------- -------------
 1 Sam Yosemite 1111 Broadway Oakland, CA
 1 Sam Yosemite Suite 322 Oakland, CA
 1 Sam Yosemite 1111 Broadway Oakland, CA
 1 Sam Yosemite Suite 525 Oakland, CA

Unfortunately, there’s no join between the row containing Wile E Coyote because the join fails
to find an instance in the result from the TABLE function. That’s because the “Inserting Arrays and
Nested Tables” section inserted a null value for the street_address column, and there isn’t an
instance to join.

We can fix the problem by making the unnesting work like an outer join, which is covered
later in the “Outer Join” section of this appendix. Oracle implements the unnesting feature by
using the (+) operator on any table where a null value may exist in a collection. That way the (+)
operator works like it does in ANSI-89 syntax outer joins. It instructs the SQL statement to return
values from the opposite side of the cross join when a null instance is found by the TABLE function.

Modifying the prior query, it now can return individuals without a street_address instance:

SQL> SELECT e.employee_id AS id
 2 , e.first_name
 3 || DECODE(e.middle_name,NULL,' ',' '||e.middle_name||' ')
 4 || e.last_name AS full_name
 5 , s.column_value AS street
 6 , n.city || ', ' || n.state AS city_state
 7 FROM employee e CROSS JOIN TABLE(e.home_address) n
 8 CROSS JOIN TABLE(n.street_address) (+) s;

15-AppB.indd 881 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

882 Oracle Database 12c PL/SQL Programming

The (+) operator now lets you find the missing row from the containing table, as you can see
in the query results:

 ID FULL_NAME STREET CITY_STATE
---- -------------------- -------------------- -------------
 1 Sam Yosemite 1111 Broadway Oakland, CA
 1 Sam Yosemite Suite 322 Oakland, CA
 1 Sam Yosemite 1111 Broadway Oakland, CA
 1 Sam Yosemite Suite 525 Oakland, CA
 2 Wile E Coyote Phoenix, AZ

We can see from the results that the outer cross join principal of unnesting queries lets us see
the missing Wile E Coyote row of the containing table and nested UDT. Clearly, there’s no substitute
for cross joins in unnesting queries, which makes cross joins an essential solution space for
Oracle Database 12c.

You can also create a multilevel table structure like this to use locator references when
querying data. You need to provide the NESTED_TABLE_GET_REFS hint to a SELECT statement
when you want to use the locator references to find the data, like

SQL> COLUMN full_name FORMAT A16
SQL> COLUMN street_address FORMAT A16
SQL> COLUMN city_state FORMAT A12
SQL> SELECT /*+ NESTED_TABLE_GET_REFS +*/
 2 e.first_name || ' ' || e.last_name AS full_name
 3 , s.column_value AS street_address
 4 , h.city || ', ' || h.state AS city_state
 5 FROM employee2 e CROSS JOIN TABLE(e.home_address) h
 6 CROSS JOIN TABLE(h.street_address) (+) s;

Line 1 shows the use of the tuning hint. It’s also a good idea to use locator references when
the nested data set is large, and to avoid them when the data set it small.

Inner Join
An inner join in SQL produces an intersection between two tables. It lets you splice rows into one
large row. It is equivalent to a FOR loop reading one row from one collection, then a nested FOR
loop reading another row, and finally a conditional IF statement checking whether they match.
When they match, you have an intersection, and only those rows are returned by an INNER
JOIN operator.

The Venn diagram for an inner join is shown in the next illustration. The discrete math
represents that one set intersects the other. For example, when you match a table with a primary
key value and a foreign key value, you get only those rows that match both the primary and
foreign key values.

"A,B | A Ç B = {x Î A Ç B | x ÎA Ú x ÎB}

BA

15-AppB.indd 882 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 883

There are two key differences between ANSI SQL-89 and ANSI SQL-92 syntax for an inner
join. One is that tables are comma-delimited in the FROM clause for ANSI SQL-89, and they’re
separated by the INNER JOIN operator in ANSI SQL-92. The other is that the join condition is in
the WHERE clause in ANSI SQL-89 and is in the FROM clause in ANSI SQL-92. You use a USING
clause when the primary and foreign key column(s) share the same column name, and you use
the ON clause when they don’t.

ANSI SQL-89 Inner Join The following shows you how to join the member and contact
tables on their respective primary and foreign key columns. Notice that the tables are comma-
delimited and that the join is performed in the WHERE clause.

SQL> SELECT COUNT(*)
 2 FROM member m, contact c
 3 WHERE m.member_id = c.member_id;

The query returns the number of rows where the values in the two member_id columns
match exactly. This is an equijoin (or equality value match) relationship.

For subsections, the parent table will always be on the left side of the operator and the child
table will be on the right side. If you swap their locations, the results would likewise invert,
because the left join of parent to child is the same as the right join of child to parent.

ANSI SQL-92 Inner Join Like the preceding example, this example shows you how to join the
member and contact tables on their respective primary and foreign key columns. The INNER
JOIN operator replaces the comma-delimited notation of the older syntax pattern.

Two subclause notations are available for joins: the USING subclause and the ON subclause.
The USING subclause works when the column or columns have the same name. These operators
are required in inner and outer joins but not with the NATURAL JOIN operator.

Here’s the USING prototype:

FROM table [alias] {LEFT | INNER | RIGHT | FULL} JOIN table [alias]
USING (column [, column [, …]])

You can provide as many columns as you need in the USING subclause. You should enter
them as a comma-separated list. They are processed as though they were connected through a
series of logical AND statements.

The ON prototype works when the columns have the same or different names. Here is its
prototype:

FROM table [alias] {LEFT | INNER | RIGHT | FULL} JOIN table [alias]
 ON {table |[alias]}.column = {table | alias}.column
[AND {table |[alias]}.column = {table | alias}.column
[AND ...]}

Notice that the following tables aren’t comma-delimited. The INNER JOIN operator replaces
the comma between tables. This join uses the USING subclause to match primary and foreign key
columns that share the same name.

SQL> SELECT m.account_number
 2 , c.last_name || ', ' || c.first_name AS customer_name
 3 FROM member m INNER JOIN contact c USING(member_id);

15-AppB.indd 883 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

884 Oracle Database 12c PL/SQL Programming

You use the ON subclause when the column name or column names aren’t the same. Here is
an example of the ON subclause syntax:

SQL> SELECT m.account_number
 2 , c.last_name || ', ' || c.first_name AS customer_name
 3 FROM member m INNER JOIN contact c ON m.member_id = c.member_id;

Both of these queries return the number of rows where the values in the two member_id
columns match exactly. Like the older syntax, that means they return the intersection between the
two tables and a result set that potentially includes data from both tables.

Natural Join A natural join doesn’t exist in the ANSI SQL-89 standard. It exists only in ANSI
SQL-92 forward. The intent of a natural join is to provide the intersection between two sets. It’s
called a natural join because you don’t have to provide the names of the primary or foreign key
columns. The natural join checks the data catalog for matching column names with the same data
type and then it creates the join condition implicitly for you:

SQL> SELECT m.account_number
 2 , c.last_name || ', ' || c.first_name AS customer_name
 3 FROM member m NATURAL JOIN contact c;

The only problem with a natural join occurs when columns share the same column name and
data type but aren’t the primary or foreign key results. A natural join will include them in the join
condition. Attempting to match non-key columns that make up the who-audit columns excludes
rows that should be returned. The who-audit is composed of the created_by, creation_
date, last_updated_by, and last_update_date columns.

Outer Join
Outer joins allow you to return result sets that are found in the intersection and outside the
intersection. Applying the paradigm of a parent table that holds a primary key and a child table
that holds a foreign key, three relationships are possible when foreign key integrity is enforced by
the API rather than database constraints:

 ■ Scenario 1 A row in the parent table matches one or more rows in the child table.

 ■ Scenario 2 A row in the parent table doesn’t match any row in the child table.

 ■ Scenario 3 A row in the child table doesn’t match any row in the parent table, which
makes the row in the child table an orphan.

Any or all of the three scenarios can occur. Inner joins help us find the results for scenario 2,
but outer joins help us find rows that meet the criteria of scenarios 1 and 3.

NOTE
The ANSI SQL-89 syntax has no provision for outer joins.

Oracle provided outer join syntax before it was defined by the ANSI SQL-92 definition. Oracle’s
syntax works with joins in the WHERE clause. You append a (+) on the column of a table in the
join, and it indicates that you want the relative complement of that table. A relative complement
contains everything not found in the original set.

15-AppB.indd 884 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 885

For example, the following SELECT statement uses an Oracle proprietary outer join, and you
would get all account_number values from the member table that had a contact or didn’t have
a contact. That’s because any member_id values found in the member table that aren’t found in
the contact table are returned with the inner join result set.

SQL> SELECT m.account_number
 2 FROM member m, contact c
 3 WHERE m.member_id = c.member_id(+);

If you change the SELECT list and switch the (+) from the contact table’s column to the
member table’s member_id column, you would get any orphaned rows from the contact table.
Here’s the syntax to get orphaned contacts’ names:

SQL> SELECT c.last_name || ', ' || c.first_name AS customer_name
 2 FROM member m, contact c
 3 WHERE m.member_id(+) = c.member_id;

Line 3 has the change of the (+) from one side of the join to the other. As mentioned, the
(+) symbol is included on a column of one table in a join and effectively points to its relative
complement in the other table. Having positioned the member table on the left and the contact
table on the right in the previous examples, when the (+) is pointing from a contact table’s
column, you get the equivalent of a left join. Switch the (+) to point from a column in the
member table and you get the equivalent of a right join.

Oracle’s proprietary syntax isn’t portable to any other platform. It also doesn’t support a full
outer join behavior unless you combine results with a UNION ALL set operator, which is covered
later in this appendix.

Left Outer Join A left join in SQL extends an inner join because it returns the intersection
between two tables plus the right relative complement of the join. The right relative complement
is everything in the table to the left of the join operation that’s not found in the table on the right.
The Venn diagram for a left join is shown next:

"A,B | A Ç B + A\B = {x Î A Ù x Î B} + {y ÎA Ù y ØÎB}

BA

A left join splices several rows into one large row, and it puts null values in the columns from
the table on the right when nothing is found in those columns. Left joins use join conditions like
those in the inner join section. The ANSI SQL-92 syntax supports a left join operation. That means
join statements are in the FROM clause, not the WHERE clause, and you use either the ON or
USING subclause to qualify the joining columns.

The following lets you find any account_number values in the member table, whether or
not they have valid customer information in the contact table:

SQL> SELECT m.account_number
 2 FROM member m LEFT OUTER JOIN contact c
 3 ON m.member_id = c.member_id;

15-AppB.indd 885 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

886 Oracle Database 12c PL/SQL Programming

The LEFT OUTER JOIN phrase is the fully qualified syntax, but the OUTER keyword is
optional in Oracle database. If you were to reverse the relative positions of the member and
contact tables, only the account_number values that meet the conditions of an INNER JOIN
operator would be returned. That’s because you would get the right relative complement of the
member table, not the contact table. The right relative complement of the member table returns
the data rows in the contact table that have foreign key values that don’t resolve to primary key
values in the member table. Naturally, this type of data set is possible only when you’re not
maintaining database-level foreign key constraints.

The more frequent use of a LEFT JOIN would be to look for orphaned customers to delete
them from the database. In that use case, you’d write the statement like this:

SQL> SELECT c.last_name || ', ' || c.first_name AS customer_name
 2 FROM contact c LEFT JOIN member m
 3 ON m.member_id = c.member_id;

Notice that the values in the SELECT list should come from the table that holds data, not from the
table that may not contain data. Otherwise, you get a bunch of null values. The preceding query
returns rows from the contact table that don’t point back to a row in the member table, and
such rows would be orphans. They are called orphans because their foreign key column values
aren’t found in the list of primary key column values. This can occur when there aren’t foreign key
constraints in the database.

Right Outer Join Like a right join, a left join in SQL extends an inner join. A right join returns
the intersection between two tables, plus the left relative complement of the join. The left relative
complement is everything in the table to the right of the join operation that’s not found in the
table on the left. This makes the right join a mirror image of the left join, as shown in the
following Venn diagram.

"A,B | A Ç B + B\A = {x Î A Ù x Î B} + {y ÎB Ù y ØÎA}

BA

A right join splices rows into one large row like the inner and left join. It puts null values in the
columns from the table on the left when they don’t match columns that exist in the table on the
right. Right joins use join conditions like those in the inner and left join operations. That means
they adhere to the ANSI SQL-92 syntax rules, and join statements are in the FROM clause, not the
WHERE clause. You can choose to use the ON or USING subclause to qualify joining columns.

The first example, shown next, lets you find all customer names in the contact table—those
names that have a valid foreign key value that matches a valid primary key value, and those that
have an invalid foreign key value. Invalid foreign key values can exist only when you opt not to
enforce database-level foreign key constraints. Rows holding invalid foreign key values are known
as orphaned rows because the row with a valid primary key doesn’t exist. This follows the paradigm
that the parent holds the primary key and the child holds the foreign key (copy of the primary key).

This example returns all customer names from the contact table and really doesn’t require a
join operation at all:

SQL> SELECT c.last_name || ', ' || c.first_name AS customer_name
 2 FROM member m RIGHT JOIN contact c
 3 ON m.member_id = c.member_id;

15-AppB.indd 886 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 887

A more meaningful result would exclude all rows where the primary key value is missing.
That’s easy to do by adding a single filtering WHERE clause statement that says “return rows only
where there’s no valid primary key in the member table.” Here’s the example:

SQL> SELECT c.last_name || ', ' || c.first_name AS customer_name
 2 FROM member m RIGHT JOIN contact c
 3 ON m.member_id = c.member_id
 4 WHERE m.member_id IS NULL;

Line 4 filters the return set so that it returns only the orphaned customer names. You would
use that type of statement to delete orphan records, typically as a subquery in a DELETE FROM
statement. Here’s an example of such a statement:

SQL> DELETE FROM contact
 2 WHERE contact_id IN (SELECT c.contact_id
 3 FROM member m RIGHT JOIN contact c
 4 ON m.member_id = c.member_id
 5 WHERE m.member_id IS NULL);

The right and left join semantics are very useful for cleaning up data when foreign key values
have lost their matching primary key values. They help you find the relative complements of outer
joins when you subtract the inner join rows.

Full Outer Join A full outer join provides the inner join results with the right and left relative
complements of left and right joins, respectively. The combination of the two relative complements
without the intersection is known as the symmetric difference. The Venn diagram for a full outer
join is shown next:

"A,B | A Ç B + (A\B+ B\ A)

BA

Like the left and right joins, a full outer join splices rows into one large row, like the inner and
left join. It puts null values in the columns from the table on the left and right. Assume the
following FULL JOIN syntax (by the way, OUTER is an optional keyword and seldom used):

SQL> SELECT m.account_number
 2 , c.last_name || ', ' || c.first_name AS customer_name
 3 FROM member m FULL JOIN contact c
 4 ON m.member_id = c.member_id;

This query’s result set would return null values for the account_number when there isn’t a
foreign key using a primary key in the member table, and would return the customer_name
when a foreign key value isn’t found in the primary key list. This type of analysis is done when
database-level foreign key constraints aren’t maintained and the API failed to synchronize primary
and foreign key values properly. You need to figure out which customers should be associated
with a member, because a member row would never be written unless a contact row was also
written. This kind of problem occurs more often than you might expect.

15-AppB.indd 887 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

888 Oracle Database 12c PL/SQL Programming

You would filter out the inner join by using the following syntax or the MINUS set operator
(shown later):

SQL> SELECT m.account_number
 2 , c.last_name || ', ' || c.first_name AS customer_name
 3 FROM member m FULL JOIN contact c
 4 ON m.member_id = c.member_id
 5 WHERE m.member_id IS NOT NULL
 6 AND c.member_id IS NOT NULL;

This wraps up joins. Next you’ll see how to work with set operators. The next section builds
on the examples in this section.

Joins that Splice Collections
Set operations often combine or filter row sets. That means they act as the glue that binds together
two queries. The queries must return the same SELECT list, which means the column names and
data types must match.

The basic prototype glues the top query to the bottom query. Both top and bottom queries can
have their own GROUP BY or HAVING clauses, but only one ORDER BY clause can appear at the
end. You can splice more than two queries by using other set operators in sequence. The value
operations are performed top-down unless you use parentheses to group set operations. The
default order of precedence splices the first query result set with the second, and they become a
master set that in turn is spliced by another set operator with a subsequent query. Here’s an
example:

SELECT column_list
FROM some_table
[WHERE some_condition [{AND | OR } some_condition2 [...]]]
[GROUP BY column_list]
[HAVING aggregation_function]
VALID_SET_OPERATOR(INTERSECT | UNION | UNION ALL | MINUS)
SELECT column_list
FROM some_table
[WHERE some_condition [{AND | OR } some_condition2 [...]]]
[GROUP BY column_list]
[HAVING aggregation_function]
[ORDER BY column_list];

As qualified in the prototype, there are four set operators in SQL: INTERSECT, UNION,
UNION ALL, and MINUS. The INTERSECT operator finds the intersection of two sets and returns
a set of unique rows. The UNION set operator finds the unique set of rows and returns them. The
UNION ALL set operator finds and returns an unsorted merge of all rows from both queries,
which results in two copies of any like rows. The MINUS set operator removes the rows in the
second query from the rows of the first query where they match.

The following sections discuss the set operators in more depth and provide examples and use
cases for them. They’re organized in what is the general frequency of use.

15-AppB.indd 888 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 889

UNION
The UNION set operator acts like a union in set math and returns the unique things from two sets.
This is a two-step process: first it gathers the rows into one set, then it sorts them and returns the
unique set. The next illustration shows the Venn diagram for a UNION set operation, which looks
exactly like a full outer join Venn diagram. The difference between the two is that a full outer join
returns all the columns from two tables into one new and larger row, while the UNION set operator
merges one set of rows with another uniquely.

"A,B | A Ç B + (A\B + B\ A)

BA

The UNION set operator lets Oracle achieve a full outer join with its proprietary syntax. One
query (A) gets the left join and the other query (B) gets the right join, and the UNION set operator
sorts the nonunique row set and returns a unique set.

The code for an Oracle proprietary pseudo full outer join would look like this (pseudo because
the combination of outer join and set operators is required):

SQL> SELECT m.account_number
 2 , c.last_name || ', ' || c.first_name AS customer_name
 3 FROM member m, contact c
 4 WHERE m.member_id = c.member_id(+)
 5 UNION
 6 SELECT m.account_number
 7 , c.last_name || ', ' || c.first_name AS customer_name
 8 FROM member m, contact c
 9 WHERE m.member_id(+) = c.member_id;

The first query returns a left join, which is the inner join between the columns and the right
relative complement (those things in the left table not found in the right table). The second query
returns the right join. The right join holds a copy of the left relative complement and a second
copy of the inner join result set. The UNION set operator sorts the nonunique set and discards the
second copy of the inner join.

This is more or less the use case for the UNION set operator. You use it when you can’t guarantee
that the queries return exclusive sets of rows.

UNION ALL
The UNION ALL set operator differs from the UNION set operator in one key way: it doesn’t sort
and eliminate duplicate rows. That’s a benefit when you can guarantee that two queries return
exclusive row sets because a sorting operation requires more computing resources. The following
Venn diagram for a UNION ALL looks remarkably like the one for a UNION. The difference is seen
in the discrete math below the illustration that indicates that it holds two copies of the intersection
between the row sets.

"A,B | 2(A Ç B) + (A\B + B\ A)

BA

15-AppB.indd 889 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

890 Oracle Database 12c PL/SQL Programming

The UNION ALL set operator is the preferred solution when you can guarantee that query one
(A) and query two (B) return unique rows, which means there’s no intersection. A symmetrical
difference between two sets is the easiest way to demonstrate this set operator because it is the
combined results of the left and right relative complements. This means it doesn’t include the
intersection between two row sets.

SQL> SELECT m.account_number
 2 , c.last_name || ', ' || c.first_name AS customer_name
 3 FROM member m LEFT JOIN contact c
 4 ON m.member_id = c.member_id
 5 WHERE m.member_id IS NOT NULL
 6 UNION ALL
 7 SELECT m.account_number
 8 , c.last_name || ', ' || c.first_name AS customer_name
 9 FROM member m RIGHT JOIN contact c
 10 ON m.member_id = c.member_id
 11 WHERE c.member_id IS NOT NULL;

The first query (A) is a left join that excludes the inner join set, and the second query (B) is a
right join that excludes the inner join set. It returns only the symmetric difference between the
two row sets.

INTERSECT
The INTERSECT set operator returns only the unique rows found in two queries. It’s useful when
you want to find rows that meet the criteria of two different queries. The following Venn diagram
for the INTERSECT set operator is exactly like that for the inner join. The only difference is one
joins row sets and the other joins column sets into larger column sets.

"A,B | A Ç B = {x Î A Ç B | x ÎA Ú x ÎB}

BA

While it might look like a lot of work to get the unique set of rows with an INTERSECT set
operator, you can verify that the inner join between the member and contact tables is the
unique intersection of rows. The INTERSECT operator returns the rows that match between query
one (A) and query two (B), which is the INNER JOIN between the two tables.

SQL> SELECT m.account_number
 2 , c.last_name || ', ' || c.first_name AS customer_name
 3 FROM member m LEFT JOIN contact c
 4 ON m.member_id = c.member_id
 5 INTERSECT
 6 SELECT m.account_number
 7 , c.last_name || ', ' || c.first_name AS customer_name
 8 FROM member m RIGHT JOIN contact c
 9 ON m.member_id = c.member_id;

15-AppB.indd 890 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix B: SQL Primer 891

It returns the same set of information as an INNER JOIN between the member and contact
tables using the member_id column. The two relative complements are discarded because the
collective values of all columns in the row differ.

MINUS
The MINUS set operator lets you subtract the matching rows of the second query from the first query.
It allows you to find the symmetric difference between two sets or the relative complement of two
sets. Although you can accomplish both of these tasks without set operators by checking whether
the joining columns aren’t null, sometimes it’s a better fit to use set operators to solve this type
of problem.

The following Venn diagram for the MINUS set operator is different from those for join statements
because it excludes the intersection area. I was tempted to provide two examples in this section:
one that subtracts the inner join from a full join, and another that subtracts the cross join from the
same full join. The result would be the same row set, because the only row matches between a full
join and an inner join are the intersection rows, which is also true for a full join and a cross join.
That’s because the possible nonjoins in a Cartesian product aren’t found in a full join result set.

"A,B | A\B = {y Î A Ù y ØÎB}

BA

Here’s the full join minus the cross join:

SQL> SELECT m.account_number
 2 , c.last_name || ', ' || c.first_name AS customer_name
 3 FROM member m FULL JOIN contact c
 4 ON m.member_id = c.member_id
 5 WHERE m.member_id IS NOT NULL
 6 MINUS
 7 SELECT m.account_number
 8 , c.last_name || ', ' || c.first_name AS customer_name
 9 FROM member m CROSS JOIN contact c;

You always subtract a cross join from a full join when you want the symmetrical difference
because it is less expensive than subtracting an inner join.

Summary
This appendix has reviewed the Structured Query Language (SQL) and explained how and why basic
SQL statements work. The coverage should enable you to work through the Oracle Database 12c
examples in the book.

15-AppB.indd 891 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

15-AppB.indd 892 12/17/13 3:45 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

APPENDIX
C

SQL Built-in Functions

16-AppC.indd 893 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

894 Oracle Database 12c PL/SQL Programming

Oracle Database 12c provides a number of built-in functions for working with character
strings, dates, and numbers. It also provides you with data type conversion functions.
This appendix covers these functions as well as SQL built-in functions that Oracle

Database 12c provides for object reference and error management. Last, it includes a
miscellaneous section that covers additional built-in functions that initialize large objects,
perform advanced comparisons, and audit system environment variables.

Alphabetically indexed, the built-in functions are organized by type. Only a subset of all functions
is listed in this appendix. These should be the more frequently used functions in your programs. Small
example programs demonstrate how to use the built-in functions in PL/SQL.

 ■ Character functions

 ■ Data type conversion functions

 ■ Date-time conversion functions

 ■ Collection management functions

 ■ Collection set operators

 ■ Number functions

 ■ Error handling functions

 ■ Miscellaneous functions

The built-in functions are a library of utilities to help you solve problems. They are often an
underutilized resource for many developers.

Character Functions
Character functions actually cover characters and strings. They are extremely useful when you
want to concatenate, parse, replace, or sort characters and strings. Appendix E covers the regular
expression functions that are also mentioned briefly in some of these descriptions.

ASCII Function
The ASCII function returns an ASCII encoding number for a character. The following sample
evaluates the first character of the string:

SQL> DECLARE
 2 text VARCHAR2(10) := 'Hello';
 3 BEGIN
 4 IF ASCII(SUBSTR(text,1,1)) = 72 THEN
 5 dbms_output.put_line('The first character of the string is [H].');
 6 END IF;
 7 END;
 8 /

The ASCII-encoded English alphabet starts with an uppercase A, which has an ASCII value
of 65. The lowercase letter a has a value of 97. Therefore, the uppercase H has a value of 72 as
the eighth letter in the encoding sequence. The program prints

The first character of the string is [H].

16-AppC.indd 894 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 895

This function can be used when you are searching strings for encoding matches. You’ll find it
useful when multiple encoding schemas have been used over time in the database.

ASCIISTR Function
The ASCIISTR function returns an ASCII encoding string for a character. The following sample
evaluates the fourth character of the string, which is a French ê that is a Unicode character:

SQL> DECLARE
 2 text VARCHAR2(10) := 'forêt';
 3 BEGIN
 4 dbms_output.put_line(ASCIISTR(SUBSTR(text,4,1)));
 5 END;
 6 /

The circumflex-annotated ê renders as a \xxxx character stream because it is a Unicode
character. The quartet following the backslash represents a UTF-16 code unit. The string printed is

\00EA

This is a convenient function to convert strings into ASCII values, which lets you check if
they contain Unicode characters. Enclosing the source and result strings as arguments to regular
expression functions lets you compare whether the result contains more backslashes than the source
string. This comparison would identify Unicode characters in strings.

CHR Function
The CHR function returns the binary equivalent character for an ASCII integer in the database
character set or national character set. The latter behavior requires that you use USING NCHAR_CS,
as shown in the prototype:

CHR(n [USING NCHAR_CS])

The following demonstrates sending a line break in the midst of a string through the standard
out procedure, DBMS_OUTPUT.PUT_LINE. This is a convenient way to force a line break in the
midst of an output string.

SQL> DECLARE
 2 text1 VARCHAR2(10) := 'Title';
 3 text2 VARCHAR2(10) := 'Content';
 4 BEGIN
 5 dbms_output.put_line(text1||CHR(10)||text2);
 6 END;
 7 /

It prints

Title
Content

The CHR function also lets you embed extended characters into your programs. This is useful
when they are constrained by ASCII encoding.

16-AppC.indd 895 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

896 Oracle Database 12c PL/SQL Programming

CONCAT Function
The CONCAT function concatenates two strings into one, and it is equivalent to using the
concatenation operator (||). The prototype is

CONCAT(string1, string2)

The CONCAT function implicitly adopts the broadest data type when the data types of the
strings differ. This means that this function adheres to the traditional implicit casting model, which
requires that no precision be lost.

The following demonstrates the CONCAT function:

SQL> DECLARE
 2 text1 VARCHAR2(10) := 'Hello ';
 3 text2 VARCHAR2(10) := 'There!';
 4 BEGIN
 5 dbms_output.put_line(CONCAT(text1,text2));
 6 END;
 7 /

It prints

Hello There!

This function really presents a syntax alternative to the standard concatenation operator.
You should use it when it makes your code more readable.

INITCAP Function
The INITCAP function is very handy when you want to convert a string to title case. Title case is a
convention where the first letter of every word is capitalized while all other letters are in lowercase.
The function takes a string and returns a converted string.

The following demonstrates the function:

SQL> DECLARE
 2 text VARCHAR2(12) := 'hello world!';
 3 BEGIN
 4 dbms_output.put_line(INITCAP(text));
 5 END;
 6 /

It prints

Hello World!

This function would be handy if you were searching for Java source files in a database
repository, provided they adhere to the title case convention. You could also use it if you were
writing a parser for data entry, such as customer contact notes. There is also an NLS_INITCAP
function that works with different character sets.

16-AppC.indd 896 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 897

INSTR Function
The INSTR function lets you find the position where a substring starts in a string. You also can
find the starting position by using INSTRB when the string is encoded in bytes, INSTRC when the
string contains Unicode complete characters, or either INSTR2 or INSTR4 for backward
compatibility with UCS-2 or UCS-4 code points, respectively.

UCS-2 provides backward compatibility similar to the backward compatibility of a UTF-16
character set, which is a variable-length character encoding standard. UCS-2 fails, however, to use
surrogate pairs and is actually a fixed-length character encoding standard that uses 16 bits to store
characters. UCS-4 is a fixed-length character encoding variant of UCS-2; it encodes in 32-bit chunks.

The prototype for the INSTR family of functions is

INSTR(target_string, search_string [, position [, occurrence]])

You search the target string looking for the search string, like looking in a haystack for a pin.
The position is 1 or the beginning of the string unless you specify another positive integer. You
may provide occurrence only when you have provided a position value. The occurrence must also
be a positive integer value. The regular expression REGEXP_INSTR function is a natural
alternative to this function. Appendix E contains definitions of the regular expression functions.

All of the INSTR function variations work the same way: they take a string and calculate its
length as a return value.

The following demonstrates the INSTR variation of the functions:

SQL> DECLARE
 2 text VARCHAR2(12) := 'Hello World!';
 3 BEGIN
 4 dbms_output.put_line('Start ['||INSTR(text,'World',1)||']');
 5 END;
 6 /

It prints

Start [7]

The INSTR functions are useful when you want to parse strings into substrings in a looping
structure. INSTR and INSTRC are the safest with all character types except byte-allocated strings.
Use INSTRB for byte strings.

LENGTH Function
The LENGTH function lets you calculate the length of a string by using character units. A variant,
LENGTHB, calculates the length of a string in bytes, and LENGTHC uses Unicode complete
characters. The LENGTH2 and LENGTH4 functions count using UCS-2 and UCS-4 code points,
respectively.

UCS-2 provides backward compatibility like the UTF-16 character set, which is a variable-length
character encoding standard. UCS-2 fails, however, to use surrogate pairs and is actually a fixed-
length character encoding standard that uses 16 bits to store characters. UCS-4 is a fixed-length
character encoding variant of UCS-2 that encodes in 32-bit chunks.

16-AppC.indd 897 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

898 Oracle Database 12c PL/SQL Programming

All of the LENGTH function variations work the same way: they take a string and calculate its
length as a return value.

The following demonstrates the LENGTH variation of the functions:

SQL> DECLARE
 2 text VARCHAR2(12) := 'Hello World!';
 3 BEGIN
 4 dbms_output.put_line('Length ['||LENGTH(text)||']');
 5 END;
 6 /

It prints

Length [12]

The LENGTH functions are useful when you want to parse strings into substrings. You should
probably stick to using LENGTH or LENGTHC when writing production code, and you should
avoid LENGTHB because it counts only the number of bytes.

LOWER Function
The LOWER function lets you demote a string to match a lowercase string literal. There is also
NLS_LOWER for Unicode strings. This is convenient when you don’t know the case of stored data.

The following demonstrates the LOWER function:

SQL> DECLARE
 2 text VARCHAR2(12) := 'Hello World!';
 3 BEGIN
 4 dbms_output.put_line(LOWER(text));
 5 END;
 6 /

It prints

hello world!

This function and the UPPER function let you easily enter and match string literals against values
of unknown case in database columns. There is no processing difference between demoting strings
to lowercase and promoting strings to uppercase. You should pick one and use it consistently.

LPAD Function
The LPAD function lets you add a character one or more times at the beginning of a string. The
prototype is

LPAD(output_string, output_length, padding_character)

The following demonstrates how you left-pad a string. The output_length sets the new length
of the string and pads copies of the padding_character until the string reaches the new length. The
number of padding characters is equal to the output_length minus the number of characters in the
beginning output_string.

16-AppC.indd 898 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 899

SQL> DECLARE
 2 output VARCHAR2(10) := 'Wowie';
 3 whitespace VARCHAR2(1) := ' ';
 4 BEGIN
 5 dbms_output.put_line('['||LPAD(output,10,whitespace)||']');
 6 END;
 7 /

It prints

[Wowie]

The square brackets ensure that padded white space prints, because the procedure DBMS_
OUTPUT.PUT_LINE normally removes leading white space. Other characters are not impacted
by the paring of strings before printing them.

LTRIM Function
The LTRIM function lets you remove a set of characters from the beginning of a string. The
prototype is

LTRIM(base_string, set_of_values)

The LTRIM function imposes a limit on what is trimmed from a string. The set of values must
contain all values from the beginning of the string to where you want to pare it. If any character in
that stream is missing, the trimming stops at that point.

The following demonstrates the LTRIM function:

SQL> DECLARE
 2 comment VARCHAR2(12) := 'Wowie Howie!';
 3 BEGIN
 4 dbms_output.put_line('['||LTRIM(comment,' eiwoWo')||']');
 5 END;
 6 /

The example contains all the characters to remove the first word plus an extra o. However, it
cannot remove the second o because the H is not found in the set. So it removes only the first
word and white space, printing

 [Howie!]

A second o in the set of values is unnecessary because the function trims all instances of any
character in the set, provided there is no intervening character that is not found in the set (such as
H in this example).

This has shown you how to trim the leading part of a string. You can also trim the right side of
a string with the RTRIM function, covered later in this appendix.

REPLACE Function
The REPLACE function lets you search and replace a substring in any CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB string. It returns the modified string. The prototype is

REPLACE(base_string, search_string, replace_string)

16-AppC.indd 899 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

900 Oracle Database 12c PL/SQL Programming

The following demonstrates how to use the function:

SQL> DECLARE
 2 base_string VARCHAR2(40) := 'The Republican President said ...';
 3 search_string VARCHAR2(40) := 'Republican';
 4 replace_string VARCHAR2(40) := 'Democratic';
 5 BEGIN
 6 dbms_output.put_line(
 7 REPLACE(base_string,search_string,replace_string));
 8 END;
 9 /

It prints

The Democratic President said ...

The word “Democratic” has been substituted for the word “Republican.” You should ensure
that you’re using uniform character sets for all actual parameters, because the REPLACE function
is sensitive to character set.

REVERSE Function
The REVERSE function lets you reverse a string literal, like

SQL> COLUMN reverse FORMAT A10
SQL> SELECT REVERSE('String') AS "Reverse" FROM dual;

It returns

Reverse

gnirtS

This is a handy function when you want to reverse a string because it avoids looping through
the string and reordering it.

RPAD Function
Like the LPAD function, the RPAD function lets you add a character one or more times to a string.
The difference is that RPAD adds the characters to the end of the string. The prototype is

RPAD(output_string, output_length, padding_character)

The following demonstrates right-padding a string:

SQL> DECLARE
 2 output VARCHAR2(10) := 'Wowie';
 3 whitespace VARCHAR2(1) := ' ';
 4 BEGIN
 5 dbms_output.put_line('['||RPAD(output,10,whitespace)||']');
 6 END;
 7 /

It prints

[Wowie]

16-AppC.indd 900 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 901

The square brackets highlight the padded white space. While the procedure DBMS_OUTPUT
.PUT_LINE removes leading white space, it does not remove trailing white space.

RTRIM Function
The RTRIM function lets you remove a set of characters from the end of a string. The prototype is

RTRIM(base_string, set_of_values)

The RTRIM function imposes a limit on what is trimmed from a string. The set of values must
contain all values from the end of the string to where you want to pare it. If any character in that
stream is missing, the trimming stops at that point.

The following demonstrates the RTRIM function:

SQL> DECLARE
 2 comment VARCHAR2(12) := 'Wowie Howie!';
 3 BEGIN
 4 dbms_output.put_line('['||RTRIM(comment,' Howie!')||']');
 5 END;
 6 /

The example contains all the characters to remove the first word, but the characters “owie”
are found twice in the string. Also, there is no intervening character not found in the set.
Therefore, this function pares more than what you might expect, printing

[W]

This has shown you how to trim the trailing part of a string. It has also showed you that one
character can be removed multiple times, provided there is no intervening character that is not
found in the set of values.

You can also trim the left side of a string with the LTRIM function, covered earlier in this
appendix. Trimming characters more than once also applies to the LTRIM function.

UPPER Function
The UPPER function lets you demote a string to match a lowercase string literal. There is also
NLS_UPPER for Unicode strings. This is convenient when you don’t know the case of stored data.

The following demonstrates the UPPER function:

SQL> DECLARE
 2 text VARCHAR2(12) := 'Hello World!';
 3 BEGIN
 4 dbms_output.put_line(UPPER(text));
 5 END;
 6 /

It prints

HELLO WORLD!

This function and the LOWER function let you easily enter and match string literals against values
of unknown case in database columns. There is no processing difference between promoting strings
to uppercase and demoting them to lowercase. You should pick one and use it consistently.

16-AppC.indd 901 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

902 Oracle Database 12c PL/SQL Programming

Data Type Conversion Functions
Data type conversion is simply casting, which is the process of taking a variable defined as one data
type and changing it to another data type. Implicit casting makes the change for you automatically
but only works when the rules are simple and well understood. Explicit casting lets you instruct the
programming language how to assign one data type to another when the programming language
has no rule that applies to how the data type can be converted implicitly, or without formal
programming instructions.

Data type conversion is often done implicitly in PL/SQL. Unlike other strongly typed
programming languages, PL/SQL does implicit conversions even when there is a potential loss of
precision. For example, you can assign a complex number in a NUMBER data type to a SIMPLE_
INTEGER data type and lose any values to the right of the decimal point. Chapter 2 provides an
example of this type of implicit conversion.

The data type conversion functions are useful when you want to make a conversion that requires
you to provide instructions. You have to manually convert strings to dates when strings don’t adhere
to default format mask conventions. Likewise, some specialized types require you to take specific
actions before you can convert data.

The examples that follow focus on demonstrating how to use these functions. You’ll notice that
there are no conversions between user-defined object types and standard types. You should include
conversion methods in your object type definitions.

CAST Function
The CAST function is very useful because it converts built-in data types to another built-in data
type, or converts collection-typed variables to another collection-typed variable. The CAST
function does have some limits; for instance, it uses only the default date conversion format mask,
as discussed in Chapter 3. Unlike most functions, CAST works with all but the LONG, LONG RAW,
ROWID, and UROWID built-in data types. CAST also limits how it casts data from BLOB and CLOB
types into a RAW data type because it relies on an implicit database behavior. You raise an
exception when CAST tries to convert a large object into a RAW type when it is too large to fit
inside a RAW data type.

There are two prototypes: one for scalar built-in variables and another for collections. The scalar
variable built-in prototype is

CAST(type1_variable_name AS type2_variable_name)

and the collection prototype is

CAST(MULTISET(subquery)) AS collection_type_variable_name)

The following program shows how to cast a date to a string:

SQL> DECLARE
 2 source DATE := TO_DATE('30-SEP-07');
 3 target VARCHAR2(24);
 4 BEGIN
 5 target := CAST(source AS VARCHAR2);
 6 dbms_output.put_line(target);
 7 END;
 8 /

16-AppC.indd 902 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 903

This type of usage is exactly the same in both SQL and PL/SQL contexts, but the MULTISET
context is restricted to SQL statements. If you attempt to use a CAST function with a MULTISET
and subquery as a right operand, you raise a PLS-00405 exception. However, you can embed
these in SQL statements inside your PL/SQL blocks.

The CAST operation inside a query statement requires that you cast to a SQL data type, such as
a collection of scalar variables. This leaves you with a choice between varrays and nested tables.
You should use nested tables because they are easier to manage and don’t require incremental
conversion with the TABLE function call (see Chapter 6).

This creates a nested table of strings as a SQL data type:

SQL> CREATE OR REPLACE
 2 TYPE collection IS TABLE OF VARCHAR2(5);
 3 /

You should create a table or view because the MULTISET operator disallows queries that use
set operators, like INTERSECT, MINUS, UNION, and UNION ALL. The MULTISET operator raises
a PLS-00605 exception when set operators are found in the subquery.

The following builds a sample table:

SQL> CREATE TABLE casting (num VARCHAR2(5));

Next, you can insert into the table the English ordinal numbers “one” to “nine” by using the
table fabrication pattern:

SQL> INSERT INTO casting
 2 (SELECT 'One' FROM dual UNION ALL
 3 SELECT 'Two' FROM dual UNION ALL
 4 SELECT 'Three' FROM dual UNION ALL
 5 SELECT 'Four' FROM dual UNION ALL
 6 SELECT 'Five' FROM dual UNION ALL
 7 SELECT 'Six' FROM dual UNION ALL
 8 SELECT 'Seven' FROM dual UNION ALL
 9 SELECT 'Eight' FROM dual UNION ALL
 10 SELECT 'Nine' FROM dual);

The sample program demonstrates how to use the CAST and MULTISET functions together:

SQL> DECLARE
 2 counter NUMBER := 1;
 3 BEGIN
 4 FOR i IN (SELECT CAST(
 5 MULTISET(
 6 SELECT num
 7 FROM casting) AS COLLECTION) AS rs
 8 FROM casting) LOOP
 9 dbms_output.put_line(i.rs(counter));
 10 counter := counter + 1;
 11 END LOOP;
 12 END;
 13 /

16-AppC.indd 903 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

904 Oracle Database 12c PL/SQL Programming

This prints the ordinal number words in a list. The CAST function returns a collection of items.
Unfortunately, you also need to match a collection structure to the row structure of the query. You
use this type of structure to return nested table contents from tables.

CONVERT Function
The CONVERT function converts a string from one character set to another. It has the following
prototype:

CONVERT(string, destination_character_set, source_character_set)

Finding the Character Set of a Database Instance
You can log in as a privileged user, like system, and run the following query:

SELECT value$ FROM sys.props$ WHERE name = 'NLS_CHARACTERSET';

More often than not folks are disappointed when they look in the V$PARAMETER view for
the character set. The V$PARAMETER view does contain most of the configuration values
for the database instance. The miscellaneous section demonstrates how you can implement
a function to read the character set in the EMPTY_BLOB function section.

Table Fabrication
Sometimes you want to create data without building a temporary table. There are two
alternatives to avoid building temporary tables that can fragment your database. One is to
build runtime views, which are aliased queries inside the FROM clause. This approach works
when the data can be queried from one or more real tables. The other approach leverages
the UNION ALL set operator to join a series of related data. This approach, known as data
or table fabrication, lets you build data in a query when it doesn’t exist in your database.

The following uses table fabrication to multiply the number of returned rows:

SQL> SELECT alias.counter
 2 FROM (SELECT 1 AS counter FROM dual UNION ALL
 3 SELECT 2 AS counter FROM dual) alias;

It returns two rows because the runtime view contains two fabricated rows, and prints

COUNTER

 1
 2

There are two caveats about table fabrication. You must ensure the list of SELECT
clause columns return the same data type, and you must provide matching aliases for any
literals or expressions in any column position. These are the same rules imposed by set
operators in any query.

16-AppC.indd 904 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 905

The following demonstrates converting the French word forêt (forest in English) from the
AL32UTF8 character set to the UTF-8 character set:

SQL> DECLARE
 2 text VARCHAR2(10) := 'forêt';
 3 BEGIN
 4 dbms_output.put_line(CONVERT(text,'AL32UTF8','UTF8'));
 5 END;
 6 /

This prints the same forêt but it now takes 3 bytes of storage rather than 2 bytes. You will find
this function handy when you work in multiple character sets.

TO_CHAR Function
The TO_CHAR function lets you do several types of conversion. You can convert CLOB, DATE,
NCHAR, NCLOB, NUMBER, or TIMESTAMP data types to VARCHAR2 data types. This function is
overloaded and has two prototypes. The prototype for string data types is

TO_CHAR({clob_type | nchar_type | nclob_type})

The alternative prototype for dates, numbers, and times is

TO_CHAR({date_type | timestamp_type | number_type}
 [, format_mask [, nls_param]])

The following subsections demonstrate converting other types of strings to character strings,
dates to characters strings, and numbers to character strings. The date and number subsections
also have two examples each: one with the native National Language Support (NLS) character set
of the instance, and one that overrides the instance default.

Converting a String to a Character String
The following demonstrates converting a CLOB data type to a CHAR data type:

SQL> DECLARE
 2 big_string CLOB := 'Not really that big, eh?';
 3 BEGIN
 4 dbms_output.put_line(TO_CHAR(big_string));
 5 END;
 6 /

Converting a Date to a Character String
The TO_CHAR function takes two arguments, or call parameters: the date or date-time, and the
format mask. The following demonstrates converting a DATE to a CHAR:

SQL> DECLARE
 2 today DATE := SYSDATE;
 3 BEGIN
 4 dbms_output.put_line(TO_CHAR(today,'Mon DD, YYYY'));
 5 END;
 6 /

16-AppC.indd 905 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

906 Oracle Database 12c PL/SQL Programming

While your date will reflect the current system date, this prints the day this was written:

Sep 27, 2007

When you add the NLS_DATE_LANGUAGE parameter to the function, you can override the
NLS setting for the database. The following resets the NLS_DATE_LANGUAGE parameter to
French:

SQL> DECLARE
 2 today DATE := SYSDATE;
 3 BEGIN
 4 dbms_output.put_line(TO_CHAR(today,'Mon DD, YYYY'
 5 ,'NLS_DATE_LANGUAGE = FRENCH'));
 6 END;
 7 /

This then prints the date in the French style, which adds a period after the abbreviation of the
month, like

Sept. 27, 2007

Converting a Number to a Character String
Converting numbers to characters works much like converting dates to characters. The following
illustrates converting a number to a formatted dollar amount in American English:

SQL> DECLARE
 2 amount NUMBER := 2.9;
 3 BEGIN
 4 dbms_output.put_line(TO_CHAR(amount,'$9,999.90'));
 5 END;
 6 /

The format mask prints a digit if one is found when there’s a 9 and always print a 0 when
there is no value. The format mask substitutes a 0 since there is no value in the hundredths
placeholder, printing

$2.90

Adding the NLS parameter, you can now format the currency return in Euros:

SQL> DECLARE
 2 amount NUMBER := 2.9;
 3 BEGIN
 4 dbms_output.put_line(TO_CHAR(amount,'9,999.90L'
 5 ,'nls_currency = EUR'));
 6 END;
 7 /

This prints

2.90EUR

16-AppC.indd 906 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 907

This section has demonstrated how to use the TO_CHAR function to convert national language
and large object strings to character strings and convert dates, timestamps, and numbers to
character strings. The format masks only cover characters in those specific positions. You need to
expand the format mask when dealing with larger numbers.

TO_CLOB Function
The TO_CLOB function lets you convert the NCLOB column data type or other character types to
character large objects. You can convert CHAR, NCHAR, NVARCHAR2, and VARCHAR2 data types
to NCLOB types.

The prototype for this is

TO_CLOB({char_type | nchar_type | nclob_type | nvarchar2_type | varchar2_type})

The following converts a string to CLOB and then uses TO_CHAR to reconvert for printing by
the DBMS_OUTPUT.PUT_LINE procedure:

SQL> DECLARE
 2 initial_string VARCHAR2(2000) := 'Not really required. :-)';
 3 BEGIN
 4 dbms_output.put_line(TO_CHAR(TO_CLOB(initial_string)));
 5 END;
 6 /

This is a handy function when you’re moving an array of strings into a CLOB variable. It also
lets you move NLS large object columns into a standard format for your programs.

TO_DATE Function
The TO_DATE function lets you convert strings to dates. The prototype for this is

TO_DATE(string_type [, format_make [, nls_param]])

The following program demonstrates converting a string through implicit conversion:

SQL> DECLARE
 2 target DATE;
 3 BEGIN
 4 target := '29-SEP-94';
 5 dbms_output.put_line(
 6 'Back to a string ['||TO_CHAR(target)||']');
 7 END;
 8 /

The implicit cast works because the default format mask for a date is DD-MON-RR or
DD-MON-YYYY. When the string or source is not in that format, you must provide a format
mask to cast the string into a date.

The next example explicitly casts a string by providing a format mask:

SQL> DECLARE
 2 target DATE;
 3 BEGIN
 4 target := TO_DATE('September 29, 1994 10:00 A.M.'

16-AppC.indd 907 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

908 Oracle Database 12c PL/SQL Programming

 5 ,'Month DD, YYYY HH:MI A.M.');
 6 dbms_output.put_line(
 7 'Back to a string ['||TO_CHAR(target)||']');
 8 END;
 9 /

The A.M. formatting option is a mask available in some National Language Support (NLS)
languages, like American English. It is not supported in French because the appropriate format
mask in that language is AM. If you apply an unsupported format mask, you raise an ORA-01855
exception.

The following example demonstrates overriding the default of language:

SQL> DECLARE
 2 target DATE;
 3 BEGIN
 4 target := TO_DATE('Septembre 29, 1994 10:00 AM'
 5 ,'Month DD, YYYY HH:MI AM'
 6 ,'NLS_DATE_LANGUAGE = French');
 7 dbms_output.put_line('Back to a string ['
 8 || TO_CHAR(target
 9 ,'Month DD, YYYY HH:MI AM'
 10 ,'NLS_DATE_LANGUAGE = French')||']');
 11 END;
 12 /

The nature of converting to a date from a string is a virtual mirror to reversing the process, as
should be clearly seen in the example. The TO_DATE function is frequently used in PL/SQL.

TO_LOB Function
The TO_LOB function lets you convert LONG or LONG RAW column data types to large objects.
However, there are restrictions on how you can use this function. It can only be used to convert
your LONG data types to large objects when used in an INSERT statement as a SELECT list
element of a subquery.

The prototype for this is

TO_LOB({long_type | long_raw_type})

There are several steps to build a small test case to examine this function. You need to create
source and target tables and seed the source table with data:

SQL> CREATE TABLE source
 2 (source_id NUMBER
 3 , source LONG);

SQL> INSERT INTO source
 2 VALUES
 3 (1, 'A not so long string');

CREATE TABLE target
(target_id NUMBER
, target CLOB);

16-AppC.indd 908 12/17/13 12:31 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 909

After you’ve done that, you can build an anonymous block to transfer the LONG column
values to a CLOB column in the new table. The following demonstrates that along with a query of
the moved contents:

SQL> DECLARE
 2 CURSOR c IS SELECT target_id, target FROM target;
 3 BEGIN
 4 INSERT INTO target
 5 SELECT source_id, TO_LOB(source) FROM source;
 6 FOR i IN c LOOP
 7 dbms_output.put_line('Clob value ['||TO_CHAR(i.target)||']');
 8 END LOOP;
 9 END;
 10 /

Alternative Migration Strategy for LONG and LONG RAW Columns
Beginning with Oracle Database 11g, you can use the TO_LOB function to migrate data.
More often than not you don’t want to move a large table to a new table and then rename it
as part of a single column migration.

You can solve the problem by adding a CLOB column to the table and using the TO_LOB
function in an UPDATE statement. Like the INSERT statement limitation, the TO_LOB function
must be part of a SELECT list in a subquery. This type of movement from one column to
another in the same row requires a correlated subquery. This is how you synchronize the
two copies of the same table to work on the same row.

You would alter the source table with the following syntax:

SQL> ALTER TABLE source ADD (new_source CLOB);

Then, you migrate the data with the following UPDATE statement:

SQL> UPDATE source outer
 2 SET outer.new_source =
 3 (SELECT TO_LOB(inner.source)
 4 FROM source inner
 5 WHERE outer.source_id = inner.source_id);

Cleanup is easy; drop the old column:

SQL> ALTER TABLE source DROP COLUMN source;

Then, you can rename the source column new_source, which will map to the
original column. The command is

SQL> ALTER TABLE source RENAME COLUMN new_source TO source;

This works well after you’ve developed the new code that expects a CLOB, not a LONG
or LONG RAW column. It has the advantage of not moving the balance of columns while
migrating away from the obsolete data types.

16-AppC.indd 909 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

910 Oracle Database 12c PL/SQL Programming

This is a handy function for data migration. If this were a real CLOB value, you’d need to read
chunks of the column inside a loop. The latter is best done with a combination of the LENGTH
and SUBSTR (substring) functions.

TO_NCHAR Function
The TO_NCHAR function lets you do several types of conversion. You can convert CHAR, CLOB,
DATE, NCLOB, NUMBER, or TIMESTAMP data types to NVARCHAR2 data types. This function is
overloaded and has two prototypes. The prototype for string data types is

TO_NCHAR({clob_type | nchar_type | nclob_type})

The alternative prototype for dates, numbers, and times is

TO_NCHAR({date_type | timestamp_type | number_type}
 [, format_mask [, nls_param]])

The examples in the TO_CHAR function description also work with the TO_NCHAR function.
You can modify those to see how the TO_NCHAR function works.

TO_NCLOB Function
The TO_NCLOB function lets you convert the CLOB column data type or other character types to
character large objects. You can convert CHAR, NCHAR, NVARCHAR2, and VARCHAR2 data types
to CLOB types.

The prototype for this is

TO_NCLOB({clob_type | char_type | nchar_type | nvarchar2_type |
 varchar2_type})

The examples in the TO_NCLOB function description also work with the TO_NCLOB function.
You can modify those to see how the TO_NCLOB function works.

TO_NUMBER Function
The TO_NUMBER function lets you convert an expression into a numeric value. The expression
can be a BINARY_DOUBLE, CHAR, NCHAR, NVARCHAR2, or VARCHAR2 data type. You can also
use the NLS_NUMERIC_CHARACTERS parameter or NLS_CURRENCY parameter for National
Language Support (NLS).

The prototype for this is

TO_NUMBER(expression [, format_mask [, nls_param]])

The example converts a formatted string to a number by using a format mask:

SQL> DECLARE
 2 source VARCHAR2(38) := '$9,999.90';
 3 BEGIN
 4 dbms_output.put_line(TO_NUMBER(source,'$9,999.99'));
 5 END;
 6 /

The program prints a number without a hundredth placeholder:

9999.9

16-AppC.indd 910 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 911

You can also use NLS formatting like that shown in the TO_CHAR function examples, or use it
this way:

SQL> DECLARE
 2 source VARCHAR2(38) := '9,999.90EUR';
 3 BEGIN
 4 dbms_output.put_line(
 5 TO_NUMBER(source,'9G999D99L','nls_currency = EUR'));
 6 END;
 7 /

It also prints

9999.9

The G stands for comma, D for decimal point (or period), and L for string qualifying the
currency format. There is no dollar symbol leading a currency expression when you use an ISO
currency string such as USA, JPY, or EUR. The string provided as the value of nls_currency
must also match the value in the original string.

Date-time Conversion Functions
Date-time functions let you perform key behaviors that support how you manage dates and date-
time data types. These functions are also mentioned in Table B-8. The date math examples in
Appendix B show you how some of them work.

ADD_MONTHS Function
The ADD_MONTHS function lets you work around the basic issues with the Gregorian irregular
month length. Adding two months to January 15th of any year demonstrates the usefulness of this
function, because it works whether it’s leap year or not:

SQL> SELECT ADD_MONTHS(TO_DATE('15-JAN-2012'), 2) AS two_months
 2 FROM dual;

It returns

TWO_MONTH

15-MAR-12

Victory is achieved through the function whether February is 28 or 29 days.

CURRENT_DATE Function
The CURRENT_DATE function returns the same result as the SYSDATE function. You query the
CURRENT_DATE function like this:

SQL> SELECT TO_CHAR(
 2 CURRENT_DATE,'DD-MON-YYYY HH24:MI:SS') AS DATE_ONLY
 2 FROM dual;

16-AppC.indd 911 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

912 Oracle Database 12c PL/SQL Programming

It returns

DATE_ONLY

17-APR-2013 22:43:09

CURRENT_TIMESTAMP Function
The CURRENT_TIMESTAMP function returns the same result as the SYSDATE function. You query
the CURRENT_TIMESTAMP function like this:

SQL> SELECT TO_CHAR(
 2 CURRENT_TIMESTAMP,'DD-MON-YYYY HH24:MI:SS') AS TIMESTAMP_ONLY
 2 FROM dual;

It returns

DATE_ONLY

17-APR-2013 22:43:09

DBTIMEZONE Function
The DBTIMEZONE function lets you find your time zone relative to the Coordinated Universal
Time (UTC). An example is

SQL> SELECT DBTIMEZONE FROM dual;

It returns

DBTIME

-08:00

EXTRACT Function
The EXTRACT function lets you find an integer equivalent of a month, day, or year for any date
data type. It’s handy when you want to identify transactions occurring on a day, in a month, in a
year, or in a set of months or years.

The basic example for finding a day is

SQL> SELECT EXTRACT(DAY FROM TO_DATE('15-APR-2013')) AS day
 2 FROM dual;

Naturally, the example returns

 DAY

 15

You can substitute a case-insensitive MONTH or YEAR keyword before the FROM keyword
to extract the month or year. The argument following the FROM keyword must be a DATE or

16-AppC.indd 912 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 913

date-time data type. That means converting a literal date to a timestamp would let you extract the
hour, minute, or second from a timestamp, like this:

SQL> SELECT EXTRACT(HOUR FROM TO_TIMESTAMP('15-APR-2013')) AS hour
 2 FROM dual;

This returns

 HOUR

 0

While extracting a time element isn’t generally too useful by itself, the foregoing example lets
me qualify that the time element of any DATE data type is equal to zero, or 00:00:00 hours,
minutes, and seconds. Moreover, a DATE data type in Oracle is a timestamp set to the first second
of each day.

The EXTRACT function also lets you find ranges of days, months, or years in a WHERE
predicate, like

SQL> SELECT SUM(transaction_amount)
 2 FROM transaction
 3 WHERE EXTRACT(MONTH FROM transaction_date) IN (1,2,3);

The IN operator is often called a lookup operator because it checks whether one thing
matches one thing in a set. More or less, a lookup function compares a single value or variable
against a list of values.

Combining the EXTRACT function and CASE statement enables you to transform data like a
pivot function. The “Data Type Conversions” and “Oracle Date Math” sections of Appendix B
shows you an example how to make this type of transformation in a SQL statement.

FROM_TZ Function
The FROM_TZ function converts a timestamp value and a time zone to a TIMESTAMP WITH
TIME ZONE value.

The following demonstrates the FROM_TZ function:

SQL> SELECT FROM_TZ(
 2 TIMESTAMP '2012-04-15 08:00:00', '8:00') AS "Date-Time"
 3 FROM dual;

It returns

Date-Time

15-APR-12 08.00.00.000000000 AM +08:00

LAST_DAY Function
The LAST_DAY function lets you find the last day of the current month. It’s useful when you
combine it with a date math trick to get the first day of the month.

16-AppC.indd 913 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

914 Oracle Database 12c PL/SQL Programming

The following is an example of the LAST_DAY function:

SQL> SELECT SYSDATE AS today
 2 , LAST_DAY(SYSDATE) AS last_day
 3 FROM dual 1;

It returns

TODAY LAST_DAY
--------- ---------
17-APR-13 30-APR-13

Adding 1 to the LAST_DAY function return yields the first day of the next month, like

SQL> SELECT SYSDATE AS today
 2 , LAST_DAY(SYSDATE) + 1 AS first_day
 3 FROM dual;

It returns

TODAY FIRST_DAY
--------- ---------
17-APR-13 01-MAY-13

LOCALTIMESTAMP Function
The LOCALTIMESTAMP function lets you see the local time, not the server time. Before you test
this function on a local server, you should alter your session. You can do so with this command:

SQL> ALTER SESSION SET TIME_ZONE = '-8:00';

Now run the following query, which will show you an eight-hour difference between the
two dates:

SQL> COLUMN current_timestamp FORMAT A36
SQL> COLUMN localtimestamp FORMAT A30
SQL> SELECT CURRENT_TIMESTAMP
 2 , LOCALTIMESTAMP
 3 FROM dual;

It shows the following results:

CURRENT_TIMESTAMP LOCALTIMESTAMP
------------------------------------ -----------------------------
17-APR-13 08.02.53.883000 PM -08:00 17-APR-13 08.02.53.883000 PM

MONTHS_BETWEEN Function
The MONTHS_BETWEEN function calculates the number of months and fractional equivalent
between two dates. It works like this:

SQL> SELECT MONTHS_BETWEEN(
 2 TO_DATE('07-04-2012','MM-DD-YYYY')

16-AppC.indd 914 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 915

 3 ,TO_DATE('01-01-2012','MM-DD-YYYY')) AS Interval
 4 FROM dual;

which produces the following result:

 INTERVAL

6.09677419

NEW_TIME Function
The NEW_TIME function lets you set a new date and time by using any of the arguments in Table
C-1. The NEW_TIME function takes three parameters: a new date, a time zone to display, and a
time zone to use with the supplied date.

You must set the NLS_DATE_FORMAT parameter to display 24-hour time. The return type is
always a DATE, regardless of the data type of the supplied date.

The following changes the date to 11 o’clock, 11 minutes, and 11 seconds and displays the time in
the Atlantic time zone for a Pacific time zone time value:

SQL> SELECT TO_CHAR(
 2 NEW_TIME(
 3 TO_DATE('15-APR-13 11:11:11','DD-MON-YYYY HH24:MI:SS')
 4 ,'AST','PST')
 5 ,'DD-MON-YYYY HH24:MI:SS') AS NEWDATE
 6 FROM dual;

It displays

NEWDATE

15-APR-12

TABLE C-1. Time Zone Keywords

Standard Time Daylight Time Time Zone
AST ADT Atlantic
BST BDT Bering
CST CDT Central
EST EDT Eastern
GMT Greenwich Mean Time
HST HDT Alaska-Hawaii
MST MDT Mountain
NST Newfoundland
PST PDT Pacific
YST YDT Yukon

16-AppC.indd 915 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

916 Oracle Database 12c PL/SQL Programming

ROUND Function
The ROUND function has two roles. One works with dates and the other works with numbers. They
require different mechanics, so it seemed appropriate to introduce both roles here. The
explanation and example for the numbers role also appears in the “Number Functions” section in
this appendix.

ROUND(date) Function
The ROUND function lets you trim time, days, months, and years from date-time data types. Let’s
examine shaving the time from a date-time data type, SYSDATE (it always returns the system
clock value):

SQL> SELECT TO_CHAR(
 2 SYSDATE,'DD-MON-YYYY HH24:MI:SS') AS actual
 3 , TO_CHAR(
 4 ROUND(SYSDATE, 'DAY'),
 5 'DD-MON-YYYY HH24:MI:SS') AS trimmed
 6 FROM dual;

It returns

ACTUAL TRIMMED
-------------------- ----------------------
17-APR-2013 21:15:26 21-APR-2013 00:00:00

As you may notice, the rounding works for the time but yields an incorrect date.
Unfortunately, this is the same result in Oracle Database 11g and 12c.

ROUND(number) Function
The ROUND function also lets you round a number to a whole number or a decimal equivalent.
The following rounds 2.5 to a whole number:

SQL> SELECT ROUND(2.5,0) FROM dual;

You should note that the ROUND function rounds up at 2.5 and rounds down with anything
less than 2.5. The ROUND function is important when preparing reports, especially financial
reports. It’s very useful when using Oracle’s math libraries because some functions return
incorrect values, like the POWER function (see its description later in this appendix).

SYSDATE Function
The SYSDATE function returns the current date-time value to the hundredth of a second. The
easiest way to display the result is with the TO_CHAR(date) function, like

SQL> SELECT TO_CHAR(SYSDATE,'DD-MON-YYYY HH24:MI:SS') date_time
 2 FROM dual;

It returns the current formatted date-time value:

DATE_TIME

18-APR-2013 00:13:32

16-AppC.indd 916 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 917

SYSTIMESTAMP Function
The SYSTIMESTAMP function returns the current time stamp for the system. Like other examples,
the TO_CHAR(date) function provides formatting to view the time:

SQL> SELECT TO_CHAR(
 SYSTIMESTAMP
 ,'DD-MON-YYYY HH24:MI:SS') AS CURRENT_TIME
 2 FROM dual;

It returns

CURRENT_TIME

18-APR-2013 00:13:32

TO_CHAR(date) Function
The TO_CHAR function has more capabilities than simply a date conversion, which is why it’s also
covered in the “Data Type Conversion” section earlier in this appendix. While it didn’t seem
necessary to rewrite the TO_CHAR function section, it did seem advisable to put the content in
both locations for quick reference and to provide the date- and date-time-specific format masks.

The TO_CHAR function takes two arguments, or call parameters: the date or date-time, and
the format mask. The format masks for dates are as follows:

DD Two-digit day
MM Two-digit month
MON Three-character month, based on NLS_LANG value
YY Two-digit year
YYYY Two-digit absolute year
RR Two-digit relative year
HH Two-digit hour, values 1 to 12
HH24 Two-digit hour, values 0 to 23
MI Two-digit minutes, values 0 to 59
SS Two-digit seconds, values 0 to 59

The following demonstrates converting a DATE to a CHAR:

SQL> DECLARE
 2 today DATE := SYSDATE;
 3 BEGIN
 4 dbms_output.put_line(TO_CHAR(today,'Mon DD, YYYY'));
 5 END;
 6 /

While your date will reflect the current system date, this prints the day this was written:

Sep 27, 2007

16-AppC.indd 917 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

918 Oracle Database 12c PL/SQL Programming

When you add the NLS_DATE_LANGUAGE parameter to the function, you can override the
NLS setting for the database. The following resets the NLS_DATE_LANGUAGE parameter to
French:

SQL> DECLARE
 2 today DATE := SYSDATE;
 3 BEGIN
 4 dbms_output.put_line(TO_CHAR(today,'Mon DD, YYYY'
 5 ,'NLS_DATE_LANGUAGE = FRENCH'));
 6 END;
 7 /

This then prints the date in the French style, which adds a period after the abbreviation of the
month, like

Sept. 27, 2007

TO_DSINTERVAL Function
The TO_DSINTERVAL function converts a string literal (like the CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 data type) to an INTERVAL DAY TO SECOND data type. The SQL format is days,
hours, minutes, and seconds, where all values use integers. The integer range is 0 to 999,999,999
for days, 0 to 23 for hours, and 0 to 59 for minutes and seconds.

The following example determines when a rental is over 10 days past due:

SQL> SELECT r.rental_id
 2 FROM rental r
 3 WHERE r.check_out_date + TO_DSINTERVAL('10 00:00:00') <
 4 TRUNC(SYSDATE);

This returns all rentals checked out more than 10 days ago. The TO_DSINTERVAL function is
most useful when you need to add a fractional time equivalent less than a day, where a day is
simply an integer of 1.

TO_TIMESTAMP Function
The TO_TIMESTAMP function lets you convert a string expression into a timestamp. The prototype
for this is

TO_TIMESTAMP(expression [, format_mask [, nls_param]])

The example demonstrates a call to the TO_TIMESTAMP function:

SQL> DECLARE
 2 source TIMESTAMP := TO_TIMESTAMP('30-SEP-07 15:17:04'
 3 ,'DD-MON-YYYY HH24:MI:SS');
 4 BEGIN
 5 dbms_output.put_line(TO_CHAR(source
 6 ,'Mon DD, YYYY HH:MI:SS AM'));
 7 END;
 8 /

16-AppC.indd 918 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 919

This is similar to the behavior of the TO_DATE expression. It is useful to note that there is
also the TO_TIMESTAMP_TZ function when you work with multiple time zones but there isn’t
any function to help you bridge between the two time zones. You simply have to build such
comparisons into your application programming code logic by using the TO_TIMESTAMP_TZ
function.

TO_TIMESTAMP_TZ Function
The TO_TIMESTAMP_TZ function lets you convert a string expression into a timestamp. The
prototype for this is

TO_TIMESTAMP_TZ(expression [, format_mask [, nls_param]])

The example demonstrates a call to the TO_TIMESTAMP_TZ function:

SQL> SQL> SELECT TO_TIMESTAMP_TZ(
 2 '2013-09-11 15:17:04 -0100'
 3 ,'YYYY-MM-DD HH24:MI:SS TZH TZM') AS TZTIME
 4 FROM dual;

It returns

TZTIME
--
11-SEP-13 03.17.04.000000000 PM -01:00

This is similar to the behavior of the TO_TIMESTAMP expression with the exception that the
24-hour clock supplies the TZH (time zone hour) value, or in this case PM. The 15 (hundred) hour
value under a 24-hour clock converts to 3 pm on the local value, as you can see by examining the
statement and return result.

Any attempt to use a 12-hour clock value and an alphabetic value for the time zone hour results
in the following error:

SELECT TO_TIMESTAMP_TZ('2013-09-11 03:17:04 PM -0100'
 *
ERROR at line 1:
ORA-01858: a non-numeric character was found where a numeric was expected

For reference, there isn’t a TO_TIMESTAMP_TZ function choice when you work with multiple
time zones.

TO_YMINTERVAL Function
The TO_YMINTERVAL function is handy when you want to add time measured in years and
months to an existing date-time data type.

The following sample adds two months to the rental_date column:

SQL> SELECT SELECT return_date AS "Base"
 2 , return_date + TO_YMINTERVAL('00-02') AS "Changed"
 3 FROM rental;

16-AppC.indd 919 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

920 Oracle Database 12c PL/SQL Programming

It returns

Base Changed
--------- ---------
01-SEP-11 01-NOV-11
07-SEP-11 07-NOV-11

You return one year and four months in the future with the following:

SQL> SELECT SELECT return_date AS "Base"
 2 , return_date + TO_YMINTERVAL('01-04') AS "Changed"
 3 FROM rental;

The key is that if you don’t want to add years, provide a 00 for the year value to the left of the
dash; likewise, when you don’t want to add or subtract a month, use 00 to the right of the dash.

TRUNC(date) Function
The TRUNC function for dates is essential when you want to convert a date-time data type to a date.
Oracle’s date data types are all really date-time data types. The value to the left of the decimal
point maps to a date in an epoch, while the value to the right of the decimal point maps to a
decimal equivalent for any time in a day within an epoch.

The following example because an integer represents a day and a decimal represents a fraction
of time during the day. The TRUNC function removes the fractional equivalent, leaving the integer
representing 12 midnight of the day.

SQL> SELECT TO_CHAR(dt.datetime
 2 ,'DD-MON-YY HH24:MI:SS') AS "Date-Time"
 3 , TO_CHAR(TRUNC(dt.datetime)
 4 ,'DD-MON-YY HH24:MI:SS') AS "Date"
 5 FROM (SELECT SYSDATE AS datetime FROM dual) dt;

It returns

Date-Time Date
-------------------- --------------------
12-MAY-13 12:14:10 12-MAY-13 00:00:00

As you can see from the output, a date rather than a date-time data type is only the whole
number that maps to the epoch.

TZ_OFFSET Function
The TZ_OFFSET function lets you find the offset value for a time zone, like

SELECT TZ_OFFSET('US/Mountain') AS offset FROM dual;

It returns

OFFSET

-06:00

This concludes the time management functions.

16-AppC.indd 920 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 921

Collection Management Functions
Collection management functions operate on object tables (tables defined based on an object
type), nested object type columns, and collections—of nested tables or varrays. They also work
with collections in the scope of PL/SQL blocks.

This section works with object types and collections from Chapter 11 and Appendix B in
various sections. While the collection management functions have some restrictions, they also
have behaviors that you can exploit in SQL cursors. That’s why we examine their behaviors where
possible in SQL statements.

CARDINALITY Function
The CARDINALITY function counts the number of elements in a list and performs like the COUNT
function for SELECT statements. The CARDINALITY function is also explained in the subsequent
“Collection Set Operators” section. All of those examples use PL/SQL blocks, but here the
CARDINALITY function works in a query:

SQL> SELECT CARDINALITY(
 2 CAST(
 3 COLLECT(VALUE(b)) AS base_c)) AS cardinality
 4 FROM object_base b;

The CARDINALITY function counts the number of objects found in the object_base object
table (a table of an object type). Actually, it would have been less expensive to find it with a
COUNT function, and that’s what I’d recommend.

COLLECT Function
The COLLECT function lets you gather a set of object types into a varray or nested table collection.
As a rule you should use nested tables, simply because they’re more flexible with no maximum
limit on the number of elements.

You can use the COLLECT function with a persistent object only when it is defined as part
of an object table. An object table is defined solely by an object type, and you can create an
object_base object table of the base_t object type as follows:

SQL> CREATE TABLE object_base OF BASE_T;

Describing the table, you’d think it is an ordinary table because it outputs

SQL> DESCRIBE object_base
 Name Null? Type
 ------------------------- -------- --------------
 ID NUMBER
 NAME VARCHAR2(30)

A composite table is an alternative to an object table, and it’s made up of both scalar and
object type columns. The COLLECT function works differently with an object table than it does
with a composite table, as you see in the examples; however, it supports both object tables and
composite tables.

16-AppC.indd 921 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

922 Oracle Database 12c PL/SQL Programming

COLLECT Function in an Object Table
An object table lets you insert records using a relational VALUES clause, nested SELECT list that
matches the object type definition, or an object type constructor. So, you can insert a record like
this with a relational VALUES clause:

SQL> INSERT INTO object_base
 2 VALUES (base_t_s.nextval,'Tom Bombadil');

or like this with a base_t object type constructor:

SQL> INSERT INTO object_base
 2 VALUES (base_t(base_t_s.nextval,'Goldberry'));

The following query displays the inserted values as ordinary columns:

SQL> SELECT * FROM object_base;

 ID NAME
---- ------------------------------
 1 Tom Bombadil
 2 Goldberry

However, with the VALUE function, the query returns the details of collapsed objects (or, a call
to an object type with parameters):

SQL> SELECT VALUE(b) FROM object_base b;

VALUE(B)(ID, NAME)
--
BASE_T(1, 'Tom Bombadil')
BASE_T(2, 'Goldberry')

You can COLLECT the object table’s base_t object types with

SQL> SELECT COLLECT(VALUE(b)) AS collection
 2 FROM object_base b;

A VALUE function requires a correlation variable, which is a table alias. You would raise an
ORA-00904 error if you were to replace the table alias with a column name. Collecting a set of
object types without specifying the type of collection generates a dynamically generated system
collection, like

COLLECTION(ID, NAME)

SYSTPyVBav+vfR/WgCSImjOW1Ig==(BASE_T(3, 'Tom Bombadil'), ...

You should actually provide the AS keyword and a valid collection type inside the call to the
COLLECT function. When properly assigned to a collection data type from the data catalog,
the COLLECT function returns a collection that you can pass as a call parameter to a PL/SQL
function or procedure. Likewise, you can insert the collection into a column of a composite table.

16-AppC.indd 922 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 923

This is an example of gathering the rows of an object table into a collection:

SQL> SELECT CAST(COLLECT(VALUE(b)) AS base_c) AS collection
 2 FROM object_base b;

The COLLECT function converts the object types into a dynamic collection and then the
CAST function converts the generic collection to a base_c collection object type. This is actually
the closest Oracle comes to a full adapter pattern with native SQL and user-defined types (UDTs).
The results are displayed in a collapsed collection, which extends the definition, as shown:

COLLECTION(ID, NAME)

BASE_C(BASE_T(3, 'Tom Bombadil'), BASE_T(4, 'Goldberry'))

You can use the CAST and COLLECT functions together to create interesting SELECT
statements for reports. Moreover, you can also use those interesting SELECT statements as
cursors in PL/SQL blocks. The result from the cursor can become a call parameter to another
named PL/SQL block.

For example, let’s create a print_elements procedure that has one formal parameter of a
base_c collection data type:

SQL> CREATE OR REPLACE PROCEDURE print_elements
 2 (pv_collection BASE_C) IS
 3 -- Declare a collection.
 4 lv_collection BASE_C := base_c();
 5 BEGIN
 6 -- Check whether the collection is populated.
 7 IF pv_collection IS NOT EMPTY THEN
 8 lv_collection := pv_collection;
 9 END IF;
 10
 11 -- Read through the list and print values.
 12 FOR i IN 1..lv_collection.COUNT LOOP
 13 dbms_output.put_line(
 14 '['||lv_collection(i).id||']['||lv_collection(i).name||']');
 15 END LOOP;
 16 END;
 17 /

Line 2 shows the pv_collection formal parameter. Lines 7 through 9 check whether the
collection isn’t empty before assigning it to a local variable of the base_c collection type. You
may be wondering why we didn’t check for a null, especially if you’ve read the whole book or
come to this part with a background in PL/SQL. The reason you don’t need to check is that:

 ■ If it’s not empty, it’s filled.

 ■ If it’s null, it’s not empty.

 ■ If it’s empty, it’s not handled because there’s no ELSE block.

Finally, lines 13 and 14 print the results.

16-AppC.indd 923 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

924 Oracle Database 12c PL/SQL Programming

Next, let’s use an anonymous block program to gather the rows into a collection and pass
them to the print_elements procedure:

SQL> DECLARE
 2 -- Declare a cursor of a collection type.
 3 lv_collection BASE_C;
 4 BEGIN
 5 -- Cursor to create a collection from rows of an object table.
 6 SELECT CAST(
 7 COLLECT(
 8 VALUE(b)) AS base_c) AS base_c
 9 INTO lv_collection
 10 FROM object_base b;
 11
 12 -- Pass the cursor variable to the procedure.
 13 print_elements(lv_collection);
 14 END;
 15 /

Line 3 declares an uninitialized collection. Line 9 assigns the results of the SELECT-INTO
cursor to the lv_collection variable, which initializes it through a direct assignment of values.
Sizing of the list occurs by an implicit evaluation of the number of elements in the collection.
Line 13 calls the named PL/SQL block with the collection variable.

The print_elements procedure prints

[3][Tom Bombadil]
[4][Goldberry]

In all cases the COLLECT function is much faster than individually allocating space and
assigning values to a collection within the scope of PL/SQL block. I recommend you use the
COLLECT function to marshal object values into collections.

COLLECT Function with an Object Type Column
Object type columns exist as the sole or one of several column data types in composite tables.
The COLLECT function works slightly differently with composite tables. Foremost, you can’t use
the VALUE function because there’s no correlation variable for a column within a table.

Here’s the definition of the log_base composite table:

SQL> CREATE TABLE log_base
 2 (log_base_id NUMBER
 3 , log_object BASE_T);

It contains a scalar log_base_id column and a base_t object type column. Describing the
table, you see

SQL> DESCRIBE log_base
 Name Null? Type
 ----------------------- -------- --------
 LOG_BASE_ID NUMBER
 LOG_OBJECT BASE_T

16-AppC.indd 924 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 925

Like object tables, object columns can store instances (really, collapsed object definitions) of
their base type or any subtype of the base type. In this example, base_t is the base type and
hobbit_t is a subtype. Querying the content of the table with the following SELECT statement
lets you see that it holds different object types within the same object hierarchy:

SQL> SELECT log_object
 2 FROM log_base;

The results are

LOG_OBJECT(ID, NAME)

BASE_T(1, 'Tom Bombadil')
BASE_T(2, 'Goldberry')
HOBBIT_T(3, 'Bilbo Baggins', 'Bag End', 'Hobbiton', 'Westfarthing')
HOBBIT_T(4, 'Frodo Baggins', 'Bag End', 'Hobbiton', 'Westfarthing')
HOBBIT_T(5, 'Sam Gamgee', 'Hobbiton', 'Hobbiton', 'Westfarthing')

You can collect the data with or without casting it to an existing object collection type, but
you should always cast to an object collection. You have the choice of using or excluding the
table alias because it’s an ordinary table alias in this context, rather than a correlation variable.

The following query collects object instances of the supertype and any subtype into a single
collection result:

SQL> SELECT CAST(COLLECT(b.log_object) AS base_c) AS collection
 2 FROM log_base b;

It returns the following collection, which mirrors the named collection from the prior section
in this appendix (at least with a little manual formatting for the extra data):

COLLECTION(ID, NAME)

BASE_C(BASE_T(1, 'Tom Bombadil'), BASE_T(2, 'Goldberry'),
HOBBIT_T(5, 'Bilbo Baggins', 'Bag End', 'Hobbiton', 'Westfarthing'),
HOBBIT_T(6, 'Frodo Baggins', 'Bag End', 'Hobbiton', 'Westfarthing'),
HOBBIT_T(7, 'Sam Gamgee', 'Hobbiton', 'Hobbiton', 'Westfarthing'))

Other than remembering that you don’t need the correlation variable, this is virtually like how
you work with object tables. The “Can’t Clone, Migrate the Data” sidebar in Appendix B shows
you how to translate object tables and object columns to relational data in the “Can’t Clone,
Migrate the Data” sidebar. Naturally, Chapter 11 covers the definition and implementation of
object types in detail, and the “Object Types” section of Appendix B covers how you create,
evolve, and drop them.

POWERMULTISET Function
Like the COLLECT function, POWERMULTISET collects instances of an object type into a
collection. It takes a column name for a nested table and returns the object type and any nested
object types (called submultisets) from the nested table.

16-AppC.indd 925 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

926 Oracle Database 12c PL/SQL Programming

The following example uses the employee table from the “Object Data Type” section of
Appendix B, and it’s important to note that this table doesn’t share the definition of the employee
tables found in Oracle’s sample schemas.

SQL> SELECT CAST(
 2 POWERMULTISET(home_address) AS address_list_table)
 3 FROM employee;

It returns the collection in a representation of collapsed objects with nested collapsed objects,
like the results of the COLLECTION function.

POWERMULTISET_BY_CARDINALITY Function
The POWERMULTISET_BY_CARDINALITY function takes a nested table and a cardinality value
as inputs, and returns a submultiset (nonempty subset) based on the cardinality. A cardinality of 1
indicates a unique cardinality.

Here’s how you use the CAST function to convert the result of the POWERMULTISET_BY_
CARDINALITY function into a table collection:

SQL> SELECT CAST(
 2 POWERMULTISET_BY_CARDINALITY(home_address,1)
 3 AS address_list_table)
 4 FROM employee;

This returns similar output to that produced by the COLLECT and POWERMULTISET functions.

SET Function
The SET function is also a collection set operator, so I decided to provide the description and
supporting example only in the following “Collection Set Operators” section.

Collection Set Operators
Oracle Database 12c delivers collection set operators. They act and function like SQL set operators
in SELECT statements. The difference is that they are used in assignments between collections of
matching signature types. They work only with varrays and nested tables because they require
numeric index values.

You have to migrate associative arrays into varrays or nested tables before using set operators.
Table C-2 describes the collection set operators.

Sets are displayed as comma-delimited lists of values. The following subsections qualify how
to work with the set operators listed in Table C-2. The following code shows you how to format
and print results from sets (varrays and nested tables) as a comma-delimited string:

SQL> CREATE OR REPLACE
 2 TYPE list IS TABLE OF NUMBER;
 3 /

SQL> CREATE OR REPLACE FUNCTION format_list(set_in LIST)
 2 RETURN VARCHAR2 IS
 3 retval VARCHAR2(2000);

16-AppC.indd 926 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 927

Set Operator Description
CARDINALITY Counts the number of elements in a collection. It makes no attempt to count

only unique elements, but you can combine it with the SET operator to
count unique elements. The prototype is
CARDINALITY(collection)

EMPTY Acts as an operand, similar to checking whether a variable is null or is not
null. The comparative syntax is
variable_name IS [NOT] EMPTY

MULTISET Lets you group rows from a return set into a collection. The prototype is
collection MULTISET sql_result_set

MULTISET EXCEPT Removes one set from another. It works like the SQL MINUS set operator.
The prototype is
collection MULTISET EXCEPT collection

MULTISET
INTERSECT

Evaluates two sets and returns one set. The return set contains elements
that were found in both original sets. It works like the SQL INTERSECT set
operator. The prototype is
collection MULTISET INTERSECT collection

MULTISET UNION Evaluates two sets and returns one set. The return set contains all elements
of both sets. Where duplicate elements are found, they are returned. It
functions like the SQL UNION ALL set operator.
You may use the DISTINCT operator to eliminate duplicates. The
DISTINCT operator follows the MULTISET UNION operator rule. It
functions like the SQL UNION operator. The prototype is
collection MULTISET UNION collection

SET Removes duplicates from a collection and thereby creates a set of unique
values. It acts like a DISTINCT operator sorting out duplicates in a SQL
statement. The operator prototype is
SET(collection)
You can also use the SET operator as an operand, similar to checking
whether a variable is null or is not null. The comparative syntax is
variable_name IS [NOT] A SET

SUBMULTISET Identifies if a set is a subset of another set. It returns true when the left operand
is a subset of the right operand. The true return can be misleading if you’re
looking for a proper subset, which contains at least one element less than the
superset. The function returns true because any set is a subset of itself. There
is no test for a proper subset without also using the CARDINALITY operator
to compare whether the element counts of the two sets are unequal. The
prototype is
collection SUBMULTISET OF collection

TABLE C-2. Set Operators for Collections

16-AppC.indd 927 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

928 Oracle Database 12c PL/SQL Programming

 4 BEGIN
 5 IF set_in IS NULL THEN
 6 dbms_output.put_line('Result: <Null>');
 7 ELSIF set_in IS EMPTY THEN
 8 dbms_output.put_line('Result: <Empty>');
 9 ELSE -- Anything not null or empty.
 10 FOR i IN set_in.FIRST..set_in.LAST LOOP
 11 IF i = set_in.FIRST THEN
 12 IF set_in.COUNT = 1 THEN
 13 retval := '('||set_in(i)||')';
 14 ELSE
 15 retval := '('||set_in(i);
 16 END IF;
 17 ELSIF i <> set_in.LAST THEN
 18 retval := retval||', '||set_in(i);
 19 ELSE
 20 retval := retval||', '||set_in(i)||')';
 21 END IF;
 22 END LOOP;
 23 END IF;
 24 RETURN retval;
 25 END format_list;
 26 /

The format_list function works only with numeric indexes because collection set
operators are limited to varrays and nested tables, which are indexed only by integers. The set
operator examples all use this function to format output.

CARDINALITY Operator
The CARDINALITY operator lets count the elements in a collection. If there are unique elements,
they are counted once for each copy in the collection. The following example shows you how to
exclude matching elements:

SQL> DECLARE
 2 a LIST := list(1,2,3,3,4,4);
 3 BEGIN
 4 dbms_output.put_line(CARDINALITY(a));
 5 END;
 6 /

The program prints the number 6 because there are four elements in the collection. You can
count only the unique values by combining the CARDINALITY and SET operators, like this:

SQL> DECLARE
 2 a LIST := list(1,2,3,3,4,4);
 3 BEGIN
 4 dbms_output.put_line(CARDINALITY(SET(a)));
 5 END;
 6 /

16-AppC.indd 928 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 929

The program now prints the number 4 because there are four unique elements in the set
derived from the six-element collection.

EMPTY Operator
The EMPTY operator is covered in the SET subsection.

MULTISET Operator
The MULTISET operator lets you gather a set of scalar variables into a collection within a SQL
statement. To demonstrate how it works, we need to create a table and object type. For the object
type, we’ll reuse the street_list ADT (Attribute Data Type) from Appendix B:

SQL> CREATE OR REPLACE
 2 TYPE street_list IS TABLE OF VARCHAR2(30);
 3 /

Then, we create a table to hold the scalar strings:

SQL> CREATE TABLE street_multiset
 2 (street_multiset_id NUMBER
 3 , address_id NUMBER
 4 , line_id NUMBER
 5 , street_element VARCHAR2(30));

Finally, we insert a couple of related rows:

SQL> INSERT INTO street_multiset VALUES (1, 1, 1,'1111 Broadway');
SQL> INSERT INTO street_multiset VALUES (2, 1, 2,'Suite 521');

The following MULTISET operator groups the two rows together into a street_list
collection structure based on the shared address_id column:

SQL> SELECT CAST(
 2 MULTISET(
 3 SELECT street_element
 4 FROM street_multiset
 5 WHERE address_id = 1) AS STREET_LIST) AS collection
 6 FROM dual;

It displays

COLLECTION

STREET_LIST('1111 Broadway', 'Suite 521')

The MULTISET operator groups scalar values into collections. The TABLE operator performs
the opposite action, exploding object types into standard result sets—made of columns and rows.

The MULTISET operator can also work inside an UPDATE statement. For example, let’s update
the street_address column nested inside a home_address column of our employee
table, which you can find in Appendix B. The UPDATE statement assembles the rows of a column
value into a street_list ADT and then assigns them to the nested street_address

16-AppC.indd 929 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

930 Oracle Database 12c PL/SQL Programming

column within the nested home_address column. See Appendix B for an explanation of
unnesting queries.

SQL> UPDATE TABLE(SELECT e.home_address
 2 FROM employee e
 3 WHERE e.employee_id = 1) e
 4 SET e.street_address =
 5 (SELECT CAST(
 6 MULTISET(
 7 SELECT street_element
 8 FROM street_multiset
 9 WHERE address_id = 1) AS STREET_LIST) AS collection
 10 FROM dual)
 11 WHERE e.address_id = 1;

This updates only the nested ADT value for a single row in our employee table where the
primary key address_id column’s value is 1.

MULTISET EXCEPT Operator
The MULTISET EXCEPT operator lets you find the elements remaining from the first set after
removing any matching elements from the second set. The operator ignores any elements in the
second set that are not found in the first set. The following example shows you how to exclude
matching elements:

SQL> DECLARE
 2 a LIST := list(1,2,3,4);
 3 b LIST := list(4,5,6,7);
 4 BEGIN
 5 dbms_output.put_line(format_list(a MULTISET EXCEPT b));
 6 END;
 7 /

Only the element 4 exists in both sets. The operation therefore removes 4 from the first set.
The following output is generated by the block:

(1, 2, 3)

MULTISET INTERSECT Operator
The MULTISET INTERSECT operator lets you find the intersection or matching values between
two sets. The following example shows you how to create a set of the intersection between two
sets:

SQL> DECLARE
 2 a LIST := list(1,2,3,4);
 3 b LIST := list(4,5,6,7);
 4 BEGIN
 5 dbms_output.put_line(format_list(a MULTISET INTERSECT b));
 6 END;
 7 /

16-AppC.indd 930 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 931

Only one element from both sets matches, and that’s the number 4. The following output is
generated by the block:

(4)

This section has demonstrated how you can use set operators to create a set of the intersection
between two sets.

MULTISET UNION Operator
The MULTISET UNION operator performs a UNION ALL operation on two collections. The
following example demonstrates how to combine the sets into one set:

SQL> DECLARE
 2 a LIST := list(1,2,3,4);
 3 b LIST := list(4,5,6,7);
 4 BEGIN
 5 dbms_output.put_line(format_list(a MULTISET UNION b));
 6 END;
 7 /

The operation result of the MULTISET UNION is passed as an actual parameter to the
format_list function. The function converts it into the string:

(1, 2, 3, 4, 4, 5, 6, 7)

You’ll notice that both sets contain the integer 4, and the resulting set has two copies of it.
You can eliminate the duplication and mimic a UNION operator by appending the DISTINCT
operator, like

SQL> DECLARE
 2 a LIST := list(1,2,3,4);
 3 b LIST := list(4,5,6,7);
 4 BEGIN
 5 dbms_output.put_line(format_list(a MULTISET UNION DISTINCT b));
 6 END;
 7 /

Alternatively, you can take the result of the MULTISET UNION DISTINCT operation and
pass it as an argument to the SET operator to eliminate duplicates. This shows that approach:

SQL> DECLARE
 2 a LIST := list(1,2,3,4);
 3 b LIST := list(4,5,6,7);
 4 BEGIN
 5 dbms_output.put_line(format_list(SET(a MULTISET UNION b)));
 6 END;
 7 /

Both the DISTINCT and SET operators produce the following output:

(1, 2, 3, 4, 5, 6, 7)

16-AppC.indd 931 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

932 Oracle Database 12c PL/SQL Programming

SET Operator
The SET operator acts on a single input, which is another set. It removes any duplicates from the
set and returns a new set with unique values. The following example demonstrates how to pare
a set into unique elements:

SQL> DECLARE
 2 a LIST := list(1,2,3,3,4,4,5,6,6,7);
 3 BEGIN
 4 dbms_output.put_line(format_list(SET(a)));
 5 END;
 6 /

The original set contains ten elements, but three are duplicated. The SET operator removes all
duplicates and generates a new set with seven unique elements:

(1, 2, 3, 4, 5, 6, 7)

You can also use SET as an operand in comparison statements, like

SQL> DECLARE
 2 a LIST := list(1,2,3,4);
 3 b LIST := list(1,2,3,3,4,4);
 4 c LIST := list();
 5 FUNCTION isset (set_in LIST) RETURN VARCHAR2 IS
 6 BEGIN
 7 IF set_in IS A SET THEN
 8 IF set_in IS NOT EMPTY THEN
 9 RETURN 'Yes - a unique collection.';
 10 ELSE
 11 RETURN 'Yes - an empty collection.';
 12 END IF;
 13 ELSE
 14 RETURN 'No - a non-unique collection.';
 15 END IF;
 16 END isset;
 17 BEGIN
 18 dbms_output.put_line(isset(a));
 19 dbms_output.put_line(isset(b));
 20 dbms_output.put_line(isset(c));
 21 END;
 22 /

NOTE
Always remember to use empty parentheses when you build empty
collections. If you forget the parentheses (a common mistake, because
you don’t need them to call some functions or procedures), you’ll
raise an ORA-00330 error—invalid use of type name.

16-AppC.indd 932 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 933

The program returns

Yes - a unique collection.
No - a non-unique collection.
Yes - an empty collection.

This anonymous block demonstrates that the IS A SET comparison returns true when the
collection is either unique or empty. You must use the IS EMPTY comparison to capture empty
collections, as done in the format_set function previously shown.

SUBMULTISET OF Operator
The SUBMULTISET OF operator acts on two inputs. The first input precedes the SUBMULTISET
OF operator and the second follows the operator. The SUBMULTISET OF operator checks
whether the leading set is a proper subset of the following set. That means that all members of the
subset are found in the other set. The following example demonstrates how to evaluate a whether
a collection is a subset of another set:

SQL> DECLARE
 2 a LIST := list(1,2,3,3,4,4,5);
 3 b LIST := list(3,4);
 4 BEGIN
 5 IF b SUBMULTISET OF a THEN
 6 dbms_output.put_line(format_list(b));
 7 ELSE
 8 dbms_output.put_line('Subset not found in set.');
 9 END IF;
 10 END;
 11 /

Line 5 checks whether set b is a subset of a and when it is a proper subset, it prints the
formatted list. The SUBMULTISET OF operator finds that the subset is a valid subset and prints set
b’s formatted members:

(3, 4)

Number Functions
The number built-in functions provide key typical mathematical functions. Aside from the
trigonometric functions, you should find FLOOR and CEIL useful when you want to find a bottom
and upper integer limit for a range of complex (fractional) numbers. Also, ROUND lets you round
complex numbers to their nearest integer, and TRUNC lets you strip the values to the right of the
decimal place.

You’ll also find functions for modulo mathematics and exponentiation. Understanding what’s
available should increase your options while writing PL/SQL programs.

CEIL Function
The CEIL function lets you round any real number to the next higher integer. You can use it as follows:

SQL> DECLARE
 2 n NUMBER := 4.44;
 3 BEGIN

16-AppC.indd 933 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

934 Oracle Database 12c PL/SQL Programming

 4 dbms_output.put_line('Ceiling ['||CEIL(n)||']');
 5 END;
 6 /

It prints

Ceiling [5]

This is handy when you’re trying to group things into whole units.

FLOOR Function
The FLOOR function lets you truncate any remaining fraction from a number, returning the whole
integer value. You can use it as follows:

SQL> DECLARE
 2 n NUMBER := 4.44;
 3 BEGIN
 4 dbms_output.put_line('Flooring ['||FLOOR(n)||']');
 5 END;
 6 /

It prints

Flooring [4]

This is handy when you’re trying to group things into whole units.

MOD Function
The MOD function lets you find the remainder of a division operation, like the REMAINDER
function. It returns a 0 when there is no remainder and returns the integer of any remainder when
one exists.

The prototype is

MOD(dividend, divisor)

You can use it as follows:

SQL> DECLARE
 2 n NUMBER := 16;
 3 m NUMBER := 3;
 4 BEGIN
 5 dbms_output.put_line('Mode ['||MOD(n,m)||']');
 6 END;
 7 /

It prints

Mode [1]

The MOD function uses the FLOOR function in the calculation. It is designed to work with
positive integers. You will get nonclassical modulo arithmetic results when either number is
negative. You should use the REMAINDER function for classic modulo results when either number
has a negative value or the divisor is a real number.

16-AppC.indd 934 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 935

Modulo Arithmetic
Modulo arithmetic is a system of integer math. It is designed on the principal that numbers
wrap around, like a clock. An example is how 60 seconds becomes a minute, and then the
seconds reset to 0. It comes from the work of Carl Friedrich Gauss and was first published
in 1801.

The example does a bit of casting to demonstrate clock arithmetic by leveraging the
system clock function, SYSDATE:

SQL> DECLARE
 2 c_time INTEGER;
 3 e_time INTEGER;
 4 n_time INTEGER;
 5 s_time INTEGER;
 6 BEGIN
 7 LOOP
 8 /* Use the MOD function. */
 9 s_time := MOD(TO_NUMBER(TO_CHAR(SYSDATE,'SS')),60);
 10 IF c_time IS NULL THEN
 11 c_time := s_time;
 12 e_time := s_time - 1;
 13 n_time := s_time;
 14 dbms_output.put_line(
 15 '['||TO_CHAR(SYSDATE,'MI:SS')||']['||s_time||']');
 16 ELSE
 17 n_time := s_time;
 18 IF n_time <> c_time THEN
 19 dbms_output.put_line(
 20 '['||TO_CHAR(SYSDATE,'MI:SS')||']['||s_time||']');
 21 c_time := n_time;
 22 END IF;
 23 END IF;
 24 IF c_time = e_time THEN
 25 EXIT;
 26 END IF;
 27 END LOOP;
 28 END;
 29 /

This prints 59 values. It starts with the current time and ends 59 seconds later with the
24-hour clock value and modulo integer result. The following displays the rows immediately
before and after the wrapping between minutes:

[53:58][58]
[53:59][59]
[54:00][0]
[54:01][1]
[54:02][2]

Modulo arithmetic lets you time events to the minute or hour with a divisor of 60. You
can time events to the half-minute by using a divisor of 30, or quarter-minute by using a
divisor of 15. As you explore your application needs, it is likely that you’ll have several
occasions to use the MOD function.

16-AppC.indd 935 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

936 Oracle Database 12c PL/SQL Programming

POWER Function
The POWER function doubles for the exponential operator, **. It is really your preference whether
you use the POWER function or the exponential operator, but you should pick one and stick with
it. There’s power in writing code consistently.

The prototype of the POWER function is

POWER(base_number, exponent)

The follow demonstrates cubing a number:

SQL> DECLARE
 2 n NUMBER := 3;
 3 m NUMBER := 3;
 4 BEGIN
 5 dbms_output.put_line('Cube of ['||n||'] is ['||POWER(n,m)||']');
 6 END;
 7 /

This prints

Cube of [3] is [27]

While the math libraries work well when you square or cube numbers, they do produce
rounding errors when calculating cube roots, like the following:

SQL> DECLARE
 2 n NUMBER := 27;
 3 m NUMBER := 1/3;
 4 BEGIN
 5 dbms_output.put_line('Cube of ['||n||'] is ['||POWER(n,m)||']');
 6 END;
 7 /

This prints

Cube root of [27] is [2.99999999999999999999999999999999999998]

While it should print 3, it doesn’t. The math error is not generally significant because you can
use the ROUND function to get the whole number cube root, like

ROUND(POWER(n,m),0)

You get 3 when you change the data types from NUMBER to BINARY_DOUBLE because the
latter uses the server’s local math libraries. The same program written with a BINARY_DOUBLE
data type prints

Cube root of [2.7E+001] is [3.0E+000]

You should consider using data types tied to the server math libraries when the data types are
scientific in nature, like finding cube roots.

16-AppC.indd 936 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 937

REMAINDER Function
The REMAINDER function lets you find the remainder of a division operation, like the MOD function.
It returns a 0 when there is no remainder and returns the integer of any remainder when one exists.

The prototype is

REMAINDER(dividend, divisor)

The REMAINDER function behaves differently depending on whether the dividend and divisor
are NUMBER data types or data types linked to the local math libraries, like BINARY_FLOAT and
BINARY_DOUBLE. More or less, the results are slightly more meaningful with BINARY_FLOAT
and BINARY_DOUBLE because you get a NaN (not a number) when the divisor is 0. You get a
numeric or value error (PLS-06502) when the actual parameters are NUMBER data types.

You can use it as follows:

SQL> DECLARE
 2 n NUMBER := 16;
 3 m NUMBER := 3;
 4 BEGIN
 5 dbms_output.put_line('Remainder ['||REMAINDER(n,m)||']');
 6 END;
 7 /

It prints

Remainder [1]

The difference between the REMAINDER and MOD functions can best be shown by using a real
number as the divisor. This program uses both functions:

SQL> DECLARE
 2 n NUMBER := 16;
 3 m NUMBER := 3.24;
 4 BEGIN
 5 dbms_output.put_line('Remainder ['||REMAINDER(n,m)||']');
 6 dbms_output.put_line('Remainder ['||MOD(n,m)||']');
 7 END;
 8 /

There are two perspectives on this problem. One divides the dividend by the divisor and
returns either a positive integer as the remainder or 0. This works when the dividend and divisor
are positive integers. The MOD function uses this method; when the divisor is 3.24 and the
dividend is 4, there are four whole 3.24 values, or 12.96, in 16. The divisor minus the dividend
times 4 yields a remainder of 3.04.

The other perspective approximates the least remainder of the division. This means that when
the remainder is greater than half the dividend, it looks for the next whole division value. The
remainder in this case is the difference between what the number is and what the next higher
number would be without a remainder. The REMAINDER function uses the same divisor but finds
the closest possible result, or the world as it should be. From this perspective, there should be five
whole 3.24 values, or 16.2, in the dividend, which leaves a remainder of –0.2.

16-AppC.indd 937 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

938 Oracle Database 12c PL/SQL Programming

More likely than not, you’ll use MOD more frequently than REMAINDER because application
programming deals with reality. In rare cases, the other fits. You now know why the REMAINDER
function works the way it does.

ROUND Function
The ROUND function has two roles. One works with dates and the other, described here, works with
numbers. (For completeness, this definition also appears in the “Date-time Functions” section.) The
ROUND function lets you round a number to a whole number or a decimal equivalent. The following
rounds 2.5 to a whole number:

SQL> SELECT ROUND(2.5,0) FROM dual;

You should note that the ROUND function rounds up at 2.5 and rounds down with anything less
than 2.5. The ROUND function is important when preparing reports, especially financial reports.

It’s very useful when using Oracle’s math libraries because some functions return incorrect
values, like the POWER function (see its description a bit earlier in this appendix).

Error Reporting Functions
The error reporting functions only work in the exception block of PL/SQL program units. The
SQLCODE function returns the code number for the error, like ORA-01422. The SQLERRM
function returns the error code and a brief message. The messages are defined by language, and
you should note that in some earlier Oracle Database releases, some language translations have
had incomplete message files.

Chapter 7 covers exception handling and contains additional examples that you may find
useful. These two sections summarize the utility of the SQLCODE and SQLERRM functions.

SQLCODE Function
The SQLCODE function returns the Oracle error number for standard exceptions and a 1 for user-
defined exceptions. You can also raise a user-defined custom error and exception message by
calling the RAISE_APPLICATION_ERROR function. This section demonstrates all three
approaches.

The following program generates a standard exception:

SQL> DECLARE
 2 a NUMBER;
 3 b CHAR := 'A';
 4 BEGIN
 5 a := b;
 6 EXCEPTION
 7 WHEN others THEN
 8 dbms_output.put_line('SQLERRM ['||SQLERRM||']');
 9 END;
 10 /

It prints the following to console:

SQLERRM [ORA-06502: PL/SQL: numeric or value error: character to number ...

16-AppC.indd 938 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 939

The next program generates a user-defined exception number:

SQL> DECLARE
 2 e EXCEPTION;
 3 BEGIN
 4 RAISE e;
 5 EXCEPTION
 6 WHEN others THEN
 7 dbms_output.put_line('SQLCODE ['||SQLCODE||']');
 8 END;
 9 /

It generates the following because user-defined exceptions always return 1:

SQLCODE [1]

The RAISE_APPLICATION_ERROR function lets you define a user exception number and
exception. The SQLCODE value works for user-defined exceptions exactly as it does for standard
exceptions.

SQLERRM Function
The SQLERRM function mirrors the behaviors of the SQLCODE function with the exception of the
value returned. SQLERRM returns the error code and a default message. The message files are read
from a generic message file in the $ORACLE_HOME/rdbms/mesg directory. The message files are
found in the oraus.msg file for American English exception messages. They are language-
specific files when you install Oracle in a different language. You can also evaluate error messages
in Linux or Unix by using the oerr utility.

You execute the oerr utility by providing the three-character error type and five-number error
message, like

oerr ora 01422

The oerr utility treats the three-character error type string as case insensitive. Unfortunately,
it isn’t available on the Windows operating system port of the database.

The SQLERRM function works the same for standard exceptions and user-defined exceptions.
It reads the message file. The next program demonstrates raising a user-defined exception:

SQL> DECLARE
 2 e EXCEPTION;
 3 BEGIN
 4 RAISE e;
 5 EXCEPTION
 6 WHEN others THEN
 7 dbms_output.put_line('SQLERRM ['||SQLERRM||']');
 8 END;
 9 /

This program generates the following:

SQLERRM [User-Defined Exception]

16-AppC.indd 939 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

940 Oracle Database 12c PL/SQL Programming

You can use an EXCEPTION_INIT PRAGMA (a precompiler instruction) to map a user-defined
exception to a standard Oracle exception. Using the EXCEPTION_INIT precompiler instruction
is preferred to the standard exception message User-Defined Exception.

The next program demonstrates mapping a related standard exception message to a user-
defined exception:

SQL> DECLARE
 2 e EXCEPTION;
 3 PRAGMA EXCEPTION_INIT(e,-01422);
 4 BEGIN
 5 RAISE e;
 6 EXCEPTION
 7 WHEN others THEN
 8 dbms_output.put_line('SQLERRM ['||SQLERRM||']');
 9 END;
 10 /

It prints the following output:

SQLERRM [ORA-01422: exact fetch returns more than requested number of rows]

You can use the RAISE_APPLICATION_ERROR function when you require a specialized error
message. Unfortunately, this function limits you to an exception range between –20,001 and
–21,999. If you use any number outside that range, you’ll raise an ORA-20000 exception.

The following demonstrates the SQLERRM result for a user-defined exception message:

SQL> BEGIN
 2 RAISE_APPLICATION_ERROR(
 3 -20001
 4 ,'An overriding user-defined error message.');
 5 EXCEPTION
 6 WHEN others THEN
 7 dbms_output.put_line('SQLERRM ['||SQLERRM||']');
 8 END;
 9 /

It raises the following to console:

SQLERRM [ORA-20001: An overriding user-defined error message.]

This section has demonstrated how you can use standard and user-defined exception
messages. You’ve learned that you can only return standard messages unless you call the RAISE_
APPLICATION_ERROR function.

Miscellaneous Functions
These miscellaneous functions initialize large objects, perform advanced comparisons, and audit
system environment variables. They are very powerful features in the PL/SQL language.

The BFILENAME, EMPTY_BLOB, and EMPTY_CLOB functions initialize large objects. The
BFILENAME function defines a data structure for an external file. EMPTY_BLOB and EMPTY_
CLOB initialize BLOB and CLOB data types, respectively.

16-AppC.indd 940 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 941

Advanced comparisons are conditional evaluations. They are performed by the COALESCE,
DECODE, GREATEST, LEAST, NANVL, NULLIF, and NVL functions. COALESCE uses short-circuit
analysis to find the first not-null value in a set. If all values in a set are null, COALESCE returns
null. DECODE performs if-then-else and if-then-elseif-then-else logic. GREATEST finds the highest
character, string, or number in a set of like data types. LEAST finds the lowest value in a set.
NANVL substitutes a default number when not a number is returned but only applies to types
using native operating system math libraries. NULLIF returns a null when its two actual
parameters are equal. NVL substitutes another value when the first actual parameter is null; it
requires both actual parameters to be the same data type.

The balance of the functions audit system environment variables. They are DUMP, NLS_
CHARSET_DECL_LEN, NLS_CHARSET_ID, NLS_CHARSET_NAME, SYS_CONTEXT, SYS_GUID,
UID, USER, USERENV, and VSIZE. The DUMP and VSIZE functions inspect the physical size of
data types. Oracle’s National Language Support (NLS) represents how Oracle databases manage
different character sets. As discussed in the “Unicode Characters and Strings” section of Chapter 4,
Oracle supports two Unicode character sets—AL32UTF16 and AL32UTF8. It also supports
numerous other character sets. NLS is the umbrella term for all character sets. The NLS_CHARSET_
DECL_LEN, NLS_CHARSET_ID, and NLS_CHARSET_NAME functions let you discover the physical
storage details of NLS character sets. The remaining functions, SYS_CONTEXT, SYS_GUID, UID,
USER, and USERENV, audit database session information.

This section covers the three functions for initializing large objects, the TREAT for instantiating a
persistent object, the TABLE function for translating a collection to a result set, the seven functions
for performing advanced comparisons, and four of the system environment functions: DUMP,
SYS_CONTEXT, USERENV, and VSIZE. Rather than create separate nesting levels, these functions
are simply presented alphabetically. The description of each qualifies its purpose in the PL/SQL
language.

BFILENAME Function
The BFILENAME function is used to insert or update a reference to an externally stored binary
large object. It takes two parameters: a virtual directory path and a filename. Unfortunately, it
makes no effort to validate whether the virtual directory or file exists. This is because you may
build the reference before creating the virtual directory mapping or placing the file in the target
location. It returns a binary file locator.

The following prototype demonstrates that you call the function with two strings; the first is
limited to 30 characters and the second to 4,000 characters:

BFILENAME('virtual_directory','physical_file')

NOTE
Operating systems generally constrain the fully qualified path to a
value smaller than 4,000 characters.

You can find the mapping of virtual directories to the external file system in the DBA_
DIRECTORIES view. The view is available when you are the privileged user system or have
been granted the DBA role privilege, which actually inherits the privilege through the SELECT_
CATALOG_ROLE.

16-AppC.indd 941 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

942 Oracle Database 12c PL/SQL Programming

The following query lets you find the virtual directories and their physical server mapping:

SQL> SELECT owner
 2 , directory_name
 3 , directory_path
 4 FROM dba_directories;

All virtual directories are owned by the sys schema. You cannot access the contents from a
cursor inside a stored program unit because the privilege exists through a role. Chapter 8 shows
you how to query the contents of the table inside a stored procedure, which requires that the sys
schema grant system the SELECT privilege on the DBA_DIRECTORIES view.

When you don’t have the SELECT privilege, you are limited to using the dbms_lob package
for access to the information inside a BFILE column. You can verify whether the file exists on the
server by using the dbms_lob.fileexists function and get the physical size by using the
dbms_lob.getlength function. The next program assumes you build the following table:

SQL> CREATE TABLE sample (sample_id NUMBER, sample_bfile BFILE);

and then insert a record into the table like this:

SQL> INSERT INTO sample
 2 VALUES (1, BFILENAME('VIRTUAL_DIRECTORY','file_name.ext'));

You can also use the BFILENAME function in the SET clause of an UPDATE statement to
change either the virtual directory or filename. These external files are read-only data types, and
you update data as part of maintenance programs that manipulate their location or names.

This program will now read the column and return a physical size for a file, or a message that
the file was not found:

SQL> DECLARE
 2 file_locator BFILE;
 3 BEGIN
 4 SELECT sample_bfile
 5 INTO file_locator
 6 FROM sample
 7 WHERE sample_id = 1;
 8 IF dbms_lob.fileexists(file_locator) = 1 THEN
 9 dbms_output.put_line(dbms_lob.getlength(file_locator));
 10 ELSE
 11 dbms_output.put_line('No file found.');
 12 END IF;
 13 END;
 14 /

The dbms_lob.fileexists function was built to work in both SQL and PL/SQL. Since
SQL does not support a native Boolean data type, the function returns 1 when it finds a file and 0
when it fails.

The next program illustrates creating a binary file locator outside of a database column and
then reading the locator to find the filename with the dbms_lob.filegetname function:

16-AppC.indd 942 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 943

SQL> DECLARE
 2 alias VARCHAR2(255);
 3 filename VARCHAR2(255);
 4 BEGIN
 5 dbms_lob.filegetname(
 6 BFILENAME('virtual_dir','file_name.gif')
 7 ,alias
 8 ,filename);
 9 dbms_output.put_line(filename);
 10 END;
 11 /

It prints

file_name.gif

This section has demonstrated how to use the BFILENAME function. You will use it when
you store files externally from the database. They must be no larger than the maximum file size
supported by the operating system. They are typically files like .gif, .jpg, or .png image files, sound
recording files, Flash components, and other media files.

COALESCE Function
The COALESCE function uses short-circuit analysis to find the first not-null value in a set. Short-
circuit evaluation means that the function stops searching when a not-null value is returned.
COALESCE returns null when all values evaluate as nulls.

The COALESCE prototype that works with scalar variables of the same data type is

COALESCE(arg1, arg2 [, arg3 [, arg(n+1)]])

The following demonstrates the function using a collection of strings:

SQL> DECLARE
 2 TYPE list IS TABLE OF VARCHAR2(5);
 3 ord LIST := list('One','','Three','','Five');
 4 BEGIN
 5 dbms_output.put_line(
 6 COALESCE(ord(1),ord(2),ord(3),ord(4),ord(5)));
 7 END;
 9 /

The function prints the first not-null element in the collection:

One

You can put a loop around the COALESCE function to perform the function repeatedly.
Alternatively, you can use a FOR loop, nested IF statement, and NVL function call to print only
not-null values. The two procedures consume roughly the same resources, but the latter may be
clearer to most programmers.

16-AppC.indd 943 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

944 Oracle Database 12c PL/SQL Programming

DECODE Function
The DECODE function performs if-then-else and if-then-else-if-then-else logic in SQL statements. It
is known as a pseudocolumn, and you can also use it inside your PL/SQL programs. The prototype
for an if-then-else statement is

DECODE(evaluation_expression, comparison_expression
 , true_expression, false_expression);

The alternate prototype for if-then-else-if-then-else is

DECODE(evaluation_expression, comparison_expression1, true_expression1
 , comparison_expression2, true_expression2
 , comparison_expression(n+1), true_expression(n+1)
 , comparison false_expression);

The following illustrates an if-then-else DECODE function:

SQL> DECLARE
 2 a NUMBER := 94;
 3 b NUMBER := 96;
 4 c VARCHAR2(20);
 5 BEGIN
 6 SELECT DECODE(a,b,'Match.','Don''t match.')
 7 INTO c FROM dual;
 8 dbms_output.put_line(c);
 9 END;
 10 /

It prints the following because the numbers are unequal:

Don't match.

The following program shows the case logic of a multiple if-then-else statement:

SQL> DECLARE
 2 redsox NUMBER := 96;
 3 yankees NUMBER := 94;
 4 division NUMBER := 96;
 5 headline VARCHAR2(30);
 6 BEGIN
 7 SELECT DECODE(division,yankees,'Yankees clinch pennant.'
 8 ,redsox,'Red Sox clinch pennant.'
 9 ,'Tied Again!')
 10 INTO headline
 11 FROM dual;
 12 dbms_output.put_line(headline);
 13 END;
 14 /

While using static values, you should see the potential. Examine when you can resolve
procedural questions in your SQL statements, and do it when it simplifies the program!

16-AppC.indd 944 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 945

DUMP Function
The DUMP function examines the data type and real length of registered data types. It returns a
value that is independent of the database or session character set. You can use the DUMP function
only inside a SQL statement.

The following block demonstrates how to find the real size of a LONG RAW variable:

SQL> DECLARE
 2 buffer LONG RAW := HEXTORAW('42'||'41'||'44');
 3 detail VARCHAR2(100);
 4 BEGIN
 5 SELECT DUMP(buffer)
 6 INTO detail
 7 FROM dual;
 8 dbms_output.put_line(detail);
 9 END;
 10 /

It prints the data catalog number for a LONG RAW, the length of the data value, and the ASCII
values of the original hexadecimal values:

Typ=23 Len=3: 66,65,68

You may not use this function too often, but when you’re trying to figure out why something is
broken and the error message and web hits are limited, it may be very helpful. It certainly helps
when working with the dbms_lob package and raw streams, as covered in the next section.

EMPTY_BLOB Function
The EMPTY_BLOB function lets you initialize a database column with an empty BLOB data type.
This is important because large objects have three possible states: null, empty, or populated. The
dbms_lob package fails by raising an ORA-22275 exception when you attempt to work with a
null BLOB column. The error is raised because there is no valid locator found in the column for
null values.

The dbms_lob package fails by raising an ORA-01403 exception when you have an empty
BLOB. This is more meaningful than the “invalid LOB locator” message that you’ll receive when
the column isn’t initialized, and you can always append to an empty BLOB column. In some
cases, using a default value during table creation may be a viable solution, but generally there are
good reasons to leave a BLOB column null until you want to use it.

The next program assumes you build the following table:

SQL> CREATE TABLE sample (sample_id NUMBER, sample_blob BLOB);

and then insert into the table a record like this:

SQL> INSERT INTO sample (sample_id) VALUES (1);

You’ll need to configure your database as noted in the proximate “Deploying a Character Set
Function” sidebar. The following program demonstrates how to update a BLOB column in an
existing row:

SQL> DECLARE
 2 amount BINARY_INTEGER := 100;
 3 buffer LONG RAW := HEXTORAW('43'||'44'||'5E');

16-AppC.indd 945 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

946 Oracle Database 12c PL/SQL Programming

 4 character_set VARCHAR2(12);
 5 offset INTEGER := 1;
 6 source BLOB;
 7 -- Convert character length to byte length.
 8 FUNCTION byte_length(n BINARY_INTEGER) RETURN BINARY_INTEGER IS
 9 al32utf8 BINARY_INTEGER := 2;
 10 utf8 BINARY_INTEGER := 3;
 11 BEGIN
 12 -- Find database instance character set.
 13 SELECT value
 14 INTO character_set
 15 FROM nls_database_parameters
 16 WHERE parameter = 'NLS_CHARACTERSET';
 17 -- Branch sizing for Unicode.
 18 IF character_set = 'AL32UTF8' THEN
 19 RETURN n / al32utf8;
 20 ELSIF character_set = 'UTF8' THEN
 21 RETURN n / utf8;
 22 END IF;
 23 END byte_length;
 24 BEGIN
 25 -- Change column value in existing row.
 26 UPDATE sample2
 27 SET sample_blob = empty_blob()
 28 WHERE sample_id = 1
 29 RETURNING sample_blob INTO source;
 30 -- Append to empty BLOB column.
 31 dbms_lob.writeappend(source,BYTE_LENGTH(LENGTH(buffer)),buffer);
 32 -- Read new content from column.
 33 SELECT sample_blob INTO source FROM sample2 WHERE sample_id = 1;
 34 dbms_lob.read(source,amount,offset,buffer);
 35 dbms_output.put_line(buffer);
 36 END;
 37 /

The UPDATE statement uses the RETURNING INTO clause to create a transactional opening
to the BLOB column. The source variable is the opening, and it lets you change the contents of
the BLOB column. The target variable of the RETURNING INTO clause acts as an implicit bind
variable that you can see by peeking into the SGA. The local byte_length function divides any
Unicode character set length to arrive at the byte code length. You would need to modify that
function when using other multibyte character sets. If you fail to convert the byte width of the
BLOB variable, you raise an ORA-21560 error. This happens because the amount parameter is larger
than the actual number of bytes in the buffer parameter of the dbms_lob.writeappend
function.

TIP
If you try to update a row that doesn’t exist with the dbms_lob
.writeappend procedure, you’ll raise an ORA-22275 exception,
which indicates an invalid LOB locator is specified in the function call.
This actually means there is no row where you can insert the LOB value.

16-AppC.indd 946 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 947

You can also replace the character_set function and simplify the program by using the
VSIZE function. VSIZE returns the size in bytes of expressions returned in SQL statements. The
alternative local function would be

SQL> FUNCTION byte_length(n LONG RAW) RETURN BINARY_INTEGER IS
 2 realsize BINARY_INTEGER;
 3 BEGIN
 4 SELECT VSIZE(n) INTO realsize FROM dual;
 5 RETURN realsize;
 6 END byte_length;

You can also change the call and eliminate the nested call to the LENGTH function, like

 dbms_lob.writeappend(source,BYTE_LENGTH(buffer),buffer);

Clearly, this is simpler than dealing with the character sets. It also makes the case that you can
leverage SQL-only built-in functions to do difficult things easily.

This section has demonstrated how to use the EMPTY_BLOB function in an UPDATE
statement. You can also use it the same way in the VALUES clause of an INSERT statement, or as
a default column value when creating a table or altering a table to include a BLOB column.

NOTE
The dbms_lob package also raises ORA-06502 errors, typically
without much explanation beyond pointing to line numbers that vary
between releases. These errors are most often raised by passing a null
value into one of the IN or IN OUT mode parameters of the dbms_
lob functions or procedures.

Deploying a Character Set Function
As demonstrated in the update of a BLOB column, the user-defined character_set
function lets you determine the character set of the database in a restricted privilege
schema. This is critical when you need the real byte count for BLOB, RAW, or LONG RAW
data types.

The first step requires that you connect as the privileged user sys as the SYSDBA. There
you can grant privileges to the sys.props$ table, like

GRANT SELECT ON props$ TO SYSTEM;

Then, you can compile the following function in the system schema (don’t forget to
connect as the system user):

SQL> CREATE OR REPLACE FUNCTION character_set RETURN VARCHAR2 IS
 2 -- Return variable.
 3 characterset VARCHAR2(20);
 4 -- Explicit cursors are always recommended.
 5 CURSOR c IS
 6 SELECT value$ FROM sys.props$ WHERE name = 'NLS_CHARACTERSET';
 (continued)

16-AppC.indd 947 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

948 Oracle Database 12c PL/SQL Programming

EMPTY_CLOB Function
The EMPTY_CLOB function works like the EMPTY_BLOB function. It lets you initialize a database
column with an empty CLOB data type. This is important because large objects have three possible
states: null, empty, or populated. The dbms_lob package fails by raising an ORA-22275 exception
when you attempt to work with a null CLOB column. The error is raised because there is no valid
locator found in the column for null values.

The dbms_lob package fails by raising an ORA-01403 exception when you have an empty
CLOB. This is more meaningful than the “invalid LOB locator” message that you’ll receive when
the column isn’t initialized, and you can always append to an empty CLOB column. In some
cases, using a default value during table creation may be a viable solution, but generally there
are good reasons to leave a CLOB column null until you want to use it.

The next program assumes you build the following table:

SQL> CREATE TABLE sample (sample_id NUMBER, sample_clob CLOB);

and then insert into the table a record like this:

SQL> INSERT INTO sample (sample_id) VALUES (1);

 7 BEGIN
 8 OPEN c;
 9 FETCH c INTO characterset;
 10 CLOSE c;
 11 RETURN characterset;
 12 END character_set;
/

You grant execute privileges on this function to schemas that require access to the
database character set. The following grants that privilege to the PLSQL schema:

SQL> GRANT EXECUTE ON character_set TO plsql;

After granting the privilege to the target schema, you should connect to the PLSQL
schema and create a synonym or alias that points to the system.CHARACTER_SET
function. You use the following syntax:

CREATE SYNONYM character_set FOR system.character_set;

This lets the local schema return the string representing the character set as an expression.
This approach is what lets you update a BLOB column in a multibyte character set. It eliminates
that nasty ORA-21560 error because the LENGTH function returns the number of bytes
required by the character set, not raw storage. Using it properly, this function lets you deal
with the real length of binary streams. You can also use the DUMP function to find the real
length for byte streams.

16-AppC.indd 948 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 949

The following demonstrates how to update a CLOB column in an existing row:

SQL> DECLARE
 2 amount BINARY_INTEGER := 100;
 3 buffer VARCHAR2(2000) := 'Something is better than nothing.';
 4 offset INTEGER := 1;
 5 source CLOB;
 6 BEGIN
 7 UPDATE sample
 8 SET sample_clob = empty_clob()
 9 WHERE sample_id = 1
 10 RETURNING sample_clob INTO source;
 11 -- Check that the source is empty.
 12 IF NVL(dbms_lob.getlength(source),0) = 0 THEN
 13 dbms_lob.writeappend(source,LENGTH(buffer),buffer);
 14 END IF;
 15 -- Read the first 2,000 characters of the CLOB.
 16 dbms_lob.read(source,amount,offset,buffer);
 17 dbms_output.put_line(buffer);
 18 END;
 19 /

This section has demonstrated how to use the EMPTY_CLOB function in an UPDATE statement.
You can also use it the same way in the VALUES clause of an INSERT statement or as a default
column value when creating a table or altering a table to include a CLOB column.

NOTE
An ORA-21560 exception is raised by the WRITEAPPEND procedure
when the second actual parameter is a null value or 0.

GREATEST Function
The GREATEST function lets you check which of two values is the greatest. This works with scalar
data types, like dates, numbers, and strings. The prototype is

GREATEST(variable1, variable2)

The GREATEST function requires that both actual parameters have the same data type, and it
returns the least value in that data type. Comparing the number of winning games by the Boston
Red Sox and New York Yankees for the 2007 season shows that 96 games wins the division
pennant for the Boston Red Sox:

SQL> BEGIN
 2 dbms_output.put_line(GREATEST(96,94));
 3 END;
 4 /

Alternatively, you can compare two dates, such as the date that Sammy Sosa hit 600 career
homeruns against the date that Alexander Rodriguez hit 500 career homeruns. The following

16-AppC.indd 949 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

950 Oracle Database 12c PL/SQL Programming

program uses the TO_CHAR function to demonstrate that the return type is actually a date against
which you can apply a format mask:

SQL> DECLARE
 2 rodriguez DATE := '04-AUG-07';
 3 sosa DATE := '20-JUN-07';
 4 BEGIN
 5 dbms_output.put_line(
 6 TO_CHAR(GREATEST(rodriguez,sosa),'Mon DD, YYYY'));
 7 END;
 8 /

This prints the later date:

Aug 04, 2007

Although the previous examples are small, the string comparison highlights using the
GREATEST function as a key element to implement a traditional descending bubble sort. The
local swap procedure is quite simple as a pass-by-reference procedure, which leaves the array
re-sorted upon successful completion of the program.

The bubble sort uses a set of nested loops, which lets you compare the first element against all
elements in the collection, leaving the greatest element first—or in descending order:

SQL> DECLARE
 2 TYPE namelist IS TABLE OF VARCHAR2(12);
 3 names NAMELIST := namelist('Bonds','Aaron','Ruth','Mayes');
 4 -- Local swap procedure.
 5 PROCEDURE swap (a IN OUT VARCHAR2, b IN OUT VARCHAR2) IS
 6 c VARCHAR2(12);
 7 BEGIN
 8 c := b;
 9 b := a;
 10 a := c;
 11 END swap;
 12 BEGIN
 13 FOR i IN 1..names.COUNT LOOP
 14 FOR j IN 1..names.COUNT LOOP
 15 IF names(i) = GREATEST(names(i),names(j)) THEN
 16 swap(names(i),names(j));
 17 END IF;
 18 END LOOP;
 19 END LOOP;
 20 FOR i IN 1..names.COUNT LOOP
 21 dbms_output.put_line(names(i));
 22 END LOOP;
 23 END;
 24 /

The example prints the descending ordered surnames of the top four career homerun hitters:

Ruth
Mayes
Bonds
Aaron

16-AppC.indd 950 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 951

You could also accomplish the same sorting by replacing the GREATEST comparison with the
following line:

IF names(i) < names(j) THEN

You do need to watch the behavior of both Unicode and differing character sets when you do
comparisons. The CONVERT function can help you ensure that comparisons are between like
character sets.

These examples have demonstrated the versatility of the GREATEST function. They’re revisited
in the description of the LEAST function.

LEAST Function
The LEAST function lets you check which of two values is the least. This works with scalar data
types, like dates, numbers, and strings. The prototype is

LEAST(variable1, variable2)

The LEAST function requires that both actual parameters have the same data type, and it
returns the least value in that data type. Comparing the number of winning games by the Boston
Red Sox and New York Yankees for the 2007 season shows that 94 games loses the division
pennant for the New York Yankees:

SQL> BEGIN
 2 dbms_output.put_line(LEAST(96,94));
 3 END;
 4 /

Alternatively, you can compare two dates, such as the date that Sammy Sosa hit 600 career
homeruns against the date that Alexander Rodriguez hit 500 career homeruns. The following
program uses the TO_CHAR function to demonstrate that the return type is actually a date against
which you can apply a format mask:

SQL> DECLARE
 2 rodriguez DATE := '04-AUG-07';
 3 sosa DATE := '20-JUN-07';
 4 BEGIN
 5 dbms_output.put_line(
 6 TO_CHAR(LEAST(rodriguez,sosa),'Mon DD, YYYY'));
 7 END;
 8 /

This prints the earlier date:

Jun 20, 2007

Although the previous examples are small, the string comparison highlights using the LEAST
function as a key element to implement a traditional bubble sort. The local swap procedure is
quite simple as a pass-by-reference procedure, which leaves the array re-sorted upon successful
completion of the program.

16-AppC.indd 951 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

952 Oracle Database 12c PL/SQL Programming

The bubble sort uses a set of nested loops, which lets you compare the first element against all
elements in the collection, leaving the least element first—or an ascending alphabetical list:

SQL> DECLARE
 2 TYPE namelist IS TABLE OF VARCHAR2(12);
 3 names NAMELIST := namelist('Sarah','Joseph','Elise','Ian','Ariel'
 4 ,'Callie','Nathan','Spencer','Christianne');
 5 -- Local swap procedure.
 6 PROCEDURE swap (a IN OUT VARCHAR2, b IN OUT VARCHAR2) IS
 7 c VARCHAR2(12);
 8 BEGIN
 9 c := b;
 10 b := a;
 11 a := c;
 12 END swap;
 13 BEGIN
 14 FOR i IN 1..names.COUNT LOOP
 15 FOR j IN 1..names.COUNT LOOP
 16 IF names(i) = LEAST(names(i),names(j)) THEN
 17 swap(names(i),names(j));
 18 END IF;
 19 END LOOP;
 20 END LOOP;
 21 FOR i IN 1..names.COUNT LOOP
 22 dbms_output.put_line(names(i));
 23 END LOOP;
 24 END;
/

This reorders the names in the collection to an ascending alphabetical list:

Ariel
Callie
Christianne
Elise
Ian
Joseph
Nathan
Sarah
Spencer

You could also accomplish the same sorting by replacing the LEAST comparison with the
following line:

IF names(i) < names(j) THEN

You do need to watch the behavior of both Unicode and differing character sets when you do
comparisons. The CONVERT function can help you ensure that comparisons are between like
character sets.

These examples have demonstrated the versatility of the LEAST function. They’re revisited in
the description of the GREATEST function.

16-AppC.indd 952 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 953

NANVL Function
The NANVL function substitutes a default value when a BINARY_DOUBLE or BINARY_FLOAT is
not a number (NaN). This allows trapping an operating system math library return value of NaN.

The prototype is

SQL> NANVL(evaluation_parameter, substitution_parameter)

The primary substitution value is 0, as illustrated in the following program:

SQL> DECLARE
 2 bad_number BINARY_DOUBLE := 'NaN';
 3 default_number BINARY_DOUBLE := 0;
 4 BEGIN
 5 dbms_output.put_line(NANVL(bad_number,default_number));
 6 END;
 7 /

You can substitute a BINARY_FLOAT and it works the same way. This is a useful approach
when performing math-intensive calculations.

NULLIF Function
The NULLIF function substitutes a null value when two actual parameters are found to be equal.
This is equivalent to returning a null when two values match.

The prototype is

NULLIF(evaluation_parameter1, evaluation_parameter2)

The primary substitution value when two actual parameters are not found to be equal is the
value of the first parameter to the NULLIF function, as illustrated in the following program:

SQL> DECLARE
 6 /* Returns a null */
 7 IF NULLIF(harry_potter,ron_weasley) IS NULL THEN
 8 dbms_output.put_line(
 9 'Same house? '||
 10 '['||NULLIF(harry_potter,ron_weasley)||']');
 11 END IF;
 12 /* Returns a string. */
 13 IF NULLIF(harry_potter,cedric_diggory) IS NOT NULL THEN
 14 dbms_output.put_line(
 15 'Different house? '||
 16 '['||NULLIF(harry_potter,cedric_diggory)||']');
 17 END IF;
 18 END;
 19 /

It prints

Same house? []

Different house? [Gryffindor]

16-AppC.indd 953 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

954 Oracle Database 12c PL/SQL Programming

The first IF statement calls the NULLIF function with two members of J.K. Rowling’s Harry
Potter series that share the same house. It returns a null because the house values are equal. The
second IF statement returns the value of the first parameter because the houses differ, and it is
checking whether the logical expression is not null. The is not null comparison lets you return a
shared value from two variables. There are many opportunities to use this type of comparison, and
now you know how to do it.

NVL Function
The NVL function substitutes a default value when the primary value is null. The prototype for the
function is

NVL(evaluation_parameter, default_substitution_parameter)

The NVL function works well in conditional statements. It removes the possibility that
comparison values are null. The following program demonstrates an NVL function:

SQL> DECLARE
 2 condition BOOLEAN;
 3 BEGIN
 4 IF NOT NVL(condition,FALSE) THEN
 5 dbms_output.put_line('It''s False!');
 6 END IF;
 7 END;
 8 /

The condition variable is not initialized and therefore is a null value. The conditional logic
would fail if the NVL function was left out, because a null value is not true or false. The NVL
function converts all null values to false, making the statement true and printing the result.

SYS_CONTEXT Function
The SYS_CONTEXT function returns information about the system environment or an environment
you’ve established by using dbms_session.set_context. It replaces the USERENV legacy
function and provides many more options using the USERENV context.

The prototype is

SYS_CONTEXT('context_namespace','parameter'[,'length'])

It raises an ORA-02003 exception when you submit an invalid parameter value, but only a
null value if you submit a nonexistent context namespace. Table C-3 lists the valid parameters for
the USERENV context, and Table C-4 lists the deprecated parameters for the same context. All
calls to the SYS_CONTEXT function return a VARCHAR2 variable that has a default maximum
length of 256 bytes. You can override the size of return strings by providing a valid integer value
between 1 and 4,000

You call the SYS_CONTEXT function as follows:

SQL> BEGIN
 2 dbms_output.put_line(SYS_CONTEXT('USERENV','HOST'));
 3 END;
 4 /

It returns the server’s hostname value as a 256-byte string.

16-AppC.indd 954 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 955

Parameter Return Value
ACTION Identifies the position in the module. You use the dbms_

application_info package to set the value.
AUDITED_CURSORID Returns the cursor ID of the SQL statement that triggered an

audit event. It is not a valid value when you’re using fine-grain
auditing, in which case it returns a null.

AUTHENTICATED_IDENTITY Returns the authenticated identity in a format that differs by type
of authentication, like Kerberos, SSL, password, OS, Radius,
proxy, or SYSDBA/SYSOPER.

AUTHENTICATION_DATA Contains the value used to authenticate the user, which may be
an X.503 certificate.

AUTHENTICATION_METHOD Returns the authenticated method, like Kerberos, SSL, password,
OS, Radius, proxy, or background process.

BG_JOB_ID Returns the current session identifier when established by
a background database process.

CLIENT_IDENTIFIER Returns an identifier set by calling the SET_IDENTIFIER
procedure from the dbms_session package, the OCI_ATTR_
CLIENT_IDENTIFIER attribute, or the setClientIdentifier
method of the Java class Oracle.jdbc.OracleConnection.

CLIENT_INFO Returns a 64-byte character string set by calling the SET_CLIENT_
INFO procedure of the dbms_application_info package.

CURRENT_BIND Returns bind variables or fine-grain auditing.
CURRENT_EDITION_NAME Returns the edition in use by the current session.
CURRENT_EDITION_ID Returns the identifier of the edition in use by the current session.
CURRENT_SCHEMA Returns the current schema name, which you can change by

calling the ALTER SESSION SET CURRENT_SCHEMA statement.
CURRENT_SCHEMAID Returns the current schema identifier, which you can change by

calling the ALTER SESSION SET CURRENT_SCHEMA statement.

CURRENT_SQL or
CURRENT_SQLn

Returns the first 4KB of the current SQL statement that triggered
fine-grain auditing. You use CURRENT_SQLn (where n is an
integer) to get the next 4KB of the current SQL statement.

CURRENT_SQL_LENGTH Returns the byte length of the SQL statement that triggered
a fine-grain auditing event.

DB_DOMAIN Returns the database initialization parameter of the same name
when it is set.

DB_NAME Returns the database initialization parameter of the same name
when it is set.

DB_UNIQUE_NAME Returns the database initialization parameter of the same name
when it is set.

(continued)

TABLE C-3. SYS_CONTEXT Predefined Parameters for the USERENV Namespace

16-AppC.indd 955 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

956 Oracle Database 12c PL/SQL Programming

Parameter Return Value
ENTRYID Returns the current audit entry number. This sequence value is

shared between regular and fine-grain auditing and cannot be
used in distributed scope.

ENTERPRISE_IDENTITY Returns the user’s enterprise-wide identity, which is an OID value
set as the DN value.

FG_JOB_ID Returns the current session identifier when established by
a foreground database process.

GLOBAL_CONTEXT_MEMORY Returns the number being used in the SGA by the globally
accessed context.

GLOBAL_UID Returns the current session identifier when established by
a background database process.

HOST Returns the machine hostname value.
IDENTIFICATION_TYPE Returns the method used to establish the current session, as follows:

LOCAL when identified by password
EXTERNAL when identified externally
GLOBAL SHARED when identified globally
GLOBAL PRIVATE when identified globally by DN

INSTANCE Returns the identification number of the current instance.
INSTANCE_NAME Returns the name of the current instance.
IP_ADDRESS Returns the IP address for the server or virtual machine running

the instance.
ISDBA Returns true when the current user has DBA privileges and

returns false when they do not.
LANG Returns the ISO abbreviation for the language name.
LANGUAGE Returns the language and territory currently in use and the

character set separated by a period.
MODULE Returns the application name set by the SET_MODULE procedure

in the dbms_application_info package.
NETWORK_PROTOCOL Returns network protocol value for a connection.
NLS_CALENDAR Returns the current session’s calendar.
NLS_CURRENCY Returns the current session’s currency.
NLS_DATE_FORMAT Returns the current session’s default date format.
NLS_DATE_LANGUAGE Returns the current session’s language for expressing dates.
NLS_SORT Returns the current session’s linguistic sort basis or the

default BINARY.
NLS_TERRITORY Returns the current session’s territory.

TABLE C-3. SYS_CONTEXT Predefined Parameters for the USERENV Namespace

16-AppC.indd 956 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 957

Parameter Return Value
OS_USER Returns the operating system user account that initiated the

current database session.
POLICY_INVOKER Returns the invoker of row-level security (RLS) policy function.
PROXY_ENTERPRISE_
IDENTITY

Returns the Oracle Internet Directory DN when the proxy user is
an enterprise user.

PROXY_GLOBAL_UID Returns the global user identifier from the Oracle Internet
Directory for Enterprise User Security (EUS) proxy users, or null
for all other proxy users.

PROXY_USER Returns the user name of the database user who opened the
current session on behalf of the SESSION_USER.

PROXY_USERID Returns the user identifier of the database user who opened the
current session on behalf of the SESSION_USER.

SERVER_HOST Returns the server hostname.
SERVICE_NAME Returns the service hostname.
SESSION_EDITION_NAME Returns the edition in use by the current session.
SESSION_EDITION_ID Returns the edition identifier in use by the current session.
SESSION_USER Returns the schema for Enterprise users, and the database user

name by which the current session is authenticated.
SESSION_USERID Returns the database user identifier by which the current session

is authenticated.
SESSIONID Returns the auditing session identifier.
SID Returns the session number, which is different from the session

identifier.
STATEMENTID Returns the number of the SQL statement audited in a given

session. This attribute cannot be used in distributed scope.
TERMINAL Returns the server hostname.

TABLE C-3. SYS_CONTEXT Predefined Parameters for the USERENV Namespace

TABLE C-4. SYS_CONTEXT Deprecated Parameters for the USERENV Namespace

Parameter Description
CURRENT_USER Use the SESSION_USER parameter instead.
CURRENT_USERID Use the SESSION_USERID parameter instead.
EXTERNAL_NAME This parameter returned the name of the external user. You should use the

AUTHENTICATED_IDENTITY or ENTERPRISE_IDENTITY parameter in
lieu of EXTERNAL_NAME because they return superior information about
the external user.

16-AppC.indd 957 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

958 Oracle Database 12c PL/SQL Programming

This section has demonstrated the SYS_CONTEXT function, which replaces the legacy
USERENV function.

TABLE Function
The TABLE function lets you disassemble collections and object types into SQL result sets made
up of rows of columns. The simplest example disassembles an ADT (Attribute Data Type)
collection, which is a collection of a scalar data type, like a variable-length string (VARCHAR2).

The example presented next uses the street_list collection, qualified in the “Nested
Table Updates” section of Appendix B. It is an unbounded list of values, and that makes it a
list rather than an array because arrays are bound at runtime. The street_list data type is
composed of a set of single variable-length strings, and the underlying data type is a list of
VARCHAR2 variables.

A street_list column or PL/SQL variable would display as a collapsed object. Collapsed
objects display the name of the object type, also known as the constructor function name, and
a parameter list of call parameters to instantiate an instance of the object.

NOTE
You instantiate any object type in Oracle by calling it with the TREAT
function from SQL or PL/SQL.

A simple query like the following would display information:

SQL> SELECT street_list('4000 Warner Blvd','Suite 701') AS list
 2 FROM dual;

It displays

LIST
--
STREET_LIST('4000 Warner Blvd', 'Suite 701')

Displaying information more meaningfully requires knowing how to pull the information out
of the collection. The following query uses the TABLE function to do just that; it disassemble
a collection of street address values:

SQL> SELECT *
 2 FROM TABLE(street_list('4000 Warner Blvd','Suite 701'));

This query displays

COLUMN_VALUE

4000 Warner Blvd
Suite 701

Effectively, the TABLE function pivots the member elements of the ADT collections to rows in
a result set. The column display COLUMN_VALUE is a hidden column that exists for all ADTs, or
collections of scalar data types.

16-AppC.indd 958 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 959

The TABLE function also decomposes a collapsed object into columns of data. The database
stores a persistent address_type object type as a collapsed object. We can mimic querying 1
from a table by using the pseudo-table dual, like

SQL> SELECT address_type(1
 2 , NULL
 3 ,'Phoenix'
 4 ,'AZ'
 5 ,'85087') AS home_address
 6 FROM dual;

Line 2 uses a null in lieu of a nested street_list table to simplify how the TABLE function
shows us a single-level object. (Another sample with a nested street_list column value is
provided a bit later.) Line 5 assigns an alias for our address_type UDT name, and by using an
alias we get the equivalent of what we would see if the alias were a column name for the object type.

The query returns the following:

ADDRESS_TYPE(ADDRESS_ID, STREET_ADDRESS, CITY, STATE, POSTAL_CODE)
--
ADDRESS_TYPE(1, NULL, 'Phoenix', 'AZ', '85087')

The TABLE function can’t return a single UDT element because the TABLE function works
only with collections. For example, the following attempt to query an address_type object
type by itself:

SQL> SELECT OBJECT_VALUE
 2 FROM TABLE(SELECT address_type(1
 3 , NULL
 4 ,'Phoenix'
 5 ,'AZ'
 6 ,'85087')
 7 FROM dual);

fails with this message because the object isn’t nested in a collection:

FROM TABLE(SELECT address_type(1
 *
ERROR at line 2:
ORA-22905: cannot access rows from a non-nested table item

The street_list ADT holds collections of our address_type UDT, and you can find the
definition and discussion in the “Nested Table Updates” section of Appendix B. Let’s refactor our
prior example by nesting it within a street_list collection:

SQL> SELECT OBJECT_VALUE
 2 FROM TABLE(
 3 address_list(
 4 address_type(1
 5 , NULL
 6 ,'Phoenix'
 7 ,'AZ'
 8 ,'85087')));

16-AppC.indd 959 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

960 Oracle Database 12c PL/SQL Programming

This works because line 3 encloses the address_type UDT in an ADT collection.
Collections generally have more than one element, but a collection can be a null collection, as
shown next, or have only one element:

OBJECT_VALUE(ADDRESS_ID, STREET_ADDRESS, CITY, STATE, POSTAL_CODE)
--
ADDRESS_TYPE(1, NULL, 'Phoenix', 'AZ', '85087')

Line 1 sets the return type in the SELECT list as the hidden object_value column. The
hidden object_value column holds a collapsed object type for each row found in the
collection. Alternatively, you can return an implicit set of columns with the asterisk (*), or you
can return an explicit set of columns by providing them in the SELECT list clause, like

SQL> SELECT address_id
 2 , city
 3 , state
 4 , postal_code
 5 FROM TABLE(
 6 address_list(
 7 address_type(1
 8 , NULL
 9 ,'Phoenix'
 10 ,'AZ'
 11 ,'85087')));

It explodes the parameter list from the collapsed object type into ordinary columns:

ADDRESS_ID CITY ST POSTAL_CODE
---------- ---------- -- ------------
 1 Phoenix AZ 85087

The implicit or explicit SELECT list of column values can’t be passed as a call parameter to
PL/SQL function, procedure, and object type methods, but a collection of objects can be passed
as a call parameter to other PL/SQL subroutines. The column result set from a SELECT list can’t
be passed to another PL/SQL subroutine, and you need to know which columns are qualified in
the SELECT list before you can format them.

TIP
The hidden object_value column is the only way to return a
collection of object types.

Oracle lets you unnest queries whether the table is the implementation of an object type or a
combination of scalar and object type columns. Appendix B contains an “Unnesting Queries”
section that explains and demonstrates how you unnest queries by using a cross join and the
TABLE function.

TREAT Function
The TREAT function lets you bring to life persistent object types. That is, the TREAT function lets
you instantiate (wake up and place into memory) the collapsed object types stored in columns of

16-AppC.indd 960 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 961

tables. The following example leverages object types and bodies defined in Chapter 11, but for
your convenience they are repeated here. You create a map_comp object type with the following
syntax:

SQL> CREATE OR REPLACE TYPE map_comp IS OBJECT
 2 (who VARCHAR2(20)
 3 , CONSTRUCTOR FUNCTION map_comp
 4 (who VARCHAR2) RETURN SELF AS RESULT
 5 , MAP MEMBER FUNCTION equals RETURN VARCHAR2)
 6 INSTANTIABLE NOT FINAL;
 7 /

There’s a lot packed into those six lines; please refer to the section “Comparing with the MAP
Member Function” in Chapter 11 for the full explanation. Object types are like package
specifications (covered in Chapter 9), and object bodies are like package bodies—they contain
the code implementation of the object type.

You create a map_comp object body with the following syntax:

SQL> CREATE OR REPLACE TYPE BODY map_comp IS
 2 CONSTRUCTOR FUNCTION map_comp
 3 (who VARCHAR2) RETURN SELF AS RESULT IS
 4 BEGIN
 5 self.who := who;
 6 RETURN;
 7 END map_comp;
 8 MAP MEMBER FUNCTION equals RETURN VARCHAR2 IS
 9 BEGIN
 10 RETURN self.who;
 11 END equals;
 12 END;
 13 /

The object type’s body has a number of advanced elements, please check the equivalent code
and explanation in “Comparing with the MAP Member Function” section of Chapter 11.

Having shown you how to define and implement the object type, the balance of this section
helps you understand how to read your stored objects from the database. It’s also handy to remind
you at this point that objects aren’t stored in memory but rather are stored as collapsed objects.
A collapsed object stores the name of the object’s constructor and a list of call parameters. Object
types are transient when they’re in your code modules and persistent when they’re defined in tables.
Please refer back to the “Trick-or-Treating with Persistent Object Types” sidebar in Chapter 11 for a
complete example of working with persistent object types.

The TREAT function works with object types or subclasses of object types, as explained in the
section “Inheritance and Polymorphism” in Chapter 11.

USERENV Function
The USERENV function returns information about the system environment. It is a legacy function
replaced by the SYS_CONTEXT function covered earlier in this section. Table C-5 lists the
available parameters that you can call by using the USERENV function.

16-AppC.indd 961 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

962 Oracle Database 12c PL/SQL Programming

While you can use the USERENV function in SQL statements, the following demonstrates
using the USERENV function in a PL/SQL block:

SQL> BEGIN
 2 dbms_output.put_line(USERENV('TERMINAL'));
 3 END;
 4 /

It prints the hostname for the machine, like

MCLAUGHLIN-DEV

The following sets the V$SESSION view CLIENT_INFO column:

SQL> CALL dbms_application_info.set_client_info('Restricted');

Parameter Return type Description of Return Value
CLIENT_
INFO

VARCHAR2 The CLIENT_INFO parameter returns a string up to 64 bytes long.
It contains one or more values set by using the built-in dbms_
application_info package. You should note that this context
column is used by third-party applications.

ENTRYID NUMBER The ENTRYID parameter is a sequence value shared between both
regular and fine-grain audit records. You cannot use this attribute in
distributed queries.

ISDBA VARCHAR2 The ISDBA parameter returns an uppercase true or false based on
whether the current user has DBA privileges.

LANG VARCHAR2 The LANG parameter returns an uppercase string for the ISO
language abbreviation.

LANGUAGE VARCHAR2 The LANGUAGE parameter returns an uppercase string containing
the language and territory, a dot, and the character set for the
database. Here’s an example of the output:
AMERICAN_AMERICA.AL32UTF8

SESSIONID NUMBER The SESSIONID parameter returns the auditing session identifier
and cannot be used in distributed transactions.

TERMINAL VARCHAR2 The TERMINAL parameter returns the operating system identifier
for the terminal running the current session. If you use it in a
distributed environment SELECT statement, it returns the identifier
for the local transaction. The parameter cannot be used by
distributed INSERT, UPDATE, or DELETE statements.

TABLE C-5. USERENV Function Parameters

16-AppC.indd 962 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix C: SQL Built-in Functions 963

You can query the contents by using the USERENV function, and it returns the case-sensitive
word Restricted. It is demonstrated in the following block:

SQL> BEGIN
 2 dbms_output.put_line(USERENV('CLIENT_INFO'));
 3 END;
 4 /

This section has shown you how to use the USERENV function. It is a legacy function that
appears in Oracle Applications code and other third-party applications, but you should use the
new SYS_CONTEXT function in your own code. SYS_CONTEXT provides you access to more
information.

VSIZE Function
The VSIZE function examines the real length of registered data types, like the DUMP function. It
returns a value that is independent of the database or session character set. You can use the VSIZE
function only inside a SQL statement.

The following block demonstrates how to find the real size of a LONG RAW variable:

SQL> DECLARE
 2 buffer LONG RAW := HEXTORAW('42'||'41'||'44');
 3 detail VARCHAR2(100);
 4 BEGIN
 5 SELECT VSIZE(buffer) INTO detail FROM dual;
 6 dbms_output.put_line(detail);
 7 END;
 8 /

It prints the length of the data value:

3

You may not use this function too often, but when you’re trying to figure out why something
is broken and the error message and web hits are limited, it may be very helpful. It certainly helps
when working with the dbms_lob package and raw streams, as covered in the EMPTY_BLOB
function section.

Summary
This appendix has reviewed the key SQL built-in functions used throughout the book. It isn’t
exhaustive, and you’re encouraged to explore Oracle’s online documentation.

16-AppC.indd 963 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

16-AppC.indd 964 12/16/13 5:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

APPENDIX
D

PL/SQL Built-in
Packages and Types

17-AppD.indd 965 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

966 Oracle Database 12c PL/SQL Programming

Oracle’s PL/SQL built-in packages and types are a treasure trove of premade programs,
ready for you to use. I could fill volumes with example programs of how to take advantage
of this rich feature set; instead, I encourage you to study the programs provided by Oracle

in the Oracle Database PL/SQL Packages and Types Reference 12c Release. Doing so will save
you hundreds of hours that you would otherwise spend attempting to create and maintain similar
programs on your own. What’s more, they are free to use when you license Oracle Database 12c.
Imagine that…a free set of programs that helps you become more efficient and do your job more
effectively, one that is constantly being improved and has Oracle’s commitment to excellence—
and its track record of not deprecating/removing them with every new release. One could only
hope for that kind of service from other software vendors.

Oracle Database 11g and 12c New Packages
Oracle Database 11g introduced 90 packages and 4 types. Oracle increased this count
substantially in Oracle Database 12c. I performed the following query against typical sandbox
instances, comparing versions 11.2.0.3 and 12.0.0.1:

SQL> WITH count_pt AS
 2 (
 3 SELECT do.owner
 4 , do.object_type
 5 , COUNT(*) AS Total
 6 FROM dba_objects do
 7 WHERE do.object_type in ('PACKAGE', 'TYPE')
 8 AND do.owner not IN
 9 ('ADMJMH', 'FMIQ', 'HR'
 10 , 'OE', 'PM', 'ORACLE_OCM', 'IX')
 11 GROUP BY do.owner
 12 , do.object_type)
 13 SELECT *
 14 FROM count_pt
 15 PIVOT (MAX(total) AS GT
 16 FOR (do.object_type) IN
 17 ('PACKAGE' AS packages, 'TYPE' AS types))
 18 ORDER BY owner;

The results, summarized in Table D-1, are very interesting. For one, it appears that Oracle
moved its Database Vault (DVF and DVSYS) product inside a typical release. It also moved its
Label Security products inside. I see this as a strategic move on Oracle’s part to secure its
database technology.

Notice that Oracle Database 12c has an additional 194 packages and 286 types compared
to 11g. Also note that there appears to be some movement of programs from one schema to the
other, as represented by the negative deltas in the DBSNMP, MDMSYS, and OLAPSYS schemas.

17-AppD.indd 966 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix D: PL/SQL Built-in Packages and Types 967

11g
Owner Packages Types

12c
Owner Packages Types

Package
Changes

Type
Changes

APEX_030200 189 4 APEX_040200 263 6 74 2

CTXSYS 74 35 CTXSYS 77 32 3 –3

DBSNMP 4 8 DBSNMP 3 8 –1 0

DVF 1 1 0

DVSYS 36 30 36 30

EXFSYS 18 30 EXFSYS 18 30 0 0

GSMADMIN_
INTERNAL

6 10 6 10

LBACSYS 23 9 23 9

MDSYS 70 207 MDSYS 78 189 8 –18

OLAPSYS 45 7 OLAPSYS 2 –45 –5

ORDPLUGINS 5 ORDPLUGINS 5 0 0

ORDSYS 28 446 ORDSYS 30 446 2 0

SYS 633 1347 SYS 711 1618 78 271

SYSTEM 1 1 SYSTEM 1 1 0 0

WMSYS 22 18 WMSYS 23 15 1 –3

XDB 35 97 XDB 43 90 8 –7

1124 2200 1318 2486 194 286

TABLE D-1. Comparison of 11g and 12c Packages

Bear in mind, these two test instances do not represent all of Oracle’s offerings, and there are
some product packages not loaded by default. They do, however, represent typical database
installations with sample schemas. It would behoove you to take a close look at these packages.
Carefully test them for vulnerabilities. You know your black-hat counterparts will. In fact, they will
strive to exploit every vulnerability.

Notice that our sample database contains 1,318 packages and 2,486 types. Instead of boring
you with the details of 3,804 objects, the following eight tables list only those packages and types
that are documented in the Database PL/SQL Packages and Types Reference 12c Release. Each of
the tables lists the name of the object, the technology affected, and if the object has been newly
introduced or updated in Oracle Database 12c. An ellipsis following a name in the Package/Type
column indicates there are several packages in a set of product packages.

17-AppD.indd 967 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

968 Oracle Database 12c PL/SQL Programming

Package Technology New Update
DBMS_ADVANCED_REWRITE Query rewrite
DBMS_AW_STATS OLAP statistics generation X
DBMS_CUBE OLAP cube creation/management X
DBMS_CUBE_ADVISE OLAP cube performance X
DBMS_DATA_MINING Data Mining/Warehousing X
DBMS_DATA_MINING_TRANSFORM Data Mining/Warehousing Transformation X
DBMS_DIMENSION Validation of data dimensional

relationships

DBMS_LOGMNR... LogMiner packages
DBMS_MVIEW Management of materialized views X
DBMS_PREDICTIVE_ANALYTICS Data mining prediction X
DBMS_TRANSFORM Interface to the Message Format

Transformation

TABLE D-2. Data Warehousing Packages

TABLE D-3. Debug-Related Packages

Package Technology New Update
DBMS_DEBUG PL/SQL Debugger
DEBUG_EXTPROC Debug of external procedures
DBMS_ERRLOG Error logging for DML operations
DBMS_HPROF PL/SQL profiling X
DBMS_OUTPUT Print output to screen
DBMS_PIPE Push messages to other sessions
DBMS_PREPROCESSOR Print/retrieve source of PL/SQL units
DBMS_WARNING PL/SQL error stack manipulation
UTL_LMS Format of error messages in different languages

Table D-2 presents the first set of built-in objects, which are those related to data warehousing.
You may have already used them if your job requires you to work with materialized views, ETL
(extract, transform, and load), or data mining.

PL/SQL developers use the set of objects in Table D-3 to aid them in debugging, profiling, and
error stack formatting. Commonly used packages are dbms_output and dbms_pipe.

17-AppD.indd 968 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix D: PL/SQL Built-in Packages and Types 969

Package Technology New Update
DBMS_AUTO_TASK_ADMIN AUTOTASK controls X
DBMS_JOB Job management
DBMS_SCHEDULER Job management X

TABLE D-4. Job Management Packages

TABLE D-5. Security-Related Packages

Package Technology New Update
DBMS_ASSERT Parameter input validation
DBMS_DISTRIBUTED_TRUST_ADMIN Management of Trusted Database List
DBMS_FGA Fine-grain auditing

Oracle built the packages in Table D-4 to manage job control. You should be very familiar
with them if your job includes database administration.

Table D-5 presents the security-related packages. You should know and use dbms_assert to
validate input passed into procedures and functions. Hackers write fuzzing programs to determine
which procedures and functions are vulnerable to SQL injection. In addition, you can greatly
streamline your auditing efforts with dbms_fga.

Database professionals use Oracle Streams for data replication and warehouse loading. The
feature set presented in Table D-6 is similar to that offered in other third-party ETL tools, with the
exception that Oracle built Streams to interface directly with its RDBMS, which affords it extra
performance benefits such as hot mining of redo logs to reduce latency.

The packages in Table D-7 help you to diagnose performance problems with your SQL and
PL/SQL code.

Table D-8 lists all of the utility objects that Oracle documents in the Database PL/SQL Packages
and Types Reference 12c Release. It is the largest grouping by far; however, a general understanding
of these packages is essential, so it’s worth your time to study it.

17-AppD.indd 969 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

970 Oracle Database 12c PL/SQL Programming

Package Technology New Update
DBMS_APPLY_ADM Oracle Streams X

DBMS_AQ... Oracle Streams Advance Queuing X
DBMS_CAPTURE_ADM Oracle Streams Capture Processes X
DBMS_FILE_GROUP Management of file groups/versions
DBMS_PROPAGATION_ADM Management of Streams propagation X

DBMS_STREAMS... Management of Streams interfaces X
UTL_SPADV Oracle Streams statistical analyses X

TABLE D-6. Oracle Streams–Related Packages

Package Technology New UPD
DBMS_ADVISOR Performance diagnostics X
DBMS_IOT Management of Index Organized Tables
DBMS_MONITOR Tracing and statistics gathering

DBMS_OUTLN... Management of stored outlines X
DBMS_PCLXUTIL Creation of partition-aware indexes
DBMS_PROFILER Profile interface for PL/SQL programs

DBMS_RESOURCE_MANAGER... Consumer group resource planning X
DBMS_SPM SQL Plan Management X
DBMS_SQLDIAG SQL Diagnostics
DBMS_SQLPA SQL Performance Analyzer
DBMS_SQLTUNE SQL Tuning interface X

DBMS_STATS... View and manage performance statistics X

DBMS_WORKLOAD... Gathering of workload statistics X X

TABLE D-7. Performance Packages

17-AppD.indd 970 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix D: PL/SQL Built-in Packages and Types 971

Package Technology New Update

APEX_CUSTOM_AUTH Apex authentication X

APEX_APPLICATION Apex application support X

CTX… Oracle Text Analytics

DBMS_ADDM Automatic Diagnostic Monitor X

DBMS_AQIN Secure access to Oracle JMS

DMBS_ALERT Programmatic notification of database events

DBMS_APPLICATION_INFO Code instrumentation and tracing

DBMS_DG Oracle Data Guard event notification X

DBMS_CDC_ Change Data Capture X

DBMS_COMPARISON Comparison and convergence of data objects X

DBMS_CRYPTO Encryption

DBMS_CONNECTION_POOL Management of Database Resident
Connection Pools

X

DBMS_CQ_NOTIFICATION Provides alerts to clients on DML or DDL
modification

X

DBMS_DATAPUMP Moving all or part of a database X

DBMS_DB_VERSION Determines RDBMS release

DBMS_DDL Returns DDL information about stored
procedures

DBMS_DESCRIBE Returns information about stored procedures

DBMS_DEFER... Defers remote transactions

DBMS_EPG PL/SQL execution via HTTP

DBMS_FILE_TRANSFER Moving binary files between databases

DBMS_FLASHBACK Rolls back DML/DDL X

DBMS_HM Database Health Check X

DBMS_HS_PARALLEL Heterogeneous Parallel Processing X

DBMS_HS_PASSTHROUGH Pass-through processing to non-Oracle
systems

X

DBMS_JAVA Database functionality to Java

DBMS_LDAP... LDAP Query

DBMS_LIBCACHE Remote extraction of PL/SQL and SQL

DBMS_LOB Management of LOBs X

DBMS_LOCK Management of locks
(continued)

TABLE D-8. Utility Packages

17-AppD.indd 971 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

972 Oracle Database 12c PL/SQL Programming

Package Technology New Update

DBMS_METADATA Data dictionary to XML metadata or creation

DBMS_MGD_ID_UTL Sets/gets: logging level, proxy, metadata X

DBMS_MGW... Oracle Messaging Gateway services X

DBMS_OBFUSCATION_
TOOLKIT

Encryption

DBMS_OFFLINE_OG Advanced replication

DBMS_RANDOM Random data generation

DBMS_RECTIFIER_DIFF Detect and rectify data differences between
replicated sites

DBMS_REFRESH Management of materialized view
refresh groups

DBMS_REPAIR Detect and repair corrupt data blocks

DBMS_REPCAT Management of symmetric replication
users/templates

DBMS_REPUTIL Management of shadow tables

DBMS_RESULT_CACHE Partial management of shared pool cache X

DBMS_RESUMABLE Suspend/time out large running programs

DBMS_RLMGR Rules Manager API X

DBMS_RLS Fine-grain access control for virtual
private databases

DBMS_ROWID Management of ROWID, including creation
and retrieval

DBMS_RULE… Rules Manager API X

DBMS_SERVER_ALERT Alerts the DBA when thresholds of the DB
server are met

X

DBMS_SERVICE Management of DB services

DBMS_SESSION Alter session programmatically X

DBMS_SHARED_POOL Management of the shared pool
memory space

DBMS_SPACE... Analysis of segment growth X

DBMS_SQL Dynamic PL/SQL and types X

DBMS_STORAGE_MAP Communication with FMON

DBMS_TDB RMAN Transportable Diagnostics for
moving DBs

DBMS_TRACE Tracing and statistics gathering X

TABLE D-8. Utility Packages

17-AppD.indd 972 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix D: PL/SQL Built-in Packages and Types 973

Package Technology New Update

DBMS_TRANSACTION Management interface to SQL transactions

DBMS_TTS Transportable tablespace management

DBMS_TYPES Built-in constants and types

DBMS_UTILITY Various utilities X

DBMS_WM Interface to the Oracle Database Workspace
Manager

DBMS_XA Interface to the XA/Open interface X

HTF Hypertext functions and procedures

HTP Hypertext functions and procedures

ORD... Management of Digital Imaging and
Communications in Medicine (DICOM)

OWA... PL/SQL web applications

SDO... Spatial/mapping X

SEM... Resource Description Framework and Web
Ontology Language interface

X

UTL_COLL Determines whether or not collection items
are locators

UTL_COMPRESS Data compression

UTL_DBWS Database web services

UTL_ENCODE Conversion of RAW to standard data

UTL_FILE Writing to OS files

UTL_HTTP Access to the Internet within PL/SQL

UTL_I18N Globalization support within PL/SQL

UTL_INADDR Internet addressing utilities X

UTL_MAIL E-mail utility

UTL_NLA Statistical analysis within varrays

UTL_RAW Raw data type manipulation

UTL_RECOMP Recompilation of invalid DB objects X

UTL_REF Support of reference-based operations and
generic type methods

UTL_SMTP E-mail utility X

UTL_TCP TCP/IP utilities X

UTL_URL URL address character management

WPG_DOCLOAD Interface for downloading BLOBs and
BFILEs

TABLE D-8. Utility Packages

17-AppD.indd 973 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

974 Oracle Database 12c PL/SQL Programming

Table D-9 represents Oracle efforts to support XML databases. Oracle is committed to providing
XML functionality to its users.

Overall, Oracle provides an extensive built-in library of code to support its developer community.
The features of this library, along with SQL functions, enable you to accomplish more with less code.

Examples of Package Use
The examples presented in this section demonstrate the use of four important built-in packages.
The examples show how you can take advantage of Oracle’s built-in packages and types, and
should also help you to simplify your code. I introduce each of the following packages briefly and
then show you how to use one aspect of it. The space limitations of this appendix make covering
each built-in package in detail prohibitive—that would require a few thousand pages.

 ■ DBMS_APPLICATION_INFO

 ■ DBMS_COMPARISON

 ■ DBMS_CRYPTO

 ■ DBMS_FGA

DBMS_APPLICATION_INFO Example
Have you ever wanted to check the status of your program during a long-running process? There
are several ways to find out a program’s status, none of which is more efficient than using the
dbms_application_info package. In fact, one of the most common methods of watching a
long-running process is to place COMMIT statements inside loops.

I have one thing to say about using this method: never, ever do it. If you’re using it now, stop
doing so. I can think of nothing that will slow down your database more than superfluous commits
at every row.

The following block creates a large table we can use to test various methods of progress sampling:

SQL> CREATE TABLE mongo_item AS
 2 SELECT rownum item_id
 3 , item_barcode||'#'||rownum item_barcode
 4 , item_title
 5 , item_subtitle

TABLE D-9. XML Packages

Package Technology New UPD
DBMS_CSX_ADMIN Moving XML tablespaces X
DBMS_RESCONFIG XML listener configuration X

DBMS_XDB... XML access control list and user management X X
DBMS_XEVENT XML event management X

DBMS_XML... XML object management and manipulation X X

17-AppD.indd 974 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix D: PL/SQL Built-in Packages and Types 975

 6 , item_desc
 7 FROM item CROSS JOIN
 8 (SELECT * FROM dual CONNECT BY LEVEL <= 100000);

Wow! That’s 9,300,000 rows in 24.48 seconds. And this was done on older hardware that I
scrounged up for my sandbox environment. Mind you, it is hardware that most of us would have
thought unobtainable if asked five years ago, but nonetheless it is old. To date, I have never found
a faster way of moving or modifying data than to use the CREATE TABLE AS (CTAS) method. I
was lucky enough to have the opportunity last year to test these theories on an Exadata X-2 and
on Fusion-IO cards. Using CTAS and the dbms_scheduler package, I pushed 13,000,000 rows/
second on the X-2 and around 7 Gbps on the latest Fusion-IO hardware.

With these numbers in mind, the following example shows the bad practice of placing a
COMMIT statement inside a loop. The following block updates 9,300,000 rows, issuing a commit
every row:

SQL> DECLARE
 2 CURSOR c IS
 3 SELECT * FROM mongo_item;
 4 BEGIN
 5 FOR i IN c LOOP
 6 UPDATE mongo_item
 7 SET item_desc = 'This is the slowest and nastiest thing you '
 8 ||'can do to your database... just don''t do it.'
 9 WHERE CURRENT OF c;
 10 COMMIT;
 11 END LOOP;
 12 END;
 13 /

The interesting thing to note about this block is that it consumes vast amounts of CPU cycles
while doing something that the CTAS method completes in less than 30 seconds. I took a
screenshot of the System-Gnome-Monitor for you (see Figure D-1) to show you how much CPU
this statement uses.

As you can see, this is a nasty bit of code. I see it as something like a life-sucking leach, but
instead of sucking the life out of you, it sucks the life out of your database. As I mentioned, if
you’re doing this type of thing, you should stop!

I waited an excruciating 29 minutes and 23 seconds for the job to complete. Instead of
completing 379,902 rows per second, like the CTAS method did, this block completed the
operation at a rate of only 5,275 rows per second. It also chewed up three CPU cores for the
duration of its runtime.

The next best method, other than CTAS, would be to update the table in bulk. We can view
its progress during the update by using the set_session_longops procedure of the dbms_
application_info package, like so:

SQL> DECLARE
 2 /* Declare an associative array indexed by an integer. */
 3 TYPE udt_rowid IS TABLE OF rowid INDEX BY PLS_INTEGER;
 4
 5 /* Declare local variables. */
 6 lv_rowid UDT_ROWID;

17-AppD.indd 975 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

976 Oracle Database 12c PL/SQL Programming

 7 lv_rindex BINARY_INTEGER;
 8 lv_slno BINARY_INTEGER;
 9 lv_obj BINARY_INTEGER;
 10 lv_totalwork INTEGER;
 11 lv_sofar INTEGER;
 12
 13 /* Declare a cursor against a table. */
 14 CURSOR c IS
 15 SELECT ROWID rid
 16 FROM mongo_item;

FIGURE D-1. Slow-motion update

17-AppD.indd 976 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix D: PL/SQL Built-in Packages and Types 977

 17 BEGIN
 18 /* Initialize variables. */
 19 lv_rindex := dbms_application_info.set_session_longops_nohint;
 20 lv_sofar := 0;
 21 lv_totalwork := 9300000;
 22
 23 /* Set module value. */
 24 dbms_application_info.set_module(
 25 module_name => 'ANONYMOUS Block'
 26 , action_name => 'Update MONGO_ITEM.ITEM_DESC');
 27
 28 /* Open a cursor and fetch results. */
 29 OPEN c;
 30 LOOP
 31 FETCH c BULK COLLECT INTO lv_rowid LIMIT 1000;
 32
 33 FORALL i IN 1..lv_rowid.COUNT
 34 UPDATE mongo_item
 35 SET item_desc = 'Ah! This is much better.'
 36 WHERE rowid = lv_rowid(i);
 37
 38 lv_sofar := lv_sofar + 1000;
 39
 40 dbms_application_info.set_session_longops(
 41 lv_rindex
 42 , lv_slno
 43 ,'updating rows'
 44 , lv_obj
 45 , 0
 46 , lv_sofar
 47 , lv_totalwork
 48 ,'MONGO_ITEM'
 49 ,'rows');
 50
 51 EXIT WHEN c%NOTFOUND;
 52 END LOOP;
 53 CLOSE c; -- Release the cursor resource.
 54 COMMIT;
 55 END;
 56 /

The set_session_longops procedure of the dbms_application_info package
requires the variables from lines 4 through 8. They are input parameters and can’t be omitted.
We set several of these variables outside the bulk collect operation because they only need
to be set once. Those set before the bulk collect are on lines 13 through 21. We also change
the lv_sofar variable to properly alert the set_session_longops procedure of the
dbms_application_info package. Notice that you should increase this variable at the same
rate as you do the LIMIT clause.

17-AppD.indd 977 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

978 Oracle Database 12c PL/SQL Programming

Watching the progress of your query is easy. Just run the following query:

SQL> SELECT opname
 2 , target_desc
 3 , sofar
 4 , totalwork
 5 , elapsed_seconds
 6 , message
 7 FROM v$session_longops
 8 WHERE target_desc = 'MONGO_ITEM';

It displays the following results:

 OPNAME TARGET_DESC SOFAR TOTALWORK ELAPSED_SECONDS
 ------------- ----------- ------- --------- ---------------
 updating rows MONGO_ITEM 9226000 9300000 551

The message portion of the results would wrap given the formatting of the book, so it’s shown
next on its own line:

 MESSAGE
 --
 updating rows: MONGO_ITEM 4173473632: 9226000 out of 9300000 rows done

Change the size of the LIMIT clause to determine the amount of work fetched per cycle. In
this case, I tried several values, ranging from hundreds to tens of thousands, and found that very
large and small sizes can be problematic. Also, notice in Figure D-2 that CPU usage is much
more predictable.

I’ve provided this example not only to show how to use set_session_longops procedure
of the dbms_application_info package but also to reiterate that a simple MERGE or CTAS
will greatly outperform bulk collect methods. Moreover, I wish to restate that performing updates
of this fashion serially (row by row) with commits inside the loop is just bad practice.

On the other hand, the following SQL statement completes the entire operation in 6.82
seconds:

SQL> CREATE TABLE new_mongo_item AS
 2 SELECT item_id
 3 , item_barcode
 4 , item_title
 5 , item_subtitle
 6 , 'This is the fastest method yet.' item_desc
 7 FROM mongo_item;

Once completed, you merely need to issue a set of rename and drop commands, and your
new mongo_item table is fully modified. What’s more, the 6.82-second update happens to a
secondary table, which does not affect online queries. Lastly, notice the overall CPU usage, as
shown in Figure D-3.

17-AppD.indd 978 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix D: PL/SQL Built-in Packages and Types 979

There will be times when CTAS or MERGE statements won’t fit your needs. When these cases
come up, I suggest that you use bulk operations and dbms_session_longops instead of
committing inside loops.

DBMS_COMPARISON
The following example demonstrates the power of dbms_comparison. Oracle wrote it with the
intention of synchronizing shared tables that exist in distributed database systems.

FIGURE D-2. Bulk update

17-AppD.indd 979 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

980 Oracle Database 12c PL/SQL Programming

Briefing on Database Links
Database links have been around a while. They provide you with a unique ability to query
remote databases as if they were internal to the database you are working on. If you have
multiple Oracle databases within your intranet, database links can join them all together
and make them appear as one.

FIGURE D-3. Updating via CTAS

17-AppD.indd 980 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix D: PL/SQL Built-in Packages and Types 981

A database link is nothing more than a stored SQL*Net connection. In fact, the Oracle
instance issues a connection to a remote database just like you would through your SQL*Plus
client, but it is completely transparent to you or your application.

Creating a database link is easy. You can do so statically or dynamically. Static connections
store the connection credentials, while dynamic connections pass a token related to the user
to the remote database based on the session user. Using dynamic linking is recommended
because it is much more secure.

To create a link, you must have a connection defined in your tnsnames.ora file. For
purposes of the following example, I simply copied the link that was in the tnsnames.ora
file and renamed it. I did so to simulate a connection to a secondary database instead of
spinning another instance. Even though the link is to itself, the Oracle database views it as a
remote connection (as qualified in “Starting and Stopping the Oracle Database 12c Server”
section of Appendix A):

VIDEO =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = mclaughlin12c)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = videodb)
)
)

Once you have created your definition, you can reference it within the Oracle instance.
Creating a dynamic link is easy, but you need to enable a user to do so, or perform the
operation as a privileged superuser. In the following example, the video PDB superuser
has privileges to create a database link for the pluggable database.

You create a database link for a user in the PDB with the following syntax:

SQL> CREATE DATABASE LINK loopbackpdb
 2 CONNECT TO video IDENTIFIED BY video
 3 USING 'video';

You can test the link by selecting the credit card numbers from the members table, as
follows:

SQL> SELECT credit_card_number
 2 FROM member@video;

CREDIT_CARD_NUMBER

1111-2222-3333-4444
2222-3333-4444-5555
 ...

As you can see, it is easy to create and use database links. They expand your ability to
simultaneously and transparently query multiple databases within your organization.

17-AppD.indd 981 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

982 Oracle Database 12c PL/SQL Programming

To keep the use case small, I’m assuming that you’re working on a single instance. That means
you need to create a database link, which enables your database to act like two databases
connected across the network. That’s because the dbms_comparison packages assumes you’re
comparing two tables from different databases.

The dbms_comparison package is owned by the SYS user and is best run by using the
SYSTEM user account. My second assumption is that you’ll use the SYSTEM user, which means
you’ll need to configure a PDB and configure a pluggable user for that database. The scripts
assume that you’re using the videodb PDB, as configured in the introduction. While the
videodb is the database, the ADMIN user for the PDB is videoadm. The scripts reference a
generic video PDB account. You can access the copies of the tables through the PDB’s ADMIN
user and a database link. You can also read more about provisioning a PDB in Appendix A, if
you’re not up to speed on how that works.

The following creates a loopbackpdb database link between the same schema:

SQL> CREATE DATABASE LINK loopbackpdb
 2 CONNECT TO video IDENTIFIED BY "Video1"
 3 USING 'video';

NOTE
Database links in PDBs must enclose case-sensitive passwords in
double quotes.

The following blocks create two tables for demonstration purposes:

SQL> CREATE TABLE videoadm.member#1 AS
 2 SELECT * FROM video.member;

SQL> CREATE TABLE videoadm.member#2 AS
 2 SELECT * FROM video.member;

This statement alters the credit_card_number column to accept your update:

SQL> ALTER TABLE member#2
 2 MODIFY (credit_card_number VARCHAR2(25));

You must create unique and not-null indexes for the dbms_comparison package. It uses
them during the evaluation of rows. For this example, create a surrogate primary key on each of
the member_id columns:

SQL> ALTER TABLE member#1
 2 ADD CONSTRAINT member#1_pk PRIMARY KEY (member_id);

SQL> ALTER TABLE member#2
 2 ADD CONSTRAINT member#2_pk PRIMARY KEY (member_id);

The next block updates the member#2 table:

SQL> UPDATE video.member#2
 2 SET credit_card_number = credit_card_number || '-123';

17-AppD.indd 982 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix D: PL/SQL Built-in Packages and Types 983

This queries the results of the UPDATE statement:

SQL> SELECT m1.member_id AS "Member ID"
 2 , m1.credit_card_number AS "Credit Card #1"
 3 , m2.credit_card_number AS "Credit Card #2"
 4 FROM video.member#1 m1
 5 , video.member#2 m2
 6 WHERE m1.member_id = m2.member_id;

It displays the results of the UPDATE statement:

 Member ID Credit Card #1 Credit Card #2
---------- ------------------- -------------------------
 1001 1111-2222-3333-4444 1111-2222-3333-4444-123
 1002 2222-3333-4444-5555 2222-3333-4444-5555-123
 ...

Notice that the credit_card_number column values are different in the two tables. That
would indicate that the tables have become unsynchronized, and in a distributed model that is
something that a DBA must typically fix.

The next anonymous block creates and executes a comparison with the dbms_comparison
package. Unfortunately, the dbms_comparison package isn’t installed by default in the PDB
system catalog. That means you need to install it manually. Connect as the ADMIN user for the
PDB with SYSDBA responsibility and run the following two scripts:

SQL> @?/rdbms/admin/dbmscmp.sql
SQL> @?/rdbms/admin/prvtcmp.plb

You can DESCRIBE the dbms_comparison package to verify that it’s successfully compiled
and available to your SYSDBA role in the PDB. Each comparison requires a unique name. This
sample uses COMPARE_NAME as the comparison name. It detects this difference and submits
those differences to data dictionary tables.

SQL> DECLARE
 2 /* Declare local variables. */
 3 lv_compare_results DBMS_COMPARISON.COMPARISON_TYPE;
 4 lv_difference BOOLEAN;
 5 BEGIN
 6 /* Create the comparison. */
 7 dbms_comparison.create_comparison(comparison_name => 'Compare_Name'
 8 ,schema_name => 'video'
 9 ,object_name => 'MEMBER#1'
 10 ,dblink_name => 'loopbackpdb'
 11 ,remote_schema_name => 'video'
 12 ,remote_object_name => 'MEMBER#2');
 13
 14 /* Check for a difference between the two tables. */
 15 lv_difference :=
 16 dbms_comparison.compare('Compare_Name'
 17 , lv_compare_results

17-AppD.indd 983 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

984 Oracle Database 12c PL/SQL Programming

 18 , NULL
 19 , NULL
 20 , TRUE);
 21
 22 /* Print messages for not found and found. */
 23 IF lv_difference THEN
 24 dbms_output.put_line('None found.');
 25 ELSE
 26 dbms_output.put_line('Difference found.');
 27 END IF;
 28 END;
 29 /

Line 3 declares a local variable using a package data type. Lines 7 through 12 call the
create_comparison procedure of the dbms_comparison package. You must ensure that the
comparison_name parameter is unique. A second attempt with the same name will fail because
the names will conflict in the table where Oracle stores it. You also should observe that different
table names are assigned to the object_name and remote_object_name parameters. The
call to the compare function of the dbms_comparison package on lines 16 through 20 returns
a Boolean value to the lv_difference variable on line 15.

If you forget that the comparison_name parameter must be unique, this error message will
remind you of it:

DECLARE
*
ERROR at line 1:
ORA-23627: Comparison object "SYSTEM"."COMPARISON_NAME" already existed.
ORA-06512: at "SYS.DBMS_COMPARISON", line 5026
ORA-06512: at "SYS.DBMS_COMPARISON", line 454
ORA-06512: at line 7

You can use the purge_comparison or drop_comparison procedures to remove prior
comparison data, like this:

SQL> BEGIN
 2 dbms_comparison.purge_comparison('COMPARE_NAME');
 3 dbms_comparison.drop_comparison('COMPARE_NAME');
 4 END;
 5 /

The following query returns some of the stored metadata that describes any comparison
differences detected between the member#1 and member#2 tables:

COLUMN comparison_name FORMAT A20
COLUMN status FORMAT A6
SQL> SELECT comparison_name
 2 , scan_id
 3 , status
 4 FROM dba_comparison_row_dif;

17-AppD.indd 984 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix D: PL/SQL Built-in Packages and Types 985

The query returns any rows where differences occur:

COMPARISON_NAME SCAN_ID STATUS
-------------------- ---------- ------
COMPARE_NAME 2 DIF
COMPARE_NAME 2 DIF
 ...

As you can see, Oracle assigned a SCAN_ID for each row that is different and assigned a
status of DIF in the STATUS column. There are 19 data dictionary views, listed next, that display
information about the changes at various view access levels. The access levels are CDB_, DBA_,
ALL_, and USER_, but note that not all views enjoy all levels of access.

 ■ CDB_, DBA_, USER_COMPARISON

 ■ CDB_, DBA_, USER_COMPARISON_COLUMNS

 ■ CDB_, DBA_, USER_COMPARISON_ROW_DIF

 ■ CDB_, DBA_, USER_COMPARISON_SCAN

 ■ CDB_, DBA_, ALL_, USER_COMPARISON_SCAN_SUMMARY

 ■ CDB_, DBA_, USER_COMPARISON_SCAN_VALUES

The following code block uses the information from the view dba_comparison_row_dif
to drive the resynchronization of data between the member#1 and member#2 tables:

SQL> DECLARE
 2 /* Declare local variables. */
 3 lv_compare_results DBMS_COMPARISON.COMPARISON_TYPE;
 4 lv_counter NUMBER := 0;
 5 lv_difference BOOLEAN;
 6 lv_message VARCHAR2(10);
 7
 8 /* Declare switch back cursor. */
 9 CURSOR switch_back IS
 10 SELECT comparison_name
 11 , scan_id
 12 , status
 13 FROM dba_comparison_row_dif;
 14
 15 BEGIN
 16 /* Read through the switch back. */
 17 FOR i IN switch_back LOOP
 18 dbms_comparison.converge
 19 (comparison_name => 'COMPARE_NAME'
 20 , scan_id => i.scan_id
 21 , scan_info => lv_compare_results
 22 , converge_options => DBMS_COMPARISON.CMP_CONVERGE_LOCAL_WINS
 23 , perform_commit => TRUE
 24 , local_converge_tag => NULL
 25 , remote_converge_tag => NULL);
 26
 27 /* Recheck comparison. */

17-AppD.indd 985 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

986 Oracle Database 12c PL/SQL Programming

 28 lv_difference := dbms_comparison.recheck('COMPARE_NAME'
 29 , i.scan_id
 30 , TRUE);
 31
 32 /* Check for a difference. */
 33 IF lv_difference THEN
 34 dbms_output.put_line('Scan ID ['||i.scan_id||'] is the same.');
 35 ELSE
 36 dbms_output.put_line('Scan ID ['||i.scan_id||'] is different.');
 37 /* Increment counter when there's a difference. */
 38 lv_counter := lv_counter + 1;
 39 END IF;
 40 END LOOP;
 41
 42 /* Purge and drop comparison. */
 43 IF lv_counter > 1 THEN
 44 dbms_comparison.purge_comparison('COMPARE_NAME');
 45 dbms_comparison.drop_comparison('COMPARE_NAME');
 46 END IF;
 47 END;
 48 /

Notice that line 33 checks the value of lv_difference. If it is false, the lv_counter
variable is bumped up by one. Once the code completes its FOR loop, it evaluates the counter
value, purges the comparison results from the data dictionary views, and drops the comparison.

The following requeries the member#1 and member#2 tables:

SQL> SELECT m1.member_id AS "Member ID"
 2 , m1.credit_card_number AS "Credit Card #1"
 3 , m2.credit_card_number AS "Credit Card #2"
 4 FROM video.member#1 m1
 5 , video.member#2 m2
 6 WHERE m1.member_id = m2.member_id;

It prints column values that now agree in both tables:

Member ID Credit Card #1 Credit Card #2
---------- ------------------- ----------------------------
 1001 1111-2222-3333-4444 1111-2222-3333-4444
 1002 2222-3333-4444-5555 2222-3333-4444-5555
 ...

The creation of these programs without an Oracle built-in package would require much
greater effort. This is one example where an Oracle PL/SQL built-in eliminates the need for you to
figure out how to code a difference checker or maintain that code.

DBMS_CRYPTO
Sometimes you need to encrypt column values in such a way that even the SYS user can’t access
them. I created the following example to show how the dbms_crypto package can help you do
this. It uses a user-defined type (UDT) and assumes you have a working knowledge of object types
in Oracle Database 12c.

17-AppD.indd 986 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix D: PL/SQL Built-in Packages and Types 987

For reference, a good DBA would simply find this clear-text password in the SGA. A more
secure approach might be to hide the encryption keyword in a one-column table or embed it as a
position-specific substring in some string within a common lookup table column value. Alas, I don’t
have time to write something so elaborate.

The first step creates a masked UDT, which has only a single salary attribute or field. The
code for the object type is

SQL> CREATE OR REPLACE TYPE masked IS OBJECT
 2 (salary RAW(1000)
 3 , CONSTRUCTOR FUNCTION masked RETURN SELF AS RESULT
 4 CONSTRUCTOR FUNCTION masked (salary NUMBER) RETURN SELF AS RESULT
 5 , MEMBER FUNCTION get_raw_salary RETURN RAW
 6 , MEMBER FUNCTION get_salary (KEY VARCHAR2) RETURN NUMBER
 7 , MEMBER FUNCTION to_string RETURN VARCHAR2
 8 , ORDER MEMBER FUNCTION equals (object MASKED) RETURN NUMBER)
 9 INSTANTIABLE FINAL;
 10 /

At the time of writing, Oracle Database 12c PDBs don’t provision with the dbms_crypto
package. That means you need to install it before you can compile the following object body. You
must connect as the SYSDBA role for the PDB and run two files. The first file defines the
specification and the second defines the package body.

These statements call the packages by referring to the $ORACLE_HOME or %ORACLE_HOME%
environment variable:

SQL> @?/rdbms/admin/dbmsobtk.sql
SQL> @?/rdbms/admin/prvtobtk.plb

As the SYSDBA user for the PDB, you must grant the EXECUTE privilege on the dbms_crypto
package to the target schema user. The command syntax is

SQL> GRANT EXECUTE ON dbms_crypto TO schema_name;

I was tempted to simply put the whole object body in the book, but it’s 127 lines long when
formatted for a standard page, so I settled for highlighting the encryption and decryption of data.
The name of the script is use_dbms_crypto.sql, and you can find the code on the McGraw-
Hill Professional website.

The masked CONSTRUCTOR FUNCTION encrypts the data. The code for the masked object
type’s constructor is

15 CONSTRUCTOR FUNCTION masked (salary NUMBER) RETURN SELF AS RESULT IS
 16
 17 /* Declare local variables for encryption. The object types hold
 18 object instances and object body variables. When you place them
 19 inside the methods it prevents their disclosure. */
 20 lv_key_string VARCHAR2(4000) := 'Encrypt Me!';
 21 lv_key RAW(1000);
 22 lv_raw RAW(1000);
 23 lv_encrypted_data RAW(1000);
 24
 25 BEGIN

17-AppD.indd 987 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

988 Oracle Database 12c PL/SQL Programming

 26 /* Dynamic assignment. */
 27 lv_raw := UTL_RAW.cast_from_number(NVL(salary,0));
 28
 29 /* Convert to a RAW 64-character key. */
 30 lv_key := UTL_RAW.cast_to_raw(lv_key_string);
 31 lv_key := RPAD(lv_key,64,'0');
 32
 33 /* Encrypt the salary before assigning it to the object type. */
 34 lv_encrypted_data := DBMS_CRYPTO.ENCRYPT(
 35 lv_raw
 36 , dbms_crypto.ENCRYPT_AES256
 37 + dbms_crypto.CHAIN_CBC
 38 + dbms_crypto.PAD_PKCS5
 39 , lv_key);
 39 self.salary := lv_encrypted_data;
 40
 41 RETURN;
 42 END masked;

Line 30 uses the utl_raw package to cast the string into a RAW data type. Line 31 pads the
key to a length of 64 digits. The padding is required for the key value when you submit it as the
fifth call parameter to the dbms_crypto.encrypt function. Lines 34 through 39 demonstrate a
call to the encrypt function of the dbms_crypto package.

You decrypt the value with the get_salary function by calling it with the decryption key.
While this is a trivial way to manage such an important encryption key, it’s just for demonstration
purposes of the dbms_crypto package. You would need to use a better approach in a real
environment, but that’s a topic for an advanced PL/SQL book.

The code for the function is

 49 MEMBER FUNCTION get_salary(key VARCHAR2) RETURN NUMBER IS
 50
 51 /* Declare local variables for encryption. The object types hold
 52 object instances and object body variables. When you place them
 53 inside the methods it prevents their disclosure. */
 54 lv_key_string VARCHAR2(4000) := 'Encrypt Me!';
 55 lv_decrypted_data RAW(4000);
 56 lv_key RAW(1000);
 57 lv_return_value NUMBER;
 58
 59 BEGIN
 60
 61 /* Verify key value matches local value before decrypting,
 62 substitute a zero value when the key doesn't match. */
 63 IF key = lv_key_string THEN
 64 lv_key := UTL_RAW.cast_to_raw(lv_key_string);
 65 lv_key := RPAD(lv_key,64,'0');
 66 lv_decrypted_data := DBMS_CRYPTO.DECRYPT(
 67 self.salary
 68 , dbms_crypto.ENCRYPT_AES256
 69 + dbms_crypto.CHAIN_CBC

17-AppD.indd 988 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix D: PL/SQL Built-in Packages and Types 989

 70 + dbms_crypto.PAD_PKCS5
 71 , lv_key);
 73 lv_return_value := TO_NUMBER(
 74 TO_CHAR(
 75 UTL_RAW.cast_to_number(lv_decrypted_data)
 76 ,'9999990.00'));
 77 ELSE
 78 lv_return_value := 0;
 79 END IF;
 80
 81 RETURN lv_return_value;
 82 END get_salary;

Line 65 again pads the encryption key to a length of 64 characters before calling the
decrypt function of the dbms_crypto package. That call is made on lines 66 through 71.

Once you verify that masked object type works, you need to wrap it, which obfuscates or
hides the implementation details. You do that with the create_wrapped procedure of the
dbms_ddl package. The syntax to wrap the logic is

BEGIN
 dbms_ddl.create_wrapped(procedure_logic);
END;
/

You can test the object implementation by creating a table that uses the object type as a
column data type and inserting a couple of rows of data. That code would look like this:

SQL> CREATE TABLE sort_demo (salary MASKED);
SQL> INSERT INTO sort_demo VALUES (masked(82000.24));
SQL> INSERT INTO sort_demo VALUES (masked(61000.12));
SQL> INSERT INTO sort_demo VALUES (masked(93000.36));

The following PL/SQL block tests the code:

SQL> DECLARE
 2 o MASKED := masked(82000.12);
 3 BEGIN
 4 DBMS_OUTPUT.put_line('Override: '||o.to_string());
 5 DBMS_OUTPUT.put_line('Decrypted: '||o.get_salary('Encrypt Me!'));
 6 DBMS_OUTPUT.put_line('Bad Key: '||o.get_salary('Incorrect'));
 7 END;
 8 /

It outputs

 Override: Encrypted value
 Decrypted: 82000.12
 Bad Key: 0

The object type also provides sorting of the encrypted values, but that’s a subject for Chapter 6.
Download and test the code if you’re curious.

17-AppD.indd 989 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

990 Oracle Database 12c PL/SQL Programming

DBMS_FGA
Setting up fine-grain auditing (FGA) is one of the easier methods available in Oracle’s built-in library.
To do so, you use the Oracle built-in package dbms_fga to create audit policies, as demonstrated
in the next example.

This block executes the DBMS_FGA.ADD_POLICY procedure:

SQL> BEGIN
 2 DBMS_FGA.ADD_POLICY(
 3 object_schema => 'VIDEO'
 4 , object_name => 'PRICE'
 5 , policy_name => 'AUDIT_PRICE_MODXML'
 6 , audit_condition => 'VIDEO_STORE.PRICE.AMOUNT < 1'
 7 , audit_column => 'AMOUNT'
 8 , handler_schema => NULL
 9 , handler_module => NULL
 10 , enable => TRUE
 11 , statement_types => 'INSERT, UPDATE'
 12 , audit_trail => DBMS_FGA.XML + DBMS_FGA.EXTENDED
 13 , audit_column_opts => DBMS_FGA.ANY_COLUMNS);
 14 END;
 15 /

Observe that the entire setup spans only 15 lines of code. This is much easier than coding audit
triggers. Oracle automatically logs an update of the video.price table in the data dictionary:

SQL> UPDATE video.price
 2 SET amount = .25
 3 WHERE active_flag = 'Y'
 4 AND rownum <= 5;

The update is recorded even if you issue a ROLLBACK:

SQL> ROLLBACK;

If you issue the following query, using an account with rights to the V$XML_AUDIT_TRAIL
view, you can see the results of the audit:

SQL> SELECT os_user
 2 , os_host
 3 , object_schema
 4 , object_name
 5 , policy_name
 6 , sql_bind
 7 , sql_text
 8 FROM v$xml_audit_trail;

It produces the following output (which has been manually wrapped):

OS_USER OS_HOST OBJECT_SCHEMA OBJECT_NAME
--------- --------------------- ---------------- --------------
harperjm WORKGROUP\HARPERJM-PC VIDEO_STORE PRICE

17-AppD.indd 990 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix D: PL/SQL Built-in Packages and Types 991

POLICY_NAME SQL_BIND SQL_TEXT
------------------ ----------- ---
AUDIT_PRICE_MODXML (null) UPDATE video_store.price SET amount = .25 ...

Notice that the audit policy captures user information and the SQL statement that violated
your audit condition. Also, observe that you insert only one row, instead of many rows, for each
record affected.

Case Study: Query Tool
This section shows a simple example of how you can combine built-in packages to create workable
programs that benefit your organization. John Harper actually used this program to measure the
runtime and statistics for business-critical reports. His IT department created service-level agreements
with their business line-units that defined maximum runtimes for their ten most important queries,
and we needed a way to track each query.

I’ve stripped out sections from the original program to keep the example short; a complete
solution includes additional instrumentation, alerting, and log cleanup. All of these were completed
in our actual package by using Oracle built-in functions.

We gave the following grants to the VIDEO PDB user:

SQL> GRANT SELECT ON v_$statname TO video;
SQL> GRANT SELECT ON v_$mystat TO video;
SQL> GRANT SELECT ON v_$latch TO video;
SQL> GRANT CREATE VIEW TO video;

We were required to grant these rights in order to create the rts_session_stats view
shown next. We also created the following table to hold a roster of queries that we wanted to
measure. This table acts like a driver to our measuring program:

SQL> CREATE TABLE rts_query
 2 (report_id INTEGER
 3 , report_name VARCHAR2(50)
 4 , report_description VARCHAR2(150)
 5 , view_name VARCHAR2(65)
 6 , interval_text VARCHAR2(30)
 7 , end_time TIMESTAMP
 8 , max_duration INTERVAL DAY(3) TO SECOND(2)
 9 , is_active_01_flag INTEGER);

We inserted rows into this table with this syntax:

SQL> INSERT INTO rts_query
 2 VALUES
 3 (1
 4 ,'SALES_RIF_MONTHLY_GT_2012'
 5 ,'The gross total of rental revenue per month in 2012'
 6 ,'sales_rif_monthly_gt_2012'
 7 ,'FREQ=HOURLY;INTERVAL=3'
 8 , SYSDATE + 5
 9 ,'0 0:20:0.0'
 10 , 1);

17-AppD.indd 991 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

992 Oracle Database 12c PL/SQL Programming

Observe the view_name field in the foregoing INSERT statement. The dbms_scheduler
package’s create_job procedure has a job_action parameter that is limited to 4,000 bytes.
This column lets you push either a SQL statement or a PL/SQL block into the procedure. The physical
limit on the parameter isn’t a big deal for standard reports, but some data warehousing queries
exceed it. We actually found that about 60 percent of our data warehousing queries exceeded
the 4,000-byte limit.

We create views to represent the underlying query, which ensures we fit within the 4,000-byte
limit. Then, we simply reference the view, like so:

SQL> CREATE OR REPLACE VIEW sales_rif_monthly_gt_2012 AS
 2 SELECT TO_CHAR(rental_date,'MON-YYYY') AS month_year
 3 , SUM(rental_price) AS monthly_gt
 4 FROM rental_item_fact
 5 WHERE rental_date BETWEEN '01-Jan-2012' AND '31-Dec-2012'
 6 GROUP BY TO_CHAR(rental_date,'MON-YYYY')
 7 ORDER BY TO_DATE(month_year,'MON-YYYY');

This view was built on a fictitious table named rental_item_fact. We populate that table
with 20,000,000 rows to make our Oracle database server work a bit harder.

This task was easy because we used the built-in dbms_random package to generate realistic
data. However, you may need to drop the rental_item_fact table first:

SQL> DROP TABLE rental_item_fact CASCADE CONSTRAINTS PURGE;

SQL> CREATE TABLE rental_item_fact
 2 (contact_id INTEGER
 3 , item_id INTEGER
 4 , rental_id INTEGER
 5 , rental_item_id INTEGER
 6 , rental_type_id INTEGER
 7 , rental_date DATE
 8 , rental_price NUMBER);

Having created the table, we use the MERGE statement to insert or update data:

SQL> MERGE
 2 INTO rental_item_fact rif
 3 USING (WITH iterator AS
 4 (SELECT ROUND(dbms_random.value(1001,1007)) AS contact_id
 5 , ROUND(dbms_random.value(1001,1093)) AS item_id
 6 , ROUND(dbms_random.value(1037,1039)) AS price_type
 7 , TRUNC(SYSDATE - dbms_random.value(1,1095)) AS rental_date
 8 , level rental_id
 9 , level rental_item_id
 10 FROM dual
 11 CONNECT BY LEVEL <= 20000000)
 12 SELECT i.contact_id AS contact_id
 13 , i.item_id AS item_id
 14 , i.rental_id AS rental_id
 15 , i.rental_item_id AS rental_item_id
 16 , p.price_type AS rental_item_type_id
 17 , i.rental_date AS rental_date
 18 , p.amount AS rental_amount
 19 FROM price p INNER JOIN iterator i

17-AppD.indd 992 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix D: PL/SQL Built-in Packages and Types 993

 20 ON i.item_id = p.item_id
 21 AND i.price_type = p.price_type
 22 WHERE p.active_flag = 'Y') a
 23 ON (rif.contact_id = a.contact_id AND
 24 rif.item_id = a.item_id AND
 25 rif.rental_id = a.rental_id AND
 26 rif.rental_item_id = a.rental_item_id AND
 27 rif.rental_type_id = a.rental_item_type_id)
 28 WHEN NOT MATCHED THEN
 29 INSERT
 30 VALUES
 31 (a.contact_id
 32 , a.item_id
 33 , a.rental_id
 34 , a.rental_item_id
 35 , a.rental_item_type_id
 36 , a.rental_date
 37 , a.rental_amount);

The previous MERGE statement completed the 20,000,000-row insert in about 3 minutes. We
find that merging is very fast and oftentimes preferred over procedural methods. The effectiveness
of a MERGE statement increases when the table is highly parallelized.

Our last bit of setup before creating our logging package requires the creation of two tables and
one view. The view is important because it exposes Oracle’s automatic statistics gathering to our tool:

SQL> CREATE OR REPLACE FORCE VIEW VIDEO.RTS_SESSION_STATS AS
 2 SELECT SYS_CONTEXT('USERENV','SID') sid
 3 , 'STAT' stat_type
 4 , sn.name stat_name
 5 , m.value stat_value
 6 FROM v$statname sn
 7 , v$mystat m
 8 WHERE sn.statistic# = m.statistic#
 9 UNION ALL
 10 SELECT SYS_CONTEXT('USERENV','SID') sid
 11 , 'LATCH' stat_type
 12 , l.name stat_name
 13 , l.gets stat_value
 14 FROM v$latch l
 15 UNION ALL
 16 SELECT SYS_CONTEXT('USERENV','SID') sid
 17 , 'TIME' stat_type
 18 , 'Wall time' stat_name
 19 , TO_NUMBER(TO_CHAR(systimestamp,'DDMMYYYYHHMISS.FF9')) stat_value
 20 FROM dual;

You can create a real-time statistics table with the following:

SQL> CREATE TABLE rts_stats_history
 2 (report_id INTEGER
 3 , job_name VARCHAR2(30)
 4 , sid INTEGER
 5 , stat_type VARCHAR2(5)
 6 , stat_name VARCHAR2(100)
 7 , stat_value NUMBER
 8 , runtime TIMESTAMP);

17-AppD.indd 993 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

994 Oracle Database 12c PL/SQL Programming

Notice that we added values from v$mystat, v$statname, v$latch, and some
pseudocolumns created via the built-in sys_context and systimestamp functions. Latches
are important because they represent the locking of memory structures during query operations.
You will never be able to completely eliminate latching, but it is vital that you reduce these values
as much as possible; otherwise, your applications will not scale well.

The last table we add before creating the package is a log table to store any errors that our
program may encounter:

 CREATE TABLE rts_log
 (
 program varchar2(65)
 , error_message clob
 , update_ts timestamp
);

The next step lets us create a package specification. The package includes a printt
procedure for basic error logging, and a snap procedure for gathering point-in-time metrics. It
also includes a procedure that runs our stored queries from the rts_query table.

The package specification is

SQL> CREATE OR REPLACE PACKAGE sql_stats AS
 2 -- ---
 3 -- ERROR HANDLING PROCEDURES
 4 -- ---
 5 PROCEDURE printt
 6 (pi_program_name IN VARCHAR2
 7 , pi_log_level IN VARCHAR2
 8 , pi_status IN NUMBER
 9 , pi_error_message IN VARCHAR2);
 10 -- ---
 11 -- SNAP STATS BY SID
 12 -- ---
 13 PROCEDURE snap
 14 (pi_sid IN NUMBER
 15 , pi_job IN VARCHAR2
 16 , pi_rpt IN VARCHAR2);
 17 -- ---
 18 -- RUN_QUERIES procedure.
 19 -- ---
 20 PROCEDURE run_queries;
 21 END sql_stats;
 22 /

I’ve opted to display the sql_stats package body in pieces to highlight how it works. The
following is the package header and the first printt procedure:

SQL> CREATE OR REPLACE PACKAGE BODY sql_stats AS
 2 -- ---
 3 -- PRINTT
 4 -- ---
 5 PROCEDURE print

17-AppD.indd 994 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix D: PL/SQL Built-in Packages and Types 995

 6 (pi_program_name IN VARCHAR2
 7 , pi_log_level IN VARCHAR2
 8 , pi_status IN NUMBER
 9 , pi_error_message IN VARCHAR2) IS
 10 /* Make the procedure autonomous. */
 11 PRAGMA AUTONOMOUS_TRANSACTION;
 12 BEGIN
 13 INSERT
 14 INTO rts_log
 15 VALUES
 16 (pi_program_name
 17 , TO_CHAR(gd_timestamp,'HH:MM:SS.FF MON DD, YYYY')||' ['
 18 ||pi_log_level ||'] '
 19 ||pi_program_name ||' '
 20 ||pi_error_message
 21 , systimestamp);
 22 /* Commit write. */
 23 COMMIT;
 24 END printt;

The writes are set to be independent by the PRAGMA on line 11. They occur as resources
become available.

The snap procedure in the following block simply selects the values stored in our
RTS_SESSION_STATS view that we created previously:

 25 -- --
 26 -- SNAP
 27 -- --
 28 PROCEDURE snap
 29 (pi_sid IN NUMBER
 30 , pi_job IN VARCHAR2
 31 , pi_rpt IN VARCHAR2) IS
 32 BEGIN
 33 INSERT
 34 INTO rts_stats_history
 35 SELECT pi_rpt
 36 , pi_job
 37 , sid
 38 , stat_type
 39 , stat_name
 40 , stat_value
 41 , systimestamp runtime
 42 FROM rts_session_stats
 43 WHERE sid = pi_sid;
 44 /* Commit the write to the history. */
 45 COMMIT;
 46 END snap;

That’s it! Now, we have a way of determining how much resources are being used and how long
each query takes. Our run_queries procedure in the next block simply creates a dynamic PL/SQL
block and passes that block to the dbms_scheduler.create_job procedure. The nifty thing

17-AppD.indd 995 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

996 Oracle Database 12c PL/SQL Programming

about the run_queries procedure is that a separate session is spun per query and the statistics
gathering is specific to that session. It effectively isolates each query in its own session, as you can see:

47 -- --
 48 -- RUN_SQL
 49 -- --
 50 PROCEDURE run_queries IS
 51 lv_pls VARCHAR2(4000);
 52 lv_rpt VARCHAR2(30);
 53 lv_job VARCHAR2(30);
 54 lv_vew VARCHAR2(65);
 55 BEGIN
 56 SELECT report_id
 57 , 'RPT#'||report_id||'_'||to_char(sysdate,'SSMIHHDDMMYYYY') job_name
 58 , view_name
 59 INTO lv_rpt
 60 , lv_job
 61 , lv_vew
 62 FROM rts_query;
 63
 64 lv_pls := 'DECLARE'||CHR(10)
 65 || ' lv_counter NUMBER;'||CHR(10)
 65 || ' lv_sid NUMBER := SYS_CONTEXT(''USERENV'',''SID'');'||CHR(10)
 66 || 'BEGIN'||CHR(10)
 67 || ' sql_stats.snap(lv_sid,''$2'',$3); '||CHR(10)
 68 || ' SELECT COUNT(*)'|| CHR(10)
 69 || ' INTO lv_counter'|| CHR(10)
 70 || ' FROM $1; '|| CHR(10)
 71 || ' sql_stats.snap(lv_sid,''$2'',$3); '|| CHR(10)
 72 || 'END;';
 73
 74 lv_pls := REGEXP_REPLACE(lv_pls,'\$1',lv_vew);
 75 lv_pls := REGEXP_REPLACE(lv_pls,'\$2',lv_job);
 76 lv_pls := REGEXP_REPLACE(lv_pls,'\$3',lv_rpt);
 77
 78 DBMS_SCHEDULER.CREATE_JOB
 79 (job_name => l_job
 80 , job_type => 'PLSQL_BLOCK'
 81 , job_action => l_pls
 82 , enabled => true
 83 , auto_drop => true);
 84 END run_queries;
 85 END sql_stats;
 86 /

It was much more difficult to gather statistics in previous releases of Oracle Database (before
10g). You were required to enable tracing, mark the trace file for your test, trace the SQL, stop the
trace, locate the trace file, and run the tkprof utility on the file to generate readable reports.
Appendix A covers the basics of using the tkprof utility.

We run queries from the rts_query table by issuing the following command at a SQL*Plus
prompt:

SQL> BEGIN
 2 video.sql_stats.run_queries;
 3 END;
 4 /

17-AppD.indd 996 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix D: PL/SQL Built-in Packages and Types 997

The following query returns results from the dba_scheduler_job_run_details view:

SQL> SELECT owner
 2 , job_name
 3 , status
 4 , actual_start_date
 5 , run_duration
 6 , instance_id
 7 , cpu_used
 8 FROM dba_scheduler_job_run_details
 9 WHERE job_name LIKE 'RPT%';

It generates this output:

OWNER|JOB_NAME|STATUS|ACTUAL_START_DATE|RUN_DURATION|INSTANCE_ID|CPU_USED

VIDEO_STORE|RPT#1_23430311042013|SUCCEEDED|4/11/2013 3:43:23.681027 AM ...
VIDEO_STORE|RPT#1_14570412042013|SUCCEEDED|4/12/2013 4:57:14.824137 PM ...

You can see by this example that Oracle built-in packages greatly simplify and reduce the
overall code you need to write in order to obtain simple statistics on queries.

Supporting Scripts
This section describes programs placed on the McGraw-Hill Professional website to support this
appendix:

 ■ The use_dbms_comparison.sql program contains small programs that support a
complete example of how to use a built-in package to normalize data across two repositories.
It supports the demonstration of the dbms_comparison PL/SQL built-in package.

 ■ The use_dbms_crypto.sql program contains an object type and body that demonstrate
encrypting and decrypting data. It supports the demonstration of the dbms_crypto
PL/SQL built-in package.

Summary
This appendix introduced you to Oracle’s extensive built-in library. It also illustrated how to use
four of the Oracle built-in packages. You are encouraged to study the Oracle Database PL/SQL
Packages and Types Reference 12c Release, which should be the first place you look when asked
to implement a particular feature.

17-AppD.indd 997 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

17-AppD.indd 998 12/17/13 3:47 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

APPENDIX
E

Regular Expression Primer

18-AppE.indd 999 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1000 Oracle Database 12c PL/SQL Programming

Regular expressions in Oracle Database 12c haven’t changed from Oracle Database 11g.
They enable you to perform powerful context searches in variable-length strings, like the
 CHAR, CLOB, NCHAR, NCLOB, NVARCHAR2, and VARCHAR2 character data types. Regular

expressions are strings that describe or match a set of strings. They provide a powerful set of
pattern matching capabilities by combining character classes, collation classes, metacharacters,
metasequences, and literals. Character classes are groups of possible characters at a point in the
search. Collation classes are sets of characters and are treated like a range. Metacharacters are
operators that specify search algorithms, and metasequences are operators created by two
metacharacters or literals. Literals are characters, character sets, and words. Together, these let
you search text by using patterns to match strings.

This appendix presents regular expressions in the following sections:

 ■ Regular expression introduction

 ■ Regular expression implementation

These sections explain what regular expressions are and how you can use them in your PL/SQL
application code. Examples are provided that show you how to use regular expressions in both
SQL and PL/SQL.

Regular Expression Introduction
Regular expressions enable you to conduct text searches based on common characteristics, such
as case sensitivity, or based on approximate spelling. Some languages provide search functions to
perform these operations, while others don’t. Regular expressions are a major facility in scripting
languages such as Perl and PHP. They provide pattern matching and flexibility when you search
long strings for substrings or instances of substrings.

You build pattern matching expressions by combining character classes, collation classes,
metacharacters, metasequences, and literals. These components are covered in the following
subsections.

Character Classes
Character classes are groups or ranges of possible characters. They may appear at any point in
your regular expression. Character classes are traditionally delimited by [] (square brackets). You
use a “-” (dash) inside the square brackets to designate everything between two characters. The
“-” in this context is a character-class metacharacter.

You use the ordinal numbers from 0 to 9 and upper- or lowercase letters A through F to
designate hexadecimal values. The character class [ABCDEFabcdef0123456789] represents
the group of possible characters found in hexadecimal characters. You can represent the same
letter and number range sets by using the character class [A-Fa-f0-9]. There is no practical
limit to the number of ranges that you can put in a character class.

The POSIX (Portable Operating System Interface) specification broadens the use of character
classes by introducing the concept of portable character classes (which means portable across
languages). Portable character classes are nested inside the basic [] as [::] (square brackets with
colons). This means that the character class [A-Za-z] that represents all upper- and lowercase

18-AppE.indd 1000 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix E: Regular Expression Primer 1001

letters is equal to the [[:alpha:]] portable character class. You should note that the portable
character classes are inside an additional set of square brackets. More or less, the portable character
classes act like range aliases. The second set of square brackets delimits them as a character class.
Unlike language-specific character classes, portable character classes map across languages and
simplify globalizing search patterns. Table E-1 lists the POSIX portable character classes.

By themselves, character classes apply only to a single character or position of a string.
When matched with the + metacharacter (which means one or more of the preceding characters
or character classes), the expression may apply to more than a single character. Table E-2, later in
this appendix, provides a list of available metacharacters.

To show you how range and portable character classes work, the following examples use two
metacharacters, the ^ (caret) and $ (dollar sign). The caret represents the beginning of the string
you’re working with, and the dollar sign represents the end of the string. Moreover, they represent
the beginning and ending of a line of text. (Table E-2 provides their formal definitions.) Using SQL
statements with a REGEXP_LIKE function call in the WHERE clause is a simple way to present
these examples. If you need further explanation about how the REGEXP_LIKE function works,
flip to the “REGEXP_LIKE Function” section later in this appendix to check out the details. These
examples use a two-character A1 string and use range and portable character classes to match
the string.

The first REGEXP_LIKE example compares the string literal against a range character class of
the letters in the English alphabet, as shown in the following SELECT statement:

SQL> SELECT i.column_name
 2 FROM (SELECT 'A1' AS column_name FROM dual) i
 3 WHERE REGEXP_LIKE(i.column_name,'^[A-Z]*$','i');

Portable Character Class Description
[:alnum:] All alphanumeric characters
[:alpha:] All alphabetic characters
[:cntrl:] All nonprintable control characters
[:digit:] All numeric digits
[:graph:] All [:digit:], [:lower:], [:punct:], and [:upper:]

portable character classes
[:lower:] All lowercase alphabetic characters
[:print:] All printable characters
[:punct:] All punctuation characters
[:space:] All nonprinting space characters
[:upper:] All uppercase alphabetic characters
[:xdigit:] All hexadecimal characters

TABLE E-1. POSIX Portable Character Classes

18-AppE.indd 1001 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1002 Oracle Database 12c PL/SQL Programming

Line 2 fabricates a table of one column and row with a value of A1. The first call parameter is
a two-character A1 string, which is returned by the derived table in the FROM clause (see Appendix B
for a discussion of derived tables). The action occurs in line 3.The second call parameter is a range
character class for uppercase letters combined with a metacharacter (*) for one or more instances
(see Table E-2). The third call parameter is an i character flag that instructs the function to perform
a case-insensitive comparison. Naturally, the SELECT statement returns no rows because the first
character is a number, not a letter.

NOTE
The difference between the i table alias on line 2 and the i character
flag on line 3 in the example is important. The table alias is a valid
identifier in the scope of the SELECT statement, while the character
flag is a one-character string literal.

The next example changes the second parameter of the REGEXP_LIKE function from a range
character class to a portable character class. Note that when you use a portable character class,
you need to include it within another set of square brackets.

SQL> SELECT i.column_name
 2 FROM (SELECT 'A1' AS column_name FROM dual) i
 3 WHERE REGEXP_LIKE(i.column_name,'^[[:alpha:]]*$','i');

The preceding REGEXP_LIKE function works like the one in the prior example, and likewise
doesn’t return any values because both characters aren’t lowercase or uppercase letters.

Sticking with our little example, let’s check for an alphanumeric value with a range character
class first of uppercase, lowercase, and numeric characters:

SQL> SELECT i.column_name
 2 FROM (SELECT 'A1' AS column_name FROM dual) i
 3 WHERE REGEXP_LIKE(i.column_name,'^[A-Za-z0-9]*$','i');

It returns the two-character A1 string. Likewise, replacing the range character classes with a
single portable character class and an extra set of square brackets works too. The following shows
you the portable character-class logic:

SQL> SELECT i.column_name
 2 FROM (SELECT 'A1' AS column_name FROM dual) i
 3 WHERE REGEXP_LIKE(i.column_name,'^[[:alnum:]]*$','i');

You can also deploy this in an anonymous block, like the following:

SQL> DECLARE
 2 lv_counter NUMBER := 1;
 3 lv_source VARCHAR2(12) := 'A1';
 4 lv_pattern_1 VARCHAR2(12) := '[[:alpha:]]';
 5 lv_return BOOLEAN := TRUE;
 6 BEGIN
 7 -- Compare using standard character class ranges.
 8 FOR i IN 1..LENGTH(lv_source) LOOP
 9 IF NOT REGEXP_LIKE(

18-AppE.indd 1002 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix E: Regular Expression Primer 1003

 10 SUBSTR(lv_source,lv_counter,i),lv_pattern_1) THEN
 11 lv_return := FALSE;
 12 END IF;
 13 -- Increment counter value.
 14 lv_counter := lv_counter + 1;
 15 END LOOP;
 16
 17 -- Print message when all characters are true.
 18 IF NOT lv_return THEN
 19 dbms_output.put_line(
 20 'Not a character-only string ['||lv_source||'].');
 21 END IF;
 22 END;
 23 /

The IF block on lines 9 through 12 runs for any nonalphabetic character and sets the lv_
return variable to false. The A1 string enters that IF block for the second character, and thereby
prints the message set on lines 19 and 20:

Not a character-only string [A1].

The following change on line 4 from an alphabetic character class to an alphanumeric
character class prevents the program from entering the IF block on lines 9 through 12:

 4 lv_pattern_1 VARCHAR2(12) := '[[:alnum:]]';

Changing the message on lines 19 and 20, like

 19 dbms_output.put_line(
 20 'An alpha-numeric string ['||lv_source||'].');

prints the following:

An alpha-numeric string [A1].

This section has demonstrated the basics of using range and portable character classes. You
will revisit the concept later in the appendix in other program samples.

Collation Classes
The collation class is new to regular expressions. It was introduced by the POSIX regular expression
standard and is designed to allow you to collate in languages that require a collating element.
Collating elements may contain more than one character, whereas traditional regular expressions
limit collating elements to single characters.

You define a collation class by using [..] (square brackets with offsetting dots or periods).
An example drawn from the Oracle Database Globalization Support Guide 12c Release creates a
collation element inside a character class: [a-[.ch.]]. This allows you to find whether a
collating element is between a and ch. This is highly dependent on the NLS_SORT parameter and
language implementation. The details are best left to another book on text retrieval.

18-AppE.indd 1003 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1004 Oracle Database 12c PL/SQL Programming

Metacharacters
A metacharacter provides some mechanics for performing pattern matching. Some books and
documents group character classes, intervals, and scope-limiting parentheses as metacharacters.
This appendix takes a different tact. Character and collating classes are treated separately from
other metacharacters. Both were covered earlier in the appendix. Table E-2 lists metacharacters.

Metacharacter Name Type Description
() parentheses Delimiter Act as a scope-of-comparison constraint. A common

use is to choose between two alternatives with the
| (or bar), like a 't(o|oo)' regular expression
that finds a to or too in a string. You create
subexpressions when you enclose evaluation criteria
in parentheses. Failure to match parentheses in
subexpressions raises an ORA-12725 exception. This
occurs because Oracle implements subexpressions
only when they are inside parentheses. This differs
from most implementations of regular expressions,
and it also changes some syntax rules.

{m} exact Interval Matches exactly m occurrences of the preceding
subexpression or character.

{m,} at least Interval Matches at least m occurrences of the preceding
subexpression or character.

{m,n} between Interval Matches at least m occurrences, but not more than
n occurrences, of the preceding subexpression or
character.

| or bar Logical Acts as a logical OR operator and treats the
characters to the left and right as operands in a
matching operation. It returns a match when either
operand is found. Alternatively, it can manage a
logical OR relationship between sets of characters
when they are inside ordinary parentheses.
Parentheses act as scope delimiters, as noted in the
or bar example earlier in the table.

. dot Matching Matches any one character.
^ caret Matching Matches the beginning of a line in generalized

regular expressions but represents the beginning of
a multiple-line document unless you specify the m
override flag for the match_type_flag parameter.
(Refer to Table E-4 later in the appendix for more
information about override flags.)

TABLE E-2. POSIX Metacharacters

18-AppE.indd 1004 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix E: Regular Expression Primer 1005

As you’ve seen in this section, metacharacters have many uses. Unfortunately, not all of them
can be shown in this primer. You will find broader examples combining these metacharacters into
meaningful regular expressions in the “Regular Expression Implementation” later in this appendix.

Metacharacter Name Type Description
$ dollar sign Matching Matches the end of a line in generalized regular

expressions but represents the end of a multiple-line
document unless you specify the m override flag for
the match_type_flag parameter. (Refer to Table
E-4 for more information about override flags.)

^ caret Negation Acts as a negation operator only when you use it
inside a character class. Then, it is technically a
character-class metacharacter. The following regular
expression disallows any uppercase characters
between K and M:
'[^K-M]'

- dash Range Acts as a range operator, but only when it is inside
a character class. This limited context makes the
dash a character-class metacharacter. See the earlier
“Character Classes” section for more information on
this metacharacter.

? question
mark

Repetition Makes the preceding character optional in a
matching solution. In other words, there may or
may not be the preceding character in a string. The
following regular expression checks for an American
or British spelling using this metacharacter:
'colou?r'

* asterisk or
star

Repetition Matches any instance of zero to many characters.
Functions like a combination of . and ? for any
character because it matches any character or no
character.

+ plus Repetition Matches at least once or many times the preceding
character. Returning to the earlier regular expression
example of using parentheses to choose between
two alternatives, 't(o|oo)', which finds to or
too in a string, you can rewrite it as the regular
expression 't(o|o+)', which works for to, too, or
tooooo.

TABLE E-2. POSIX Metacharacters

18-AppE.indd 1005 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1006 Oracle Database 12c PL/SQL Programming

Metasequences
Metasequences are characters combined with backslashes, like those in Table E-3. The backslash
strips the special nature of other metacharacters, like parentheses or a . (dot). They also add
metacharacteristics to ordinary characters like the < (less than symbol) or > (greater than symbol)
in some programming languages.

NOTE
Oracle Database 11g and 12c don’t support the \< (word beginning)
and \> (word ending) metasequences. This means you may need to
leverage the LTRIM and RTRIM functions.

Metasequence Name Type Description
\n backreference POSIX Matches the nth preceding subexpression. You raise

an ORA-12727 when the backreference exceeds
the number of subexpressions. Oracle Database
12c requires you to enclose all subexpressions in
parentheses.

\d digit Perl Equal to the portable character class
[[:digit:]], matches any digit.

\D nondigit Perl Equal to the portable character class
[^[:digit:]], matches any nondigit.

\w word character Perl Equal to the portable character class
[[:alnum:]], matches any word character.

\W nonword
character

Perl Equal to the portable character class
[^[:alnum:]], matches any nonword character.

\s whitespace
character

Perl Equal to the portable character class
[[:space:]], matches any whitespace character.

\S nonwhitespace
character

Perl Equal to the portable character class
[^[:space:]], matches any nonwhitespace
character.

\A beginning of
string

Perl Matches the beginning of a new string. It does not
find the beginning of new lines when you enable
multiple-line searches with the match_type_
flag (covered in the “REGEXP_COUNT Function”
section later in the appendix).

\Z end of string Perl Matches the end of a new string. Like the \A
metasequence, it does not find the end of lines
when you enable multiple-line searches.

\z end of string Perl Matches the end of a new string regardless of how
you’ve set the match_type_flag value.

TABLE E-3. Oracle Database 12c Supported POSIX and Perl Metasequences

18-AppE.indd 1006 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix E: Regular Expression Primer 1007

Oracle Database 11g and 12c don’t support some popular regular expression metasequences.
While Oracle has made no formal statement of how it plans to improve regular expressions, you
can be certain that it will improve them.

Literals
Regular expression literal values are simply string literals, as discussed in Chapter 4. They may
consist of one to many characters. Regular expressions can be explicit in providing the full text of
a literal string, or they can use pattern matching sequences.

Regular Expression Implementation
PL/SQL and SQL began supporting these text search and comparison operations in Oracle
Database 10g. Oracle Database 12c supports IEEE Portable Operating System Interface (POSIX)
standard draft 1003.2/D11.2, and Unicode Regular Expression Guidelines of the Unicode
Consortium. Oracle Database 11g extended matching capabilities for multilingual data beyond
the POSIX standard. The Oracle Database 11g release also added support for the common PERL
regular expression extensions that are not covered in and don’t conflict with the POSIX standard.

Oracle Database 11g introduced a restricting subordinate expression to the REGEXP_INSTR
(regular expression in-string) and REGEXP_SUBSTR (regular expression substring) functions, which
were introduced in Oracle Database 10g. Oracle Database 11g also added the REGEXP_COUNT
(regular expression count) function.

Oracle Database 11g and 12c support regular expressions against variable-length strings, like
the CHAR, CLOB, NCHAR, NCLOB, NVARCHAR2, and VARCHAR2 character data types. They do not
support the LONG data type, which Oracle advises you should migrate to CLOB data types. After
all, the LONG data type is provided only as a convenience for backward compatibility.

There are five regular expression functions in Oracle Database 12c: REGEXP_COUNT,
REGEXP_INSTR, REGEXP_LIKE, REGEXP_REPLACE, and REGEXP_SUBSTR. The following
subsections define them. Rather than summarize formal parameter definitions when they occur
more than once, they’re repeated in each function description. The exception is the match_
type_flag value, which is covered once in the “REGEXP_COUNT Function” subsection.
Hopefully, this choice makes the appendix an easier spot reference for you.

REGEXP_COUNT Function
The REGEXP_COUNT function is new as of Oracle Database 11g. It lets you count the number of
times a specific pattern is found in a string. It has the prototype

REGEXP_COUNT(source_string, pattern [, start_position [, match_type_flag]])

The source_string can be any character expression, provided the data type is a CHAR,
CLOB, NCHAR, NCLOB, NVARCHAR2, or VARCHAR2. You may recall from Chapter 8 that an
expression can be a string literal or a function return value that meets the data type requirement.
The character expression can also be a column value or a bind variable. For example, you could
use :new.column_name as a source_string value in a database trigger. See Chapter 12 for
more information on database triggers.

The pattern value can be any valid regular expression, but the length must be less than or
equal to 512 characters. POSIX regular expressions are supported in Oracle Database 11g and
12c. You must prepend any apostrophe with a single quote because you pass the pattern value

18-AppE.indd 1007 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1008 Oracle Database 12c PL/SQL Programming

as an actual parameter into a function call. Alternatively, you can reset the quote identifier in your
session. The “Back-Quoting in Oracle” sidebar of Appendix A shows you how to substitute
another backquoting identifier for the default apostrophe.

The start_position value is an integer expression. The default value is 1. It is not
uncommon to find a starting point inside the string by calling the REGEXP_INSTR function as an
expression for this actual parameter.

The match_type_flag value is a text literal expression, typically a string literal. The string
may contain either an i or a c, and one or more of the following: n, m, or x. Collectively, they
override the default matching behavior. The default matching behavior performs as follows:

 ■ It uses the NLS_SORT parameter and is generally case-sensitive matching. It is always
case-sensitive matching (by default) when the NLS_SORT parameter is a Western
European character set.

 ■ It restricts the . (dot or period) so that it doesn’t match a newline return.

 ■ It treats the stings as a single line, which means the caret (^) and dollar sign ($) refer to
the beginning and ending of the string, respectively.

 ■ It matches whitespace characters against whitespace characters.

Table E-4 qualifies the override flags for the match_type_flag parameter. This table applies to
all five of the regular expression functions

You might wonder why it was so important to add the REGEXP_COUNT function in Oracle
Database 11g. The answer is quite straightforward. If you want to handle the occurrences of
results individually rather than collectively, counting them lets you create a dynamic range FOR
loop. Conversely, it eliminates the need for you to loop through a string counting the occurrences
of a pattern match. The function typically solves the latter more frequently than the former.

Match Type Flag Description
i Sets the search to case-insensitive matching, overriding the NLS_SORT

parameter where necessary.
c Sets the search to case-sensitive matching, overriding the NLS_SORT

parameter where necessary.
n Enables the . (dot or period) to truly match any character, including a

newline character.
m Enables the search to recognize multiple lines inside a string. This ensures

that the caret (^) and dollar sign ($) work as they normally do in scripting
languages.

X Sets the search to ignore whitespace characters.

TABLE E-4. Possible Match Type Flag Values

18-AppE.indd 1008 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix E: Regular Expression Primer 1009

The examples for the REGEXP_COUNT and other regular expression functions are small and
some rely on the paragraph found in the “Sample Search String” sidebar. Three examples are
provided for REGEXP_COUNT; respectively, they count the number of title-case (where only the
first letter is capitalized), lowercase, and case-insensitive “the” words in the sample string.

Title Case Count
The following query counts the number of the title-case “The” words followed by a whitespace
character. The white space avoids counting any other words, like Theory, They, or There, found in
the sample story.

SQL> SELECT REGEXP_COUNT(story_thread, 'The ') AS "Title Case"
 2 FROM sample_regexp;

It returns an integer value of 3. There is also the possibility that with a different string, you
could return an incorrect count if there was a word ending in a title case “The” followed by a
space. Logic tells you that it is unlikely. You see how to address that possibility in the case-
insensitive search example later in this section.

Lowercase Count
The next query counts the number of lowercase “the” words preceded and followed by a white
space. As discussed, the white space avoids counting any words that begin with the pattern,
like theory, they, or there. The white space before “the” rules out words that end in the
pattern, like routhe (which means sorrow). Ironically, sorrow is what you might feel with regular
expressions when you overlook a pattern matching possibility.

SQL> SELECT REGEXP_COUNT(story_thread, 'the ', 1, 'c') AS "Lowercase"
 2 FROM sample_regexp;

Sample Search String
The following is the sample search string for the example programs:

“The prologue, spoken by Galadriel, shows the Dark Lord Sauron forging the One Ring,
which he can use to conquer the lands of Middle-earth through his enslavement of the
bearers of the Rings of Power. The Rings of Power are powerful magical rings given to
individuals from the races of Elves, Dwarves, and Men. A Last Alliance of Elves and Men is
formed to counter Sauron and his forces at the foot of Mount Doom, but Sauron himself
appears to kill Elendil, the king of the Mannish kingdom of Gondor. Just afterward, Isildur
grabs his father’s broken sword Narsil and slashes at Sauron’s hand. The stroke cuts off Sauron’s
fingers, separating him from the Ring and vanquishing his army. However, because
Sauron’s life is bound in the Ring, he is not completely defeated until the Ring itself is
destroyed. Isildur takes the Ring and succumbs to its temptation, refusing to destroy it, but
he is later ambushed and killed by orcs and the Ring is lost in the river into which Isildur fell.”

You can download the regexp_in_clob.sql.script from the McGraw-Hill Professional
website to build the table and seed this string.

18-AppE.indd 1009 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1010 Oracle Database 12c PL/SQL Programming

It prints

Lowercase

 15

This function call uses the optional start_position and match_type_flag values to
perform a case-sensitive search. The values provided as actual parameters are actually the default
values.

You can reference these formal parameters earlier in this section. Table E-4 qualifies the valid
list of values for these parameters. The case-sensitive search also requires that you enter the regular
expression pattern in lowercase characters to find lowercase “the” words. This query returns an
integer value of 15 from the sidebar string.

Case-Insensitive Count
The next query counts the number of the lowercase “the” words that start a line or are preceded
or followed by a white space. As discussed in the prior sections, the trailing white space avoids
counting any words that begin with the pattern but aren’t the correct word, like Theory, They, or
There. The leading white space prevents counting words that end in the pattern, like routhe
(which means sorrow). The combination of leading and trailing characters surrounding “the”
from inside the word “father” precludes counting it as a string.

Unfortunately, the leading white space also eliminates the first “The” word because it is
preceded by a double quote. This is where patterns, subexpressions, and metacharacters solve a
common searching problem. The next query looks for a case-insensitive “the” word that may be
at the beginning of a line, immediately preceded by a double quote, or preceded by a white
space. At the same time, the pattern will look for a “the” word that is followed by a dash, colon,
comma, semicolon, or white space.

There are two approaches to solving this problem. One lets you accept the default matching
behavior, and the other requires you to override the default matching behavior.

This one uses the default matching properties:

SQL> SELECT REGEXP_COUNT(
 2 story_thread
 3 ,'((^| +)|(["'']))(T|t)he(([-:,\.;])|(+|$))'
 4) AS "Case-insensitive"
 5 FROM sample_regexp;

It accomplishes case-insensitive searches provided there are no capitals other than T in the
“the” words. The pattern uses parentheses to create a subexpression. The subexpression checks
for an uppercase T or lowercase t. This type of subexpression is sometimes labeled as an
alternation, a regular expression term that means you choose between two alternatives.

The foregoing expression also uses two character classes. One qualifies a double or single
quote (please note that it is backquoted by an apostrophe because this is Oracle). The other
qualifies a dash, colon, comma, (backquoted) period, or semicolon. Both character classes are
options inside subexpressions. The ((^| +)|(["''])) subexpression says that either one or
the other nested subexpression is true. The first nested subexpression condition is met when the
first character is the beginning of a line or one or more white spaces. The second nested
subexpression condition is met when the preceding string is a single or double quote.

18-AppE.indd 1010 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix E: Regular Expression Primer 1011

The next (([-:,\.;])|(+|$)) subexpression examines the trailing character. The first
nested subexpression condition is met when the trailing character of the “the” word is a dash,
colon, period, or semicolon. Alternatively, the other nested subexpression condition is met when
the trailing characters are one or more white spaces or the end-of-line marker.

A simpler approach leverages the match_type_flag available as part of the function. As
discussed in Table E-4, the “i” string designates case-insensitive searching. It has the following
implementation:

SQL> SELECT REGEXP_COUNT(
 2 story_thread
 3 ,'((^| +)|(["'']))the(([-:,\.;])|(+|$))', 1, 'i'
 4) AS "Case-insensitive"
 5 FROM sample_regexp;

Both of the preceding patterns yield a count of 18 words.
This section has demonstrated several approaches that show you how to use the REGEXP_

COUNT function. The caveat is always the same whether it is PL/SQL, SQL, or regular expression
programming: know what you want, rule out what you don’t, and look for the simplest way to
find it.

REGEXP_INSTR Function
The REGEXP_INSTR function was enhanced in Oracle Database 11g to enable the use of a
restricting subordinate expression, and it retains the same capabilities in Oracle Database 12c.
The REGEXP_INSTR function lets you find a position index value inside a string. You use it to
find a starting point inside a string, and it is known as the regular expression in-string function.

The prototype for the function is

REGEXP_INSTR(source_string, pattern [, start_position [, occurrence
 [, return_option [, match_type_flag [, subexpression]]]]])

The new subexpression parameter lets you do priority searching on subexpressions. As
qualified in the “Regular Expression Introduction” section, a subexpression matches the value on
either the left or right of the | metacharacter. The | metacharacter acts like a logical OR operator.
For example, you can use a pattern of col(o|ou)r when you want all those matching either
color (American English) or colour (British English). The subexpression is the (o|ou). If you read
the introduction, you should know that you really don’t require a subexpression in this case. You
can accomplish the same thing with colou?r because the question mark (?) treats the character
that precedes it as optional.

The source_string can be any character expression, provided the data type is a CHAR,
CLOB, NCHAR, NCLOB, NVARCHAR2, or VARCHAR2. You may recall from Chapter 8 that an
expression can be a string literal or a function return value that meets the data type requirement.
The character expression can also be a column value or a bind variable. For example, you could
use :new.column_name as a source_string value in a database trigger. See Chapter 12 for
more information on database triggers.

The pattern value can be any valid regular expression, but the length must be less than or
equal to 512 characters. POSIX regular expressions are supported in Oracle Database 11g forward.
You must prepend any apostrophe with a single quote because you pass the pattern value as an
actual parameter into a function call. Alternatively, you can reset the quote identifier in your session.

18-AppE.indd 1011 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1012 Oracle Database 12c PL/SQL Programming

The “Back-Quoting in Oracle” sidebar of Appendix A shows you how to substitute another
backquoting identifier for the default apostrophe.

The start_position value is an integer expression. The default value is 1. It is not uncommon
to find a starting point inside the string by calling the REGEXP_INSTR function as an expression
for this actual parameter.

The occurrence value is an integer expression. The default value is 1. If you want another
occurrence, you must provide a value. Override values typically have business rules that are too
complex to predict here.

The return_option value is an integer expression. The default value is 0, which represents
the position or index of the beginning of the first substring matched by the pattern. You can override
this value by using a 1, which instructs the function to return the character after the substring that
matches the pattern.

The match_type_flag value is a text literal expression, typically a string literal. The string
may contain either an i or a c, and one or more of the following: n, m, or x. Collectively, they
override the default matching behavior. Table E-4 in the previous section “REGEXP_COUNT Function”
contains the default and overriding matching behaviors.

The subexpression value is 0 by default. This means that it returns only those values that
match the complete set of subexpressions. You can override the subexpression with an integer
value from 1 to 9. The function then returns all matches that meet that subexpression, whether or
not they meet the other subexpressions.

Single-Dimensional Character Array
A string is actually a single-dimensional character array. Oracle defines these character arrays
by using the database character set. It also lets you override the default character set and
build character arrays to your own specifications. This means that you could have an array
of elements where each element is 1, 2, or 3 bytes, depending on how you configured it.

Whether stored in 1, 2, or 3 bytes, a string is really stored like an array. If you insert the
word Sample into a variable or column using a fixed- or variable-length character data type,
you actually store the following:

Index Value Character Value
1 S

2 A

3 M

4 P

5 L

6 E

This index uses a 1-based numbering system to index the characters of your string. The
index lets you find and parse strings.

18-AppE.indd 1012 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix E: Regular Expression Primer 1013

The following example finds the starting and ending positions for the first occurrence of the
proper noun Sauron in the sample story:

SQL> SELECT REGEXP_INSTR(story_thread,'sauron',1,1,0,'i') AS "Begin"
 2 , REGEXP_INSTR(story_thread,'sauron',1,1,1,'i') - 1 AS "End"
 3 FROM sample_regexp;

This returns the following starting and ending values:

 Begin End
---------- ----------
 56 61

This has demonstrated how to find starting and ending points in strings. Together these two
values let you parse a substring from a string. The function becomes more useful as the complexity
of your pattern search grows.

REGEXP_LIKE Function
The REGEXP_LIKE function lets you find a regular expression match inside a string. You use it in
lieu of the old LIKE comparison operator.

The prototype for the function is

REGEXP_LIKE(source_string, pattern [, match_type_flag])

The source_string can be any character expression, provided the data type is a CHAR,
CLOB, NCHAR, NCLOB, NVARCHAR2, or VARCHAR2. You may recall from Chapter 8 that an
expression can be a string literal or a function return value that meets the data type requirement.
The character expression can also be a column value or a bind variable. For example, you could
use :new.column_name as a source_string value in a database trigger. See Chapter 12 for
more information on database triggers.

The pattern value can be any valid regular expression, but the length must be less than or
equal to 512 characters. POSIX regular expressions are supported in Oracle Database 11g
forward. You must prepend any apostrophe with a single quote because you pass the pattern
value as an actual parameter into a function call. Alternatively, you can reset the quote identifier
in your session. The “Back-Quoting in Oracle” sidebar of Appendix A shows you how to substitute
another backquoting identifier for the default apostrophe.

The match_type_flag value is a text literal expression, typically a string literal. The string
may contain either an i or a c, and one or more of the following: n, m, or x. Collectively, they
override the default matching behavior. Table E-4 in the earlier section “REGEXP_COUNT
Function” contains the default and overriding matching behaviors.

In addition to the several examples illustrating range and portable character-class handling in
the “Character Classes” section earlier in this appendix, the following example searches the sample
string for a line beginning “a last alliance of elves and men”:

SQL> SELECT sample_regexp_id
 2 FROM sample_regexp
 3 WHERE REGEXP_LIKE(
 4 story_thread
 5 ,'?a last alliance of elves and men?','i');

18-AppE.indd 1013 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1014 Oracle Database 12c PL/SQL Programming

The effectiveness of this search is that you can apply it against a CHAR, CLOB, NCHAR, NCLOB,
NVARCHAR2, or VARCHAR2 data type. The search is case insensitive and actually returns the row’s
primary key value. You should note that it uses ? (question mark) characters to make the white
spaces before and after the string optional.

REGEXP_REPLACE Function
The REGEXP_REPLACE function lets you find and replace a substring inside of a string. The
prototype for the function is

REGEXP_REPLACE(source_string, pattern , replace_string [, start_position
 [, occurrence [, match_type_flag]]])

The source_string can be any character expression, provided the data type is a CHAR,
CLOB, NCHAR, NCLOB, NVARCHAR2, or VARCHAR2. You may recall from Chapter 8 that an
expression can be a string literal or a function return value that meets the data type requirement.
The character expression can also be a column value or a bind variable. For example, you could
use :new.column_name as a source_string value in a database trigger. See Chapter 12 for
more information on database triggers.

The pattern value can be any valid regular expression, but the length must be less than or
equal to 512 characters. POSIX regular expressions are supported in Oracle Database 11g and
12c. You must prepend any apostrophe with a single quote because you pass the pattern value
as an actual parameter into a function call. Alternatively, you can reset the quote identifier in your
session. The “Back-Quoting in Oracle” sidebar of Appendix A shows you how to substitute
another backquoting identifier for the default apostrophe.

The replace_string can be any character expression, provided the data type is a CHAR,
CLOB, NCHAR, NCLOB, NVARCHAR2, or VARCHAR2. If the replace_string is a CLOB or
NCLOB data type, then Oracle Database 12c truncates the string to 32KB.

The start_position value is an integer expression. The default value is 1. It is not
uncommon to find a starting point inside the string by calling the REGEXP_INSTR function as
an expression for this actual parameter.

The occurrence value is an integer expression. The default value is 1. If you want another
occurrence, you must provide a value. Override values typically have business rules that are too
complex to predict here.

The match_type_flag value is a text literal expression, typically a string literal. The string
may contain either an i or a c, and one or more of the following: n, m, or x. Collectively, they
override the default matching behavior. Table E-4 in the earlier section “REGEXP_COUNT
Function” contains the default and overriding matching behaviors.

The following example replaces all occurrences of Sauron with Sauroman, which may
disconcert some dedicated Tolkien fans. No sacrilege is intended to a great piece of fiction.

SQL> DECLARE
 2 lv_container VARCHAR2(4000);
 3 lv_begin NUMBER := 1;
 4 lv_end NUMBER;
 5 -- Define a cursor to recover correct story thread.
 6 CURSOR c IS
 7 SELECT story_thread
 8 FROM sample_regexp

18-AppE.indd 1014 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix E: Regular Expression Primer 1015

 9 WHERE REGEXP_LIKE(
 10 story_thread,'a last alliance of elves and men','i');
 11 BEGIN
 12 OPEN c;
 13 LOOP
 14 FETCH c INTO lv_container;
 15 EXIT WHEN c%NOTFOUND;
 16 -- Count the number of instances of Sauron in the string.
 17 lv_end := REGEXP_COUNT(lv_container,'Sauron',lv_begin,'i');
 18
 19 -- Replace all instances one at a time.
 20 FOR i IN lv_begin..lv_end LOOP
 21 lv_container := REGEXP_REPLACE(
 22 lv_container,'Sauron','Sauroman',lv_begin,1,'i');
 23 END LOOP;
 24 dbms_output.put_line(lv_container);
 25 END LOOP;
 26 END;
 27 /

It prints the modified string:

"The prologue, spoken by Galadriel, shows the Dark Lord Sauroman forging the One
Ring, which he can use to conquer the lands of Middle-earth through his
enslavement of the bearers of the Rings of Power. The Rings of Power are
powerful magical rings given to individuals from the races of Elves, Dwarves,
and Men. A Last Alliance of Elves and Men is formed to counter Sauroman and his
forces at the foot of Mount Doom, but Sauroman himself appears to kill Elendil,
the king of the Mannish kingdom of Gondor. Just afterward, Isildur grabs his
father's broken sword Narsil and slashes at Sauroman's hand. The stroke cuts
off Sauroman's fingers, separating him from the Ring and vanquishing his army.
However, because Sauroman's life is bound in the Ring, he is not completely
defeated until the Ring itself is destroyed. Isildur takes the Ring and succumbs
to its temptation, refusing to destroy it, but he is later ambushed and killed
by orcs and the Ring is lost in the river into which Isildur fell."

A call to the REGEXP_LIKE function in the cursor looks for the correct row in the table. The
call to the REGEXP_COUNT function on line 17 counts the number of times Sauron appears in the
string. It does that by starting at the beginning of the lv_container string and looking through
it for all instances of the literal word—Sauron. While not done in this case, the combination of
subexpressions and nested subexpressions would let you check for alternatives.

The call to REGEXP_REPLACE on lines 21 and 22 replaces all occurrences of Sauron with
Sauroman by reading the entire string each time through the loop and replacing the first instance
of Sauron. After replacing the first occurrence, it returns the modified string to a new copy of the
variable. The loop then performs the same operation until all instances are replaced.

REGEXP_SUBSTR Function
The REGEXP_SUBSTR function was enhanced in Oracle Database 11g to enable the use of a
restricting subordinate expression, and it retains the same capabilities in Oracle Database 12c.
The REGEXP_SUBSTR function lets you find a substring inside a string.

18-AppE.indd 1015 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1016 Oracle Database 12c PL/SQL Programming

The prototype for the function is

REGEXP_SUBSTR(source_string, pattern [, start_position [, occurrence
 [, match_type_flag [, subexpression]]]]])

The new subexpression lets you do priority searching on subexpressions. A quick refresher of
what this means is found in the “REGEXP_INSTR Function” section.

The source_string can be any character expression, provided the data type is a CHAR,
CLOB, NCHAR, NCLOB, NVARCHAR2, or VARCHAR2. You may recall from Chapter 8 that an
expression can be a string literal or a function return value that meets the data type requirement.
The character expression can also be a column value or a bind variable. For example, you could
use :new.column_name as a source_string value in a database trigger. See Chapter 12 for
more information on database triggers.

The pattern value can be any valid regular expression, but the length must be less than or
equal to 512 characters. POSIX regular expressions are supported in Oracle Database 11g and
12c. You must prepend any apostrophe with a single quote because you pass the pattern value
as an actual parameter into a function call. Alternatively, you can reset the quote identifier in your
session. The “Back-Quoting in Oracle” sidebar of Appendix A shows you how to substitute another
backquoting identifier for the default apostrophe.

The start_position value is an integer expression. The default value is 1. It is not uncommon
to find a starting point inside the string by calling the REGEXP_INSTR function as an expression
for this actual parameter.

The occurrence value is an integer expression. The default value is 1. If you want another
occurrence, you must provide a value. Override values typically have business rules that are too
complex to predict here.

The return_option value is an integer expression. The default value is 0, which represents
the position or index of the beginning of the first substring matched by the pattern. You can override
this value by using a 1, which instructs the function to return the character after the substring that
matches the pattern.

The match_type_flag value is a text literal expression, typically a string literal. The string
may contain either an i or a c, and one or more of the following: n, m, or x. Collectively, they
override the default matching behavior. Table E-4 in the earlier section “REGEXP_COUNT Function”
contains the default and overriding matching behaviors.

The subexpression value is 0 by default. This means that it returns only those values that
match the complete set of subexpressions. You can override the subexpression with an integer
value from 1 to 9. The function then returns all matches that meet that subexpression, whether or
not they meet the other subexpressions.

The REGEXP_SUBSTR function lets you find a substring inside a string. The following sample
finds the first 50 complete words and punctuation beginning at position 53 in the data column:

SQL> SELECT LTRIM(REGEXP_SUBSTR(story_thread
 2 ,'((^| +)|(["'']))([[:alpha:]]+(([-:,\.'';])|(+|$))+\.?){1,7}'
 3 ,44,1,'i')) AS substring
 4 FROM sample_regexp
 5 WHERE REGEXP_LIKE(story_thread,'a last alliance of elves and men','i');

18-AppE.indd 1016 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix E: Regular Expression Primer 1017

It returns the following substring:

SUBSTRING

Dark Lord Sauron forging the One Ring

The starting position is in the middle of the word prior to Dark. The interval captures the first
seven whole words that start at or after position 44 in the story_thread column value. If you
set the start point as 1 and the maximum interval value to a number greater than the number of
words in the string, this pattern returns an entire string.

Like the prior patterns, this pattern uses a compound subexpression to check for (a) either a
beginning line metacharacter or a white space, or (b) a quotation character at the beginning of the
string. It then checks for an optional alphabetical string by using a POSIX portable character class.
Finally, it uses another compound subexpression to check for (a) punctuation characters or (b)
either a white space or end-of-line metacharacter.

Two search principals are demonstrated in the regular expression. First, the pattern uses a
backquoted . (period) to find the beginning of another word before using the between interval
metacharacter to repeat the matching behavior (check Table E-2 for more information on the between
metacharacter). Second, the apostrophes are backquoted by other single quotes because the single
quote is an identifier in an Oracle Database 12c database.

This section has presented the last regular expression function, REGEXP_SUBSTR, and has
demonstrated how to capture a substring from a string using regular expressions. These features are
nice for large character strings and are critical for quick pattern analysis of CLOB data types.

Supporting Scripts
This section describes programs placed on the McGraw-Hill Professional website to support this
appendix:

 ■ The character_class.sql program shows how alphabetic and alphanumeric values
are managed in SQL and PL/SQL. It shows handling within SELECT statements and
anonymous PL/SQL blocks. It uses the REGEXP_LIKE and SUBSTR functions.

 ■ The regexp_in_clob.sql program shows all the examples that work with the passage
describing The Lord of the Rings. It also creates and seeds the table used in the examples.

Summary
This appendix has explained regular expressions and shown you how to use regular expressions
to search text. You also have learned why centralizing matching logic in the Oracle Database 12c
database helps you avoid middle-tier string processing.

18-AppE.indd 1017 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

18-AppE.indd 1018 11/30/13 4:04 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

APPENDIX
F

Wrapping PL/SQL
Code Primer

19-AppF.indd 1019 11/30/13 4:06 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1020 Oracle Database 12c PL/SQL Programming

Oracle Database 12c provides the capability to wrap your PL/SQL stored programs.
Wrapping your code encapsulates the business logic of your applications from prying
eyes by hiding (or obfuscating) the source code. It converts the clear text in the database

to an unreadable stream of data. You can obfuscate the clear text by using the command-line wrap
utility or by calling the dbms_ddl package’s create_wrapped procedure or WRAP function.

You should wrap only the implementation details, which means you should wrap only functions,
procedures, package bodies, and type bodies. This leaves the package specification and type
specification as open text, enabling other developers to use your code. They won’t know how your
code performs the task, but they will know which actual parameters they can submit and what to
expect back from functions or type methods. You should ensure that you comment the specification
with any helpful information that will enable other developers to take advantage of wrapped code
units, especially procedures because they don’t define a direct return type like functions.

NOTE
Oracle Database 12c uses the internal DIANA (Descriptive
Intermediate Attributed Notation for ADA) to obfuscate code. Using
DIANA’s structures to reverse-engineer and unwrap obfuscated code is
difficult but not impossible.

The topics in this appendix are addressed in the following order:

 ■ Limitations of wrapping PL/SQL

 ■ Using the wrap command-line utility

 ■ Using the dbms_ddl package to wrap PL/SQL

 ■ WRAP function

 ■ CREATE_WRAPPED procedure

Limitations of Wrapping PL/SQL
Generically wrapping PL/SQL code in the database has the following limitations:

 ■ You cannot wrap the source code of a database trigger. However, you can reduce the
logic to a single call to a wrapped stored function or procedure.

 ■ Wrapping does not detect syntax or semantic errors, such as missing tables or views; in
this respect, it differs from normal compilation. Wrapped code units manifest runtime
errors for missing tables or views, like Native Dynamic SQL (NDS) statements.

 ■ Wrapped code is only forward compatible for import into the database. This means that
you can import wrapped modules built by an Oracle Database 10g or 11g database into
a 12c database but not vice versa.

While it is difficult to decipher passwords in wrapped code, it isn’t impossible. Oracle
recommends that you don’t embed passwords in wrapped program units. The exception to this rule
occurs when you’re using encryption and need to validate a password. An encrypted program can
read an invisible and redacted column from a table or another no parameter procedure. The query or
procedure may also use Virtual Private Database (VPD) striping to select the correct encrypted key.

19-AppF.indd 1020 11/30/13 4:06 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix F: Wrapping PL/SQL Code Primer 1021

There are specific errors generated by the method that you choose to wrap your code. The
limitations are described in the next two subsections.

Limitations of the PL/SQL wrap Utility
The wrap utility is parsed by the PL/SQL compiler, not by the SQL*Plus compiler. This means
that you cannot include SQL*Plus DEFINE notation inside wrapped program units. Also, most
comments are removed when wrapped.

Limitations of the DBMS_DDL.WRAP Function
When you invoke DBMS_SQL.PARSE with a data type that is a VARCHAR2A or VARCHAR2S and
the text exceeds 32,767 bytes, you must set the LFFLG parameter to false. If you fail to do so,
DBMS_SQL.PARSE adds newline characters to the wrapped unit and corrupts it.

Using the wrap Command-Line Utility
The wrap command-line utility works with files. It wraps everything in the file, which is a critical
point to understand. When you use the wrap utility, package specifications and type definitions
should be in different physical files from their respective package bodies and type bodies. As
discussed earlier, you should wrap only the implementation details, not the published specifications.

The prototype for the wrap utility is

wrap iname=input_file[{.sql |.ext}] [oname=output_file[{.plb |.ext}]

You can qualify the input and output files as relative or canonical filenames. Canonical filenames
start at the root mount point in Linux or Unix and from a logical file system reference in Microsoft
Windows. The default file extension is .sql for input files and .plb for output files. You do not
need to provide either extension if you are prepared to accept the default values, but you must
provide overriding values when they differ.

The following example works when the wrap command runs from the same directory as the
input and output files:

wrap iname=input_file.sql oname=output_file.plb

After you wrap the files, you can then compile them into the database. The compilation process
will not raise exceptions if table or view dependencies are missing, because no syntax, semantic,
or dependency checking occurs during compilation of wrapped program units. They compile
because the SQL DDL commands to CREATE [OR REPLACE] function, procedures, package
specifications and bodies, and type definitions and bodies are scrambled into a form understood
by the PL/SQL compiler.

The CREATE [OR REPLACE] TRIGGER statement and anonymous block DECLARE,
BEGIN, and END keywords are not obfuscated. Comments inside the header declaration and
C-style multiple-line comments, delimited by /* and */, are also not obfuscated.

Using the DBMS_DDL Command-Line Utility
The dbms_ddl package contains an overloaded WRAP function and an overloaded CREATE_
WRAPPED procedure. You can use either to create a wrapped stored programming unit. The subsections
cover both.

19-AppF.indd 1021 11/30/13 4:06 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1022 Oracle Database 12c PL/SQL Programming

WRAP Function
The WRAP function is an overloaded function that accepts a DDL statement as a single variable-
length string of 32,767 or fewer bytes, a table of strings 256 bytes in length, or a table of strings
32,767 bytes in length. The dbms_sql package holds the definition of the data types for the
256- and 32,767-byte string collections.

The first prototype supports using a single input parameter:

DBMS_DDL.WRAP(ddl VARCHAR2) RETURN VARCHAR2
DBMS_DDL.WRAP(ddl DBMS_SQL.VARCHAR2S) RETURN VARCHAR2S
DBMS_DDL.WRAP(ddl DBMS_SQL.VARCHAR2A) RETURN VARCHAR2A

You can use this function to wrap a stored program unit as follows:

SQL> DECLARE
 2 source VARCHAR2(32767);
 3 result VARCHAR2(32767);
 4 BEGIN
 5 source := 'CREATE FUNCTION one RETURN NUMBER IS'||CHR(10)
 6 || 'BEGIN'||CHR(10)
 7 || ' RETURN 1;'||CHR(10)
 8 || 'END;';
 9 result := DBMS_DDL.WRAP(ddl => source);
 10 EXECUTE IMMEDIATE result;
 11 END;
 12 /

The program defines a DDL string, obfuscates it into the result variable, and then uses NDS
to create the obfuscated function in the database. You can see the function specification by using
the SQL*Plus DESCRIBE command:

SQL> DESCRIBE one
FUNCTION one RETURNS NUMBER

Any attempt to inspect its detailed operations will yield an obfuscated result. You can test this
by querying the stored function implementation in the text column of the user_source table,
like the following:

SQL> COLUMN text FORMAT A80 HEADING "Source Text"
SQL> SET PAGESIZE 49999
SQL> SELECT text FROM user_source WHERE name = 'ONE';

The following output is returned:

FUNCTION one wrapped
a000000
369
abcd
… et cetera …

19-AppF.indd 1022 11/30/13 4:06 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix F: Wrapping PL/SQL Code Primer 1023

The function can be rewritten to use a table of strings, as follows:

SQL> DECLARE
 2 stmt VARCHAR2(32767);
 3 source DBMS_SQL.VARCHAR2S;
 4 result DBMS_SQL.VARCHAR2S;
 5 BEGIN
 6 source(1) := 'CREATE FUNCTION two RETURN NUMBER IS ';
 7 source(2) := ' BEGIN RETURN 2;';
 8 source(3) := 'END;';
 9 result := DBMS_DDL.WRAP(ddl => source
 10 ,lb => 1
 11 ,ub => source.COUNT);
 12 FOR i IN 1..result.COUNT LOOP
 13 stmt := stmt || result(i);
 14 END LOOP;
 15 EXECUTE IMMEDIATE ;
 16 END;
 17 /

Line 2 uses a 32,767-byte maximum size VARCHAR2 data type, while lines 3 and 4 qualify
the 256-byte string collection from the dbms_sql package specification. If this wasn’t a small
function to wrap, you could overflow the stmt variable’s maximum size with 128 full lines of
program content in the source collection. Realistically, as a best practice, the stmt variable
should use a CLOB data type to avoid any overflow of a variable type.

You also have the ability to define a much larger string size for the source and result
variables—32,767 bytes. This simply requires changing the VARCHAR2S data type to a VARCHAR2A,
like

 3 source DBMS_SQL.VARCHAR2A;
 4 result DBMS_SQL.VARCHAR2A;

Lines 9 through 11 call the dbms_ddl.wrap function. Developers should take note that
the source variable must be defined as either the dbms_sql.varchar2s or dbms_sql
.varchar2a data type. As mentioned, the former holds strings of up to 256 bytes, while the latter
holds strings of up to 32,767 bytes. Any data type other than those defined in the dbms_sql
package raises a PLS-00306 exception because the actual parameter wouldn’t match the data
type of the formal parameter.

Line 12 through 14 loop through the result collection data type and convert it to a simple
string. This is required in Oracle Database 10g and 11g but not in 12c. Chapter 6 explains how
PL/SQL and SQL variables are implicitly interchangeable from local PL/SQL blocks to SQL statements
when the SQL statement is run from within the block where the PL/SQL variable is declared. The
ability to assign a collection to a local CLOB variable appears restricted to this singular use case
(only the return type from the dbms_ddl package’s WRAP function works). Line 15 executes
the wrapped statement.

A more effective way to write this sample program for Oracle Database 12c is

SQL> DECLARE
 2 stmt CLOB;
 3 source DBMS_SQL.VARCHAR2A;

19-AppF.indd 1023 11/30/13 4:06 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1024 Oracle Database 12c PL/SQL Programming

 4 result DBMS_SQL.VARCHAR2A;
 5 BEGIN
 6 source(1) := 'CREATE FUNCTION two RETURN NUMBER IS ';
 7 source(2) := ' BEGIN RETURN 2;';
 8 source(3) := 'END;';
 9 result := DBMS_DDL.WRAP(ddl => source
 10 ,lb => 1
 11 ,ub => source.COUNT);
 12 SELECT column_value
 13 INTO stmt
 14 FROM TABLE(result);
 15 EXECUTE IMMEDIATE stmt;
 16 END;
 17 /

Line 2 defines the stmt variable as a CLOB, and lines 3 and 4 define the source and result
variables as 32,767-byte PL/SQL collections. Lines 12 through 13 collect the result collection of a
PL/SQL collection data type directly into a SQL result set that is assigned to a CLOB data type. Lastly,
line 15 executes the contents of the CLOB and creates the two function as a wrapped program unit.

If you were to attempt the foregoing Oracle Database 12c syntax in Oracle Database 11g or
earlier, you’d see this type of exception because PL/SQL data types couldn’t be handled by SQL:

 FROM TABLE(result);
 *
ERROR at line 14:
ORA-06550: line 14, column 18:
PLS-00382: expression is of wrong type
ORA-06550: line 14, column 12:
PL/SQL: ORA-22905: cannot access rows from a non-nested table item
ORA-06550: line 12, column 3:
PL/SQL: SQL Statement ignored

The key errors are the ORA-22905 and PLS-00382. The PLS-00382 error occurs first and
means you can’t reference a PL/SQL collection as a call or actual parameter of the TABLE
function (see Appendix C for more information on this change in behavior). The ORA-22905
error is caused because the first error causes the function to return a null set from a collection.

You can see the function specification by using the SQL*Plus DESCRIBE command:

SQL> DESCRIBE two
FUNCTION two RETURNS NUMBER

You can also query the data dictionary to view the two function’s source, like this:

SQL> SELECT text
 2 FROM user_source
 3 WHERE name = 'TWO';

It returns

TEXT

FUNCTION two wrapped

19-AppF.indd 1024 11/30/13 4:06 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix F: Wrapping PL/SQL Code Primer 1025

a000000
369
abcd
… et cetera …

SQL Scope Access in Oracle Database 12c
Oracle Database 12c makes some changes in SQL scope access within PL/SQL blocks. You
can embed a locally defined PL/SQL collection inside a SQL statement, but you can’t embed
a call to a local function that returns a PL/SQL collection.

To examine how you leverage the changes in SQL scope access, you need to create a
PL/SQL associative array, which can be done in a PL/SQL package. The following creates a
bodiless package whose sole purpose is to define a PL/SQL associative array data type:

SQL> CREATE OR REPLACE PACKAGE type_defs IS
 2 TYPE plsql_table IS TABLE OF VARCHAR2(20)
 3 INDEX BY BINARY_INTEGER;
 4 END type_defs;
 5 /

Next, you define a schema-level function that returns a collection of the plsql_table
data type defined in the type_defs PL/SQL package. The definition of the return type
variable uses the package name, a dot (.), and a data type, like

SQL> CREATE OR REPLACE FUNCTION implicit_convert
 2 RETURN type_defs.plsql_table IS
 3 lv_index NUMBER := 1; -- Counter variable.
 4 lv_list TYPE_DEFS.PLSQL_TABLE; -- Collection variable.
 5 CURSOR c IS SELECT person FROM honeymooners;
 6 BEGIN
 7 FOR i IN c LOOP
 8 lv_list(lv_index) := i.person;
 9 lv_index := lv_index + 1;
 10 END LOOP;
 11 RETURN lv_list; -- Return locally scope PL/SQL collection.
 12 END;
 13 /

Line 4 declares a PL/SQL collection data type, and line 11 returns it from any call to the
implicit_convert function.

The following code block tests the changes in SQL scope access by declaring a local
lv_list variable of the PL/SQL associative array data type defined in the type_defs
package:

SQL> DECLARE
 2 lv_list TYPE_DEFS.PLSQL_TABLE; -- Local PL/SQL collection.
 3 BEGIN

(continued)

19-AppF.indd 1025 11/30/13 4:06 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1026 Oracle Database 12c PL/SQL Programming

This section has demonstrated how to use the dbms_ddl.wrap command. The next section
shows you how to use the create_wrapped procedure.

CREATE_WRAPPED Procedure
The create_wrapped function is an overloaded function that accepts a DDL statement as a single
variable-length string of 32,767 or fewer bytes, a table of strings 256 bytes in length, or a table of
strings 32,767 bytes in length. You supply a lower and upper bound for the table of strings when
the actual parameter is a table of strings. The lower bound is always 1, and the upper bound is the
maximum number of rows in the collection of strings.

The prototypes support using a single input parameter or a table of strings:

DBMS_DDL.CREATE_WRAPPED(ddl VARCHAR2) RETURN VARCHAR2
DBMS_DDL.CREATE_WRAPPED(ddl DBMS_SQL.VARCHAR2S) RETURN VARCHAR2S
DBMS_DDL.CREATE_WRAPPED(ddl DBMS_SQL.VARCHAR2A) RETURN VARCHAR2A

 4 lv_list := implicit_convert; -- Assign collection values.
 5 FOR i IN (SELECT column_value
 6 FROM TABLE(lv_list)) LOOP
 7 dbms_output.put_line(i.column_value);
 8 END LOOP;
 9 END;
 10 /

Line 2 declares a local PL/SQL collection, and line 4 populates the collection with
the results from the implicit_convert function. Lines 5 and 6 show how you can
use the local PL/SQL collection, an associative array, inside a SELECT statement by passing
the local associative array as a call parameter to the TABLE function.

You raise a different error message when you attempt to put a call to the schema-level
function inside the TABLE function, like

 5 FOR i IN (SELECT column_value
 6 FROM TABLE(implicit_convert) LOOP

It displays this type of error message:

 FROM TABLE(implicit_convert)) LOOP
 *
ERROR at line 6:
ORA-06550: line 6, column 28:
PLS-00382: expression is of wrong type
ORA-06550: line 6, column 22:
PL/SQL: ORA-22905: cannot access rows from a non-nested table item

SQL statements can use local variables with PL/SQL associative array data types, provided
the SQL statement runs within the scope of a PL/SQL block. Calls to PL/SQL functions only
work when the data type is a schema-level collection rather than a PL/SQL associative array.

19-AppF.indd 1026 11/30/13 4:06 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix F: Wrapping PL/SQL Code Primer 1027

You can use this anonymous block to test the wrapping procedure:

SQL> BEGIN
 2 dbms_ddl.create_wrapped(
 3 'CREATE OR REPLACE FUNCTION hello_world RETURN STRING AS '
 4 ||'BEGIN '
 5 ||' RETURN ''Hello World!''; '
 6 ||'END;');
 7 END;
 8 /

After creating the hello_world function, you can query it by using the following SQL*Plus
column formatting and query:

SQL> COLUMN message FORMAT A20 HEADING "Message"
SQL> SELECT hello_world AS message FROM dual;

Message

Hello World!

You can describe the function to inspect its signature and return type:

SQL> DESCRIBE hello_world
FUNCTION hello_world RETURNS VARCHAR2

Any attempt to inspect its detailed operations will yield an obfuscated result. You can test this
by querying the stored function implementation in the text column of the user_source table,
like the following:

SQL> COLUMN text FORMAT A80 HEADING "Source Text"
SQL> SET PAGESIZE 49999
SQL> SELECT text FROM user_source WHERE name = 'HELLO_WORLD';

The following output is returned:

FUNCTION hello_world wrapped
a000000
369
abcd
… et cetera …

The procedure can be rewritten to use a table of strings, as follows:

DECLARE
 source DBMS_SQL.VARCHAR2S;
 stmt VARCHAR2(4000);
BEGIN
 source(1) := 'CREATE FUNCTION hello_world2 RETURN VARCHAR2 IS ';
 source(2) := ' BEGIN RETURN 2;';
 source(3) := ' END;';
 DBMS_DDL.CREATE_WRAPPED(ddl => source, lb => 1, ub => source.COUNT);
END;
/

19-AppF.indd 1027 11/30/13 4:06 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1028 Oracle Database 12c PL/SQL Programming

You don’t have to use NDS to build the function when you call the create_wrapped
procedure, because the create_wrapped procedure builds the stored program for you, unlike
the wrap function, which only returns the wrapped string or table of strings.

Summary
This appendix has shown you how to hide the implementation details of your PL/SQL stored
programming units. You’ve seen how to use the command-line wrap utility, and the built-in
create_wrapped procedure and wrap function from the dbms_ddl package. You should
remember to hide only the implementation details, not the package specifications and object
type definitions.

19-AppF.indd 1028 11/30/13 4:06 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

APPENDIX
G

PL/SQL Hierarchical
Profiler Primer

20-AppG.indd 1029 12/17/13 3:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1030 Oracle Database 12c PL/SQL Programming

The PL/SQL hierarchical profiler, introduced in Oracle Database 11g, enables you to
capture the dynamic execution performance of your PL/SQL programs. It divides PL/SQL
execution times into two parts: SQL statement execution times and PL/SQL program unit

execution times.

A hierarchical profiler provides you with more insight than a nonhierarchical profiler. A
nonhierarchical profiler only reports how much time a module consumed. A hierarchical profile
tells you which program called what subroutine and how many times the subroutine was called.
The PL/SQL hierarchical profiler stores results in a set of hierarchical profiler tables. It divides the
data by subprogram units, including the relationship between calling and called subroutines, and
it further subdivides execution time by the SQL statement versus PL/SQL execution segments.

This appendix describes the PL/SQL hierarchical profiler and demonstrates how to configure
and use it. Coverage of the profiler is organized as follows:

 ■ Configuring the schema

 ■ Collecting profile data

 ■ Understanding profiler output

 ■ Using the plshprof command-line utility

The sections are organized sequentially, but you can jump directly to the information required
provided the schema is configured.

Configuring the Schema
The first step to configure the PL/SQL hierarchical profiler is to build the tables in the SYS schema.
You do this by connecting to the database as the privileged user.

In Oracle Database 12c, you no longer can directly connect as the sysdba privileged user
from the command line. You must first connect to sqlplus without logging in to an account, like

sqlplus /nolog

Once you’re inside the sqlplus environment, you can connect as sysdba with the following
command followed by a correct password:

Connect sys / as sysdba
Enter password:
Connected.

As the privileged user, you now build the supplemental data catalog tables required to support
the PL/SQL hierarchical profiler. The following command runs the dbmshptab.sql script:

SQL> @?/rdbms/admin/dbmshptab.sql

The script should raise some exceptions for missing tables, which you can ignore. The PL/SQL
hierarchical profiler uses the dbms_hprof package, which is invalid until you create the tables.
Figure G-1 depicts the tables and their relationships, but you should remember that they’re

20-AppG.indd 1030 12/17/13 3:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix G: PL/SQL Hierarchical Profiler Primer 1031

owned by SYS unless you grant SELECT permissions to development schemas or you rerun the
dbmshptab.sql script against the target video schema.

If you don’t rerun the script against the target video schema, you won’t be able to analyze
your output. Therefore, you should connect to the video schema and rerun this command:

SQL> @?/rdbms/admin/dbmshptab.sql

The “Understanding Profiler Data” section has more detail on the three tables that support the
profiler. You need to understand this material if you want to build your own analytical modeling
capability.

After creating the tables, you grant execute permission on the package to your target schema,
create a profiler virtual directory, and grant read and write permissions on the directory to your
target schema. This requirement exists because the hierarchical profiler runs as an invoker rights
model (see Appendix A for a description of invoker rights). You execute these commands as
sysdba when running in Linux or Unix (change /tmp/ to C:/Windows/Temp on Windows):

GRANT EXECUTE ON dbms_hprof TO video;
CREATE OR REPLACE DIRECTORY profiler_dir AS '/tmp/';
GRANT READ, WRITE ON DIRECTORY profiler_dir TO video;

You do not need to create a synonym because the Oracle Database 12c database seeds a
public synonym for the dbms_hprof package. This is also true for the dbmshp_runnumber

FIGURE G-1. PL/SQL hierarchical profiler tables

#RUNID : NUMBER
#RUN_TIMESTAMP : TIMESTAMP
#RUN_COMMENT : VARCHAR2
#TOTAL_ELAPSED_TIME : VARCHAR2

DBMSHP_RUNS

#RUNID : NUMBER
#SYMBOLID : NUMBER
#OWNER : VARCHAR2
#MODULE : VARCHAR2
#TYPE : VARCHAR2
#FUNCTION : VARCHAR2
#LINE# : NUMBER
#HASH : RAW
#NAMESPACE : VARCHAR2
#SUBTREE_ELAPSED_TIME : INTEGER
#FUNCTION_ELAPSED_TIME : INTEGER
#CALLS : INTEGER

DBMSHP_FUNCTION_INFO

#RUNID : NUMBER
#PARENTSYMID : NUMBER
#CHILDSYMID : NUMBER
#SUBTREE_ELAPSED_TIME : INTEGER
#FUNCTION_ELAPSED_TIME : INTEGER
#CALLS : INTEGER

DBMSHP_PARENT_CHILD_INFO_RUNS

1

*

1

*

1 *

1 *

20-AppG.indd 1031 12/17/13 3:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1032 Oracle Database 12c PL/SQL Programming

sequence that is created when you build the PL/SQL hierarchical profiler repository. Verify that
you can see the package by connecting as the video user and describing the package:

SQL> DESCRIBE dbms_hprof
FUNCTION ANALYZE RETURNS NUMBER
 Argument Name Type In/Out Default?
 -------------------------- ----------------------- ------ --------
 LOCATION VARCHAR2 IN
 FILENAME VARCHAR2 IN
 SUMMARY_MODE BOOLEAN IN DEFAULT
 TRACE VARCHAR2 IN DEFAULT
 SKIP BINARY_INTEGER IN DEFAULT
 COLLECT BINARY_INTEGER IN DEFAULT
 RUN_COMMENT VARCHAR2 IN DEFAULT
PROCEDURE START_PROFILING
 Argument Name Type In/Out Default?
 -------------------------- ----------------------- ------ --------
 LOCATION VARCHAR2 IN DEFAULT
 FILENAME VARCHAR2 IN DEFAULT
 MAX_DEPTH BINARY_INTEGER IN DEFAULT
PROCEDURE STOP_PROFILING

The dbms_hprof package has two procedures for starting and stopping data collection, and
one function for gathering and analyzing data. The next section explains how to use these methods.

Collecting Profiler Data
Collecting data from the PL/SQL hierarchical profiler requires that you configure the database, as
covered in the prior section. Then, you must start the profiler, run your test, and stop the profiler.
You stop it because running it constantly consumes unnecessary database resources.

In order to collect data from the profiler, you’ll need to build a test case. This test case requires
that you’ve run the video store code scripts found in the Introduction of this book. The test_
profiler.sql script creates the code components, starts the profiler, runs the test, and stops
the profiler. It will also verify that you got all the configuration steps correct, because it’ll fail if it
can’t call the package methods or write a file to your /tmp (or C:\Windows\Temp) directory.

The first step in this test requires that you build a glue_strings function that will be called
for every row of a cursor statement. The function definition follows:

SQL> CREATE OR REPLACE FUNCTION glue_strings
 2 (string1 VARCHAR2, string2 VARCHAR2) RETURN VARCHAR2 IS
 3 new_string VARCHAR2(2000);
 4 BEGIN
 5 IF string1 IS NOT NULL THEN
 6 IF string2 IS NOT NULL THEN
 7 new_string := string1 || ': ' || string2;
 8 ELSE
 9 new_string := string1;
 10 END IF;
 11 ELSE
 12 IF string2 IS NOT NULL THEN

20-AppG.indd 1032 12/17/13 3:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix G: PL/SQL Hierarchical Profiler Primer 1033

 13 new_string := string2;
 14 END IF;
 15 END IF;
 16 RETURN new_string;
 17 END glue_strings;
 18 /

The function is designed to take two strings and concatenate them, provided neither of them
is a null value. When one is a null value, the not-null value is returned. Naturally, a null is returned
when both inputs are null because the new_string variable is declared, not defined, and all
declared scalar variables are initialized with a null value by default.

The next component for the test is a quantity_onhand procedure. It takes two formal
parameters by value and two by reference. Both IN OUT mode parameters are nested table
collections (see Chapter 6 for details on collections).

The collections require you to define two user-defined Attribute Data Types (ADTs) in SQL. The
first ADT collection is a table of variable-length strings with a maximum size of 2,000 characters, like

SQL> CREATE OR REPLACE
 2 TYPE varchar2_table IS TABLE OF VARCHAR2(2000);
 3 /

The second ADT collection is a table of numbers, like

SQL> CREATE OR REPLACE
 2 TYPE number_table IS TABLE OF NUMBER;
 3 /

Now that you’ve defined the two ADT collections (varchar2_table and number_table),
you can define the quantity_onhand procedure, which uses the ADT collections as pass-by-
reference formal parameters.

The quantity_onhand procedure is

SQL> CREATE OR REPLACE PROCEDURE quantity_onhand
 2 (item_title IN VARCHAR2
 3 , item_rating_agency IN VARCHAR2
 4 , item_titles IN OUT VARCHAR2_TABLE
 5 , quantities IN OUT NUMBER_TABLE) IS
 6 -- Define counter variable.
 7 counter NUMBER := 1;
 8 -- Define dynamic cursor.
 9 CURSOR c
 10 (item_title_in VARCHAR2
 11 , item_rating_agency_in VARCHAR2) IS
 12 SELECT glue_strings(item_title,item_subtitle) AS full_title
 13 , COUNT(*) AS quantity_on_hand
 14 FROM item
 15 WHERE REGEXP_LIKE(item_title,item_title_in)
 16 AND item_rating_agency = item_rating_agency_in
 17 GROUP BY glue_strings(item_title,item_subtitle)
 18 , item_rating_agency;

20-AppG.indd 1033 12/17/13 3:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1034 Oracle Database 12c PL/SQL Programming

 19 BEGIN
 20 -- Read cursor and assign column values to parallel arrays.
 21 FOR i IN c (item_title,item_rating_agency) LOOP
 22 item_titles.EXTEND;
 23 item_titles(counter) := i.full_title;
 24 quantities.EXTEND;
 25 quantities(counter) := i.quantity_on_hand;
 26 counter := counter + 1;
 27 END LOOP;
 28 END;
 29 /

You assign row-by-row values to the nested table collections, but production systems would
use a BULK COLLECT (as qualified in Chapter 3). The counter variable indexes the nested table
collections because the FOR loop i variable is a pointer referencing the rows returned by the
cursor. You raise a PLS-00382 exception, which means the expression is the wrong type for an
assignment.

Another alternative would involve using a system reference cursor, which you’d explicitly
open inside the procedure. A system reference cursor example is not presented in the book, but
one is provided on the publisher’s website, named profiler_test_script.sql.

NOTE
When a system reference cursor replaces a set of parallel collections,
the IN OUT mode SYS_REFCURSOR is passed back to the calling
program as a pointer to the internal cursor work area.

As mentioned, the glue_strings function runs for all returned rows. The anonymous block
program starts the profiler as the first action in the execution block, and it stops the profiler as the
last action.

The following testing program runs the quantity_onhand procedure once:

SQL> DECLARE
 2 -- Input values.
 3 item_title VARCHAR2(30) := 'Harry Potter';
 4 item_rating_agency VARCHAR2(4) := 'MPAA';
 5 -- Output values.
 6 full_title VARCHAR2_TABLE := varchar2_table();
 7 rating_agency NUMBER_TABLE := number_table();
 8 BEGIN
 9 -- Start PL/SQL hierarchical profiler.
 10 dbms_hprof.start_profiling('PROFILER_DIR','harry.txt');
 11
 12 -- Call reference cursor.
 13 quantity_onhand(item_title
 14 ,item_rating_agency
 15 ,full_title,rating_agency);
 16
 17 -- Loop through parallel collections until all records are read.
 18 FOR i IN 1..full_title.COUNT LOOP

20-AppG.indd 1034 12/17/13 3:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix G: PL/SQL Hierarchical Profiler Primer 1035

 19 dbms_output.put(full_title(i));
 20 dbms_output.put(rating_agency(i));
 21 END LOOP;
 22
 23 -- Stop PL/SQL hierarchical profiler.
 24 dbms_hprof.stop_profiling;
 25 END;
 26 /

Line 10 starts the hierarchical profiling and line 24 stops it. If everything is configured correctly,
you will now find a harry.txt file in your /tmp directory. The file should have 20 lines and
547 bytes in it.

You can simply call a stored procedure or function between the START_PROFILING and
STOP_PROFILING procedures as an alternative to testing anonymous block programs like the
example. At this point all the data is external to the database and in the raw output file.

The next section will demonstrate how you interpret the profiler’s output.

Understanding Profiler Data
There are three ways to interpret the PL/SQL profiler output. You can review the raw output file,
analyze the data in the analysis tables, or create hierarchical queries of the analytical data. The
next three subsections explore these data analysis tools.

Reading the Raw Output
The raw output is really designed to be read by the analyzer component of the PL/SQL hierarchical
profiler. However, you can derive some information before you analyze it by leveraging the indicator
codes from Table G-1. A small snapshot from the raw harry.txt file is

P#V PLSHPROF Internal Version 1.0
P#! PL/SQL Timer Started
P#C PLSQL."C##PLSQL"."QUANTITY_ONHAND"::7."QUANTITY_ONHAND"#a912f2026760fedf #1
P#X 13
P#C PLSQL."C##PLSQL"."QUANTITY_ONHAND"::7."QUANTITY_ONHAND.C"#28dc3402baeb2b0d #9
P#X 29
P#C SQL."C##PLSQL"."QUANTITY_ONHAND"::7."__static_sql_exec_line12" #12
P#X 315
P#R
P#X 2
P#R
P#X 11
P#C SQL."C##PLSQL"."QUANTITY_ONHAND"::7."__sql_fetch_line21" #21
P#X 277
P#R
P#X 20
P#R
P#C PLSQL."SYS"."DBMS_HPROF"::11."STOP_PROFILING"#980980e97e42f8ec #59
P#R
P#! PL/SQL Timer Stopped

20-AppG.indd 1035 12/17/13 3:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1036 Oracle Database 12c PL/SQL Programming

While you can discern what the lines do when you know the indicator codes, drawing out
the relationship and statistic information from the raw data is harder than doing so from the
analyzed data.

The PL/SQL hierarchical profiler tracks several operations as if they were functions with names
and namespaces, as shown in Table G-2.

NOTE
This conclusion is drawn from testing that has produced gaps between
parent and child keys in the dbmshp_parent_child_info_runs
table.

The tracked operations show up as functions in your raw and filtered output, and they often
bridge like a parent between a grandparent and grandchild.

TABLE G-1. Raw PL/SQL Hierarchical Profiler Data

Indicator Description
P#C Indicates a call to a subprogram, and it is known as a call event.
P#R Indicates a return from a subprogram to a calling program, and it is known as

a return event.
P#X Indicates the elapsed time between the preceding and following events.
P#! Indicates a comment in the analyzed file.

Function Name Tracked Operation Namespace
__anonymous_block Anonymous block PL/SQL execution PL/SQL
__dyn_sql_exec_lineline# Dynamic SQL statement call made at

a specific line number in a program
SQL

__pkg_init Initialization code from a package
specification or body

PL/SQL

__plsql_vm PL/SQL virtual machine (VM) call PL/SQL
__sql_fetch_lineline# SQL FETCH statement occurring at a

designated line number in a program
SQL

__static_sql_exec_lineline# SQL statement happening at a specific
line number in a program

SQL

TABLE G-2. Operations Tracked by the PL/SQL Hierarchical Profiler

20-AppG.indd 1036 12/17/13 3:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix G: PL/SQL Hierarchical Profiler Primer 1037

Defining the PL/SQL Profiler Tables
The PL/SQL hierarchical profiler tables are created when you run the dbmshptab.sql script,
which is found in the $ORACLE_HOME/rdbms/admin directory. It must be run against the SYS
schema and any user schema where you want to collect profiler data. This is required because the
dbms_hprof package uses invoker rights (you can read more about invoker rights in Appendix A).

Figure G-1, presented earlier in the appendix, shows the UML depiction of these tables and
their relationships. Tables G-3, G-4, and G-5 list the column names, data types, and column
descriptions for the analysis tables.

Column Name Data Type Description
RUNID NUMBER A surrogate primary key generated from the

dbmshp_profiler sequence.
RUN_TIMESTAMP TIMESTAMP Timestamp set when you run the dbms_hprof

.analyze function.
RUN_COMMENT VARCHAR2(2047) User comment that you provide when calling

the dbms_hprof.analyze function.
TOTAL_ELAPSED_TIME INTEGER The elapsed time for the analysis process called

by the dbms_hprof.analyze function.

TABLE G-3. DBMSHP_RUNS Table Columns

TABLE G-4. DBMSHP_FUNCTION_INFO Table Columns

Column Name Data Type Description
RUNID NUMBER A foreign key from the dbmshp_runs table.

The runid and symbolid columns define the
composite primary key for the table.

SYMBOLID NUMBER The execution sequence ID value. The symbolid
is unique when combined with the runid
column value, and together they define a composite
primary key for this table.

OWNER VARCHAR2(32) The owner of the module called.
MODULE VARCHAR2(2047) The module column contains a schema function,

procedure, or package name such as dbms_lob,
dbms_sql, or a user-defined package.

TYPE VARCHAR2(32) The module column defines the source of the
module, such as a package, procedure, or function.

(continued)

20-AppG.indd 1037 12/17/13 3:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1038 Oracle Database 12c PL/SQL Programming

Column Name Data Type Description
RUNID NUMBER A surrogate primary key generated from the dbmshp_

profiler sequence.
PARENTSYMID NUMBER The execution sequence ID value. The parentsymid is

unique when combined with the runid column value,
and together they define a composite foreign key that
maps to the dbmshp_function_info table runid and
symbolid columns.

CHILDSYMID NUMBER The execution sequence id value. The childsymid is
unique when combined with the runid column value,
and together they define a composite foreign key that
maps to the dbmshp_function_info table runid and
symbolid columns.

SUBTREE_ELAPSED_
TIME

INTEGER Elapsed time, in microseconds, for the subprogram,
excluding time spent in descendant subprograms.

FUNCTION_ELAPSED_
TIME

INTEGER Elapsed time, in microseconds, for the subprogram,
excluding time spent in descendant subprograms.

CALLS INTEGER The number of calls to a child row that is identified by
a composite key of runid and childsymid columns.

TABLE G-5. DBMSHP_PARENT_CHILD_INFO_RUNS Table Columns

Column Name Data Type Description
FUNCTION VARCHAR2(4000) A subprogram name or operation (like those in

Table G-1) tracked by the PL/SQL hierarchical
profiler.

LINE# NUMBER The line number where the function is defined in
the schema owner module.

HASH RAW(32) Hash code for the subprogram signature, which is
unique for any run of the dbms_hprof
.analyze function.

NAMESPACE VARCHAR2(32) Namespace of the subprogram, which can be
either SQL or PL/SQL.

SUBTREE_ELAPSED_
TIME

INTEGER Elapsed time, in microseconds, for the subprogram,
excluding time spent in descendant subprograms.

FUNCTION_ELAPSED_
TIME

INTEGER Elapsed time, in microseconds, for the subprogram,
excluding time spent in descendant subprograms.

CALLS INTEGER The number of calls to a subprogram.

TABLE G-4. DBMSHP_FUNCTION_INFO Table Columns

20-AppG.indd 1038 12/17/13 3:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix G: PL/SQL Hierarchical Profiler Primer 1039

The dbmshp_runs table contains information only about the execution of the dbms_hprof
.analyze function. The dbmshp_function_info table contains information about executed
functions, and the dbmshp_parent_child_info table has the hierarchical relationship between
executed functions.

The runid column maps straight across to the dbmshp_parent_child_info table as the
same column name. The symbolid column maps to both the parentsymid and childsymid
columns. When you recursively join these structures, you should ensure you join the tables on the
symbolid and parentsymid columns. The “Querying the Analyzed Data” section contains an
example of this type of join.

This section has explained the three tables that show you how to interpret the PL/SQL profiler
output, review the raw output file, and analyze the data. The analysis discussion has shown you
how to create hierarchical queries that profile the analytical data.

Querying the Analyzed Data
A recursive query is the best way to get meaningful results. The following query captures the nesting
of method names and uses SQL*Plus column formatting to organize the output:

SQL> COL method_name FORMAT A30
SQL> COL function_name FORMAT A24
SQL> COL subtree_elapsed_time FORMAT 99.90 HEADING "Subtree|Elapsed|Time"
SQL> COL function_elapsed_time FORMAT 99.90 HEADING "Function|Elapsed|Time"
SQL> COL calls FORMAT 99 HEADING "Calls"
SQL>
SQL> SELECT RPAD(' ',level*2,' ')||dfi.owner||'.'||dfi.module AS method_name
 2 , dfi.function AS function_name
 3 , (dpci.subtree_elapsed_time/1000) AS subtree_elapsed_time
 4 , (dpci.function_elapsed_time/1000) AS function_elapsed_time
 5 , dpci.calls
 6 FROM dbmshp_parent_child_info dpci
 7 , dbmshp_function_info dfi
 8 WHERE dpci.runid = dfi.runid
 9 AND dpci.parentsymid = dfi.symbolid
 10 AND dpci.runid = 4
 11 CONNECT
 12 BY PRIOR dpci.childsymid = dpci.parentsymid -- Child always connects.
 13 START
 14 WITH dpci.parentsymid = 1;

This yields the following output:

 Subtree Function
 Elapsed Elapsed
METHOD_NAME FUNCTION_NAME Time Time Calls
------------------------------ ------------------------ ------- -------- -----
 . __plsql_vm .04 .04 11
 PLSQL.GLUE_STRINGS GLUE_STRINGS .00 .00 0
 PLSQL.QUANTITY_ONHAND QUANTITY_ONHAND .29 .05 1
 PLSQL.QUANTITY_ONHAND QUANTITY_ONHAND.C .24 .24 1
 PLSQL.QUANTITY_ONHAND QUANTITY_ONHAND .12 .03 11
 SYS.DBMS_OUTPUT PUT_LINE .02 .02 11
 SYS.DBMS_OUTPUT PUT_LINE .06 .05 11

20-AppG.indd 1039 12/17/13 3:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1040 Oracle Database 12c PL/SQL Programming

 SYS.DBMS_OUTPUT PUT .02 .02 1
 PLSQL.QUANTITY_ONHAND QUANTITY_ONHAND 3.27 3.19 1

9 rows selected.

This subsection has demonstrated an approach to querying the PL/SQL profiler table data. It
has also introduced the details of leveraging recursive SQL queries in Oracle Database 12c.

This section has shown you how to interpret the PL/SQL profiler output, review the raw
output file, and analyze data. The analysis discussion has shown you how to create hierarchical
queries that profile the analytical data. The next section demonstrates how to generate a web
page report equivalent.

Using the plshprof Command-Line Utility
The plshprof command-line utility lets you generate simple HTML reports. You have the option
of generating a report from one or two sets of analyzed data. You’ll find the plshprof utility in
the $ORACLE_HOME/bin/ directory.

The plshprof utility has several command options that let you generate different report types.
Table G-6 lists the available command-line options.

You can generate an output report in Linux or Unix by using the following syntax:

$ plshprof -output /tmp/magic /tmp/harry.txt

On Windows, you generate an output report like this:

plshprof –output C:\Users\mclaughlinm\Documents\magic C:\Windows\Temp

It echoes the following to the console when generating the file:

PLSHPROF: Oracle Database 12c Enterprise Edition Release 12.1.0.0.2 - 64bit Beta
[5 symbols processed]
[Report written to 'C:\Users\username\Documents\magic.html']

Option Description Default
-collect count Collects the information for count calls. You

should only use this in combination with the
–trace symbol option.

1

-output filename Sets the output filename. Don’t include an
extension; otherwise, you could end up with a
strange filename, like magic.htm.html.

filename.html or
tracefile.html

-skip count Skips the first count calls. You should only
use this in combination with the –trace
symbol option.

0

-summary Prints only the elapsed time. None
-trace symbol Specifies the function name of the tree root. Not applicable

TABLE G-6. plshprof Command-Line Options

20-AppG.indd 1040 12/17/13 3:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix G: PL/SQL Hierarchical Profiler Primer 1041

If you’re an experienced Windows user, you’re probably wondering whether the Documents folder
is a typo, because the default is My Documents. Actually, before plshprof attempts to create
the files, it will discover the absence of a Documents folder, create one, and then write the files.

This generates an index web page named magic.html. (By the way, the only thing “magic”
about the filename is that it’s the filename entered as a call argument to the plshprof utility.)
You use this page to navigate to the other generated web reports:

magic.html magic_2c.html magic_2f.html magic_2n.html
magic_fn.html magic_md.html magic_mf.html magic _ms.html
magic_nsc.html magic_nsf.html magic_nsp.html magic_pc.html
magic_tc.html magic_td.html magic_tf.html magic_ts.html

The magic.html file in Figure G-2 demonstrates the list of reports produced by the plshprof
utility. You can write a wrapper to read and store these into CLOB columns in the database or as
external files accessible to your web server. Alternatively, you can simply generate them to the
/tmp (or C:\TEMP) directory, browse them individually, and then remove them from the file system.

FIGURE G-2. Sample plshprof index web page

This is the report to click when you
want to see the hierarchical output.

20-AppG.indd 1041 12/17/13 3:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1042 Oracle Database 12c PL/SQL Programming

It important to note that the –output file path can’t have any white space in it or it fails. Let’s
say you hadn’t created a Documents folder under the user name and had tried to output the files
to the My Documents folder. You would get the following error, which is consistent across Linux,
Unix, and Windows:

plshprof -output 'C:\Users\username\My Documents\magic' C:\Windows\Temp\harry.txt
PLSHPROF: Oracle Database 12c Enterprise Edition Release 12.1.0.0.2 - 64bit Beta
ORA-44322: invalid file name 'Documents\magic''

Opening the Parents and Children Elapsed Time (microsecs) Data report (that’s magic_pc
.html) lets you see the hierarchical performance of your operations. Since these aren’t stored in
a directory accessible through a browser, you have to open them through the browser’s menu.
The report for the example in this appendix is shown in Figure G-3.

FIGURE G-3. Parent and Child Elapsed Time Data report

20-AppG.indd 1042 12/17/13 3:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix G: PL/SQL Hierarchical Profiler Primer 1043

This section has demonstrated how to use the plshprof command-line utility. It generates a
set of effective analysis tools that you should examine before attempting to write your own.

Supporting Scripts
This section describes programs placed on the McGraw-Hill Professional website to support this
appendix:

 ■ The profiler_test_script.sql program shows all the code that needs to be run in
the video pluggable schema, or whichever schema you’ve decided to test in.

Summary
This appendix has explained what the PL/SQL hierarchical profiler does and has shown you how
to configure and use it.

20-AppG.indd 1043 12/17/13 3:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

20-AppG.indd 1044 12/17/13 3:48 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

APPENDIX
H

PL/SQL Reserved Words
and Keywords

21-AppH.indd 1045 12/14/13 11:54 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1046 Oracle Database 12c PL/SQL Programming

Certain identifiers or words are critical to building programming languages. PL/SQL divides
those critical words into two groups: reserved words and keywords. They are listed in the
data dictionary with each release and can be found in the v$reserved_words view.

Lexical symbols are also listed as reserved words in the view. They are covered in Chapter 3
and are not part of this appendix.

It appears that some reserved words, like BEGIN and EXCEPTION, are missing the ‘Y’ in the
reserved column of the v$reserved_words view. Other reserved words, like ELSIF and
OUT, are completely missing from the view. Also, various editions of the Oracle Database PL/SQL
Language Reference differ on the list elements and contents of the view; however, it appears
Oracle Database 12c provides a comprehensive list in the v$reserved_words view.

Table H-1 lists reserved and keywords together alphabetically for reference.

Starts Reserved Words and Keywords

A A, ABORT, ABS, ACCESS, ACCESSED, ACCOUNT, ACL, ACOS, ACTION, ACTIONS, ACTIVATE, ACTIVE_COMPONENT,
ACTIVE_DATA, ACTIVE_FUNCTION, ACTIVE_TAG, ACTIVITY, ADD, ADD_COLUMN, ADD_GROUP, ADD_MONTHS, ADJ_DATE,
ADMIN, ADMINISTER, ADMINISTRATOR, ADVISE, ADVISOR, AFTER, ALIAS, ALL, ALLOCATE, ALLOW, ALL_ROWS, ALTER,
ALWAYS, ANALYZE, ANCILLARY, AND, AND_EQUAL, ANOMALY, ANTIJOIN, ANY, ANYSCHEMA, APPEND, APPENDCHILDXML,
APPEND_VALUES, APPLY, ARCHIVE, ARCHIVED, ARCHIVELOG, ARRAY, AS, ASC, ASCII, ASCIISTR, ASIN, ASSEMBLY,
ASSIGN, ASSOCIATE, ASYNC, ASYNCHRONOUS, AT, ATAN, ATAN2, ATTRIBUTE, ATTRIBUTES, AUDIT, AUTHENTICATED,
AUTHENTICATION, AUTHID, AUTHORIZATION, AUTO, AUTOALLOCATE, AUTOEXTEND, AUTOMATIC, AUTO_LOGIN,
AUTO_REOPTIMIZE, AVAILABILITY, AVG

B BACKGROUND, BACKUP, BASIC, BASICFILE, BATCH, BATCH_TABLE_ACCESS_BY_ROWID, BECOME, BEFORE, BEGIN,
BEGINNING, BEGIN_OUTLINE_DATA, BEHALF, BEQUEATH, BETWEEN, BFILE, BFILENAME, BIGFILE, BINARY,
BINARY_DOUBLE, BINARY_DOUBLE_INFINITY, BINARY_DOUBLE_NAN, BINARY_FLOAT, BINARY_FLOAT_INFINITY,
BINARY_FLOAT_NAN, BINDING, BIND_AWARE, BIN_TO_NUM, BITAND, BITMAP, BITMAPS, BITMAP_AND, BITMAP_TREE,
BITS, BLOB, BLOCK, BLOCKS, BLOCKSIZE, BLOCK_RANGE, BODY, BOTH, BOUND, BRANCH, BREADTH, BROADCAST, BUFFER,
BUFFER_CACHE, BUFFER_POOL, BUILD, BULK, BY, BYPASS_RECURSIVE_CHECK, BYPASS_UJVC, BYTE

C CACHE, CACHE_CB, CACHE_INSTANCES, CACHE_TEMP_TABLE, CALCULATED, CALL, CALLBACK, CANCEL, CARDINALITY,
CASCADE, CASE, CAST, CATEGORY, CDB$DEFAULT, CDB$VIEW, CEIL, CELL_FLASH_CACHE, CERTIFICATE, CFILE,
CHAINED, CHANGE, CHANGE_DUPKEY_ERROR_INDEX, CHAR, CHARACTER, CHARTOROWID, CHAR_CS, CHECK, CHECKPOINT,
CHECK_ACL_REWRITE, CHILD, CHOOSE, CHR, CHUNK, CLASS, CLASSIFIER, CLEANUP, CLEAR, CLIENT, CLOB, CLONE,
CLOSE, CLOSE_CACHED_OPEN_CURSORS, CLUSTER, CLUSTERING, CLUSTERING_FACTOR, CLUSTER_DETAILS,
CLUSTER_DISTANCE, CLUSTER_ID, CLUSTER_PROBABILITY, CLUSTER_SET, COALESCE, COALESCE_SQ, COARSE,
COLD, COLLECT, COLUMN, COLUMNAR, COLUMNS, COLUMN_AUTH_INDICATOR, COLUMN_STATS, COLUMN_VALUE, COMMENT,
COMMIT, COMMITTED, COMPACT, COMPATIBILITY, COMPILE, COMPLETE, COMPLIANCE, COMPONENT, COMPONENTS,
COMPOSE, COMPOSITE, COMPOSITE_LIMIT, COMPOUND, COMPRESS, COMPUTE, CONCAT, CONDITION, CONFIRM,
CONFORMING, CONNECT, CONNECT_BY_CB_WHR_ONLY, CONNECT_BY_COMBINE_SW, CONNECT_BY_COST_BASED,
CONNECT_BY_ELIM_DUPS, CONNECT_BY_FILTERING, CONNECT_BY_ISCYCLE, CONNECT_BY_ISLEAF,
CONNECT_BY_ROOT, CONNECT_TIME, CONSIDER, CONSISTENT, CONST, CONSTANT, CONSTRAINT, CONSTRAINTS,
CONTAINER, CONTAINER_DATA, CONTENT, CONTENTS, CONTEXT, CONTINUE, CONTROLFILE, CONVERT, CON_DBID_TO_ID,
CON_GUID_TO_ID, CON_ID, CON_NAME_TO_ID, CON_UID_TO_ID, COOKIE, COPY, CORR, CORRUPTION, CORRUPT_XID,
CORRUPT_XID_ALL, CORR_K, CORR_S, COS, COSH, COST, COST_XML_QUERY_REWRITE, COUNT, COVAR_POP, COVAR_SAMP,
CO_AUTH_IND, CPU_COSTING, CPU_PER_CALL, CPU_PER_SESSION, CRASH, CREATE, CREATE_STORED_OUTLINES,
CREATION, CREDENTIAL, CROSS, CROSSEDITION, CSCONVERT, CUBE, CUBE_AJ, CUBE_GB, CUBE_SJ, CUME_DIST,
CUME_DISTM, CURRENT, CURRENTV, CURRENT_DATE, CURRENT_SCHEMA, CURRENT_TIME, CURRENT_TIMESTAMP,
CURRENT_USER, CURSOR, CURSOR_SHARING_EXACT, CURSOR_SPECIFIC_SEGMENT, CV, CYCLE

TABLE H-1. Reserved Word and Keyword List

21-AppH.indd 1046 12/14/13 11:54 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix H: PL/SQL Reserved Words and Keywords 1047

Starts Reserved Words and Keywords

D D, DANGLING, DATA, DATABASE, DATAFILE, DATAFILES, DATAMOVEMENT, DATAOBJNO, DATAOBJ_TO_PARTITION,
DATAPUMP, DATA_SECURITY_REWRITE_LIMIT, DATE, DATE_MODE, DAY, DAYS, DBA, DBA_RECYCLEBIN, DBMS_STATS,
DBTIMEZONE, DB_ROLE_CHANGE, DB_VERSION, DDL, DEALLOCATE, DEBUG, DEBUGGER, DEC, DECIMAL, DECLARE, DECODE,
DECOMPOSE, DECORRELATE, DECR, DECREMENT, DECRYPT, DEDUPLICATE, DEFAULT, DEFAULTS, DEFERRABLE, DEFERRED,
DEFINE, DEFINED, DEFINER, DEGREE, DELAY, DELETE, DELETEXML, DELETE_ALL, DEMAND, DENSE_RANK, DENSE_RANKM,
DEPENDENT, DEPTH, DEQUEUE, DEREF, DEREF_NO_REWRITE, DESC, DESTROY, DETACHED, DETERMINES, DICTIONARY,
DIMENSION, DIMENSIONS, DIRECTORY, DIRECT_LOAD, DIRECT_PATH, DISABLE, DISABLE_ALL, DISABLE_PARALLEL_DML,
DISABLE_PRESET, DISABLE_RPKE, DISALLOW, DISASSOCIATE, DISCONNECT, DISK, DISKGROUP, DISKS, DISMOUNT,
DISTINCT, DISTINGUISHED, DISTRIBUTED, DML, DML_UPDATE, DOCFIDELITY, DOCUMENT, DOMAIN_INDEX_FILTER,
DOMAIN_INDEX_NO_SORT, DOMAIN_INDEX_SORT, DOUBLE, DOWNGRADE, DRIVING_SITE, DROP, DROP_COLUMN,
DROP_GROUP, DST_UPGRADE_INSERT_CONV, DUMP, DV, DYNAMIC, DYNAMIC_SAMPLING, DYNAMIC_SAMPLING_EST_CDN

E E, EACH, EDITION, EDITIONABLE, EDITIONING, EDITIONS, ELEMENT, ELIMINATE_JOIN, ELIMINATE_OBY,
ELIMINATE_OUTER_JOIN, ELSE, EM, EMPTY, EMPTY_BLOB, EMPTY_CLOB, ENABLE, ENABLE_ALL, ENABLE_PARALLEL_DML,
ENABLE_PRESET, ENCODING, ENCRYPT, ENCRYPTION, END, END_OUTLINE_DATA, ENFORCE, ENFORCED, ENQUEUE,
ENTERPRISE, ENTITYESCAPING, ENTRY, ERROR, ERRORS, ERROR_ARGUMENT, ERROR_ON_OVERLAP_TIME, ESCAPE,
ESTIMATE, EVAL, EVALNAME, EVALUATE, EVALUATION, EVENTS, EVERY, EXCEPT, EXCEPTIONS, EXCHANGE, EXCLUDE,
EXCLUDING, EXCLUSIVE, EXECUTE, EXEMPT, EXISTING, EXISTS, EXISTSNODE, EXP, EXPAND_GSET_TO_UNION,
EXPAND_TABLE, EXPIRE, EXPLAIN, EXPLOSION, EXPORT, EXPRESS, EXPR_CORR_CHECK, EXTENDS, EXTENT, EXTENTS,
EXTERNAL, EXTERNALLY, EXTRA, EXTRACT, EXTRACTVALUE

F FACILITY, FACT, FACTOR, FACTORIZE_JOIN, FAILED, FAILED_LOGIN_ATTEMPTS, FAILGROUP, FAILOVER, FAILURE,
FALSE, FAMILY, FAR, FAST, FBTSCAN, FEATURE_DETAILS, FEATURE_ID, FEATURE_SET, FEATURE_VALUE, FETCH, FILE,
FILESYSTEM_LIKE_LOGGING, FILE_NAME_CONVERT, FILTER, FINAL, FINE, FINISH, FIRST, FIRSTM, FIRST_ROWS,
FIRST_VALUE, FIXED_VIEW_DATA, FLAGGER, FLASHBACK, FLASH_CACHE, FLOAT, FLOB, FLOOR, FLUSH, FOLDER,
FOLLOWING, FOLLOWS, FOR, FORCE, FORCE_XML_QUERY_REWRITE, FOREIGN, FOREVER, FORWARD, FRAGMENT_NUMBER,
FREELIST, FREELISTS, FREEPOOLS, FRESH, FROM, FROM_TZ, FULL, FULL_OUTER_JOIN_TO_OUTER, FUNCTION,
FUNCTIONS

G G, GATHER_OPTIMIZER_STATISTICS, GATHER_PLAN_STATISTICS, GBY_CONC_ROLLUP, GBY_PUSHDOWN, GENERATED,
GET, GLOBAL, GLOBALLY, GLOBAL_NAME, GLOBAL_TOPIC_ENABLED, GRANT, GREATEST, GROUP, GROUPING, GROUPING_ID,
GROUPS, GROUP_BY, GROUP_ID, GUARANTEE, GUARANTEED, GUARD

H H, HASH, HASHKEYS, HASH_AJ, HASH_SJ, HAVING, HEADER, HEAP, HELP, HEXTORAW, HEXTOREF, HIDDEN, HIDE, HIERARCHY,
HIGH, HINTSET_BEGIN, HINTSET_END, HOT, HOUR, HWM_BROKERED, HYBRID

I ID, IDENTIFIED, IDENTIFIER, IDENTITY, IDGENERATORS, IDLE_TIME, IF, IGNORE, IGNORE_OPTIM_EMBEDDED_HINTS,
IGNORE_ROW_ON_DUPKEY_INDEX, IGNORE_WHERE_CLAUSE, ILM, IMMEDIATE, IMPACT, IMPORT, IN, INACTIVE,
INCLUDE, INCLUDE_VERSION, INCLUDING, INCR, INCREMENT, INCREMENTAL, INDENT, INDEX, INDEXED, INDEXES,
INDEXING, INDEXTYPE, INDEXTYPES, INDEX_ASC, INDEX_COMBINE, INDEX_DESC, INDEX_FFS, INDEX_FILTER,
INDEX_JOIN, INDEX_ROWS, INDEX_RRS, INDEX_RS, INDEX_RS_ASC, INDEX_RS_DESC, INDEX_SCAN, INDEX_SKIP_SCAN,
INDEX_SS, INDEX_SS_ASC, INDEX_SS_DESC, INDEX_STATS, INDICATOR, INFINITE, INFORMATIONAL, INHERIT,
INITCAP, INITIAL, INITIALIZED, INITIALLY, INITRANS, INLINE, INLINE_XMLTYPE_NT, INNER, INPLACE, INSERT,
INSERTCHILDXML, INSERTCHILDXMLAFTER, INSERTCHILDXMLBEFORE, INSERTXMLAFTER, INSERTXMLBEFORE,
INSTANCE, INSTANCES, INSTANTIABLE, INSTANTLY, INSTEAD, INSTR, INSTR2, INSTR4, INSTRB, INSTRC, INT,
INTEGER, INTERLEAVED, INTERMEDIATE, INTERNAL_CONVERT, INTERNAL_USE, INTERPRETED, INTERSECT, INTERVAL,
INTO, INVALIDATE, INVISIBLE, IN_MEMORY_METADATA, IN_XQUERY, IS, ISOLATION, ISOLATION_LEVEL, ITERATE,
ITERATION_NUMBER

J JAVA, JOB, JOIN

K K, KEEP, KEEP_DUPLICATES, KERBEROS, KEY, KEYS, KEYSIZE, KEYSTORE, KEY_LENGTH, KILL

L LABEL, LAG, LAST, LAST_DAY, LAST_VALUE, LATERAL, LAYER, LDAP_REGISTRATION, LDAP_REGISTRATION_ENABLED,
LDAP_REG_SYNC_INTERVAL, LEAD, LEADING, LEAST, LEFT, LENGTH, LENGTH2, LENGTH4, LENGTHB, LENGTHC, LESS,
LEVEL, LEVELS, LIBRARY, LIFE, LIFECYCLE, LIFETIME, LIKE, LIKE2, LIKE4, LIKEC, LIKE_EXPAND, LIMIT, LINEAR,
LINK, LIST, LISTAGG, LN, LNNVL, LOAD, LOB, LOBNVL, LOBS, LOCAL, LOCALTIME, LOCALTIMESTAMP, LOCAL_INDEXES,
LOCATION, LOCATOR, LOCK, LOCKED, LOG, LOGFILE, LOGFILES, LOGGING, LOGICAL, LOGICAL_READS_PER_CALL,
LOGICAL_READS_PER_SESSION, LOGMINING, LOGOFF, LOGON, LOG_READ_ONLY_VIOLATIONS, LONG, LOW, LOWER, LPAD,
LTRIM

(continued)

TABLE H-1. Reserved Word and Keyword List

21-AppH.indd 1047 12/14/13 11:54 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1048 Oracle Database 12c PL/SQL Programming

Starts Reserved Words and Keywords

M M, MAIN, MAKE_REF, MANAGE, MANAGED, MANAGEMENT, MANAGER, MANUAL, MAPPING, MASTER, MATCH, MATCHED, MATCHES,
MATCH_NUMBER, MATCH_RECOGNIZE, MATERIALIZE, MATERIALIZED, MAX, MAXARCHLOGS, MAXDATAFILES, MAXEXTENTS,
MAXIMIZE, MAXINSTANCES, MAXLOGFILES, MAXLOGHISTORY, MAXLOGMEMBERS, MAXSIZE, MAXTRANS, MAXVALUE,
MAX_SHARED_TEMP_SIZE, MEASURE, MEASURES, MEDIAN, MEDIUM, MEMBER, MEMORY, MERGE, MERGE$ACTIONS,
MERGE_AJ, MERGE_CONST_ON, MERGE_SJ, METADATA, METHOD, MIGRATE, MIGRATION, MIN, MINEXTENTS, MINIMIZE,
MINIMUM, MINING, MINUS, MINUS_NULL, MINUTE, MINVALUE, MIRROR, MIRRORCOLD, MIRRORHOT, MLSLABEL, MOD,
MODE, MODEL, MODEL_COMPILE_SUBQUERY, MODEL_DONTVERIFY_UNIQUENESS, MODEL_DYNAMIC_SUBQUERY,
MODEL_MIN_ANALYSIS, MODEL_NB, MODEL_NO_ANALYSIS, MODEL_PBY, MODEL_PUSH_REF, MODEL_SV, MODIFICATION,
MODIFY, MODIFY_COLUMN_TYPE, MONITOR, MONITORING, MONTH, MONTHS, MONTHS_BETWEEN, MOUNT, MOUNTPATH, MOVE,
MOVEMENT, MULTIDIMENSIONAL, MULTISET, MV_MERGE

N NAME, NAMED, NAMESPACE, NAN, NANVL, NATIONAL, NATIVE, NATIVE_FULL_OUTER_JOIN, NATURAL, NAV, NCHAR,
NCHAR_CS, NCHR, NCLOB, NEEDED, NEG, NESTED, NESTED_TABLE_FAST_INSERT, NESTED_TABLE_GET_REFS,
NESTED_TABLE_ID, NESTED_TABLE_SET_REFS, NESTED_TABLE_SET_SETID, NETWORK, NEVER, NEW, NEW_TIME, NEXT,
NEXT_DAY, NLJ_BATCHING, NLJ_INDEX_FILTER, NLJ_INDEX_SCAN, NLJ_PREFETCH, NLSSORT, NLS_CALENDAR,
NLS_CHARACTERSET, NLS_CHARSET_DECL_LEN, NLS_CHARSET_ID, NLS_CHARSET_NAME, NLS_COMP, NLS_CURRENCY,
NLS_DATE_FORMAT, NLS_DATE_LANGUAGE, NLS_INITCAP, NLS_ISO_CURRENCY, NLS_LANG, NLS_LANGUAGE,
NLS_LENGTH_SEMANTICS, NLS_LOWER, NLS_NCHAR_CONV_EXCP, NLS_NUMERIC_CHARACTERS, NLS_SORT,
NLS_SPECIAL_CHARS, NLS_TERRITORY, NLS_UPPER, NL_AJ, NL_SJ, NO, NOAPPEND, NOARCHIVELOG, NOAUDIT,
NOCACHE, NOCOMPRESS, NOCOPY, NOCPU_COSTING, NOCYCLE, NODELAY, NOENTITYESCAPING, NOFORCE, NOGUARANTEE,
NOKEEP, NOLOCAL, NOLOGGING, NOMAPPING, NOMAXVALUE, NOMINIMIZE, NOMINVALUE, NOMONITORING, NONBLOCKING,
NONE, NONEDITIONABLE, NONSCHEMA, NOORDER, NOOVERRIDE, NOPARALLEL, NOPARALLEL_INDEX, NOPARTITION,
NORELOCATE, NORELY, NOREPAIR, NORESETLOGS, NOREVERSE, NOREWRITE, NORMAL, NOROWDEPENDENCIES,
NOSCHEMACHECK, NOSEGMENT, NOSORT, NOSTRICT, NOSWITCH, NOT, NOTHING, NOTIFICATION, NOVALIDATE, NOWAIT,
NO_ACCESS, NO_AUTO_REOPTIMIZE, NO_BASETABLE_MULTIMV_REWRITE, NO_BATCH_TABLE_ACCESS_BY_ROWID,
NO_BIND_AWARE, NO_BUFFER, NO_CARTESIAN, NO_CHECK_ACL_REWRITE, NO_CLUSTERING, NO_COALESCE_SQ,
NO_CONNECT_BY_CB_WHR_ONLY, NO_CONNECT_BY_COMBINE_SW, NO_CONNECT_BY_COST_BASED,
NO_CONNECT_BY_ELIM_DUPS, NO_CONNECT_BY_FILTERING, NO_COST_XML_QUERY_REWRITE, NO_CPU_COSTING,
NO_DATA_SECURITY_REWRITE, NO_DECORRELATE, NO_DOMAIN_INDEX_FILTER, NO_DST_UPGRADE_INSERT_CONV,
NO_ELIMINATE_JOIN, NO_ELIMINATE_OBY, NO_ELIMINATE_OUTER_JOIN, NO_EXPAND, NO_EXPAND_GSET_TO_UNION,
NO_EXPAND_TABLE, NO_FACT, NO_FACTORIZE_JOIN, NO_FILTERING, NO_FULL_OUTER_JOIN_TO_OUTER,
NO_GATHER_OPTIMIZER_STATISTICS, NO_GBY_PUSHDOWN, NO_INDEX, NO_INDEX_FFS, NO_INDEX_SS, NO_LOAD,
NO_MERGE, NO_MODEL_PUSH_REF, NO_MONITOR, NO_MONITORING, NO_MULTIMV_REWRITE, NO_NATIVE_FULL_OUTER_JOIN,
NO_NLJ_BATCHING, NO_NLJ_PREFETCH, NO_ORDER_ROLLUPS, NO_OUTER_JOIN_TO_ANTI, NO_OUTER_JOIN_TO_INNER,
NO_PARALLEL, NO_PARALLEL_INDEX, NO_PARTIAL_COMMIT, NO_PARTIAL_JOIN, NO_PARTIAL_ROLLUP_PUSHDOWN,
NO_PLACE_DISTINCT, NO_PLACE_GROUP_BY, NO_PQ_CONCURRENT_UNION, NO_PQ_MAP, NO_PQ_REPLICATE,
NO_PQ_SKEW, NO_PRUNE_GSETS, NO_PULL_PRED, NO_PUSH_PRED, NO_PUSH_SUBQ, NO_PX_FAULT_TOLERANCE,
NO_PX_JOIN_FILTER, NO_QKN_BUFF, NO_QUERY_TRANSFORMATION, NO_REF_CASCADE, NO_RESULT_CACHE, NO_REWRITE,
NO_ROW_LEVEL_LOCKING, NO_SEMIJOIN, NO_SEMI_TO_INNER, NO_SET_TO_JOIN, NO_SQL_TRANSLATION, NO_SQL_TUNE,
NO_STAR_TRANSFORMATION, NO_STATEMENT_QUEUING, NO_STATS_GSETS, NO_SUBQUERY_PRUNING,
NO_SUBSTRB_PAD, NO_SWAP_JOIN_INPUTS, NO_TABLE_LOOKUP_BY_NL, NO_TEMP_TABLE, NO_TRANSFORM_DISTINCT_AGG,
NO_UNNEST, NO_USE_CUBE, NO_USE_HASH, NO_USE_HASH_AGGREGATION, NO_USE_HASH_GBY_FOR_PUSHDOWN,
NO_USE_INVISIBLE_INDEXES, NO_USE_MERGE, NO_USE_NL, NO_XDB_FASTPATH_INSERT, NO_XMLINDEX_REWRITE,
NO_XMLINDEX_REWRITE_IN_SELECT, NO_XML_DML_REWRITE, NO_XML_QUERY_REWRITE, NO_ZONEMAP, NTH_VALUE,
NTILE, NULL, NULLIF, NULLS, NUMBER, NUMERIC, NUMTODSINTERVAL, NUMTOYMINTERVAL, NUM_INDEX_KEYS,
NVARCHAR2, NVL, NVL2

O OBJECT, OBJECT2XML, OBJNO, OBJNO_REUSE, OCCURENCES, OF, OFF, OFFLINE, OFFSET, OID, OIDINDEX, OLAP, OLD,
OLD_PUSH_PRED, OLS, OLTP, OMIT, ON, ONE, ONLINE, ONLY, OPAQUE, OPAQUE_TRANSFORM, OPAQUE_XCANONICAL,
OPCODE, OPEN, OPERATIONS, OPERATOR, OPTIMAL, OPTIMIZER_FEATURES_ENABLE, OPTIMIZER_GOAL, OPTION,
OPT_ESTIMATE, OPT_PARAM, OR, ORADEBUG, ORA_BRANCH, ORA_CHECK_ACL, ORA_CHECK_PRIVILEGE, ORA_CLUSTERING,
ORA_DST_AFFECTED, ORA_DST_CONVERT, ORA_DST_ERROR, ORA_GET_ACLIDS, ORA_GET_PRIVILEGES, ORA_HASH,
ORA_INVOKING_USER, ORA_INVOKING_USERID, ORA_INVOKING_XS_USER, ORA_INVOKING_XS_USER_GUID,
ORA_RAWCOMPARE, ORA_RAWCONCAT, ORA_ROWSCN, ORA_ROWSCN_RAW, ORA_ROWVERSION, ORA_TABVERSION,
ORA_WRITE_TIME, ORDER, ORDERED, ORDERED_PREDICATES, ORDINALITY, ORGANIZATION, OR_EXPAND, OR_PREDICATES,
OTHER, OUTER, OUTER_JOIN_TO_ANTI, OUTER_JOIN_TO_INNER, OUTLINE, OUTLINE_LEAF, OUT_OF_LINE, OVER,
OVERFLOW, OVERFLOW_NOMOVE, OVERLAPS, OWN, OWNER, OWNERSHIP

TABLE H-1. Reserved Word and Keyword List

21-AppH.indd 1048 12/14/13 11:54 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix H: PL/SQL Reserved Words and Keywords 1049

Starts Reserved Words and Keywords

P P, PACKAGE, PACKAGES, PARALLEL, PARALLEL_INDEX, PARAM, PARAMETERS, PARENT, PARITY, PARTNUMINST,
PARTIAL, PARTIALLY, PARTIAL_JOIN, PARTIAL_ROLLUP_PUSHDOWN, PARTITION, PARTITIONS, PARTITION_HASH,
PARTITION_LIST, PARTITION_RANGE, PASSING, PASSWORD, PASSWORD_GRACE_TIME, PASSWORD_LIFE_TIME,
PASSWORD_LOCK_TIME, PASSWORD_REUSE_MAX, PASSWORD_REUSE_TIME, PASSWORD_VERIFY_FUNCTION, PAST,
PATCH, PATH, PATHS, PATH_PREFIX, PATTERN, PBL_HS_BEGIN, PBL_HS_END, PCTFREE, PCTINCREASE, PCTTHRESHOLD,
PCTUSED, PCTVERSION, PENDING, PER, PERCENT, PERCENTILE_CONT, PERCENTILE_DISC, PERCENT_RANK,
PERCENT_RANKM, PERFORMANCE, PERIOD, PERMANENT, PERMISSION, PERMUTE, PFILE, PHYSICAL, PIKEY, PIVOT,
PIV_GB, PIV_SSF, PLACE_DISTINCT, PLACE_GROUP_BY, PLAN, PLSCOPE_SETTINGS, PLSQL_CCFLAGS,
PLSQL_CODE_TYPE, PLSQL_DEBUG, PLSQL_OPTIMIZE_LEVEL, PLSQL_WARNINGS, PLUGGABLE, POINT, POLICY,
POST_TRANSACTION, POWER, POWERMULTISET, POWERMULTISET_BY_CARDINALITY, PQ_CONCURRENT_UNION,
PQ_DISTRIBUTE, PQ_DISTRIBUTE_WINDOW, PQ_FILTER, PQ_MAP, PQ_NOMAP, PQ_REPLICATE, PQ_SKEW, PREBUILT,
PRECEDES, PRECEDING, PRECISION, PRECOMPUTE_SUBQUERY, PREDICATE_REORDERS, PREDICTION,
PREDICTION_BOUNDS, PREDICTION_COST, PREDICTION_DETAILS, PREDICTION_PROBABILITY, PREDICTION_SET,
PREPARE, PRESENT, PRESENTNNV, PRESENTV, PRESERVE, PRESERVE_OID, PREV, PREVIOUS, PRIMARY, PRIOR, PRIVATE,
PRIVATE_SGA, PRIVILEGE, PRIVILEGED, PRIVILEGES, PROCEDURAL, PROCEDURE, PROCESS, PROFILE, PROGRAM,
PROJECT, PROPAGATE, PROTECTED, PROTECTION, PROXY, PRUNING, PUBLIC, PULL_PRED, PURGE, PUSH_PRED,
PUSH_SUBQ, PX_FAULT_TOLERANCE, PX_GRANULE, PX_JOIN_FILTER

Q QB_NAME, QUERY, QUERY_BLOCK, QUEUE, QUEUE_CURR, QUEUE_ROWP, QUIESCE, QUORUM, QUOTA

R RANDOM, RANDOM_LOCAL, RANGE, RANK, RANKM, RAPIDLY, RATIO_TO_REPORT, RAW, RAWTOHEX, RAWTONHEX, RBA,
RBO_OUTLINE, RDBA, READ, READS, REAL, REALM, REBALANCE, REBUILD, RECORDS_PER_BLOCK, RECOVER, RECOVERABLE,
RECOVERY, RECYCLE, RECYCLEBIN, REDACTION, REDEFINE, REDO, REDUCED, REDUNDANCY, REF, REFERENCE, REFERENCED,
REFERENCES, REFERENCING, REFRESH, REFTOHEX, REF_CASCADE_CURSOR, REGEXP_COUNT, REGEXP_INSTR,
REGEXP_LIKE, REGEXP_REPLACE, REGEXP_SUBSTR, REGISTER, REGR_AVGX, REGR_AVGY, REGR_COUNT, REGR_INTERCEPT,
REGR_R2, REGR_SLOPE, REGR_SXX, REGR_SXY, REGR_SYY, REGULAR, REJECT, REKEY, RELATIONAL, RELOCATE, RELY,
REMAINDER, REMOTE_MAPPED, REMOVE, RENAME, REPAIR, REPEAT, REPLACE, REPLICATION, REQUIRED, RESET,
RESETLOGS, RESIZE, RESOLVE, RESOLVER, RESOURCE, RESPECT, RESTART, RESTORE, RESTORE_AS_INTERVALS,
RESTRICT, RESTRICTED, RESTRICT_ALL_REF_CONS, RESULT_CACHE, RESUMABLE, RESUME, RETENTION,
RETRY_ON_ROW_CHANGE, RETURN, RETURNING, REUSE, REVERSE, REVOKE, REWRITE, REWRITE_OR_ERROR, RIGHT,
ROLE, ROLES, ROLESET, ROLLBACK, ROLLING, ROLLUP, ROUND, ROW, ROWDEPENDENCIES, ROWID, ROWIDTOCHAR,
ROWIDTONCHAR, ROWID_MAPPING_TABLE, ROWNUM, ROWS, ROW_LENGTH, ROW_LEVEL_LOCKING, ROW_NUMBER, RPAD,
RTRIM, RULE, RULES, RUNNING

(continued)

TABLE H-1. Reserved Word and Keyword List

21-AppH.indd 1049 12/14/13 11:54 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1050 Oracle Database 12c PL/SQL Programming

Starts Reserved Words and Keywords

S SALT, SAMPLE, SAVEPOINT, SAVE_AS_INTERVALS, SB4, SCALE, SCALE_ROWS, SCAN, SCAN_INSTANCES, SCHEDULER,
SCHEMA, SCHEMACHECK, SCN, SCN_ASCENDING, SCOPE, SCRUB, SDO_GEOM_MBR, SD_ALL, SD_INHIBIT, SD_SHOW,
SEARCH, SECOND, SECRET, SECUREFILE, SECUREFILE_DBA, SECURITY, SEED, SEGMENT, SEG_BLOCK, SEG_FILE,
SELECT, SELECTIVITY, SEMIJOIN, SEMIJOIN_DRIVER, SEMI_TO_INNER, SEQUENCE, SEQUENCED, SEQUENTIAL,
SERIAL, SERIALIZABLE, SERVERERROR, SESSION, SESSIONS_PER_USER, SESSIONTIMEZONE, SESSIONTZNAME,
SESSION_CACHED_CURSORS, SET, SETS, SETTINGS, SET_TO_JOIN, SEVERE, SHARE, SHARED, SHARED_POOL, SHARING,
SHOW, SHRINK, SHUTDOWN, SIBLINGS, SID, SIGN, SIGNAL_COMPONENT, SIGNAL_FUNCTION, SIMPLE, SIN, SINGLE,
SINGLETASK, SINH, SIZE, SKIP, SKIP_EXT_OPTIMIZER, SKIP_UNQ_UNUSABLE_IDX, SKIP_UNUSABLE_INDEXES,
SMALLFILE, SMALLINT, SNAPSHOT, SOME, SORT, SOUNDEX, SOURCE, SOURCE_FILE_NAME_CONVERT, SPACE,
SPECIFICATION, SPFILE, SPLIT, SPREADSHEET, SQL, SQLLDR, SQL_TRACE, SQL_TRANSLATION_PROFILE, SQRT, STALE,
STANDALONE, STANDARD_HASH, STANDBY, STANDBY_MAX_DATA_DELAY, STAR, START, STARTUP, STAR_TRANSFORMATION,
STATE, STATEMENT, STATEMENTS, STATEMENT_ID, STATEMENT_QUEUING, STATIC, STATISTICS, STATS_BINOMIAL_TEST,
STATS_CROSSTAB, STATS_F_TEST, STATS_KS_TEST, STATS_MODE, STATS_MW_TEST, STATS_ONE_WAY_ANOVA,
STATS_T_TEST_INDEP, STATS_T_TEST_INDEPU, STATS_T_TEST_ONE, STATS_T_TEST_PAIRED, STATS_WSR_TEST,
STDDEV, STDDEV_POP, STDDEV_SAMP, STOP, STORAGE, STORE, STREAMS, STRICT, STRING, STRIP, STRIPE_COLUMNS,
STRIPE_WIDTH, STRUCTURE, SUBMULTISET, SUBPARTITION, SUBPARTITIONS, SUBPARTITION_REL, SUBQUERIES,
SUBQUERY_PRUNING, SUBSCRIBE, SUBSET, SUBSTITUTABLE, SUBSTR, SUBSTR2, SUBSTR4, SUBSTRB, SUBSTRC,
SUCCESS, SUCCESSFUL, SUM, SUMMARY, SUPPLEMENTAL, SUSPEND, SWAP_JOIN_INPUTS, SWITCH, SWITCHOVER, SYNC,
SYNCHRONOUS, SYNONYM, SYSASM, SYSAUX, SYSBACKUP, SYSDATE, SYSDBA, SYSDG, SYSGUID, SYSKM, SYSOPER, SYSTEM,
SYSTEM_DEFINED, SYSTIMESTAMP, SYS_AUDIT, SYS_CHECKACL, SYS_CHECK_PRIVILEGE, SYS_CONNECT_BY_PATH,
SYS_CONTEXT, SYS_DBURIGEN, SYS_DL_CURSOR, SYS_DM_RXFORM_CHR, SYS_DM_RXFORM_NUM, SYS_DOM_COMPARE,
SYS_DST_PRIM2SEC, SYS_DST_SEC2PRIM, SYS_ET_BFILE_TO_RAW, SYS_ET_BLOB_TO_IMAGE, SYS_ET_IMAGE_TO_BLOB,
SYS_ET_RAW_TO_BFILE, SYS_EXTPDTXT, SYS_EXTRACT_UTC, SYS_FBT_INSDEL, SYS_FILTER_ACLS, SYS_FNMATCHES,
SYS_FNREPLACE, SYS_GETTOKENID, SYS_GETXTIVAL, SYS_GET_ACLIDS, SYS_GET_COL_ACLIDS, SYS_GET_PRIVILEGES,
SYS_GUID, SYS_MAKEXML, SYS_MAKE_XMLNODEID, SYS_MKXMLATTR, SYS_MKXTI, SYS_OPTLOBPRBSC, SYS_OPTXICMP,
SYS_OPTXQCASTASNQ, SYS_OP_ADT2BIN, SYS_OP_ADTCONS, SYS_OP_ALSCRVAL, SYS_OP_ATG, SYS_OP_BIN2ADT,
SYS_OP_BITVEC, SYS_OP_BL2R, SYS_OP_BLOOM_FILTER, SYS_OP_BLOOM_FILTER_LIST, SYS_OP_C2C, SYS_OP_CAST,
SYS_OP_CEG, SYS_OP_CL2C, SYS_OP_COMBINED_HASH, SYS_OP_COMP, SYS_OP_CONVERT, SYS_OP_COUNTCHG,
SYS_OP_CSCONV, SYS_OP_CSCONVTEST, SYS_OP_CSR, SYS_OP_CSX_PATCH, SYS_OP_CYCLED_SEQ, SYS_OP_DECOMP,
SYS_OP_DESCEND, SYS_OP_DISTINCT, SYS_OP_DRA, SYS_OP_DUMP, SYS_OP_DV_CHECK, SYS_OP_ENFORCE_NOT_NULL$,
SYS_OP_EXTRACT, SYS_OP_GROUPING, SYS_OP_GUID, SYS_OP_HASH, SYS_OP_IIX, SYS_OP_ITR, SYS_OP_LBID,
SYS_OP_LOBLOC2BLOB, SYS_OP_LOBLOC2CLOB, SYS_OP_LOBLOC2ID, SYS_OP_LOBLOC2NCLOB, SYS_OP_LOBLOC2TYP,
SYS_OP_LSVI, SYS_OP_LVL, SYS_OP_MAKEOID, SYS_OP_MAP_NONNULL, SYS_OP_MSR, SYS_OP_NICOMBINE,
SYS_OP_NIEXTRACT, SYS_OP_NII, SYS_OP_NIX, SYS_OP_NOEXPAND, SYS_OP_NTCIMG$, SYS_OP_NUMTORAW,
SYS_OP_OIDVALUE, SYS_OP_OPNSIZE, SYS_OP_PAR, SYS_OP_PARGID, SYS_OP_PARGID_1, SYS_OP_PART_ID,
SYS_OP_PAR_1, SYS_OP_PIVOT, SYS_OP_R2O, SYS_OP_RAWTONUM, SYS_OP_RDTM, SYS_OP_REF, SYS_OP_RMTD,
SYS_OP_ROWIDTOOBJ, SYS_OP_RPB, SYS_OP_TOSETID, SYS_OP_TPR, SYS_OP_TRTB, SYS_OP_UNDESCEND,
SYS_OP_VECAND, SYS_OP_VECBIT, SYS_OP_VECOR, SYS_OP_VECXOR, SYS_OP_VERSION, SYS_OP_VREF, SYS_OP_VVD,
SYS_OP_XMLCONS_FOR_CSX, SYS_OP_XPTHATG, SYS_OP_XPTHIDX, SYS_OP_XPTHOP, SYS_OP_XTXT2SQLT,
SYS_OP_ZONE_ID, SYS_ORDERKEY_DEPTH, SYS_ORDERKEY_MAXCHILD, SYS_ORDERKEY_PARENT, SYS_PARALLEL_TXN,
SYS_PATHID_IS_ATTR, SYS_PATHID_IS_NMSPC, SYS_PATHID_LASTNAME, SYS_PATHID_LASTNMSPC, SYS_PATH_REVERSE,
SYS_PXQEXTRACT, SYS_RAW_TO_XSID, SYS_RID_ORDER, SYS_ROW_DELTA, SYS_SC_2_XMLT, SYS_SYNRCIREDO,
SYS_TYPEID, SYS_UMAKEXML, SYS_XMLANALYZE, SYS_XMLCONTAINS, SYS_XMLCONV, SYS_XMLEXNSURI, SYS_XMLGEN,
SYS_XMLINSTR, SYS_XMLI_LOC_ISNODE, SYS_XMLI_LOC_ISTEXT, SYS_XMLLOCATOR_GETSVAL, SYS_XMLNODEID,
SYS_XMLNODEID_GETCID, SYS_XMLNODEID_GETLOCATOR, SYS_XMLNODEID_GETOKEY, SYS_XMLNODEID_GETPATHID,
SYS_XMLNODEID_GETPTRID, SYS_XMLNODEID_GETRID, SYS_XMLNODEID_GETSVAL, SYS_XMLNODEID_GETTID,
SYS_XMLTRANSLATE, SYS_XMLTYPE2SQL, SYS_XMLT_2_SC, SYS_XQBASEURI, SYS_XQCASTABLEERRH, SYS_XQCODEP2STR,
SYS_XQCODEPEQ, SYS_XQCON2SEQ, SYS_XQCONCAT, SYS_XQDELETE, SYS_XQDFLTCOLATION, SYS_XQDOC, SYS_XQDOCURI,
SYS_XQDURDIV, SYS_XQED4URI, SYS_XQENDSWITH, SYS_XQERR, SYS_XQERRH, SYS_XQESHTMLURI, SYS_XQEXLOBVAL,
SYS_XQEXSTWRP, SYS_XQEXTRACT, SYS_XQEXTRREF, SYS_XQEXVAL, SYS_XQFB2STR, SYS_XQFNBOOL, SYS_XQFNCMP,
SYS_XQFNDATIM, SYS_XQFNLNAME, SYS_XQFNNM, SYS_XQFNNSURI, SYS_XQFNPREDTRUTH, SYS_XQFNQNM, SYS_XQFNROOT,
SYS_XQFORMATNUM, SYS_XQFTCONTAIN, SYS_XQFUNCR, SYS_XQGETCONTENT, SYS_XQINDXOF, SYS_XQINSERT,
SYS_XQINSPFX, SYS_XQIRI2URI, SYS_XQLANG, SYS_XQLLNMFRMQNM, SYS_XQMKNODEREF, SYS_XQNILLED,
SYS_XQNODENAME, SYS_XQNORMSPACE, SYS_XQNORMUCODE, SYS_XQNSP4PFX, SYS_XQNSPFRMQNM, SYS_XQPFXFRMQNM,
SYS_XQPOLYABS, SYS_XQPOLYADD, SYS_XQPOLYCEL, SYS_XQPOLYCST, SYS_XQPOLYCSTBL, SYS_XQPOLYDIV,
SYS_XQPOLYFLR, SYS_XQPOLYMOD, SYS_XQPOLYMUL, SYS_XQPOLYRND, SYS_XQPOLYSQRT, SYS_XQPOLYSUB,
SYS_XQPOLYUMUS, SYS_XQPOLYUPLS, SYS_XQPOLYVEQ, SYS_XQPOLYVGE, SYS_XQPOLYVGT, SYS_XQPOLYVLE,
SYS_XQPOLYVLT, SYS_XQPOLYVNE, SYS_XQREF2VAL, SYS_XQRENAME, SYS_XQREPLACE, SYS_XQRESVURI,
SYS_XQRNDHALF2EVN, SYS_XQRSLVQNM, SYS_XQRYENVPGET, SYS_XQRYVARGET, SYS_XQRYWRP, SYS_XQSEQ2CON,
SYS_XQSEQ2CON4XC, SYS_XQSEQDEEPEQ, SYS_XQSEQINSB, SYS_XQSEQRM, SYS_XQSEQRVS, SYS_XQSEQSUB,
SYS_XQSEQTYPMATCH, SYS_XQSTARTSWITH, SYS_XQSTATBURI, SYS_XQSTR2CODEP, SYS_XQSTRJOIN, SYS_XQSUBSTRAFT,
SYS_XQSUBSTRBEF, SYS_XQTOKENIZE, SYS_XQTREATAS, SYS_XQXFORM, SYS_XQ_ASQLCNV, SYS_XQ_ATOMCNVCHK,
SYS_XQ_NRNG, SYS_XQ_PKSQL2XML, SYS_XQ_UPKXML2SQL, SYS_XSID_TO_RAW, SYS_ZMAP_FILTER, SYS_ZMAP_REFRESH

TABLE H-1. Reserved Word and Keyword List

21-AppH.indd 1050 12/14/13 11:54 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix H: PL/SQL Reserved Words and Keywords 1051

Starts Reserved Words and Keywords

T T, TABLE, TABLES, TABLESPACE, TABLESPACE_NO, TABLE_LOOKUP_BY_NL, TABLE_STATS, TABNO, TAG, TAN, TANH,
TBLORIDX$PART$NUM, TEMPFILE, TEMPLATE, TEMPORARY, TEMP_TABLE, TEST, THAN, THE, THEN, THREAD, THROUGH,
TIER, TIES, TIME, TIMEOUT, TIMES, TIMESTAMP, TIMEZONE_ABBR, TIMEZONE_HOUR, TIMEZONE_MINUTE,
TIMEZONE_OFFSET, TIMEZONE_REGION, TIME_ZONE, TIV_GB, TIV_SSF, TO, TOPLEVEL, TO_ACLID, TO_BINARY_DOUBLE,
TO_BINARY_FLOAT, TO_BLOB, TO_CHAR, TO_CLOB, TO_DATE, TO_DSINTERVAL, TO_LOB, TO_MULTI_BYTE, TO_NCHAR,
TO_NCLOB, TO_NUMBER, TO_SINGLE_BYTE, TO_TIME, TO_TIMESTAMP, TO_TIMESTAMP_TZ, TO_TIME_TZ, TO_YMINTERVAL,
TRACE, TRACING, TRACKING, TRAILING, TRANSACTION, TRANSFORM_DISTINCT_AGG, TRANSITION, TRANSITIONAL,
TRANSLATE, TRANSLATION, TREAT, TRIGGER, TRIGGERS, TRIM, TRUE, TRUNC, TRUNCATE, TRUST, TRUSTED, TUNING, TX,
TYPE, TYPES, TZ_OFFSET

U U, UB2, UBA, UID, UNARCHIVED, UNBOUND, UNBOUNDED, UNDER, UNDO, UNDROP, UNIFORM, UNION, UNIQUE, UNISTR,
UNLIMITED, UNLOAD, UNLOCK, UNMATCHED, UNNEST, UNPACKED, UNPIVOT, UNPLUG, UNPROTECTED, UNQUIESCE,
UNRECOVERABLE, UNRESTRICTED, UNSUBSCRIBE, UNTIL, UNUSABLE, UNUSED, UPDATABLE, UPDATE, UPDATED, UPDATEXML,
UPD_INDEXES, UPD_JOININDEX, UPGRADE, UPPER, UPSERT, UROWID, USABLE, USAGE, USE, USER, USERENV, USERGROUP,
USERS, USER_DATA, USER_DEFINED, USER_RECYCLEBIN, USE_ANTI, USE_CONCAT, USE_CUBE, USE_HASH,
USE_HASH_AGGREGATION, USE_HASH_GBY_FOR_PUSHDOWN, USE_HIDDEN_PARTITIONS, USE_INVISIBLE_INDEXES,
USE_MERGE, USE_MERGE_CARTESIAN, USE_NL, USE_NL_WITH_INDEX, USE_PRIVATE_OUTLINES,
USE_SEMI, USE_STORED_OUTLINES, USE_TTT_FOR_GSETS, USE_WEAK_NAME_RESL, USING, USING_NO_EXPAND

V V1, V2, VALIDATE, VALIDATION, VALID_TIME_END, VALUE, VALUES, VARCHAR, VARCHAR2, VARIANCE, VARRAY,
VARRAYS, VARYING, VAR_POP, VAR_SAMP, VECTOR_READ, VECTOR_READ_TRACE, VERIFIER, VERIFY, VERSION,
VERSIONING, VERSIONS, VERSIONS_ENDSCN, VERSIONS_ENDTIME, VERSIONS_OPERATION, VERSIONS_STARTSCN,
VERSIONS_STARTTIME, VERSIONS_XID, VIEW, VIOLATION, VIRTUAL, VISIBILITY, VISIBLE, VOLUME, VSIZE

W WAIT, WALLET, WEEK, WEEKS, WELLFORMED, WHEN, WHENEVER, WHERE, WHITESPACE, WIDTH_BUCKET, WITH, WITHIN,
WITHOUT, WORK, WRAPPED, WRITE

X XDB_FASTPATH_INSERT, XID, XML, XML2OBJECT, XMLATTRIBUTES, XMLCAST, XMLCDATA, XMLCOLATTVAL,
XMLCOMMENT, XMLCONCAT, XMLDIFF, XMLELEMENT, XMLEXISTS, XMLEXISTS2, XMLFOREST, XMLINDEX_REWRITE,
XMLINDEX_REWRITE_IN_SELECT, XMLINDEX_SEL_IDX_TBL, XMLISNODE, XMLISVALID, XMLNAMESPACES, XMLPARSE,
XMLPATCH, XMLPI, XMLQUERY, XMLQUERYVAL, XMLROOT, XMLSCHEMA, XMLSERIALIZE, XMLTABLE, XMLTRANSFORM,
XMLTRANSFORMBLOB, XMLTYPE, XML_DML_RWT_STMT, XPATHTABLE, XS, XS_SYS_CONTEXT, X_DYN_PRUNE

Y YEAR, YEARS, YES

Z ZONE, ZONEMAP

TABLE H-1. Reserved Word and Keyword List

The following reserved_key_word.sql script lets you query and format the contents from
the v$reserved_words view:

SQL> DECLARE
 2 -- Define and declare collections.
 3 TYPE alpha_key IS TABLE OF CHARACTER;
 4 TYPE list IS TABLE OF CLOB INDEX BY VARCHAR2(1);
 5
 6 -- Declare a counter variable.
 7 lv_counter NUMBER := 1;
 8
 9 -- Define two collections.
 10 lv_reserved_word LIST;
 11 lv_key_word LIST;
 12
 13 -- Declare an initial associative array of keys.
 14 lv_code ALPHA_KEY := alpha_key('A','B','C','D','E','F','G','H'
 15 ,'I','J','K','L','M','N','O','P'
 16 ,'Q','R','S','T','U','V','W','X'
 17 ,'Y','Z');

21-AppH.indd 1051 12/14/13 11:54 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1052 Oracle Database 12c PL/SQL Programming

 18
 19 -- Define cursor.
 20 CURSOR c IS
 21 SELECT keyword
 22 , reserved
 23 , res_type
 24 , res_attr
 25 , res_semi
 26 FROM v$reserved_words
 27 ORDER BY keyword;
 28
 29 FUNCTION format_list (pv_list_in LIST) RETURN BOOLEAN IS
 30 -- Declare control variables.
 31 lv_counter NUMBER := 1;
 32 lv_current VARCHAR2(1);
 33 lv_element CLOB;
 34 lv_status BOOLEAN := TRUE;
 35 BEGIN
 36 -- Read through an alphabetically indexed collection.
 37 WHILE (lv_counter < pv_list_in.COUNT) LOOP
 38 IF lv_counter = 1 THEN
 39 lv_current := pv_list_in.FIRST;
 40 lv_element := pv_list_in(lv_current);
 41 ELSE
 42 IF pv_list_in.NEXT(lv_current) IS NOT NULL THEN
 43 lv_current := pv_list_in.NEXT(lv_current);
 44 lv_element := pv_list_in(lv_current);
 45 END IF;
 46 END IF;
 47 lv_counter := lv_counter + 1;
 48 dbms_output.put_line('['||lv_current||'] ['||lv_element||']');
 49 END LOOP;
 50 RETURN lv_status;
 51 END format_list;
 52
 53 BEGIN
 54 -- Initialize reserved word and keyword collections.
 55 FOR i IN 1..lv_code.LAST LOOP
 56 FOR j IN c LOOP
 57 IF lv_code(i) = UPPER(SUBSTR(j.keyword,1,1)) THEN
 58 IF NOT lv_reserved_word.EXISTS(lv_code(i)) THEN
 59 lv_reserved_word(lv_code(i)) := j.keyword;
 60 ELSE
 61 lv_reserved_word(lv_code(i)) :=
 62 lv_reserved_word(lv_code(i)) || ', ' || j.keyword;
 63 END IF;
 64 END IF;
 65 END LOOP;
 66 END LOOP;
 67

21-AppH.indd 1052 12/14/13 11:54 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix H: PL/SQL Reserved Words and Keywords 1053

 68 -- Initialize reserved word and keyword collections.
 69 FOR i IN 1..lv_code.LAST LOOP
 70 FOR j IN c LOOP
 71 IF lv_code(i) = UPPER(SUBSTR(j.keyword,1,1)) THEN
 72 IF NOT lv_reserved_word.EXISTS(lv_code(i)) THEN
 73 lv_reserved_word(lv_code(i)) := j.keyword;
 74 ELSE
 75 lv_reserved_word(lv_code(i)) :=
 76 lv_reserved_word(lv_code(i)) || ', ' || j.keyword;
 77 END IF;
 78 END IF;
 79 END LOOP;
 80 END LOOP;
 81
 82 -- Print the list.
 83 IF format_list(lv_reserved_word) THEN
 84 NULL;
 85 END IF;
 86 END;
 87 /

Summary
The reserved word and keyword tables are alphabetized for you to browse them quickly. You can
also recheck for changes with the reserved_key_word.sql script.

21-AppH.indd 1053 12/14/13 11:54 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

21-AppH.indd 1054 12/14/13 11:54 AM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

APPENDIX
I

Mastery Check Answers

22-AppI.indd 1055 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1056 Oracle Database 12c PL/SQL Programming

Chapter 1
True or False:

1. Relational Software, Inc. became Oracle Corporation.

True. Software Development Laboratories (SDL) led to the formation of Relational
Software, Inc. (RSI), which in turn led to the formation of Oracle Corporation.

2. Relational databases store information about how data is stored.

True. Relational databases store information about how data is stored, and this type of
information is called the data catalog or data dictionary.

3. Relational databases store data.

True. Relational databases store data in tables.

4. SQL is an imperative language that lets you work in the Oracle database.

False. SQL is a set-based declarative language that lets you work in the Oracle database.

5. The relational database model evolved from the object-relational database model.

False. The object-relational database model evolved from the relational database model
because object-oriented database models required too much memory to marshal objects.

6. PL/SQL is the procedural extension of SQL.

True. PL/SQL is the Procedure Language/Structured Query Language.

7. PL/SQL is an imperative language that is both event-driven and object-oriented.

True. PL/SQL is an imperative language that is both event-driven and object-oriented.

8. The Oracle database relies on an external Java Virtual Machine to run stored Java libraries.

False. The Oracle internal JVM runs all stored Java libraries.

9. A two-tier model works between a browser and a database server.

False. A two-tier model works between a SQL*Plus command-line interface (CLI) and the
Oracle Database 12c database server.

10. A three-tier model is a specialized form of an n-tier model.

True. A three-tier model is a specialized form of an n-tier model, where you have a
browser, an Apache server, and a database server.

Multiple Choice:

11. Which of the following describes the roles of the Oracle listener? (Multiple answers
possible)

A. Listen for incoming client requests

B. Send outgoing requests to client software

C. Forward requests to the PL/SQL engine

D. Forward requests to a SQL*Plus session

E. Forward requests to the SQL engine

22-AppI.indd 1056 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix I: Mastery Check Answers 1057

A and D are correct. The Oracle listener listens for incoming client requests and forwards
requests to a SQL*Plus session. The actual SQL*Plus session is a different executable from
the interactive one that you launch when working with Oracle Database 12c.

12. Which of the following converts a relational model to an object-relational model?
(Multiple answers possible)

A. A data catalog

B. A set of tables

C. An object data type

D. An imperative language that lets you build native object types

E. A JVM inside the database

C, D, and E are correct. You require an object data type and an imperative language to
create the objects. PL/SQL is that language, and the JVM runs the objects.

13. SQL*Plus provides which of the following? (Multiple answers possible)

A. An interactive mode

B. A call mode

C. A server mode

D. A client mode

E. All of the above

A, B, and C are correct. SQL*Plus supports an interactive mode, which is also known as
the client software. Calls made by external programs run through a portion of SQL*Plus
known as the call mode.

14. Which of the following is a capability of PL/SQL?

A. Call SQL

B. Implement object types

C. Wrap C-callable programs

D. Wrap Java programs

E. All of the above

E is correct. PL/SQL can call SQL, implement object types, wrap C-callable programs,
and wrap Java programs.

15. Which of the following are types of SQL statements? (Multiple answers possible)

A. Data Definition Language (DDL) statements

B. Data Manipulation Language (DML) statements

C. Data Control Language (DCL) statements

D. Create, replace, update, and delete (CRUD) statements

E. Transaction Control Language (TCL) statements

A, B, C, and E are correct. DDL, DML, DCL, and TCL are valid types of SQL statements.
CRUD is a description of functionality, not of the DML type of statements.

22-AppI.indd 1057 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1058 Oracle Database 12c PL/SQL Programming

Chapter 2
True or False:

1. Valid-time (VT) indicates the point at which transactions commit.

False. Valid-time (VT) indicates the point at which a business event occurs, and is
unrelated to the transaction-time (TT).

2. It is possible to define a default column that uses the .nextval pseudocolumn for a
sequence.

True. Oracle Database 12c lets you define a default column that uses the .nextval
pseudocolumn.

3. It is possible to define a default column that uses the .currval pseudocolumn for a
sequence.

True. Oracle Database 12c lets you define a default column that uses the .currval
pseudocolumn.

4. The .currval pseudocolumn no longer has a dependency on a preceding .nextval
pseudocolumn call in a session.

False. Oracle Database 12c does not remove the session dependency that the .currval
pseudocolumn has on the .nextval pseudocolumn.

5. Oracle Database 12c doesn’t provide a means to prevent the entry of an explicit null in
an INSERT statement, which means you can still override a DEFAULT column value.

False. Oracle Database 12c does provide an ON NULL clause that prevents the insertion
or update of an explicit null when a default value has been specified.

6. Identity columns let you automatically number the values of a surrogate key column.

True. Oracle Database 12c lets you define an identity column in any table that uses an
implicitly generated sequence.

7. VARCHAR2, NVARCHAR2, and RAW data types are now always 32,767 bytes in the Oracle
Database 12c database.

False. Oracle Database 12c provides a max_string_size parameter, which lets you
set it to EXTENDED when you want VARCHAR2, NVARCHAR2, and RAW columns to hold
32,767 bytes. Data types remain capped at the prior maximum size when the max_
string_size parameter is set to STANDARD.

8. A PL/SQL function can return a PL/SQL associative array directly into a SQL statement
with the changes introduced in Oracle 12c.

True. Oracle Database 12c lets you consume a PL/SQL associative array in a SQL statement
when you meet three conditions. First, the data type must be defined in a PL/SQL package.
Second, there must be a local variable that uses that data type. Third, the SQL statement
must be embedded within the PL/SQL block.

9. Oracle Database 12c now supports top-n query results without an offset value.

True. Oracle Database 12c lets you create top-n query with or without OFFSET values.

22-AppI.indd 1058 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix I: Mastery Check Answers 1059

10. You can embed a PL/SQL function inside a query’s WITH clause and call it from external
programs.

True. Oracle Database 12c lets you implement a PL/SQL function inside a WITH clause.
Unfortunately, the semicolon required to terminate statements and blocks causes a conflict
with the SQLTERMINATOR and limits your ability to reading the statement within a
preconfigured SQL*Plus session. You must embed the query inside a view to call it from
other program units.

Multiple Choice:

11. Which of the following keywords work when you define a view? (Multiple answers possible)

A. The AUTHID DEFINER keywords

B. The BEQUEATH INVOKER keywords

C. The AUTHID CURRENT_USER keywords

D. The BEQUEATH DEFINER keywords

E. All of the above

B and D are correct. The BEQUEATH keyword may precede either the INVOKER keyword
or DEFINER keyword. The AUTHID keyword may precede either DEFINER or CURRENT_
USER but only for functions, procedures, packages, and object types.

12. Which of the following are correct about caching invoker rights functions? (Multiple
answers possible)

A. A different result set exists for each invoker.

B. The same result set exists for each invoker.

C. A cached invoker rights function must be deterministic.

D. A cached invoker rights function may be non-deterministic.

E. All of the above.

A and D are correct. Oracle Database 12c lets you create cached invoker rights functions.
They implicitly use the current user to distinguish between cached result sets, and that
means different results are kept for each invoker.

13. Which of the following support expanding the SQL text of LONG columns into CLOB
columns when working with the CDB_, DBA_, ALL_, and USER_VIEWS in the Oracle
Database 12c database? (Multiple answers possible)

A. You can use the to_lob built-in function to convert LONG data types to CLOB data
types.

B. You can use the to_clob built-in function to convert LONG data types to CLOB data
types.

C. You can use the dbms_sql package to convert LONG data types to VARCHAR2 data
types.

D. You can use the length built-in function to discover the size of a LONG data type.

E. You can use the dbms_lob package to create a temporary CLOB data type.

22-AppI.indd 1059 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1060 Oracle Database 12c PL/SQL Programming

C, D, and E are correct. While not an Oracle Database 12c feature, you need to convert
views from their native LONG data type to a CLOB before you can use the new expand_
sql_text procedure in the dbms_utility package. You convert a LONG to a CLOB
through a three-step process unless you like to read all the characters one-by-one in a
loop. If you read character by character in your LONG to CLOB procedure, you don’t need
to fetch the LONG data type into a local variable to size it before calling the conversion
procedure. The first step gets the size of the LONG data value with the LENGTH built-in,
which means you query the administrative view twice. The second step requires you
to convert LONG to a VARCHAR2 by using the result of the LENGTH built-in and the
define_column_long procedure from the dbms_sql package. The third step uses the
VARCHAR2 as a call parameter to the dbms_lob.write procedure from the dbms_lob
package to create a CLOB from the VARCHAR2.

14. Which of the following is true about which PL/SQL data types you can access in an
embedded SQL statement? (Multiple answers possible)

A. The PL/SQL data type must be declared in a package.

B. The SQL statement needs to be embedded in the PL/SQL block where the type is defined.

C. The PL/SQL data type must be locally defined.

D. The PL/SQL data type may be a return from a PL/SQL function.

E. All of the above.

A, B, and C are correct. Oracle Database 12c lets you consume a PL/SQL associative
array in a SQL statement when you meet three conditions. First, the data type must be
defined in a PL/SQL package. Second, there must be a local variable that uses that data
type. Third, the SQL statement must be embedded within the PL/SQL block.

15. Which of the following lets you access a surrogate primary key from an identity column
for use in a subsequent INSERT statement as a foreign key value?

A. RETURN INTO

B. RETURNING INTO

C. .nextval

D. .currval

E. None of the above

B is correct. The RETURNING INTO clause lets you capture the value from an identity
column.

Chapter 3
True or False:

1. A basic block in PL/SQL must have at least a null statement to compile.

True. Any PL/SQL block must include at least one statement, like a NULL; statement. The
NULL; statement is advantageous for testing whether the blocks of code are organized
correctly before embedding logic.

22-AppI.indd 1060 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix I: Mastery Check Answers 1061

2. The elsif statement lets you branch execution in an if statement.

False. The elsif statement keyword lets you branch execution, not the ELSEIF keyword.

3. The DECLARE block is where you put all variable, cursor, and local function and
procedure implementations.

True. The DECLARE block is where you put all variable, cursor, and local function and
procedure implementations.

4. An EXCEPTION block is where you put handling for errors raised in the declaration block
of the same anonymous or named program unit.

False. The EXCEPTION block is where you handle exceptions from the execution section,
but it can’t handle exceptions raised in the declaration block.

5. The colon and equal sign set (:=) is the only assignment operator in PL/SQL.

False. The := operator is the only right-to-left assignment operator in PL/SQL, but you can
use the SELECT-INTO statement or BULK COLLECT INTO statement to perform left-to-
right assignments.

6. You need to provide forward-referencing stubs for local functions or procedures to avoid
a procedure or function “not declared in this scope” error.

True. You need to provide forward-referencing stubs to avoid a forward reference.

7. Oracle supports both simple and searched case statements.

True. You can implement a simple or searched case statement.

8. Oracle supports SQL and PL/SQL collections as parameter and return value data types.

True. You can have a function that returns a SQL or PL/SQL collection. You must call
functions that return a PL/SQL collection inside another PL/SQL program unit. Functions
that return a SQL collection work in either SQL or PL/SQL.

9. Packages let you define overloaded functions and procedures.

True. Oracle supports overloaded functions and procedures in packages, which is an
object-oriented feature.

10. Database triggers run between the first phase of a DML statement and the COMMIT
statement.

True. Database triggers run between the first phase of a DML statement and the COMMIT
statement. The COMMIT statement ends the transaction and is the second phase of a two-
phase commit (2PC).

Multiple Choice:

11. Which parameter modes are supported in Oracle PL/SQL? (Multiple answers possible)

A. IN

B. INOUT

C. OUT

D. IN OUT

E. All of the above

22-AppI.indd 1061 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1062 Oracle Database 12c PL/SQL Programming

A, C, and D are correct. The IN mode works for pass-by-value parameters, and IN OUT and
OUT-only mode work for pass-by-reference parameters. There isn’t an INOUT mode.

12. Which of the following are valid loop structures in PL/SQL? (Multiple answers possible)

A. A simple loop

B. A FOR loop

C. A WHILE loop

D. An UNTIL loop

E. All of the above

A, B, and C are correct. Oracle supports a range and cursor FOR loop, a WHILE loop, and
a simple loop.

13. A simple case statement works with which of the following data types? (Multiple answers
possible)

A. A TEXT data type

B. A VARCHAR2 data type

C. A NCHAR data type

D. A CHAR data type

E. A DATE data type

B, C, and D are correct. Oracle supports a VARCHAR2, NCHAR, or CHAR data type in a
simple case statement.

14. Which of the following isn’t a keyword in PL/SQL?

A. RECORD

B. REVERSE

C. CURSOR

D. LIMIT

E. STRUCTURE

E is correct. Oracle doesn’t support a STRUCTURE keyword. It does support the RECORD,
REVERSE, CURSOR, and LIMIT keywords.

15. Which of the following isn’t a cursor attribute?

A. %FOUND

B. %ISOPEN

C. %TYPE

D. %NOTFOUND

E. %ROWCOUNT

C is correct. %TYPE is a column anchoring attribute, not a cursor attribute.

22-AppI.indd 1062 12/17/13 12:36 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix I: Mastery Check Answers 1063

Chapter 4
True or False:

1. A declaration block begins with the function or procedure header, specification, or
signature in a named block.

True. A declaration block immediately follows the function or procedure header.

2. An execution block can contain a local named block.

False. An execution block can’t contain a local named block; local named blocks must be
defined in the declaration block.

3. A declaration block can’t contain an anonymous block.

False. A declaration block can contain an anonymous block if the anonymous block is
embedded in a named block.

4. An identifier is a lexical unit.

True. An identifier is a lexical unit.

5. The colon and equal sign set (:=) is the only assignment operator in PL/SQL.

False. The := operator is the only right-to-left assignment operator in PL/SQL, but you can
use the SELECT-INTO statement or BULK COLLECT INTO statement to perform left-to-
right assignments, as covered in Chapter 3.

6. The equal sign and greater than symbol set (=>) is an association operator.

True. The equal sign and greater than symbol set (=>) is an association operator, and it’s
used for named notation.

7. PL/SQL lets you create subtypes of standard scalar variables.

True. You can create subtypes of standard scalar variables with PL/SQL.

8. A record data type is a SQL data type.

False. A record data type is a PL/SQL data type.

9. A system reference cursor is a PL/SQL-only data type.

True. A system reference cursor is a PL/SQL-only data type.

10. The PL/SQL programming language supports arrays and lists as composite data types.

True. PL/SQL supports array (varray) and list (table) collections, which are composite type
variables.

Multiple Choice:

11. Lexical units are the basic building blocks in programming languages, and they can perform
which of the following? (Multiple answers possible)

A. A delimiter

B. An identifier

C. A literal

22-AppI.indd 1063 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1064 Oracle Database 12c PL/SQL Programming

D. A comment

E. An anonymous block

A, B, C, and D are correct. Delimiters, identifiers, literals, and comments are lexical units.

12. Which of the following are valid symbol sets in PL/SQL? (Multiple answers possible)

A. A colon and equal sign set (:=) assignment operator

B. A guillemets or double angle bracket set (<< >>) as delimiters for labels

C. A less than symbol and greater than symbol set (<>) as a comparison operator

D. An exclamation mark and equal sign set (!=) as a comparison operator

E. A opening curly brace and closing curly brace symbol set ({}) as delimiters for an
anonymous block

A, B, C, and D are correct. The colon and equal sign set (:=) performs an assignment; the
guillemets or double angle bracket set (<< >>) is a label target for a GOTO statement;
the less than symbol and greater than symbol set (<>) is a not equal comparison operator;
and an exclamation mark and equal sign set (!=) is a not-equal comparison operator.

13. Which of the following are valid scalar data types in PL/SQL? (Multiple answers possible)

A. A TEXT data type

B. A VARCHAR2 data type

C. A NCHAR data type

D. A CHAR data type

E. A DATE data type

B, C, D, and E are correct. The TEXT data type isn’t a valid data type in PL/SQL, but it is a
valid data type in MySQL.

14. Which of the following data types are best suited for scientific calculations in PL/SQL?
(Multiple answers possible)

A. A NUMBER data type

B. A PLS_INTEGER data type

C. A BINARY_DOUBLE data type

D. A BINARY_FLOAT data type

E. A BINARY_INTEGER data type

C and D are correct. Only the IEEE-754 variables BINARY_DOUBLE and BINARY_FLOAT
are considered scientific computing data types.

15. Which of the following are reasons for using a system reference cursor?

A. A system reference cursor mimics a table collection

B. An alternative when you want to query data in one program and use it in another

C. A PL/SQL-only solution with the results of composite data type

D. A SQL or PL/SQL solution with the results of a system reference cursor

E. None of the above

22-AppI.indd 1064 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix I: Mastery Check Answers 1065

B and C are correct. You use a system reference cursor when you want to query data
in one program and use it in another. System reference cursors are also PL/SQL-only
solutions with one exception that was covered in Chapter 2, and that’s using an Implicit
Record Set (IRS).

Chapter 5
True or False:

1. Conjunctive logic involves determining when two or more things are true at the same time.

True. Conjunctive logic involves two or more comparisons joined by an AND keyword.
Two or all of the comparisons must be true for a conjunctive statement to be true.

2. Inclusion logic involves determining when one or another thing is true at any time.

True. Inclusion logic involves two or more comparisons joined by an OR keyword. At
least one item must be found true, and when one is found true, short-circuit logic stops
making any remaining comparisons.

3. Short-circuit logic occurs with inclusion logic.

True. Inclusion logic uses short-circuit logic, which stops making comparisons once one
item is found true.

4. Databases always rely on two-valued logic.

False. Databases rely on three-valued logic because they must be capable of comparing
a null value. That’s why Oracle Database and other databases support the IS [NOT]
NULL reference comparison operator.

5. A searched CASE statement may use a string or numeric selector.

True. A searched CASE statement evaluates Boolean logic, or the result of comparison
operations.

6. A simple CASE statement can use a numeric selector.

True. A simple CASE statement evaluates a numeric value, and when it finds a match in
one of the WHEN clauses, it exits the CASE statement.

7. Conditional compilation supports conditional compilation flags.

True. Conditional compilation supports any number of compilation flags.

8. A CONTINUE statement lets you skip the balance of an iteration through a loop.

True. The CONTINUE statement instructs the program to skip the balance of an iteration
cycle and return to the top of the loop.

9. A SELECT-INTO statement is an example of an explicit cursor.

False. A SELECT-INTO statement is an implicit cursor.

10. The FORALL statement lets you perform bulk INSERT statements.

True. The FORLL statement is the key structure for performing bulk INSERT and UPDATE
statements.

22-AppI.indd 1065 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1066 Oracle Database 12c PL/SQL Programming

Multiple Choice:

11. A conditional statement applied against two operands can evaluate which of the
following? (Multiple answers possible)

A. The truth of a comparison involving only not-null values

B. The non-truth (or falsity) of a comparison involving only not-null values

C. The truth of a comparison involving one or more null values

D. The non-truth (or falsity) of a comparison involving one or more null values

E. The truth of null values

A is correct. Comparison operations are three-valued logic comparisons unless you’re
checking for a null value. Checking for a null value is an evaluation of what a reference
points to, not the value that it holds. Comparison operations between two operands only
work when both operands hold not-null values.

12. Which of the following are only guard-on-entry loops? (Multiple answers possible)

A. A simple range loop

B. A range FOR loop

C. A WHILE loop

D. A DO-UNTIL loop

E. A DO-WHILE loop

A, B, and C are correct. A simple loop can be coded to guard on entry or exit. A range
FOR loop guards on entry and exit, and a WHILE loop guards entry only. DO-UNTIL and
DO-WHILE aren’t loop structures in PL/SQL.

13. Which of the following guards entry and exit to the loop in PL/SQL? (Multiple answers
possible)

A. A range FOR loop

B. A cursor FOR loop

C. A simple loop

D. A DO-WHILE loop

E. A WHILE loop

A and B are correct. The FOR loop guards entry and exit and manages them implicitly.

14. Which of the following are only guard-on-exit loops? (Multiple answers possible)

A. A simple cursor loop

B. A simple range loop

C. A cursor FOR loop

D. A WHILE loop

E. A range FOR loop

A and B are correct. Only the simple loop allows unfettered access, and allows you
to guard on exit. That lets you run the logic once and exit regardless of any conditions
before entering the loop.

22-AppI.indd 1066 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix I: Mastery Check Answers 1067

15. Which of the following collections work best with a bulk delete operation on a well-
defined (or normalized) table with a surrogate key for its single-column primary key?
(Multiple answers possible)

A. Parallel scalar collections

B. A single scalar collection

C. A single record collection

D. All of the above

E. None of the above

B and C are correct. Bulk operations only work when there’s one collection to traverse,
and that means a single scalar or record collection.

Chapter 6
True or False:

1. SQL varray collections can only be used in a SQL context.

False. You can use a varray collection in a SQL scope or a PL/SQL scope.

2. Table collections can be used in a SQL context or a PL/SQL context.

True. You can use a table collection in a SQL scope or a PL/SQL scope.

3. Associative arrays can be used only in a PL/SQL context.

True. You can only use a table collection in a PL/SQL scope.

4. A table collection can hold a record or object type as its a composite base data type.

True. You can only use a table collection in a PL/SQL scope that refers to a composite
record structure. There are limits on how you assign elements to the collection because
object types and record structures aren’t interchangeable.

5. A varray has a fixed number of elements when you define it.

True. You define any varray (or varying array) with a maximum number of elements.

6. A varray or table of a scalar variable is an Attribute Data Type (ADT).

True. A varray or table of a scalar variable is an ADT and returns a single column_value
pseudocolumn when translated by the TABLE function in a query.

7. A varray or table of a composite data type is a user-defined type (UDT).

True. A varray or table of a composite data type is a UDT and returns a list of column names
that map to the user-defined object type when translated by the TABLE function in a query.

8. A LIMIT function from the Oracle Collection API only works with table collections.

False. A LIMIT function from the Oracle Collection API only works with a varray (or
varying array) data type.

9. A BULK COLLECT statement can work with a table collection of object types.

False. A BULK COLLECT statement can only work with a table of scalar values or a table
of PL/SQL record structures.

22-AppI.indd 1067 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1068 Oracle Database 12c PL/SQL Programming

10. The TABLE function lets you consume a varray or table collection as an ordinary SQL
result set.

True. A TABLE function translates a collection into an aggregate result set, which is the
form of any query’s result set.

Multiple Choice:

11. Which of the following is a densely populated index in an Oracle varray or table
collection? (Multiple answers possible)

A. A sequence of negative integers without any gaps in the sequence of integers

B. A sequence of positive integers starting at a number of your choosing without any
gaps in the sequence of integers

C. A sequence of positive integers starting at 1 without any gaps in the sequence

D. A sequence of letters without any gaps in the sequence of integers

E. A sequence of positive integers starting at 1 with some gaps in the sequence of integers

B is correct. Only a sequence of integers without gaps and starting at 1 is considered
densely populated.

12. Which of the following support string indexes? (Multiple answers possible)

A. PL/SQL tables

B. Table collections

C. Varray collections

D. Associative arrays

E. Java ArrayList classes

D is correct. Only associative arrays support string indexes.

13. Which of the following is a sparsely populated index in an Oracle varray or table collection?
(Multiple answers possible)

A. A sequence of negative integers without any gaps in the sequence of integers

B. A sequence of positive integers starting at a number of your choosing without any
gaps in the sequence of integers

C. A sequence of positive integers starting at 1 without any gaps in the sequence

D. A sequence of letters without any gaps in the sequence of integers

E. A sequence of positive integers starting at 1 with some gaps in the sequence of integers

D and E are correct. Letters implicitly have gaps even when they don’t, because they’re
letters, not numbers, which makes them sparsely populated indexes. Any sequence of
integers with gaps is sparsely populated.

14. Which of the following are boundary elements of collections? (Multiple answers possible)

A. The index value returned by the FIRST function

B. The index value returned by the COUNT function

C. The index value returned by the LIMIT function

22-AppI.indd 1068 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix I: Mastery Check Answers 1069

D. The index value returned by the LAST function

E. All of the above

A, B, and D are correct. The FIRST function returns the lowest boundary element. The LAST
function returns the highest boundary element. The COUNT function also returns the highest
boundary element (when the index is numeric) because collections use 1-based numbering.

15. Which of the following collections work in SQL and PL/SQL contexts? (Multiple answers
possible)

A. Varray collections of scalar data types

B. Varray collections of record data types

C. Table collections of scalar data types

D. Table collections of object data types

E. All of the above

A, C, and D are correct. A varray or table collection can work in SQL and PL/SQL contexts
when the base data type is a scalar or object data type.

Chapter 7
True or False:

1. Oracle PL/SQL programming requires you to understand how to capture and analyze
both compile-time errors and runtime errors.

True. You need to understand how to analyze and capture compile-time errors to make sure
you can compile your code. You need to understand how to analyze and trap runtime errors.

2. A compile-time error may occur when you try to run an anonymous block program.

True. Compile-time means the same thing for both anonymous block and named block
programs. It’s the time where the program is parsed and compiled into p-code. Any failure
during parsing is a compile time error.

3. A runtime error may occur when you try to compile a stored procedure.

False. A runtime error can only occur after you’ve successfully compiled a stored procedure.
A compile-time error can occur when you try to create or replace a procedure.

4. A runtime error may occur when you call a stored procedure.

True. A runtime error may occur when you call a stored procedure.

5. A THROW command raises a runtime exception.

False. A RAISE statement or RAISE_APPLICATION_ERROR function call raises a
runtime exception. A THROW command raises an exception in Java, not in PL/SQL.

6. It’s possible to declare a user-defined exception variable with the same error code as a
predefined exception.

True. It’s possible to declare a user-defined exception variable with the same error code as
a predefined exception. You’ll want to do so when you don’t have a predefined exception
to handle the error code.

22-AppI.indd 1069 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1070 Oracle Database 12c PL/SQL Programming

7. A PRAGMA is a precompiler instruction or compiler directive.

True. A PRAGMA is a compiler directive. Alternatively, a PRAGMA is also frequently
referred to as a precompiler instruction.

8. An EXCEPTION_INIT complier directive lets you map a user-defined EXCEPTION
variable to a message.

False. While an EXCEPTION_INIT is a compiler directive, it maps a user-defined
EXCEPTION variable and an error code number.

9. A RAISE_APPLICATION_ERROR function call lets you map only a user-defined error
code to a custom error message.

True. A RAISE_APPLICATION_ERROR function call does let you map a user-defined
error code to a custom error message.

10. A call to the format_error_backtrace function from the utl_call_stack
package creates a stack trace.

False. The format_error_backtrace function doesn’t belong to the utl_call_
stack package. The format_error_backtrace function belongs to the dbms_
utility package.

Multiple Choice:

11. Which of the following error codes belongs to a predefined exception? (Multiple answers
possible)

A. ORA-01402

B. ORA-01722

C. ORA-06548

D. ORA-01422

E. ORA-00001

B, C, and D are correct. The ORA-01722 error belongs to the predefined INVALID_
NUMBER exception, the ORA-06548 error belongs to the NO_DATA_NEEDED exception,
and the ORA-01422 error belongs to the TOO_MANY_ROWS exception.

12. Which of the following is a predefined exception keyword? (Multiple answers possible)

A. CURSOR_IS_OPEN

B. INVALID_NUMBER

C. LOGIN_DENIED

D. NO_DATA_FOUND

E. VALUE_INCORRECT

B, C, and D are correct. The predefined INVALID_NUMBER predefined error belongs to
an ORA-01722 error, the predefined LOGIN_DENIED predefined error belongs to an
ORA-01017 error, and the predefined NO_DATA_FOUND predefined error belongs to an
ORA-01403 error. CURSOR_IS_OPEN and VALUE_INCORRECT are invalid predefined
exceptions.

22-AppI.indd 1070 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix I: Mastery Check Answers 1071

13. Which of the following lets you raise an exception in PL/SQL? (Multiple answers possible)

A. A THROW e; statement

B. A RAISE e; statement

C. A THROW; statement

D. A RAISE; statement

E. A RAISE_APPLICATION_ERROR function call

B and E are correct. The RAISE statement requires a locally declared exception variable.
A RAISE_APPLICATION_ERROR function call is also correct.

14. Which of the following are functions of the utl_call_stack package? (Multiple
answers possible)

A. The backtrace_error function

B. The backtrace_depth function

C. The error_number function

D. The subprogram_name function

E. The error_depth function

B, C, and E are correct. The backtrace_depth, error_number, and error_depth
functions are valid elements of the utl_call_stack package.

15. Which of the following displays an HTML-ready stack trace? (Multiple answers possible)

A. The utl_call_stack.current_edition function

B. The dbms_utility.format_stack_trace function

C. The dbms_utility.format_error_backtrace function

D. All of the above

E. None of the above

C is correct. The format_error_backtrace function is the only valid way to generate
a HTML-ready stack trace.

Chapter 8
True or False:

1. A pass-by-value function takes parameters that are consumed completely and changed
into some outcome-based value.

True. The pass-by-value function takes parameter values and uses them to produce a
result; the values are not returned individually.

2. An INLINE compiler directive lets you include a stand-alone module as part of your
compiled program unit.

True. The INLINE compiler directive lets you include other routines inside your program
unit at compilation.

22-AppI.indd 1071 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1072 Oracle Database 12c PL/SQL Programming

3. A pass-by-reference function takes literal values for any of the call parameters.

False. A pass-by-reference function can take literal values for any pass-by-value or IN
mode parameter, but it can’t take a literal value for any pass-by-reference parameter—
those are IN OUT or OUT mode parameters.

4. A pass-by-value procedure takes literal values for any of the call parameters.

True. A pass-by-value procedure can be a string or numeric literal value.

5. The RETURN statement must always include a literal or variable for all pass-by-value and
pass-by-reference functions.

False. The RETURN statement takes a literal or variable in all but two cases: a pipelined
table function and an object type. This chapter covers the RETURN statement in a
pipelined table function.

6. You need to provide forward-referencing stubs for local functions or procedures to avoid
a procedure or function “not declared in this scope” error.

True. You should provide forward-referencing stubs to avoid a forward reference, which I
interpret as you need to do it.

7. You can’t assign an IN mode parameter a new value inside a stored function or procedure.

True. You can’t assign a value to an IN mode parameter.

8. You can’t assign an IN OUT mode parameter a new value inside a stored function or
procedure.

False. You can assign a value to an IN OUT or OUT mode parameter.

9. You can’t embed an INSERT, UPDATE, or DELETE statement in any function that you
plan to call from a SQL SELECT statement.

False. You can embed an INSERT, UPDATE, or DELETE statement and call it from a SQL
SELECT statement when you designate it as an AUTONOMOUS function.

10. Some functions can only be called from within a PL/SQL scope.

False. You can call a nonautonomous function with an embedded INSERT, UPDATE, or
DELETE statement from a PL/SQL context. You can’t call the same program from a SQL
context.

Multiple Choice:

11. Which types of subroutines return a value at completion? (Multiple answers possible)

A. A pass-by-value function

B. A pass-by-value procedure

C. A pass-by-reference function

D. A pass-by-reference procedure

E. All of the above

A and B are correct. A pass-by-value or pass-by-reference function returns a variable.

22-AppI.indd 1072 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix I: Mastery Check Answers 1073

12. Which of the following clauses are supported in PL/SQL? (Multiple answers possible)

A. An INLINE clause

B. A PIPELINED clause

C. A DETERMINISTIC clause

D. A NONDETERMINISTIC clause

E. A RESULT_CACHE clause

B, C, and E are correct. PIPELINED, DETERMINISTIC, and RESULT_CACHE are valid
function clauses.

13. Which call notations are supported by the Oracle Database 12c database? (Multiple
answers possible)

A. Positional notation

B. Named notation

C. Mixed notation

D. Object notation

E. Exclusionary notation

A, B, C, and E are correct. Positional, named, mixed, and exclusionary notation are
supported. There isn’t any such thing as object notation.

14. Which of the following isn’t possible with a result cache function in the Oracle Database
12c database? (Multiple answers possible)

A. A definer rights deterministic pass-by-value function

B. An invoker rights deterministic pass-by-value function

C. A definer rights nondeterministic pass-by-value function

D. An invoker rights nondeterministic pass-by-value function

E. A definer rights nondeterministic pass-by-reference function

A, B, C, and D are correct. You can create result cached functions for any pass-by-value
functions, as of Oracle Database 12c. Prior to Oracle Database 12c, you could not
implement options B and D because invoker rights programs weren’t supported.

15. Which of the following are specifically backward-compatible Oracle 8i Database
compiler directives?

A. RESTRICT_ACCESS

B. INLINE

C. AUTONOMOUS

D. DETERMINISTIC

E. EXCEPTION_INIT

A is correct. Oracle supports only the RESTRICT_ACCESS compiler directive for Oracle 8i
Database backward compatibility. The AUTONOMOUS, EXCEPTION_INIT, and INLINE
compiler directives were introduced in prior releases but are also part of this release.

22-AppI.indd 1073 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1074 Oracle Database 12c PL/SQL Programming

Chapter 9
True or False:

1. Package specifications can define only functions and procedures.

False. While a package specification can define functions and procedures, it can also
define variables and data types.

2. Package bodies can define variables, data types, functions, and procedures.

True. Package bodies can define variables, data types, functions, and procedures but
they’re private to the package.

3. You define functions and procedures in package specifications and implement them in
package bodies.

True. Package specifications define functions and procedures, while package bodies
implement them.

4. You define function stubs and provide their implementations in package bodies.

True. You can define forward-referencing stubs, like package specifications, but they’re
only useful during the compilation of the package body. You must also provide the
implementation for any package body function stubs or else compilation of the package
body will fail.

5. A forward reference is required for any function or procedure to avoid inadvertent use
before its implementation in the package body.

False. Is this a hair splitter? No. You need to know that while not required, providing
forward references for package-level functions and procedures is highly advised.

6. A grant of EXECUTE on a package lets a user in another schema run a definer rights
package against the definer’s local data.

True. That’s the purpose of granting the EXECUTE privilege to another user when they’re
going to run the definer rights package.

7. A SYNONYM provides an alias for a privilege.

False. That’s not the purpose of a SYNONYM. A SYNONYM provides an alias for a table,
view, function, procedure, package, object type, or database link.

8. A package must contain all autonomous and non-autonomous functions and procedures.

False. A package may contain one to many autonomous program units, but it may have a
mix of autonomous and non-autonomous program units.

9. A package maintains a variable’s value until it’s aged out of the SGA or you issue a FLUSH
VARIABLE variable_name statement.

False. There’s no such SQL statement. You have two alternatives. One is that you wait until
the package ages out of the SGA. The other requires you to take action, like altering the
package or changing the session.

10. You can query a serially reusable package from a SELECT statement.

False. You can’t query a serially reusable program from a SELECT statement.

22-AppI.indd 1074 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix I: Mastery Check Answers 1075

Multiple Choice:

11. Which of the following is a PRAGMA (precompiler directive) reserved to packages?
(Multiple answers possible)

A. AUTONOMOUS_TRANSACTION

B. AUTO_TRANSACTION

C. SERIALLY_REUSABLE

D. EXCEPTION_INIT

E. RESTRICT_REFERENCES

C is correct. The SERIALLY_REUSABLE precompiler directive only works with packages.

12. Which of the following can be defined in a package specification? (Multiple answers
possible)

A. An object type

B. A record type

C. A function

D. A procedure

E. An autonomous function

B, C, D, and E are correct. An object type is a SQL-only data type and can’t be defined
inside a package.

13. Which of the following is a publically accessible variable? (Multiple answers possible)

A. A variable declared in a function of a package

B. A variable declared in a procedure of a package

C. A variable declared in a package specification

D. A variable declared in a package body outside of a function or procedure

E. All of the above

C is correct. Only variables, data types, functions, and procedures defined in a package
specification are publically accessible.

14. Which of the following support overloading? (Multiple answers possible)

A. Stand-alone functions

B. Stand-alone procedures

C. Functions declared in the package specification

D. Procedures declared in the package specification

E. Functions declared in the package body

C and D are correct. Only functions and procedures defined in the package specification
are overloaded.

22-AppI.indd 1075 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1076 Oracle Database 12c PL/SQL Programming

15. Which of the following guarantees variables are fresh each time you call a package?
(Multiple answers possible)

A. A declaring variables in an autonomous function

B. A declaring variables in a local procedure

C. A declaring variables in a local function

D. A declaring variables outside a function or procedure in a package body

E. A declaring variables outside a function or procedure in a package specification

A, B, and C are correct. Only variables defined as local variables are truly private. They
are refreshed each time the function or procedure is called. Package specification and
package body variables have values that persist until they age out of the SGA.

Chapter 10
True or False:

1. CLOB and NCLOB data types are object types and require explicit construction in a SQL
context.

True. CLOB and NCLOB data types are object types and require explicit construction in a
SQL context.

2. CLOB and NCLOB data types are subclasses to a generic LOB class.

False. CLOB and NCLOB data types are not subclasses to a generic LOB class.

3. The BLOB data type holds binary streams.

True. The BLOB data type may hold binary streams but may also hold character streams.
As a rule, BLOB data types hold only binary streams.

4. You can assign a string literal to a CLOB inside a VALUES clause of an INSERT statement.

False. You can’t assign a string literal to a CLOB or NCLOB inside a VALUES clause of
an INSERT statement. You must push the string through a stored function that creates a
temporary CLOB and returns a CLOB data type.

5. A stored function can convert a LONG data type to a CLOB data type.

True. A stored function can convert a LONG data type to a CLOB data type, an example of
which is provided in the sidebar “Converting a LONG to a CLOB.”

6. The empty_clob function supports the CLOB, NCLOB, and BLOB data types.

False. The empty_clob function supports the CLOB and NCLOB data types but not the
BLOB data type. You must use the empty_blob function when you work with BLOB data
types.

7. You can assign strings of hexadecimal values to BLOB variables in a PL/SQL context.

True. You can assign hexadecimal values to a BLOB variable in either a SQL or PL/SQL
context.

22-AppI.indd 1076 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix I: Mastery Check Answers 1077

8. A BFILE depends on a virtual directory to find the external file.

True. A locator for a BFILE is a combination of a virtual directory and a filename.

9. A SELECT-INTO statement can assign a string to a CLOB variable.

True. A SELECT-INTO statement runs only inside a PL/SQL block, and it assigns a result
from the SELECT-list into a local CLOB variable. This type of assignment is limited to the
maximum size of a VARCHAR2, which is 32,767 bytes when the max_string_size
parameter is set to EXTENDED.

10. A SELECT-INTO statement can assign a LONG column value to a CLOB variable.

False. A SELECT-INTO statement can’t assign a LONG column because it doesn’t support
the LONG data type. The TO_CHAR function doesn’t accept a LONG call parameter either.
That leaves you with the dbms_sql package as your only means to convert a LONG to a
CLOB or NCLOB data type.

Multiple Choice:

11. Which of the following are pass-by-reference procedures in the dbms_lob package?
(Multiple answers possible)

A. lob_readonly

B. write

C. lob_readwrite

D. writeappend

E. isopen

B and D are correct. The write and writeappend procedures of the dbms_lob
package are pass-by-reference procedures. lob_readonly and lob_readwrite are
package constants, and isopen is a function.

12. Which of the following are functions in the dbms_lob package? (Multiple answers possible)

A. open

B. isopen

C. converttoblob

D. unopened_file

E. issecurefile

B and E are correct. The isopen and issecurefile functions of the dbms_lob
package are pass-by-reference functions. open and converttoblob are procedures of
the dbms_lob package, and isopen is a function.

13. Which of the following are exceptions in the dbms_lob package? (Multiple answers possible)

A. OPEN_TOOMANY

B. NOPRIV_DIR

C. NOEXIST_DIRECTORY

22-AppI.indd 1077 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1078 Oracle Database 12c PL/SQL Programming

D. UNINTIALIZED_BLOB

E. GETOPTIONS

A and C are correct. open_toomany and noexist_directory are exceptions declared
in the dbms_lob package. nopriv_dir and uninitialized_blob are not any part
of the dbms_lob package. getoptions is a function in the dbms_lob package.

14. Which of the following are LOBs in an Oracle Database 12c database? (Multiple answers
possible)

A. A BLOB

B. A CLOB

C. A NCLOB

D. A BFILE

E. All of the above

E is correct. The BLOB, CLOB, NCLOB, and BFILE are all valid large objects in the Oracle
Database 12c database.

15. Which of the following are internally stored LOBs in Oracle Database 12c? (Multiple
answers possible)

A. A BLOB

B. A CLOB

C. A NCLOB

D. A BFILE

E. All of the above

A, B, and C are correct. The BLOB, CLOB, and NCLOB are all valid large objects that are
stored inside the Oracle Database 12c database. The BFILE only stores a locator and
filename in the database; the physical file is stored outside the database as a file.

Chapter 11
True or False:

1. Object types are instantiable by default.

True. Object types are instantiable by default. You must provide the optional NOT to
negate the default.

2. Object types are extensible by default.

True. Object types are extensible by default, you must provide the optional NOT to negate
the default.

3. The this keyword references an instance of an object type inside an object body.

False. Oracle object bodies use SELF to reference the current instance of an object type.

4. You can have a MAP function and an ORDER function in the same object type.

False. Oracle only allows you to implement a MAP function or an ORDER function in the
same object type. The ORDER function is the more OOPL-like one, and the preferred solution.

22-AppI.indd 1078 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix I: Mastery Check Answers 1079

5. You can have a MAP procedure and an ORDER procedure in the same object type.

False. Oracle only allows you to implement a MAP function or an ORDER function in the
same object type. You can’t implement a MAP procedure or an ORDER procedure in an
object type.

6. CONSTRUCTOR functions require the name and data type to be the same as the attributes
of the object type.

True. Oracle CONSTRUCTOR functions require the name and data type to be the same as
the attributes of the object type.

7. Getters always should be implemented as MEMBER procedures.

False. Getters always should be implemented as MEMBER functions.

8. Setters always should be implemented as MEMBER procedures.

True. Setters always should be implemented as MEMBER procedures.

9. The UNDER clause designates a superclass.

False. The UNDER clause designates a subclass, subtype, or type dependent.

10. The OVERRIDING clause lets a subtype override a STATIC function or procedure.

False. The OVERRIDING clause lets a subtype override a MEMBER function.

Multiple Choice:

11. Which of the following are keywords in object types? (Multiple answers possible)

A. The MAP keyword

B. The OVERRIDE keyword

C. The OVERRIDING keyword

D. The NONSTATIC keyword

E. The MEMBER keyword

A and E are correct. An object type may have one MAP function, and all instance-level
functions and procedures are MEMBER methods.

12. Which of the following are valid types of functions in object types? (Multiple answers
possible)

A. An ORDER function

B. An OVERRIDE function

C. A MEMBER function

D. An UNDER function

E. A STATIC function

A, C, and E are correct. The ORDER, MEMBER, and STATIC functions are supported.

13. Which of the following are valid types of procedures in object types? (Multiple answers
possible)

A. An ORDER procedure

B. A MAP procedure

22-AppI.indd 1079 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1080 Oracle Database 12c PL/SQL Programming

C. An UNDER procedure

D. A MEMBER procedure

E. A STATIC procedure

D and E are correct. The MEMBER and STATIC procedures are possible.

14. Which of the following require an instance of the object type? (Multiple answers possible)

A. A STATIC function

B. A STATIC procedure

C. A CONSTRUCTOR function

D. A MEMBER function

E. A MEMBER procedure

D and E are correct. The STATIC functions and procedures don’t require an instance of
the object type. All MEMBER functions and procedures are instance methods.

15. Which of the following can be a function return type (or normalized table with a surrogate
key for its single-column primary key)? (Multiple answers possible)

A. A VARCHAR2 data type

B. A NUMBER data type

C. A varray or table collection data type

D. A RECORD data type

E. An OBJECT data type

A, B, C, and E are correct. All scalar and composite data types can be return values from
object type functions and procedures except the PL/SQL-only RECORD data type.

Chapter 12
True or False:

1. Statement-level database triggers can change the new pseudo-record column values with
the INSERT and UPDATE statements.

False. Statement-level triggers can’t access the pseudo-records because they run once per
statement, not for each row touched by the transaction.

2. Oracle Database 12c supports triggers on Data Definition Language (DDL) statements.

True. Oracle Database 12c supports DDL statement triggers.

3. Row-level database triggers can change the new pseudo-record column values with the
INSERT and UPDATE statements.

True. Row-level triggers can access the pseudo-records because they run once for each
row touched by an INSERT or UPDATE statement.

4. Compound database triggers have four timing points.

True. Oracle Database 12c’s compound database triggers have four timing points: BEFORE
STATEMENT, BEFORE EACH ROW, AFTER EACH ROW, and AFTER STATEMENT.

22-AppI.indd 1080 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix I: Mastery Check Answers 1081

5. Compound database triggers can implement a global exception handler.

False. Compound database triggers can’t implement a global exception handler. They can
only implement exception handlers within the timing event blocks.

6. Event attribute functions are designed for use in triggers and non-trigger PL/SQL program
units.

False. Event attribute functions are designed for exclusive use in database triggers, and
they have no context outside of database triggers.

7. You can implement event attribute functions in system event triggers.

True. You can implement event attribute functions inside DDL triggers or system event triggers.

8. You can define a single DML trigger that fires for INSERT, UPDATE, or DELETE statements
on the same table.

True. Oracle supports triggers that work with an INSERT, UPDATE, or DELETE statement,
or with two or three of the statements through the OR inclusion operators.

9. You can define a DDL trigger for a MERGE statement.

False. The Oracle MERGE statement is a combination of an INSERT statement and an
UPDATE statement. You use an INSERT OR UPDATE trigger to capture changes from a
MERGE statement.

10. It’s possible to define an autonomous trigger body.

True. You can define an autonomous trigger body by using a precompiler directive,
PRAGMA AUTONOMOUS_TRANSACTION.

Multiple Choice:

11. Which of the following types of database triggers work in an Oracle database? (Multiple
answers possible)

A. DDL triggers

B. TCL triggers

C. DML triggers

D. INSTEAD OF triggers

E. Compound triggers

A, C, D, and E are correct. Oracle supports DDL, DML, INSTEAD OF, and compound
triggers. There is no such thing as a TCL trigger.

12. Which of the following types of database triggers work with a nonupdatable view in an
Oracle database? (Multiple answers possible)

A. DDL triggers

B. DML triggers

C. System event triggers

D. TCL triggers

E. INSTEAD OF triggers

E is correct. Only the INSTEAD OF trigger works with nonupdatable views.

22-AppI.indd 1081 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1082 Oracle Database 12c PL/SQL Programming

13. You have new and old pseudo-record structures for which triggers in an Oracle database?
(Multiple answers possible)

A. DML statement-level triggers

B. DDL row-level triggers

C. DDL statement-level triggers

D. DML row-level triggers

E. Compound triggers

D is correct. The Oracle database supports the new and old pseudo-record structures
only in a DML row-level trigger.

14. Which of the following are event functions? (Multiple answers possible)

A. A MERGING function

B. An INSERTING function

C. An UPDATING function

D. A DELETING function

E. All of the above

B, C, and D are correct. The INSERTING, UPDATING, and DELETING event functions
are the only event functions in Oracle Database 12c.

15. Oracle requires what syntax to access new column values from an INSERT or UPDATE
statement in the code block? (Multiple answers possible)

A. new.column_name

B. :new.column_name

C. old.column_name

D. :old.column_name

E. None of the above

B is correct. Oracle can only access a new pseudo-record by using a bind variable, :new,
from inside the trigger body. The reason is that the trigger body acts like a subshell and
can gain access to the new pseudo-record structure’s scope only by referring outside of its
scope. The prefacing colon (signifying a bind variable) lets the program refer to the DML
statement’s scope.

Chapter 13
True or False:

1. NDS supports dynamic DDL statements with bind variables.

False. NDS doesn’t support bind variables in dynamic DDL statements. You must use
concatenation to create dynamic DDL statements.

22-AppI.indd 1082 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Appendix I: Mastery Check Answers 1083

2. NDS supports static DDL statements.

True. NDS supports static DDL statements, but you’re more likely to create statements by
concatenating values into them.

3. NDS supports dynamic DML statements with bind variables.

True. NDS supports dynamic DML statements with bind variables.

4. NDS supports dynamic SELECT statements with a known set of columns.

True. NDS supports dynamic SELECT statements with a known set of columns in the
SELECT list. It opens the dynamic statement into a system reference cursor.

5. NDS supports dynamic PL/SQL anonymous blocks.

True. NDS supports dynamic PL/SQL anonymous blocks and it can pass IN-only, IN
OUT, or OUT-only mode variables.

6. NDS supports string literals with an embedded colon (:).

False. NDS doesn’t support an embedded colon (:), and you have to use a CHR(58) to
put one into the context of a dynamic statement.

7. NDS statements with an unknown number of inputs rely on the dbms_sql package.

True. NDS statements with an unknown number of inputs rely on the dbms_sql package.

8. Without NDS, you must explicitly use the dbms_sql package to open a cursor.

True. When you’re not using NDS, you must explicitly open a cursor with the dbms_sql
package.

9. With an unknown set of dynamic inputs, you must parse, execute, and fetch results with
functions and procedures found in the dbms_sql package.

True. You must parse, execute, and fetch results from the dbms_sql package to run
dynamic statements with an unknown set of input parameters.

10. You only need to define columns and bind variables to retrieve SELECT-list values from a
dynamic query with the dbms_sql package.

False. You need to define columns and bind variables and map the column values to
SELECT-list values.

Multiple Choice:

11. Which of the following are procedures in the dbms_sql package? (Multiple answers
possible)

A. bind_array

B. bind_variable

C. fetch_rows

D. is_open

E. parse

A, B, and E are correct. bind_array, bind_variable, and parse are procedures.
fetch_rows and is_open are functions.

22-AppI.indd 1083 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1084 Oracle Database 12c PL/SQL Programming

12. Which of the following are functions in the dbms_sql package? (Multiple answers possible)

A. bind_array

B. execute_and_fetch

C. fetch_rows

D. is_open

E. parse

B, C, and D are correct. execute_and_fetch, fetch_rows, and is_open are
functions. bind_array and parse are procedures.

13. Which of the following are package constants? (Multiple answers possible)

A. The NATIVE constant

B. The V6 constant

C. The V7 constant

D. The V8 constant

E. All of the above

A, B, and C are correct. The NATIVE, V6, and V7 are constants of the dbms_sql package.
You should always use NATIVE from Oracle 7 forward.

14. Which of the following are dbms_sql-supported base scalar types for collections?
(Multiple answers possible)

A. The BLOB data type

B. The CLOB data type

C. The BINARY_DOUBLE data type

D. The BINARY_FLOAT data type

E. The TIMESTAMP data type

A, B, C, D, and E are correct. All of the data types are supported base types of the dbms_
sql Attribute Data Type (ADT) collections.

15. Which of the following dbms_sql functions or procedures execute a query? (Multiple
answers possible)

A. The parse_and_execute procedure

B. The parse_and_execute function

C. The execute function

D. The execute_and_fetch function

E. The execute_fetch_all function

C and D are correct. execute and execute_and_fetch are the only functions that
execute a dynamic query in the dbms_sql package.

22-AppI.indd 1084 12/16/13 5:53 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Glossary

23-Glossary.indd 1085 12/14/13 1:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1086 Oracle Database 12c PL/SQL Programming

This glossary is intended to help you quickly reference and understand terminology that you
encounter throughout this book. Many of these terms are defined in the book, but this
glossary provides a central place to quickly look up a term. Some of these terms have

varying meanings in mathematics and computer science; the definitions you’ll find here are
applicable in the context of database management systems and entity relationship diagramming
for database instances.

0NF Acronym for zero normal form. A 0NF table is one whose normalization level is not
normalized, which means that the collection of columns may result in nonunique rows and that
any column may contain nonatomic values (composites of two or more values).

1NF Acronym for first normal form. A 1NF table is one whose columns hold only atomic values
and whose rows are unique because the list of all columns guarantees unique rows.

2NF Acronym for second normal form. A 2NF table is one that meets 1NF rules and contains no
partial dependency. A partial dependency exists when the table has a composite primary key (made
up of two or more columns and chosen from possible candidate keys as a natural primary key) or
when any non-key column in the table depends on only part of the composite primary key. The
presence of a partial dependency in a table’s design establishes it as a 1NF table. Moving a table
from 1NF to 2NF typically requires that you divide the table into two tables, because the partial
dependency indicates the initial table’s design contains more than a single subject-fact or theme.

After removing the column from the composite natural primary key, you should check
whether the natural key truly resolves uniqueness with the remaining columns. The remaining
columns should describe uniqueness of the table’s single subject-fact or theme. If they [the
remaining columns] do, you have a good natural key for the table from a design perspective.
While a valid natural key becomes a candidate key that you may select as the primary key, you
should always add a surrogate key column as the primary key.

3NF Acronym for third normal form. A 3NF table is one that meets 2NF rules and contains no
transitive dependency. A transitive dependency exists when the table has a non-key column that
depends on another non-key column for context. The presence of a transitive dependency means
the table is in 2NF. Moving a table with a transitive dependency from 2NF to 3NF requires removing
the transitive dependency. Like the process of changing a table with a partial dependency, you
remove both the dependent column and the column that it is dependent on. The column through
which the transitive dependency exists should become the natural key of a new table, and the
dependent column should become a non-key column in that new table. During early design, it is
possible that more than one transitive dependency may exist. You should repeat the process for all
transitive dependencies.

actual parameter list The call parameter list, or the arguments that you pass to the subroutine.
Pass-by-value arguments can be literals or variables, while pass-by-reference arguments must
be variables.

aggregate function A function that adds or calculates a single result for a set of values. When
an aggregate function occurs in a SELECT statement, you must also provide a GROUP BY clause
to instruct SQL to assign a single copy of nonaggregate result columns to each row of an
aggregated result.

23-Glossary.indd 1086 12/14/13 1:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

 Glossary 1087

aggregate result set A SQL result set that has been aggregated through the use of an aggregation
function. Most aggregate result sets hold a combination of aggregate and nonaggregate results. The
nonaggregate result columns must be qualified in a GROUP BY clause because they become the
determinant for the aggregation. More or less, SQL returns rectangular result sets that are determined
by the number of columns across the X axis and the number of rows across the Y axis. The GROUP
BY clause ensures that the many rows of repeating values are collected and represented as a single
row value with the aggregated row.

anomaly A deviation from the common rule, type, arrangement, or form; or an incongruity
or inconsistency.

array A collection of a specific set of things, which are typically unique. The things share one
thing, the data type of the collection. Unlike a list, which has no limit, the number of elements in
an array may grow over time only to the maximum number of elements specified when you
defined the array’s maximum size.

association operator An operator, represented by the symbol =>, that lets you perform named
notation calls. Named notation lets you call a formal parameter list in an order of your choice by
pairing the formal parameter name with the call value or variable.

association table A table designed to hold two or more foreign keys and enable resolving
logical relationships into physical relationships. An association table is also called a translation
table, and the terms are interchangeable.

attribute A specification that describes an object or element; in database modeling and theory,
refers to a column in a table. Attributes (or column) describes elements in the row, where the row
also can be called a tuple or object instance. (See the column definition for more details on the
importance of attributes.) Attributes also applies to instance variables inside an object type, and
they are interchangeably labeled as fields.

Attribute Data Type (ADT) A collection of scalar data types. ADT is a generic way of referring
to a varray or nested table collection.

attribute domain The possible values that fit within an attribute. The domain of male and
female represents the classic choices in a traditional gender column, while the domain of male,
female, or other (third gender) represents the choices in a more modern gender column. The
possible choices (or values) define the domain of the column, and you can restrict the domain
values through database-level constraints.

balanced tree (B-tree) The most common type of database index, an ordered list of values
divided into ranges. A key belongs to a range of rows, and the key lets the index find rows more
quickly in any table than would a full table scan of the data.

branch block A component of a B-tree index. There are three types of branch blocks: a root
branch block holds a list of index values from the leftmost branch-level block; a branch-level
block holds a list of index values for the next level of blocks; and a leaf block holds a list of index
values that points to values.

branch-level block A component of a B-tree index that isn’t a root branch and holds a list of
index values for the next level of blocks.

23-Glossary.indd 1087 12/14/13 1:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1088 Oracle Database 12c PL/SQL Programming

binary relationship A reciprocal set of relations between two things. In databases, the two things
are tables, and the relation is between rows (or instances) of tables or views (where views are
semipermanent result sets or temporary result sets). There are two physical binary relationships. The
one-to-one and one-to-many binary relationships are physical relationships between two tables, or
two rows in the same table for recursive relationships.

A one-to-one binary relationship between tables means one row in one table relates to one
row in another table through a relationship. One row holding a primary key column qualifies as
one half of the relationship, and a copy of the primary key column’s value, a foreign key column,
qualifies as the other half. In a one-to-one binary relationship, which row holds the primary key
doesn’t matter technically. However, if you choose the wrong one, changing it later when the
relationship evolves to a one-to-many relationship can be expensive in both time and resources.

A one-to-many binary relationship between tables means one row holds a primary key
column and another row holds multiple copies of the same primary key values as a foreign key
column. In essence, the one-side donates a copy of itself to enable a join on the equality of
values—an equijoin. Some references describe the primary to foreign key relationship as the
one-side donating a copy to the many-side (albeit in rare cases the many-side can be the other
one-side of the relationship).

It is also possible to have a recursive or self-referencing relationship between two copies of
the same table. Such a relationship exists within a single table when it holds columns for both the
primary key and the recursive foreign key. This lets any row match to one or more rows in the
same table when you use table aliases in a join statement.

NOTE
A self-referencing relationship may resolve between two different rows
or two copies of the same row.

There are also many-to-many relationships, but they’re logical binary relationships because
you can’t implement a many-to-many relationship in a physical binary relationship. All many-to-
many relationships require intermediary tables that hold copies of the respective primary keys in
the same row. The row provides the mapping between the related rows of the two subject-fact or
theme tables.

call parameter list The actual parameter list; see actual parameter list.

candidate key A unique key that you may choose as a primary key. Unique keys are one or
more attributes (or elements) of a row that uniquely identify a tuple (or object instance).

Cartesian product The classic set theory term for a cross join operation, which is when one
row from a set is joined with all rows of another set.

character classes Groups or ranges of characters. You can represent them by enumeration
(listing them all explicitly) between square brackets or by using a dash character-class
metacharacter between the starting and ending characters in a class. Enumeration looks like
[ABCDEabcde012345], and a range looks like [A-Ea-e0-5]. Character classes can also be
represented as POSIX portable character classes, like [:alnum:] for alphanumeric characters, as
qualified by the NLS_LANG environment variable.

23-Glossary.indd 1088 12/14/13 1:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

 Glossary 1089

Chen notation The first take at data modeling. It put relationships into diamond symbols and
failed to capture minimum cardinality in relations.

Chen-Martin notation The second take at data modeling. It added the idea of minimum
cardinality to the drawings but preserved the key binary relationships in the diamond.

collapsed object The name of the object type with a list of call parameters to the constructor
function of the object type. It allows the Oracle database to store objects in a flattened mode
when they’re not used. The TREAT function lets you instantiate flattened objects into memory.
Also known as a flattened object.

collection A set of variables of the same data or object type, with an index value or iterator that
lets you navigate through the collection. When the index value is a sequentially numbered value
the collection is densely populated, which means there are no numeric gaps. When the index
value is a key (a number or string) the collection is sparsely populated, which means there may be
numeric gaps between a numeric index values. A collection of elements has two implementations
in an Oracle database. One is a varray that mirrors an array in an imperative programming language,
and the other is a nested table that mimics a list. Collections may contain scalar data types, object
types, or both.

column An alternative name for an attribute or element of a tuple, row, or object instance. It
describes a vertical element in a two-dimensional table. It comes into the database lexicon from
spreadsheets, where a column defines the vertical axis of data. A column also points to a single
element of a data structure that is found in every tuple, row, or object instance.

Columns may or may not contain a value in any row. A column that allows a null value is an
optional column and has a 0..1 cardinality, which means zero to one attribute (or element) per
tuple, row, or object instance. A column that disallows a null value is a mandatory column and
has a 1..1 cardinality. In a mandatory column, every row requires a not null value in the column
or attribute. Databases let you allow or disallow a null value when you create or modify a table
by assigning a column-level constraint.

column list A comma-delimited list of values. It may apply to the list of values in an override
signature of an INSERT statement. It also may apply to a parameter list, which could be a formal
parameter list or a call parameter list. The formal parameter list defines the parameters that support
a function at call time. Call parameters are the values substituted for the formal parameter list when
you call a function or procedure. Likewise, the column list that you submit to a VALUES clause is
the list of call values to an INSERT statement.

component selector Represented by a period (.), glues references together, such as a schema
and a table, a package and a function, or an object and a member function or field. Dot notation
is the more common way to describe how a component selector works to bridge related parts.

composite (or compound) key A key that consists of two or more columns. A composite key
may be applied to many different types of keys. The terms composite and compound allude to
composite materials (such as fiberglass) and chemical compounds, respectively.

constructor A specialized function that returns an object instance.

23-Glossary.indd 1089 12/14/13 1:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1090 Oracle Database 12c PL/SQL Programming

data structure The definition of a type of data, such as a collection of elements. The elements
can be a group of attributes such as integers, dates, or strings. The data structure can also become
the base user-defined type (UDT) of a collection, where a collection is a set of rows characterized
as a list or an array. This type of data structure can be the basis of a nested object instance.

default signature A data catalog’s order and number of columns required for an INSERT
statement. It is also the formal parameter list of a function or procedure.

delete anomaly An anomaly that occurs when the data model’s design is flawed, allowing you
to delete the wrong data. Like insertion and update anomalies, deletion anomalies occur when
you fail to ensure that a table has a single thing, theme, or subject. A deletion anomaly generally
occurs when non-unique keys fail to find the correct set of rows or a natural key fails to find a
unique row.

densely populated index An index that has no gaps in a numeric sequence of numbers. Oracle
implements the numbers as integers, and they use 1-based numbering in collections.

descriptor The term formerly used to describe a reference to the storage location of a CLOB,
NCLOB, BLOB, or BFILE data type. It has been superseded by the term locator.

determinant The thing that decides meaning or context of another variable (see functional
dependency for an example). A determinate may be part of a composite natural key or a single-
column natural key. A single-column natural key (also called a candidate key) determines uniqueness
in a table about a single thing, theme, or subject, and is a positive indicator of a good design. A
determinate inside a composite natural key identifies a set of possible values that has context only
with the determinate and indicates that the table is less than second normal form (2NF).

domain A set of related things, like the set of integers or the set of real numbers. For example,
the set of real numbers is the domain of possible values in a column. It is also possible to apply
domain to instances of a thing, theme, or subject. That makes the domain the set of possible
unique rows in a table.

Domain can also apply to our knowledge of a subject, like algebra, biology, chemistry, or
literature analysis. The sciences have rigorous definitions or boundaries, like biology’s taxonomy of
life, domain, kingdom, phylum, class, order, family, genus, and species. Literature analysis is not so
easily classified and is arguably subject to interpretation. Most business problems can be classified
as subject to interpretation, but sometimes they do follow clear-cut rules and definitions.

dot notation Using a dot or a period (.) to reference an element of a container, such as a table
in a schema, a function in a package, or a member function or field in an object. It’s the more
common way to describe a component selector.

empty Describes an Oracle object type that holds only an empty copy of the object type. Its
most common use is with the empty_clob and empty_blob function calls for initializing
internally stored large objects.

entity A container, most often a table in a relational database.

entity-relationship model (ERM) A more common acryonym that replaces “ER model” by
including “model” in the acronym.

23-Glossary.indd 1090 12/14/13 1:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

 Glossary 1091

entity-relationship (ER) model A graphical drawing that shows a collection of tables as symbols
and identifies their connecting binary relationships through a series of lines.

equijoin A join between two tables or instances of one table based on the equality of values in
the primary and foreign key columns.

field An attribute (or element) of a primitive or user-defined data type. A field is one element of
a row and one instance of the column’s data type. A field can have a fixed or variable size. The
field descriptor belongs with the record descriptor for rows of a table.

file A repository of data. The data can be a set of binary or ASCII bytes representing information
such as an image, program, or document.

file system Manages files, which are data repositories. Typically, file systems manage the storage,
access, and retrieval of files.

flattened object See collapsed object.

foreign key One or a set of attributes (or elements) that maps to a primary key made up of one
or a set of attributes (or elements). The primary key is typically in another table but can be in the
same table as the foreign key. This type of relationship is a one-to-many binary relationship. The
table holding the primary key is the one-side of the binary relationship, and the table holding the
foreign key is the many-side of the binary relationship. A self-referencing one-to-many
relationship exists when both the primary and foreign keys exist in the same table.

formal parameter list A list of parameters included in the definition of a stored program (such
as a function, procedure, package function or procedure, or object method). It represents the
position, data type, and any default values for the parameters, and whether they’re pass-by-value
or pass-by-reference parameters.

forward engineering The process of using a SQL script to create an ER model. See also entity-
relationship (ER) model.

FROM clause Identifies the tables that will be used in a query or a SELECT statement.

function A subroutine that may have a parameter list of one or more formal parameters and
a return type that maps to a SQL or PL/SQL data type. The formal parameters are inputs to the
function, and, in some cases, outputs. Parameters have three modes of operation: as an input only,
as an output only, or as both an input and an output. A function with input-only parameters is a
pass-by-value function, while a function is a pass-by-reference function when at least one parameter
acts as either an OUT-only mode parameter or an IN OUT mode parameter.

functional dependency A dependency that exists when an attribute or a set of attributes (or
elements) depends on exactly one other unique attribute or set of attributes. For example, a movie
rating of PG by the Motion Picture Association of America is an example of a functional dependency
because the PG rating is wholly dependent on the rating body. This is shown as a functional
dependency with the following notation:

Rating Agency → Rating

23-Glossary.indd 1091 12/14/13 1:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1092 Oracle Database 12c PL/SQL Programming

The expression says that the rating agency determines the rating. The variable on the left of
this type of expression is called the determinant (the thing that decides meaning or context of the
variable on the right). See also determinant.

GROUP BY clause Designates the nonaggregated columns in an aggregated result set from
a query or a SELECT statement.

HAVING clause Filters an aggregated result set in a query or a SELECT statement.

HNF Acronym for highest normal form. HNF always the present normalization level the table,
which means an unnormalized table’s HNF is 0NF and so forth.

Information Engineering notation The formal name for the notation system developed by
James Martin. It removed the diamond symbols used in Chen-Martin notation and put all notation
along the relationship lines. The use of perpendicular lines, greater-than and less-than symbols,
and zeros gave rise to a notation system that is easy to read and doesn’t waste space when printed.
MySQL Workbench uses the Information Engineering notation symbols.

initialized collection A varray or nested table that has been constructed with zero elements or
one or more elements. An initialized collection with zero elements is called an empty collection,
and an initialized collection with one or more elements is called a populated collection.

inner capture An Oracle-specific phrase that describes when a join is made between a field
value of an object type column and either another column or a field value of another object type
column. It describes a dot notation that goes one level deeper than the object type column itself.
For example, the dot notation may connect things from the largest container to the leaf node
scalar value, which means from a table name, through a column name, to a field.

insertion anomaly An anomaly that allows you to insert duplicate or incorrect data. An insertion
anomaly typically occurs when your data model design fails to ensure that a table focuses on a
single thing, theme, or subject. More often than not, it means that rows aren’t unique if the table’s
highest normal form is first normal form (1NF), and that the primary key fails to determine the
uniqueness of rows in second normal form (2NF).

instance A collection of databases managed by a database management system (DBMS). A MySQL
Server instance is the set of databases it manages.

instantiate To promote an object from a collapsed object to an object instance in memory,
thereby making it active.

key A unique or nonunique attribute or set of attributes that identifies rows in a table. A unique
key identifies a unique row, while a nonunique key identifies one or more rows in a table.

Keys serve different purposes in tables. A key may identify the column or set of columns that
uniquely qualifies a row, in which case the key is a candidate key to become the primary key.

leaf block A component of a B-tree index that holds a list of index values that point to
actual values.

23-Glossary.indd 1092 12/14/13 1:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

 Glossary 1093

list A collection of a specific set of things, which are typically unique. The things share one
thing, the data type of the collection. The number of elements in a list may grow over time
because, unlike arrays, lists don’t impose a limit on the number of elements in a collection.

locator A reference to the storage location of a CLOB, NCLOB, BLOB, or BFILE data type.

logical relationship A binary or n-ary relationship that has no physical implementation without
an intermediary table. Logical relationships enable modeling patterns to accommodate real-world
business problems. The logical relationship is always implemented by creating an association or
translation table that maps the relationship between the two tables’ primary keys. A mandatory
column may have a 0..* (zero-to-many) cardinality when the column uses the MySQL SET data
type.

mandatory column A column that requires a value when inserting a row or updating that
specific column. It has a 1..1 cardinality during design and most often has a not null database
constraint to guarantee the insertion or update of a valid value.

many-to-many binary relationship A nonspecific relationship between two tables where one
row in one table may map to zero to many rows in the other, and vice versa. Naturally, you must
resolve this type of logical binary relationship to a physical binary relationship. The one-to-many
and one-to-one (infrequently implemented) relationships are the only physical binary relationships.
You resolve the logical many-to-many binary relationship by creating a third table that holds the
foreign key from both tables in the same row. The third table is typically called an association or
translation table.

Martin notation See Information Engineering notation.

member A function or procedure inside an Oracle object type.

MEMBER OF A logical comparison operator that determines whether an element is a member
of a collection, such as a varray or a nested table.

multilevel collection A collection held inside another collection. It’s possible to implement
multilevel collections as transient or persistent object types.

n-ary relationship A nonspecific relationship between three or more tables. Like the logical
many-to-many binary relationship, an n-ary relationship doesn’t have a physical implementation
by itself. You map the three or more tables by using another table that holds foreign keys from all
of the other tables in a single row. This intermediary table is typically known as an association or
translation table. Typically, all of the original tables have a one-to-many relationship to the
association table, and all relationships resolve through the association table.

name resolution A process whereby you at the top of a hierarchy and descend one level at a
time. The hierarchy is typically an inverted tree of nodes. The starting point is the root node (or
topmost node), nodes with dependent nodes are simply ordinary nodes, and leaf nodes are at the
bottom of any branch of the inverted tree because the bottommost nodes don’t have any child
nodes. Such bottommost nodes are leaf nodes. An example would be starting at a schema and
navigating down to a table or column within a table, or a field within an object type column.

23-Glossary.indd 1093 12/14/13 1:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1094 Oracle Database 12c PL/SQL Programming

natural key A unique key that identifies a row of data or instance of data. A natural key may be
one or more attributes (or elements) that uniquely identify a tuple (a row) or object instance.
Natural keys are typically a set of attributes that uniquely identifies each row in a table. A natural
key is automatically a candidate key that you may choose as the table’s primary key. All other
columns in the table should enjoy a direct and full functional dependency on all attributes in the
natural key.

A surrogate key varies only in one regard: it needs to map to one and only one natural key. A
surrogate key should never be added to the natural key in order to achieve unique rows. This means
the surrogate key plus the natural key should never become the natural key because otherwise the
attributes that describe the table’s single subject wouldn’t do so uniquely.

NOTE
If you adopt a surrogate key for joins, the surrogate key plus the
natural key should become a unique index to speed searches
through the table.

nested table A collection of elements, where the elements can be scalar data types, object
types, or collections of object types. A nested table acts like a doubly linked list in imperative
programming languages. It has no limit, other than that imposed by the Oracle SGA, on the
number of elements in the collection. The Oracle Collection API lets you navigate forward or
backward through the list.

nested varray Like a nested table, a collection of elements where the elements can be scalar
data types, object types, or collections of object types. Unlike a nested table, a nested varray has
a fixed size and can’t have more elements than that. A nested varray acts like a numerically
indexed array in imperative programming languages. The Oracle Collection API lets you navigate
forward or backward through it, and you can also access the limit of the maximum number of
array elements.

nominated key The candidate key you choose to nominate as the primary key. At some point,
the nominated key simply becomes the primary key. At that point, the nomination becomes
history and nobody cares about it. The only subtle difference is that while most people use the
term nominated key to indicate the candidate key they’ve tentatively chosen before making a final
decision, some people substitute nominated key for candidate key. The latter usage should be
discouraged.

nonempty subsets Nested tables, at any level of nesting, found in object tables or object
columns. The official Oracle label for these is submultisets.

non-key An attribute (column) or set of attributes (columns) that contains a descriptive set of
values that identifies unique rows as unique but provides a characteristic to a row of data. All
non-key columns should have a full functional dependency on the natural key or primary key.

nonspecific relationship A logical or reciprocal set of relations between two things. Nonspecific
relationships are many-to-many and n-ary relationships. Nonspecific relationships create situations
where rows in two tables have no way to establish a relationship between the two tables, because
one copy of the primary key can’t be donated to the other row without breaking the many-to-many

23-Glossary.indd 1094 12/14/13 1:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

 Glossary 1095

relationship pattern. Logical nonspecific relationships are thereby mapped through association or
translation tables and decomposed into specific one-to-one or one-to-many binary relationships.

normalization The process of breaking a table or relation with more than one thing, theme, or
subject into a set of tables. The goal of normalization is to have tables with one thing, theme, or
subject so that they aren’t susceptible to insertion, update, or delete anomalies.

object body In the context of a relational database, the implementation of an object type.

object column A column in a table that has an object type rather than a data type. The
implementation of an object column is synonymous with the implementation of a persistent
object type. Object columns may also contain other nested object types.

object instance A data structure or row of data inserted into an object type, which is like a
hybrid table in an object-relational database management system (ORDBMS). Moreover, an
object instance is a row in any table. The row contains purely attributes in a relational database.

object table A table defined by an object type. It supports inserts and updates directly to column
values like a relational table, as well as inserts or updates with collapsed objects.

object table function A function that returns a collection of a composite data type, known as
an object type.

object type In the context of a relational database, a data structure, or the definition of a table.
Definitions of tables are stored in the database catalog and built upon pre-existing data types.
Some databases support user-defined types (UDTs), which include attributes and methods. The
pattern of a table is a generalization of a table, and rows are instances of an object type.

one-to-many binary relationship A physical relationship characterized by one table holding
a primary key and the other table holding a foreign key. The primary key can be one or more
attributes, and the foreign key is a copy of values from the primary key attribute(s). The one-side
of the relationship holds the primary key, while the many-side holds one-to-many copies of the
primary key as the foreign key. The tables resolve or map rows from one to the other by comparing
the values of the primary and foreign key columns.

one-to-one binary relationship A physical relationship that you can implement in the database.
It is also a specialized or subtype of a one-to-many relationship. One of the one-sides holds the
primary key value(s) and the other one-side holds a copy of the primary key as the foreign key
value. It is possible to choose either table as the one with the primary key, but if you choose
incorrectly, the re-engineering cost is high because the one-side holding the single copy of the
primary key as a foreign key should never become the table that holds the primary key in the
relationship between the tables.

optional column A column that doesn’t require a value when inserting a row or updating that
specific column. It has a 0..1 (zero-to-one) cardinality during design and is typically unconstrained.
An optional column may have a 0..* (zero-to-many) cardinality when the column uses the MySQL
SET data type.

23-Glossary.indd 1095 12/14/13 1:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1096 Oracle Database 12c PL/SQL Programming

ORDER BY clause Designates how the rows are sorted by a SELECT statement.

override signature A form of named notation that allows you to provide call parameter lists in
the order you choose. An override signature lets you provide a column list that overrides the data
catalog’s order and number of columns required for an INSERT statement. An override signature
also lets you provide a named notation list of columns and values to a function or procedure.

parameter A placeholder variable defined as part of a function or procedure signature. A
parameter is identified by its data type only, with one exception: parameters to object types are
uniquely identified by their formal parameter name and data type.

parameter list A list of columns with individual modes of operation. Parameters can have an
IN-only, OUT-only, or IN OUT mode of operation. Parameters with an IN-only mode of operation
may also have a default value.

partial dependency A dependency that exists when the primary key is a composite key (aka
compound key of two or more columns), and one or more non-key columns depend on less than
all of the columns of the composite key primary key. Hence, the non-key column is partially
dependent on the primary key.

object table function A function that returns a collection of a composite data type, known as
an object type.

pipelined table function A function that returns a collection of records that is converted into
a SQL object collection.

portable character classes Classes in which the ranges are represented by keywords described
in Table E-1 in Appendix E. Classes are also known as POSIX keywords like [:alpha:] or
[:alnum:] (alphabetic and alphanumeric ranges, respectively).

primary key A column or set of columns that is assigned a primary key constraint and uniquely
identifies all rows in the table. A primary key may be a surrogate key, which is an artificial
numbering schema, or a natural key made up of one to many columns of the table.

procedure A subroutine that may have a parameter list of one or more formal parameters but
no return type. More or less, a procedure is a function that returns a void data type. Like
functions, procedures have formal parameters as inputs, outputs, or both. A procedure with input-
only parameters is a pass-by-value module, while a procedure with at least one OUT-only or IN
OUT mode parameter is a pass-by-reference module.

range character classes Groups or ranges of characters. A range character class lets you
represent a set of values by enumeration (listing them all explicitly) between square brackets or by
using a dash character-class metacharacter between the starting and ending characters in a class.
Enumeration looks like [ABCDEabcde012345], and a range looks like [A-Ea-e0-5].

record A row of data in a table, or an instance of a defined data structure (such as a table). The
term record comes from file system technology, which predates database technology, so
traditionally it meant only a horizontal element in a table composed of fields (in other words, a
row or tuple). The latter meaning is specific to databases.

23-Glossary.indd 1096 12/14/13 1:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

 Glossary 1097

regular expression Any set of characters, numbers, classes, meta-sequences, and identifiers that
let an engine discover an exact or like match in text. A regular expression are a grammar of
special characters that let you make pattern matching clear and concise, at least once you
understand how they work. You can find coverage on regular expressions in Appendix E.

result set A set of results returned by a SQL statement, formatted in rectangular shape. The
rectangular shape is determined by the number of columns across the X axis and the number of
rows across the Y axis.

reverse engineering The process of using an existing database to generate a SQL script capable
of generating an entity relationship model. ER models are symbolic representations of how tables
are connected in a relational database.

root branch block A component of a B-tree index that holds the list of all next-level or leaf-
level blocks.

routine A subroutine, a stored program unit (a stored function or procedure), or a programming
language function or method.

row An instance of an object where the object is a table or an instance of a data structure. Also,
a horizontal element in a table. The term comes from a spreadsheet context, where row defines
the horizontal axis of data. A row is also an instance of the data structure defined by a table
definition, and the nested array of a structure inside an ordinary array.

SELECT list The comma-delimited list of columns in a SELECT statement.

SELF The keyword that represents a copy of the current object instance. It is equivalent to the
this keyword in the Java programming language.

sparsely populated index An index that has gaps in a numeric sequence of numbers, or one
that uses string index values. You must navigate across a sparsely populated index by using an
iterator to move across the values in a collection.

specific relationship A reciprocal set of relations between two things where one row in a result
set finds one row in another result set, or where one row in a result set finds many matches in
another result set. These binary relationships are, respectively, one-to-one and one-to-many.
Specific relationships have equijoin or non-equijoin resolution. Equijoin resolution matches
values, like the process in a nested loop; non-equijoin resolution matches values through a range
or inequality relationship. Equijoins typically have a primary key and a foreign key, and the one-
side holds the primary key while the many-side holds the foreign key. In the specialized case of
a one-to-one relationship, you must choose which table holds the primary key that becomes
a functional dependency as a foreign key in the other.

subdomain A subset of related things. For example, negative, zero, and positive integers are
subsets of the set of integers. The foregoing example describes the subdomain of possible values
in a column based on the column’s data type. Subdomain also describes a like set of rows in a
table. The easiest example would be using a gender column to find the men or women in a set
of people.

23-Glossary.indd 1097 12/14/13 1:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1098 Oracle Database 12c PL/SQL Programming

submultiset A nested table stored in a transient or persistent object. The submultiset may occur
at any level deeper than the first. Also called a nonempty subset.

subroutine An alternate description for a routine. Like routines, subroutines are stored program
units (stored functions or procedures) or programming language functions or methods.

super key A key that identifies a set of rows, such as a gender column that lets you identify males
or females in your data model.

surrogate key A key that isn’t related to the subject of the table and as an attribute provides no
characteristic of the subject except uniqueness. Every surrogate key should map to one unique
natural key. Using the natural key and surrogate key together to define uniqueness means the
natural key isn’t unique and therefore isn’t a natural key.

symbol set A group of drawing symbols that lets you tell a story, such as a rectangle to depict
a table and a line to depict a relationship between two tables. Unified Modeling Language is a
common symbol set, and UML uses of two cardinal numbers separated by two dots to represent
what would be otherwise a long hand (or wordy) description of cardinality. For example, you use
a 0..* for a zero-to-many relationship and a 1..* for a one-to-many relationship. While a one-to-
many relationship has no shorthand version, a zero-to-many relationship may be represented with
an asterisk (*) or, in some tools, an infinity symbol (∞).

table A two-dimensional structure defined by the horizontal data structure that defines the list
of column(s) as the X axis and the rows instances of the data structure as the Y axis.

TABLE function A function that lets you construct a SQL result set for join operations in SQL
statements.

transitive dependency A dependency that exists when a column depends on another column
before relying on the primary key of the table. It may exist in tables with three or more columns
that are in second normal form. See also 2NF.

translation table A table that is designed to hold two or more foreign keys and that enables
resolving logical relationships into physical relationships. A translation table is also known as an
association table, and the terms are interchangeable.

tuple A row in a table. The term comes from relational algebra, where a column is an attribute
and a row is a tuple.

unique key A column or set of columns that uniquely identifies a row of data.

uninitialized collection A collection that has been declared but not defined. A persistent
object type (one used as a column data type in a table) is an uninitialized collection when a row
contains a null value rather than a constructor signature. You define an empty collection by using
a constructor signature of a type name followed by parentheses. A populated collection would
include elements, which would be scalar values for an Attribute Data Type (ADT) and a object
constructor for a user-defined type (UDT).

23-Glossary.indd 1098 12/14/13 1:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

 Glossary 1099

unnesting query A SELECT statement that requires creating table references to the object
column collection with the TABLE function and then using cross joins. Cross joins resolve
because the row that holds the object column collection is known through hidden internal
columns. However, you must use a (+) on the object column collection when the potential exists
that it may hold a null value, or uninitialized collection.

update anomaly An anomaly that occurs when the data model’s design allows incorrect changes
to data. Like insertion anomalies, update anomalies occur when you fail to ensure that a table has
a single thing, theme, or subject. It generally occurs when nonunique keys fail to find the correct
set of rows, but it also can occur when a natural key fails to find a unique row.

user-defined type (UDT) A data structure that typically groups a list of field values together
into a record data structure. The default signature is position specific by the field list of columns,
but Oracle does let you access them by named notation provided you initialize all of the field-list
elements.

varray A collection of elements, where the elements can be scalar data types, object types, or
collections of object types. A varray acts like an array in imperative programming languages. You
define a varray with a specific maximum number of elements. The Oracle Collection API allows
you to navigate the list forward and backward like a doubly linked list.

WHERE clause Filters nonaggregated results and returns the results from a query or a SELECT
statement.

23-Glossary.indd 1099 12/14/13 1:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

23-Glossary.indd 1100 12/14/13 1:34 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Symbols

‘ (apostrophe), back-quoting and, 632
>= (greater than or equal to), as comparison

operator, 55
<= (less than or equal to), as comparison

operator, 55
. (dot), as component selector, 660, 772
. (period), aborting SQL statements, 634
/ (forward slash)

executing statements, 748
running SQL statements from buffer,

633–634
; (semicolon), for statement termination, 748
|| (pipes), 847
= (equal sign), for matching values, 55
{} (curly braces), in block syntax, 44

A

abstract classes, in defining object types, 451
abstract factory pattern, 484
abstraction, in object-oriented

programming, 451
access control lists (ACLs)

tables and, 621
VPDs (Virtual Private Databases)

and, 756

ACCESSIBLE BY clause
function call white listing, 306–307,

323–324
object call white listing, 455,

461–463
overview of, 101, 298
package call white listing, 355, 357
procedure call white listing, 339
stored program white listing, 32–33
subroutine white listing, 97–98

ACID (atomic, consistent, isolated, durable)
compliant DELETE statements,

797–799
compliant functions and procedures,

302–303
compliant INSERT statements,

796–797
compliant transactions, 106, 598,

615, 795
compliant UPDATE statements, 797
two-phase commit (2PC) protocol

and, 617
ACLs (access control lists)

tables and, 621
VPDs (Virtual Private Databases)

and, 756
ADD_MONTHS, date-time conversion

functions, 911
ADMIN users, 657

Index

1101

24-Index.indd 1101 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1102 Oracle Database 12c PL/SQL Programming

administrative views
checking package dependencies,

380–381
finding packages, 379
overview of, 776
validation methods and, 381–382

ADTs (Attribute Data Types)
adding elements to collection,

226–227
associative arrays, 241–242
collection of scalar types, 144, 221,

225–231, 821
creating collections, 72
creating varray ADT, 747–749
defining for use with PL/SQL

hierarchical profiler, 1033
handling a collection of numbers, 77
implementing, 72–75
object table function views and, 758
overview of, 787
updating elements, 825–827
updating nested tables, 824–825

Advanced Friendly Interface (AFI)
interfaces for Oracle database, 8–9
SQL*Plus as, 625

AFI (Advanced Friendly Interface)
interfaces for Oracle database, 8–9
SQL*Plus as, 625

AFTER clause, DML triggers and, 515
AFTER EACH ROW statement, in compound

trigger, 498, 528–530
AFTER statement, in compound trigger, 498,

528–530
aggregate results sets, 817
aggregation

inheritance as specialized form of, 476
queries, 843, 861–866
selective, 875–876

aliases, creating virtual, 414
ALL administrative view

checking package dependencies,
380–381

finding packages, 379
validation methods and, 381–382

ALL keyword, 812
ALTER INDEX statement, 785–786

ALTER statement
assigning tablespaces, 659
column changes, 778–780, 783–784
column maintenance, 780–782
data catalog table definitions, 776–778
index changes, 785–786
object changes, 787–791
overview of, 773
privilege changes, 494
table changes, 776
tablespace assignment, 710
unlocking accounts, 655, 707
user changes, 773–776
USING INDEX clause, 719

ALTER TABLE statement
allowing tables to use existing

index, 786
dropping columns and constraints, 784
maintaining columns, 780–782
making changes to columns, 778–780
modifying columns and constraints,

783–784
ALTER TYPE statement, 789
ALTER USER statement, 773–776
American National Standards Institute. See

ANSI (American National Standards
Institute)

anchoring
attributes and tables, 65–66
hidden resource cost related to, 68
inheritance and, 10
variables, 123
visible and invisible columns and,

66–67
AND operator

description of, 156
using inside WHERE clause, 831

anonymous blocks
basic block structure, 45–48
executing, 44
executing with SQL*Plus, 640–641
identifiers and, 118
nested anonymous blocks, 55–57
PL/SQL support, 47, 639–640
as programming units, 122
variables in, 50–55

24-Index.indd 1102 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1103

ANSI (American National Standards Institute)
SQL-89 cross joins, 879–880
SQL-89 inner join, 883
SQL-92 cross joins, 880
SQL-92 inner join, 883–884
SQL data type map, 720
SQL standards, 619, 698

Apache, creating virtual alias and virtual
directory, 414

APEX (Oracle Application Express), 14
APIs (application programming interfaces).

See also Collection API
as collection of stored programs, 616
minimizing SQL injection attacks, 621
native client API support in PL/SQL, 34
packages and, 450
referential integrity, 668
static and instance object types, 452

apostrophe (‘), back-quoting and, 632
APPEND procedure, LOB manipulation

methods, 431
application DBAs, 7
application domain indexes, 755
Application Express (APEX), 14
application programming interfaces. See APIs

(application programming interfaces)
APPLY statement, enhancements to, 29–31
architecture

development architecture, 6–7
of dynamic SQL statements, 547
of functions and procedures,

295–301
of packages, 348–352
processing architecture, 12–13
of triggers, 495–499

arrays
associative. See associative arrays
collections as, 147
defined, 218
inserting, 808–811
PL/SQL varrays mapped to, 219
vs. lists, 748

AS keyword, column aliases and, 846
ascending/descending indexes, 754
ASCII character function, 894–895
ASCIISTR character function, 895

assignment operators
assigning values in declaration blocks,

51–55
compilation errors and, 265
delimiter functions, 112–114

association operator (=>), 303
associative arrays

assigning values to, 242–243
Collection API supporting, 247
compared with SQL collections, 219
of composite types, 79–80, 245–247
dbms_sql package supporting,

577–578
defining and using, 241
defining associative array data type,

1025–1026
implementing table collection as,

229–231
key (or string) indexed, 244–245
mapping PL/SQL types to non-PL/SQL

types, 219
numerically indexed, 242–243
review answers, 1067–1069
review questions, 259–260
of scalar data types, 77–78, 241–242

atomic property. See ACID (atomic,
consistent, isolated, durable)

attackers, categories of, 671–672
attribute chaining, 467
Attribute Data Types. See ADTs (Attribute

Data Types)
attributes

anchoring, 65–68
inability to override type attributes, 477
object, 454
record structure, 763

Audit Vault, in security hardening, 672
auditing

FGA (fine-grained auditing), 969,
990–991

triggers creating audit logs, 493
authentication, of users, 706
AUTHID clause

accessing functions, 98
accessing procedures, 100
defining functions, 307

24-Index.indd 1103 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1104 Oracle Database 12c PL/SQL Programming

AUTHID clause (cont.)
defining procedures, 339
invoker rights model and, 377
limiting function calls, 98
limiting procedure calls, 100
packages and, 101, 356
setting schema-level program as invoker

rights model, 359
white listing users for calling functions,

procedures, packages, and object
types, 298

autonomous functions, in SQL
statements, 298

autonomous transactions, 303, 618
AUTONOMOUS_TRANSACTION

precompiler, 371
AVERAGE

aggregation, 861
GROUP BY clause and, 866
use with numbers, 863–864

B

B-trees (balanced trees)
B-tree cluster indexes, 754
overview of, 753

B2B (business-to-business), 834
back-quoting, 632
background processes, 598–600
balanced trees. See B-trees (balanced trees)
batch import files, 834
batch scripting. See also scripts

anonymous blocks supporting, 47
passing parameters to scripts, 638–639

BEFORE clause, DML triggers and, 515
BEFORE EACH ROW statement, in compound

triggers, 498, 528–530
BEFORE statement, in compound

triggers, 497
BETWEEN operator, 156
BFILE data type

BFILENAME function, 941–943
creating virtual directories for, 413–419
methods in dbms_lob package,

440–441
overview of, 142

reading canonical path names and
filenames for, 419–426

SQL data types, 702
updating LOBs (large objects), 827–828
working with, 413

BFILENAME function, SQL built-in functions,
941–943

Binary LOB data type. See BLOB (Binary
LOB) data type

BINARY_DOUBLE data type
converting data types, 807–808
IEEE 754-format data types, 139
NUMBER data types, 721
SQL data types, 701

BINARY_FLOAT data type
converting data types, 807–808
NUMBER data types, 722
SQL data types, 701

BINARY_FLOAT_INFINITY constant, 139
BINARY_FLOAT_NAN constant, 139
BINARY_INTEGER data type, 138, 721
bind variables, 553
bind_array procedure, in dbms_sql

package, 578–579
bind_variable procedure, in dbms_sql

package, 579
bind_variable_char procedure, in

dbms_sql package, 579
bind_variable_raw procedure,

in dbms_sql package, 580
bind_variable_rowid procedure, in

dbms_sql package, 580
bitmap indexes, 755
bitmap operations, 687–688
black boxes

accessing via privileges, 375
calling programs from trigger bodies, 497
of local functions or procedures, 350
subroutines as, 295, 338

black lists, of unauthorized users, 324
BLOB (Binary LOB) data type

appending RETURNING INTO clause to
UPDATE statements, 819–821

assignments over 32K, 389–390
assignments under 32K, 389
data state options, 390

24-Index.indd 1104 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1105

defining tables with large strings,
726, 729

displaying on web pages, 410–412
EMPTY_BLOB function, 945–947
INSERT statement for, 392
overview of, 143, 736
procedures for web upload, 405–406
reading local files into BLOB columns,

402–404
SQL data types, 702
UPDATE statement for, 393
updating LOBs (large objects),

827–828
uploading to web pages, 406–410

BLOB_DEDUPLICATE_REGION record
structure, 428

blocks
assigning values to associative arrays,

242–243
basic block structure, 45–48
declaration block errors, 271–273
declaration blocks, 48–49
exception blocks, 49–50
exception blocks in error management,

269–271
executing named block programs,

641–643
execution blocks, 44–45
function prototype, 306
functions and procedures stored as

named blocks, 294
identifiers and, 118
local named blocks, 57–60
nested anonymous blocks, 55–57
PL/SQL support, 639–640
procedure prototype, 339
as programming units, 122
runtime errors and, 266–267
stored named blocks, 60–62
variables in anonymous blocks, 50–55

bodiless packages, 101
Boolean data type

mimicking, 729–730
not supported in Oracle Database 12c,

713, 720
overview of, 126–128

Boolean expressions
in CASE statements, 82
conditional structures and, 81–82
searched CASE statements and, 166

Boolean literals, 120
brute-force attacks, 671
buffer, rerunning SQL statements from,

633–634
BULK COLLECT INTO statement,

203–204, 571
bulk operations

attributes, 203
BULK COLLECT INTO statement,

203–204, 571
%BULK_EXCEPTION, 211–213
%BULK_ROWCOUNT, 203
DELETE statement, 210
dynamic statement processing, 571
INSERT statement, 208–209
LIMIT-constrained collection

targets, 206
MERGE statement in bulk imports,

835–841
moving data into collections,

235–236
in NDS, 554–555
overview of, 95–96
parallel collection targets, 204–207
record collection targets, 205–208
UPDATE statement, 209–210

%BULK_EXCEPTION, 203, 211–213
%BULK_ROWCOUNT, 203

C

C++ language
comparing PL/SQL with, 122
inheritance and, 476

C language, comparing PL/SQL with, 122
C2B (consumer-to-business), MERGE

statement and, 834
caching, invoker rights functions, 32
call mode, of SQL*Plus, 12
CALL statement

calling functions, 98–99
calling procedures, 100

24-Index.indd 1105 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1106 Oracle Database 12c PL/SQL Programming

calls
component call chaining, 70
to deterministic pass-by-value

functions, 327
function call notation, 304
function call white listing, 306–307,

323–324
function calls, 98–99
function calls as expressions, 163–164
inability to call procedures

from SQL, 338
object call white listing, 455, 461–463
OCI (Oracle Call Interface), 11
package call white listing, 355, 357
to pipelined functions, 316
to PL/SQL programs with SQL*Plus,

639–640
procedure call limits, 100
procedure call notation, 304–305
procedure call white listing, 339
programs from trigger bodies, 497
remote, 378
scripts, 634–635
stored procedure call white listing,

32–33
stored procedure calls, 556–557
subroutine calls, 303–304, 344
white listing function, procedure,

package, and object calls, 298
candidate keys, UNIQUE constraints

and, 665
canonical path names, BFILEs and,

419–426
CARDINALITY, collection management

functions, 921
CARDINALITY, collection set operator,

928–929
cardinality, defined, 663
Cartesian product, 880
case sensitivity

in PL/SQL language, 10
of table and column names, 718

CASE statements
conditional structures, 82–83
displaying information from data

catalog views, 776–778

for equality/inequality evaluation,
870–871

overview of, 166–167
CAST function

casting object values into collections,
735–736

converting data types, 807–808
SQL data type conversion functions,

902–904
catalog. See data catalog
CDB administrative view

checking package dependencies,
380–381

finding packages, 379
validation methods and, 381–382

CDBs (container databases)
architectural changes, 596–597
creating, 8
SID (System Identifier) for, 603–604
sys and system schemas, 602
users, 654–656

CEIL, number function, 933–934
chaining component calls, 70
CHAR data type

in CASE statements, 82
CHARACTER subtype, 129
converting data types, 807–808
fixed-length strings and, 63–64
overview of, 128–129
SQL data types, 699
syntax for fixed-length string, 724
TO_CHAR function, 905–907

character classes, regular expressions,
1000–1003

character data types
CHAR data type, 128–129
CHARACTER data type, 129
LONG and LONG RAW data types,

129–130
overview of, 128, 724–725
ROWID and UROWID data types,

130–131
Unicode characters, 137
VARCHAR2 data type, 131–132

character functions, SQL built-in
ASCII function, 894–895

24-Index.indd 1106 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1107

ASCIISTR function, 895
CHR function, 895
CONCAT function, 896
INITCAP function, 896
INSTR function, 897
LENGTH function, 897–898
LOWER function, 898
LPAD function, 898–899
LTRIM function, 899
REPLACE function, 899–900
REVERSE function, 900
RPAD function, 900–901
RTRIM function, 901
UPPER function, 901

character literals, 119
Character LOB data type. See CLOB

(Character LOB) data type
CHARTOROWID function, converting character

string into ROWID, 130
CHECK constraints

adding to columns, 781–782
applying to single or multiple

columns, 751
out-of-line constraints, 722–723
types of database constraints,

669–670, 712
Checkpoint (CKPT) process, in database

architecture, 599
child tables, table scope, 734
CHR character function, 895
CKPT (Checkpoint) process, in database

architecture, 599
classes

character classes, 1000–1003
collation classes, 1003
declaring subclasses, 477–478
functions and procedures defined as

class-level subroutines, 294
getters and setters, 463–465
implementing subclasses, 478–481
inner classes not supported, 456
instantiation of, 453
in object implementation, 451
packages compared with, 368
subclasses and superclasses, 475–476
subclasses extending data type

behavior, 735

CLI (command-line interface)
interfaces for Oracle database, 8–9
SQL*Plus, 622

CLI (Common Language Infrastructure),
24–25

client APIs, native support for, 34
CLOB (Character LOB) data type

appending RETURNING INTO clause to
UPDATE statements, 819, 821

assigning using PL/SQL function,
397–398

assignments over 32K, 389–390
assignments under 32K, 388
converting LONG and LONG RAW types

to, 394–396, 567–568
data state options, 390
defining table with large strings,

725–726, 729
displaying on web pages, 410–412
EMPTY_CLOB function, 948–949
INSERT statement for, 391
inserting, 805–806
overview of, 143–144
procedures for web upload, 405–406
reading local files into CLOB columns,

399–402
SQL data types, 700
TO_CLOB conversion function, 907
UPDATE statement for, 392
updating LOBs (large objects), 827–828
uploading to web pages, 406–410
writing CLOB column from PHP, 820
XMLTYPE data type as specialized form

of, 736
CLOB_DEDUPLICATE_REGION record

structure, 428
close procedure, closing LOBs, 429
close_cursor procedure, dbms_sql

package, 580
COALESCE function, SQL built-in

functions, 943
code

comparing PL/SQL with C, C++, and
Java, 122

wrapping PL/SQL code. See wrapping
PL/SQL code

collation classes, regular expressions, 1003

24-Index.indd 1107 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1108 Oracle Database 12c PL/SQL Programming

COLLECT function
casting object values into collections,

735–736
SQL collection management functions,

921–925
Collection API

COUNT method, 250–251
DELETE method, 251–252
EXISTS method, 252–253
EXTEND method, 253–254
FIRST method, 254–255
LAST method, 255
LIMIT method, 255–256
NEXT method, 256
overview of, 247–250
PRIOR method, 256–257
review answers, 1067–1069
review questions, 259–260
TRIM method, 257–258

collection management functions, SQL built-in
CARDINALITY function, 921
COLLECT function, 921–925
POWERMULTISET function, 925–926
POWERMULTISET_BY_CARDINALITY

function, 926
SET function, 926

collection set operators, SQL built-in
CARDINALITY operator, 928–929
EMPTY operator, 929
MULTISET EXCEPT operator, 930
MULTISET INTERSECT operator,

930–931
MULTISET operator, 929–930
MULTISET UNION operator, 931
overview of, 926–928
SET operator, 932–933
SUBMULTISET OF operator, 933

collection targets, in bulk operations
LIMIT-constrained, 206
parallel, 204–207
record, 205–208

collections
ADT collections. See ADTs (Attribute

Data Types)
asymmetrical composite table

collections, 238–239
casting object values into, 735–736

composite table collections, 231
declaring object type collections, 483
declaring package collections, 362
FORALL loop statements working with,

205–208
implementing object type collections,

483–487
joining, 888
multilevel collections, 231
of object types, 730
overview of, 147, 218–221
PIPELINED clause for functions that

return collections, 312–317
review answers, 1067–1069
review questions, 259–260
scalar table collections, 225–231
SQL built-in functions for managing,

920–923
symmetrical composite table

collections, 231–237
table collections, 225
UDT collections. See UDTs (user-

defined types)
varray collections, 221–225

collections, PL/SQL. See also associative arrays
as composite data type, 68
implementing, 76
pipelined functions using, 313

collections, SQL
compared with associative arrays, 219
as composite data type, 68
creating UDT collections of SQL object

type, 78–79
lists. See table collections
overview of, 72
varrays. See varrays

column aliases, 846
columns

aggregation of, 862–863
altering column data type, 123–124
case sensitivity of column names, 718
changing with ALTER statement,

778–780, 783–784
commenting, 795
constraints, 711
constraints applied to single or multiple

columns, 750–752

24-Index.indd 1108 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1109

data catalog table definitions, 776–778
default values based on sequences,

20–22
defining for PL/SQL hierarchical

profiler, 1037–1039
defining for tables with explicit VT

columns, 19–20
defining for tables with implicit VT

columns, 20
defining for tables with large strings,

725–729
dropping columns and constraints, 784
identity columns, 23–24, 743–747
maintaining with ALTER statement,

780–782
out-of-line constraints, 719
queries that return columns or column

results, 845–848
scalar data types, 720–721
substitutability of, 731–732
updateable, 761–762
virtual, 736, 738–741
visible and invisible, 66–67

column_value procedure, dbms_sql
package, 580–581

column_value_char procedure,
dbms_sql package, 581

column_value_long procedure,
dbms_sql package, 581

column_value_raw procedure, dbms_sql
package, 582

column_value_rowid procedure,
dbms_sql package, 582

comma-separated values. See CSV
(comma-separated values)

command-line interface (CLI)
interfaces for Oracle database, 8–9
SQL*Plus, 622

comments
COMMENT statement, 795
overview of, 121

COMMIT statement
caution regarding use for monitoring

long-running processes, 974–975
confirming transactions, 617–618
controlling transaction scope, 303

description of, 842
making changes permanent, 841
in TCL session control, 106
in transaction management, 830

Common Language Infrastructure (CLI), 24–25
community view, 705
COMPARE function, LOB introspection

methods, 436–437
comparison operators

compilation errors and, 265–266
DELETE statement used with, 831
delimiter functions, 114–115
list of, 156–160
order of operation, 160–162
two-value and three-value logic and, 155

compatibility issues, functions, 309–310
compilation, conditional compilation

statements, 169–171
compilation time

errors, 263–266
exception types and scope, 262–263
types of PL/SQL errors, 262

compliance, with data governance, 683–684
component selector (.), 660, 772
components, in package body, 371–374
components, in package specification,

364–365
composite collections. See UDTs (user-

defined types)
composite data types

ADT collections, 72–75, 77
associative arrays of, 245–247
associative arrays of composite

variables, 79–80
associative arrays of scalar variables,

77–78
collection type, 147
mapping PL/SQL types to non-PL/SQL

types, 219
object type, 145–147
overview of, 68, 144
PL/SQL collections, 76
record type, 71, 145
review answers, 1063–1065
review questions, 150–151
SQL collections, 72

24-Index.indd 1109 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1110 Oracle Database 12c PL/SQL Programming

composite data types (cont.)
support for composite variables, 50
system reference cursors, 147–149
UDT collections, 68–71, 75–76, 78–79

composite partitions, partitioned tables,
771–772

composite table collections
asymmetrical, 238–239
overview of, 231
symmetrical, 231–237

compound triggers
architecture, 497–498
example application, 528–531
key aspects of, 528
overview of, 493, 527
prototype for, 527–528

CONCAT character function, 896
concatenation operators, 114
conceptual view

overview of, 705
SPARC architecture, 652–653

concrete factory pattern, 484
conditional logic, in selective aggregation,

875–876
conditional return values, from cursors,

195–196
conditional statements

CASE statements, 82–83, 166–168
comparison operators, 156–160
conditional compilation statements,

169–171
if, elsif, and else statements,

81–82
IF statements, 162
if-then-else statements, 162–165
if-then-elsif-then-else

statements, 165–166
order of operation, 160–162
overview of, 81, 154–155
searched CASE statements, 168–169
types of queries, 843

configuring
schema for hierarchical profiler,

1030–1032
SQL Developer, 644–648
SQL*Plus, 626–629

CONNECT roles, 625
consistent property. See ACID (atomic,

consistent, isolated, durable)
constants

assigning values in declaration
blocks, 51

dbms_lob package, 426–427
dbms_sql package, 576–577
in package specification, 360
in packages, 351

constraints
adding column constraints, 781–782
applying to single or multiple columns,

750–752
CHECK, 669–670
codes and types, 778
dropping, 784
foreign keys, 667–669
modifying, 783–784
naming, 721–722
NOT NULL, 662–664
NUMBER data type, 65, 722–723
out-of-line constraints, 719
overview of, 661–662
primary keys, 666–667
table, 711–712, 717, 719–720
UNIQUE, 664–666

CONSTRUCTOR function
creating object types, 453–456, 789–790
default functions provided by object

types, 458–459
implementing object collections, 486
implementing subclasses, 478–481
matching object type arguments,

459–460
object types and, 70–71

consumer-to-business (C2B), MERGE
statement and, 834

container databases. See CDBs (container
databases)

context area, system reference cursors
pointing to result sets in, 147

context, as process or program scope, 303
context switches

defined, 303
resource cost related to anchoring, 68

24-Index.indd 1110 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1111

CONTINUE statement
loops and, 87–88
skipping iterations in loops, 178–179
WHILE loops and, 182–184

CONTINUE WHEN statement
skipping iterations in loops, 178–179
WHILE loops and, 182–184

control structures
BULK COLLECT INTO statement,

203–204
bulk operations, 203
%BULK_EXCEPTION handling,

211–213
CASE statements, 82–83, 166–168
comparison operators, 156–160
conditional compilation statements,

169–171
conditional return values, 195–196
conditional statements, 81, 154–155
cursor FOR loop statements, 188–189
cursor structures, 185
DELETE statement, 210
dynamic explicit cursors, 196–197
dynamic implicit cursors, 190
dynamic simple loops, 176–178
explicit cursors, 190–192
FORALL loop statements, 208
if, elseif, and else statements,

81–82
IF statements, 162
if-then-else statements, 162–165
if-then-elsif-then-else

statements, 165–166
implicit cursors, 185–186
INSERT statement, 208–209
iterative statements, 83–84, 172
LIMIT-constrained collection

targets, 206
FOR loop statements, 84–85, 179
FOR loop variant of a static cursor,

194–195
multiple-row implicit cursors, 188
order of operation for comparison

operators, 160–162
overview of, 81, 154
parallel collection targets, 204–207

range FOR loops, 180–181
record collection targets, 205–208
review answers, 1065–1067
review questions, 214–215
searched CASE statements, 168–169
simple loop statements, 88–91, 172–174
single-row implicit cursors, 186–188
skipping iterations in loops, 178–179
static explicit cursors, 192–194
static implicit cursors, 189–190
static simple loops, 174–176
subcursors, 197–202
UPDATE statement, 209–210
WHERE CURRENT OF clause, 86–87
while loop statements, 87–88, 181–184

CONVERT, data type conversion function,
904–905

CONVERTTOBLOB procedure, LOB
manipulation methods, 431

CONVERTTOCLOB procedure, LOB
manipulation methods, 431

COPY procedure, LOB manipulation
methods, 432

COPY_DBFS_LINK procedure, security link
methods, 443

COPY_FROM_DBFS_LINK procedure,
security link methods, 443

correlated queries
DELETE statement support for, 833–834
update by, 829

correlated subqueries, 851–852
correlation, of data with join operations, 815
COUNT function

aggregation and, 861
applied to columns, 862–863

COUNT method
Collection API, 250–251
definition of, 248

coupling
when to use pass-by-reference

functions, 308
when to use pass-by-value functions,

307–308
CREATE ANY RESOURCE privilege, 658
CREATE ANY USER privilege, 659, 708
CREATE INDEX statement, 753

24-Index.indd 1111 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1112 Oracle Database 12c PL/SQL Programming

CREATE LIBRARY statement, 19
create property, DML, 696–697
create, read, update, and delete (CRUD),

696–697
CREATE statement

building functions, procedures, and
packages, 762–763

cloning relational tables, 713
creating users, 705–708
overview of, 704
SQL object types, 764–765

CREATE TABLE AS (CTAS) method,
975–979

CREATE TABLE statement
creating import table, 836–837
defining large strings for use in tables,

725–729
defining tables, 711, 717
identity columns and, 23–24
mimicking use of Boolean data type in

tables, 729–730
null insertion and, 23
prototype for relational tables, 715
specifying character data types for use

in tables, 724–725
CREATE TRIGGER privilege, 494
CREATETEMPORARY procedure, 441–442
create_wrapped procedure, for wrapping

PL/SQL code, 1026–1028
CROSS APPLY statement, enhancements to

APPLY statements, 29–31
cross joins

defined, 876
extracting nested table material, 822
overview of, 879–880

CRUD (create, read, update, and delete),
DML commands, 696–697

CSV (comma-separated values)
external tables and, 765, 767
import/export and, 834
positioning, 836

CTAS (CREATE TABLE AS) method,
975–979

curly braces ({}), in block syntax, 44
CURRENT_DATE, date-time conversion

functions, 911–912

CURRENT_TIMESTAMP, date-time
conversion functions, 912

CURRENT_USER database
caching invoker rights functions, 32
granting view privileges, 31

.currval pseudocolumn
capturing last sequence value, 805–806
sequences and, 742–743
statement-level DML triggers and, 517

cursor FOR loop statements, 188–189
cursors

conditional return values, 195–196
cursor FOR loop statements, 188–189
defining in declaration blocks, 55
dynamic explicit cursors, 196–197
dynamic implicit cursors, 190
explicit cursors, 190–192
implicit cursors, 185–186
FOR loop variant of a static cursor,

194–195
multiple-row implicit cursors, 188
overview of, 185
packages and, 100–101
reference cursors, 363–364
shared cursors. See shared cursors
single-row implicit cursors, 186–188
static explicit cursors, 192–194
static implicit cursors, 189–190
subcursors, 197–202
transactions and, 618

D

Data Breach Investigations Report (DBIR), 671
data catalog

altering contents with DML
statements, 704

definer rights model and, 375
defining data types, 297
metadata in, 8, 598
package management, 378
package-related views, 354–355
reading canonical path names and

filenames for BFILEs, 419–426
table definitions, 776–778
trigger-related views, 494

24-Index.indd 1112 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1113

Data Control Language. See DCL (Data
Control Language)

data coupling, when to use pass-by-reference
functions, 308

data dictionary views, 985
data governance

compliance with, 683–684
developing culture of, 684
implementing, 682–683
overcoming resistance to, 681–682
overview of, 681

Data Manipulation Language. See DML (Data
Manipulation Language)

data repositories
centralization of data, 620–621
service component of Oracle DBMS, 597

data type conversion functions, SQL built-in
CAST function, 902–904
CONVERT function, 904–905
TO_CHAR function, 905–907
TO_CLOB function, 907
TO_DATE function, 907–908
TO_LOB function, 908–910
TO_NCHAR function, 910
TO_NCLOB function, 910
TO_NUMBER function, 910–911

data types. See also by individual type
assignments over 32K, 389–390
assignments under 32K, 389
in CASE statements, 82
casting value between, 54–55
collection types. See collections
composite types. See composite

data types
dbms_sql package, 577–578
declaring, 122
defining in database catalog, 297
DROP TYPE statement, 794
increasing size limits of strings and raw

data types, 24
object types. See object data types
in package body, 371
in package specification, 361–364
packages and, 100, 102, 351
PL/SQL data types allowed in SQL,

37–39

record types. See record data type
reference for PL/SQL types, 55
scalar types. See scalar data types
SQL, 699–703
tables and, 712–713
variable types, 123–126
viewing package types, 354

data warehousing, packages and, 968
database administration

creating CDB users, 654–656
creating PDB users, 656–657
granting Oracle privileges, 659–660
granting security privileges, 658–659
overview of, 652
provisioning users, 652–654
revoking privileges, 660–661

database administrators. See DBAs (database
administrators)

database catalog. See data catalog
Database Configuration Assistant (DBCA), 596
database constraints. See constraints
database driver, for MySQL applications, 29
database engineers (DBEs)

data governance remediation, 684
overcoming resistance to data

governance, 681–682
database event triggers, 109
Database File System (DBFS), 426–427
Database Firewall, in security hardening, 672
database links

overview of, 980–981
in PDBs (pluggable databases), 982

database triggers
event triggers, 536–538
overview of, 494
PL/SQL basics, 108–109

Database Writer (DBWRn) process, in
database architecture, 599

databases. See also Oracle Database primer
n-tier model, 13–15
overview of, 7–9
remote calls, 378
two-tier model, 13

DATE data type
converting, 807–808
date formats, 723–724

24-Index.indd 1113 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1114 Oracle Database 12c PL/SQL Programming

DATE data type (cont.)
INTERVAL subtypes, 134–135
overview of, 132–134
as scalar type, 64
SQL data types, 701
TIMESTAMP subtypes, 135–137
TO_DATE function, 907–908

date-time conversion functions, SQL built-in
ADD_MONTHS function, 911
CURRENT_DATE function, 911–912
CURRENT_TIMESTAMP function, 912
DBTIMEZONE function, 912
EXTRACT function, 912–913
LAST_DAY function, 913–914
LOCALTIMESTAMP function, 914
MONTHS_BETWEEN function, 914–915
NEW_TIME function, 915
overview of, 873–874
ROUND function, 916
SYSDATE function, 916
SYSTIMESTAMP function, 917
TO_CHAR(date) function, 917–918
TO_DSINTERVAL function, 918
TO_TIMESTAMP function, 918–919
TO_TIMESTAMP_TZ function, 919
TO_YMINTERVAL function,

919–920
TRUNC(date) function, 920
FROM_TZ function, 913
TZ_OFFSET function, 920

dates
data type for. See DATE data type
date literals, 120–121
date math, 871–872

DBA administrative view
checking package dependencies,

380–381
finding packages, 379
validation methods and, 381–382

dba_directories, virtual directories,
419, 766

DBAs (database administrators)
data governance remediation, 684
functions of, 6–7
overcoming resistance to data

governance, 681–682

DBCA (Database Configuration Assistant), 596
DBEs (database engineers)

data governance remediation, 684
overcoming resistance to data

governance, 681–682
DBFS (Database File System), 426–427
DBFS_LINK_GENERATE_PATH function,

security link methods, 443–444
DBIR (Data Breach Investigations Report), 671
DB_LINK, 378
dbms_application_info, 974–979
dbms_assert package

preventing SQL injection attacks,
549, 551

validating procedure and function
input, 969

dbms_comparison package, 979–986
dbms_crypto package, 986–989
dbms_ddl package

create_wrapped procedure,
1026–1028

WRAP function, 1022–1026
dbms_fga package, 969, 990–991
dbms_hprof package, 1030
dbms_java package, 654
dbms_lob package

BFILE methods, 440–441
close procedure, 429
introspection methods, 436–440
isopen function, 430
manipulation methods, 430–436
open procedure, 430
overview of, 426
package constants, 426–427
package exceptions, 428–429
SecureFiles methods in, 386
security link methods, 442–445
temporary methods, 441–442

dbms_random package, 674–677
dbms_session_longops, 979
dbms_sql package

architecture, 547
bulk statement processing, 571
constants, 576–577
data types, 577–578
dynamic DDL statements, 561–562

24-Index.indd 1114 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1115

dynamic DML statements, 563–564
dynamic SQL, 11
dynamic statements, 561
dynamic statements with inputs,

564–566
dynamic statements with variable inputs

and fixed outputs, 566–569
dynamic statements with variable inputs

and variable outputs, 571–576
formal syntax for parse procedure, 35
functions and procedures, 578–590
get_next_results procedure,

25–26
methods, 547–548
overview of, 560–561
return_results procedure, 24–25
review answers, 1082–1084
review questions, 591–592
row-by-row statement processing,

569–571
dbms_utility package

expand_sql_text procedure added
to, 34–35

format_error_backtrace
function, 281–287

stack trace management function, 94
dbms_xplan package, 686–690
DBTIMEZONE, date-time conversion

functions, 912
DBWRn (Database Writer) process, in

database architecture, 599
DCL (Data Control Language)

confirming/canceling transactions, 617
granting and revoking privileges, 708
in Oracle processing architecture, 12
SQL commands, 696–697
trigger restrictions, 538–539
triggers and, 515

DDL (Data Definition Language)
ALTER statement, 773
changing metadata contents, 705
COMMENT statement, 795
CREATE statement, 704
CREATE TABLE statement, 711
dbms_sql methods, 548
DROP statement, 792–794

dynamic statements using dmbs_sql
package, 561–562

dynamic statements using NDS, 549
events, 500
in Oracle processing architecture, 12
overview of, 703–704
RENAME statement, 791–792
SQL commands, 696
TRUNCATE statement, 794

DDL triggers
architecture, 495–496
building, 512–514
controlling DDL statements, 492
event attribute functions of, 501,

503–512
overview of, 493, 499–500
restrictions, 538
types of database triggers, 108

debugging
debug-related packages, 968
SELECT statements, 569

decimals, 140
decision trees, for conditional

statements, 155
declaration blocks

assigning values in, 51–54
declaring data types, structures,

variables, functions, and
procedures, 122

defining cursors, 55
error management, 271–273
overview of, 48–49

declarations
data types, 122
double precision numbers, 140–141
dynamic user-defined exceptions,

278–281
function or procedure as

autonomous, 371
integers, 140
object type collections, 483
object types, 453–456, 730–731
package collections, 362
subclasses, 477–478
user-defined exceptions,

276–278
variables, 123–124

24-Index.indd 1115 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1116 Oracle Database 12c PL/SQL Programming

DECLARE keyword, 48
DECODE function

if-then logic on equality matches,
866–870

SQL built-in functions, 944
DEDUPLICATE keyword, 725
DEFINE keyword, 627–628
define_array procedure, in dbms_sql

package, 582
define_column procedure, in dbms_sql

package, 583
define_column_char procedure, in

dbms_sql package, 583
define_column_long procedure, in

dbms_sql package, 583
define_column_raw procedure, in

dbms_sql package, 583
define_column_rowid procedure, in

dbms_sql package, 583–584
definer rights model

defining functions, procedures,
packages, or object types, 300

overview of, 620–621
packages and, 356
result cache for, 308
schema-level programs and, 359
vs. invoker rights, 375–377

delegation model, pass-by-value procedures
implementing, 339–340

DELETE method
in Collection API, 251–252
definition of, 248

delete property, DML, 696–697
DELETE statements

ACID-compliant, 797–799
control structures and, 210
database triggers and, 108
DELETE by values, 830–832
deleting nested table row elements,

832–833
in DML transactions, 616
DML triggers and, 515
indexes speeding up processing of,

752–753
INSTEAD OF triggers, 532
overview of, 829

support for correlated queries, 833–834
triggers on, 492

delimiters
assignment functions, 112
association functions, 113–114
comments and, 121
comparison functions, 114–115
compilation errors and, 263
concatenation functions, 114
math functions, 117
overview of, 112
statement controls, 117
types of, 115–116

dependencies, checking packages, 380–381
derived columns. See virtual columns
DESCRIBE command, SQL*Plus, 354
describe_columns procedure, in

dbms_sql package, 584
describe_columns2 procedure, in

dbms_sql package, 584
describe_columns3 procedure, in

dbms_sql package, 584–585
Descriptive Intermediate Attributed Notation

for ADA (DIANA), 1020
DETERMINISTIC clause

creating functions, 310–311
options for creating functions, 308

deterministic functions
creating functions and, 322
embedding, 326–330

development architecture, Oracle, 6–7
development environment, PL/SQL

history and background of PL/SQL, 4–6
n-tier database model, 13–15
Oracle database, 7–9
Oracle development architecture, 6–7
Oracle processing architecture, 12–13
PL/SQL language and, 9–12
review answers, 1056–1057
review questions, 15–16
two-tier database model, 13

development systems, uses of DDL
triggers, 499

DIANA (Descriptive Intermediate Attributed
Notation for ADA), 1020

directives, conditional compilation, 170

24-Index.indd 1116 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1117

directories
replacing physical with virtual, 19
virtual, 766

DML (Data Manipulation Language)
ACID-compliant DELETE statements,

797–799
ACID-compliant INSERT statements,

796–797
ACID-compliant statements, 302–303
ACID-compliant transactions, 795
ACID-compliant UPDATE

statements, 797
appending RETURNING INTO clause to

UPDATE statements, 818–821
capturing last sequence value,

805–806
data transactions and, 616
data type conversion, 807–808
dbms_sql methods, 548
DELETE by values, 830–832
DELETE statement, 829
DELETE statement support for

correlated joins, 833–834
deleting nested table row elements,

832–833
DML-enabled pass-by-value functions,

331–333
dynamic statements using dmbs_sql

package, 563–564
dynamic statements using NDS,

549–550
event functions, 533
foreign keys and, 668
handling large objects, 805–806
inability to perform DML operations

inside SQL queries, 306
indexes speeding up command

processing, 752–753
INSERT by values, 801–802
INSERT statement, 799–801
inserting arrays and nested tables,

808–811
inserting scalar data types, 802–805
locking and isolation control, 619–620
maintaining invisible indexes, 786
MERGE statement, 834–835

MERGE statement in bulk imports,
835–841

multiple-table INSERT statements,
811–815

in Oracle processing architecture, 12
overview of, 795
SQL commands, 696
triggers controlling DML statements,

492–493
update by correlated queries, 829
UPDATE by values, 816–818
UPDATE statement, 815–816
updating ADT elements, 825–827
updating LOBs (large objects), 827–828
updating nested tables, 821–825

DML triggers
architecture of, 495–496
building, 515–516
compound triggers, 527–531
INSTEAD OF triggers, 532–535
overview of, 493
row-level triggers, 518–526
statement-level triggers, 516–518
types of database triggers, 109

do while loops, 172
dot (.), as component selector, 660, 772
double precision numbers

declaring, 140–141
IEEE 754-format data types, 138

down-tree navigation, SELECT statements for,
856–858

DROP FUNCTION statement, 793
DROP INDEX statement, 785, 793
DROP PACKAGE statement, 794
DROP PROCEDURE statement, 793
DROP statement

dropping columns and constraints, 784
overview of, 792–794

DROP TABLE statement, 792–793
DROP TABLESPACE statement, 792
DROP TYPE statement, 794
DROP USER statement, 792
DROP VIEW statement, 793
DUMP function, SQL built-in functions, 945
durable property. See ACID (atomic,

consistent, isolated, durable)

24-Index.indd 1117 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1118 Oracle Database 12c PL/SQL Programming

dynamic assignments, assigning values in
declaration blocks, 51–54

dynamic data types
in package body, 371
in package specification, 361

dynamic explicit cursors, 196–197
dynamic implicit cursors, 190
dynamic simple loops, 176–178
dynamic SQL statements, in dbms_sql

package
bulk statement processing, 571
DDL statements, 561–562
DML statements, 563–564
with inputs, 564–566
overview of, 561
row-by-row statement processing,

569–571
with variable inputs and fixed outputs,

566–569
with variable inputs and variable

outputs, 571–576
dynamic SQL statements, using NDS

DDL statements, 549
DML statements, 549–550
with inputs, 550–553
with inputs and outputs, 554–557
overview of, 548–549
with unknown number of inputs,

558–559
dynamic user-defined exceptions

declaring, 278–281
overview of, 94

dynamically sized strings, 63

E

ECHO command, writing log files and,
643–644

EDI (Electronic Data Interchange), 834
EDIT statement, editing SQL statements, 631
EDITIONABLE clause

creating concurrent versions of object
types, 454

creating multiple copies of packages, 357
DML triggers and, 515

editions, Oracle Database 12c, 596–597

EDP (electronic data processing), 668
Electronic Data Interchange (EDI), 834
else clause

in CASE statements, 166–167
WHILE loops and, 182

else statements, 81–82
ELSIF keyword, 155
elsif statements, 81–82
EMPTY, collection set operator, 929
EMPTY_BLOB function, SQL built-in

functions, 945–947
EMPTY_CLOB function, SQL built-in

functions, 948–949
encapsulation, in object-oriented

programming, 451
encryption, dbms_crypto package, 986
END LOOP reserved word, 172
environment variables

path environment, 622–625
SERVEROUTPUT environment, 642–643

epoch, DATE data type, 723–724
equal sign (=), for matching values, 55
equality

CASE operator for evaluation of, 870
DECODE function for equality matches,

866–870
equals method

comparing object instances with ORDER
member function, 471–474

Java language method for object
comparisons, 467

equijoins, foreign keys and, 668
ERASE procedure, LOB manipulation

methods, 432
error management

built-in functions for, 267–268, 274–275
compilation errors, 263–266
dbms_sql fixes, 565
declaration block errors, 271–273
declaring dynamic user-defined

exceptions, 278–281
declaring user-defined exceptions,

276–278
exception stack functions, 281, 283–287
exception types and scope, 262–263
execution and exception block errors,

267, 269–271

24-Index.indd 1118 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1119

functions in utl_call_stack
package, 282

improving error stack handling, 34
overview of, 262
review answers, 1069–1071
review questions, 288–289
runtime errors, 266–267

error management, SQL built-in functions
SQLCODE function, 938–939
SQLTERM function, 939–940

event attribute functions. See system event
attribute functions

event triggers
system and database, 536–538
types of database triggers, 109

exception blocks
error management, 267, 269–271
local scope, 52
overview of, 49–50
runtime errors and, 266–267

exception handlers. See also exception
blocks, 267

exception stack functions, 281, 283–287
EXCEPTION variable, 276–277
exceptions

dbms_lob package, 428–429
declaring dynamic user-defined

exceptions, 278–281
declaring user-defined exceptions,

276–278
defining custom, 267
dynamic user-defined exceptions, 94
overview of, 92–93
types and scope, 262–263
user-defined exceptions, 93–94

exclusionary notation, calling functions,
304–305

EXCLUSIVE, table locks, 620
execute function, in dbms_sql package, 585
EXECUTE IMMEDIATE statement

running dynamic DDL statements, 549
running dynamic DML

 statements, 550
running dynamic statements with

inputs, 553
running dynamic statements with inputs

and outputs, 556–557

EXECUTE privileges
granting privileges, 376
object use and, 453
packages and, 348
privileges required for using

triggers, 494
EXECUTE statement, running procedures, 642
execute_and_fetch function, in

dbms_sql package, 585
execution blocks

in error management, 267, 269–271
overview of, 44–45

EXISTS method
Collection API, 252–253
definition of, 248

EXIT, exiting SQL*Plus environment, 631
expand_sql_text procedure, added to

dbms_utility, 34–35
EXPLAIN PLAN statement, in SQL tuning,

685–686
explicit cursors

dynamic, 196–197
overview of, 190–192
static, 192–194

EXTEND method
Collection API, 253–254
definition of, 248

Extensible Markup Language (XML)
import/export and, 834
packages, 973
XMLTYPE data type, 703, 736

external tables, creating, 765–766
external view

overview of, 705
SPARC architecture and, 652–653

EXTRACT, date-time conversion functions,
874, 912–913

F

fall through, conditional statements with, 154
fast access paths. See also indexes, 752
FETCH_BULK_COLLECT_INTO statement,

bulk operations in NDS, 554–555
fetch_rows function, in dbms_sql

package, 585

24-Index.indd 1119 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1120 Oracle Database 12c PL/SQL Programming

FGA (fine-grained auditing), 969, 990–991
Fibonacci numbers, recursive function

applied to, 334–335
fields, of record structure, 747, 763
FILECLOSE procedure, BFILE methods, 440
FILECLOSEALL procedure, BFILE

methods, 440
FILEEXISTS function, BFILE

methods, 440
FILEGETNAME procedure, BFILE methods,

440–441
FILEISOPEN function, BFILE

methods, 441
filenames, BFILEs, 419–426
FILEOPEN procedure, BFILE methods, 441
filtered cross joins, 879
FINAL clause, objects and, 455
fine-grained auditing (FGA), 969, 990–991
firewalls, in security hardening, 672
FIRST method

Collection API, 254–255
definition of, 248

fixed-length strings, 63
fixed-point numbers, NUMBER data type

supporting, 140
flat files

external tables and, 765–766
import sources, 834

FLOAT data type, 701, 722
floating-point numbers, 140
FLOOR, number function, 934
FOR loop statements

cursor FOR loops, 188–189
FOR loop variant of a static cursor,

194–195
overview of, 84–85, 179
range FOR loops, 180–181
WHERE CURRENT OF clause,

86–87
FORALL loop statements

%BULK_EXCEPTION handling,
211–213

DELETE statement, 210
INSERT statement, 208–209
overview of, 208
UPDATE statement, 209–210

foreign key constraints
adding column constraints, 781–782
applying to single or multiple

columns, 752
mandatory or optional, 668
out-of-line constraints, 719–720
overview of, 667–669
as type of database constraints, 712

format_error_backtrace function, in
dbms_utility package, 281–287

formatting options, output, 636–638
forward references

example, 349–350
to functions, 60
local functions and procedures not

requiring, 295
to package components, 371
stubs, 364

forward slash (/)
executing statements, 748
rerunning SQL statements from buffer,

633–634
%FOUND, in simple loops, 88
FRAGMENT_DELETE procedure, LOB

manipulation methods, 432
FRAGMENT_INSERT procedure, LOB

manipulation methods, 432–433
FRAGMENT_MOVE procedure, LOB

manipulation methods, 433
FRAGMENT_REPLACE procedure, LOB

manipulation methods, 433
FREETEMPORARY procedure, temporary LOB

methods, 442
FROM clause

inline views and, 852–853
SELECT statements, 847

FROM_TZ, date-time conversion
functions, 913

full joins, 877
function-based indexes, 754
functions

architecture of, 295–301
BFILE methods, 440–441
building, 762–763
calling subroutines, 303–304
CLOB data type assignment, 397–398

24-Index.indd 1120 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1121

in Collection API, 247
compatibility issues, 309–310
COUNT method as, 250–251
create_wrapped procedure as

overloaded function, 1026–1028
creating, 306–308
date functions, 871–875
in dbms_sql package, 585–589
DETERMINISTIC clause in creating,

310–311
deterministic pass-by-value functions,

326–330
DML-enabled pass-by-value functions,

331–333
DROP FUNCTION statement, 793
error management functions, 267–268,

274–275
exception stack functions, 281,

283–287
EXISTS method, 252–253
FIRST method, 254–255
forward references to, 60
function calls as expressions, 163–164
LAST method, 255
LIMIT method, 255–256
LOB introspection methods, 436–440
LOB manipulation methods, 433–434
local named blocks, 57
modules of, 450
as named blocks, 122
NEXT method, 256
nondeterministic pass-by-value

functions, 330–331
notation calls, 304–305
in object declaration, 453–454
object table functions, 318–319
overloading, 352–354
overview of, 294
package-level variables and, 368–370
package-only scope, 349
PARALLEL_ENABLE clause in creating,

311–312
pass-by-reference functions, 336–338
pass-by-value functions, 322–325
pass-by-value functions that wrap Java

libraries, 328–329

pass-by-value vs. pass-by-reference,
307–308

PIPELINED clause for functions that
return collections, 312–317

PRIOR method, 256–257
procedure comparisons, 296–297
published in package specification, 354
recursive functions, 333–335
RESULT_CACHE clause for result cache

functions, 319–321
review answers, 1071–1073
review questions, 345–346
scope identifiers, 118–119
static. See STATIC function
stored functions, 97–99
system reference cursor functions,

325–326
temporary LOB methods, 442
transaction scope and, 302–303
in utl_call_stack package, 282
WRAP function, 1021

functions, SQL built-in
character functions, 894–901
collection management functions,

920–923
collection set operators, 923–933
data type conversion functions,

902–911
date-time conversion functions,

911–920
error reporting functions, 938–940
miscellaneous functions, 940–963
number functions, 933–938
overview of, 894

fuzzing programs, used by hackers, 969

G

GETCHUNKSIZE function, LOB introspection
methods, 437

GETCONTENTTYPE function, security link
methods, 444

GET_DBFS_LINK function, security link
methods, 444

GET_DBFS_LINK_STATUS procedure,
security link methods, 445

24-Index.indd 1121 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1122 Oracle Database 12c PL/SQL Programming

GETDEDUPLICATED procedure, LOB
introspection methods, 438

GETLENGTH function, LOB introspection
methods, 438

get_next_results procedure, in
dbms_sql package, 25–26

GETOPTIONS function, LOB introspection
methods, 438

GET_STORAGE_LIMIT function, LOB
introspection methods, 438

getters, object data types, 463–465
globalization, Unicode characters and strings

and, 137
GOTO statement, loops and, 88
grants (GRANT statement)

creating, 376
in dbms_sql package, 561
monitoring with DDL triggers, 500
Oracle privileges, 659–660
privileges, 708–710
security privileges, 658–659

greater than or equal to (>=), as comparison
operator, 55

GREATEST function, SQL built-in functions,
949–951

GROUP BY clause
aggregation and, 861–862
joining collections, 888

guard-on-entry loops
simple loop statements, 173–174
static simple loops, 174–175
WHILE loop statements, 181–182

guard-on-exit loops
simple loop statements, 173–174
static simple loops, 176

GUI (graphical user interface), 8–9

H

hackers
attackers categories, 671
fuzzing programs used by, 969
password attacks, 672–673

hash partitions, partitioned tables,
770–771

HAVING clause, joining collections, 888

headers, in function and procedure
architecture, 294

help console, SQL*Plus, 629–630
HEXTORAW function, converting hexadecimal

streams into raw streams, 130
hierarchical profiler, PL/SQL

collecting data for, 1032–1035
configuring schema for, 1030–1032
defining tables, 1037–1039
interpreting data, 1035
overview of, 1030
plshprof command-line utility for

report generation, 1040–1043
querying analyzed data, 1039–1040
reading raw output, 1035–1037

hierarchies
hierarchical queries, 855–856
object tree structures, 475

HOST command, shelling out of sessions,
630–631

HTML
displaying LOBs on web pages,

410–412
generating PL/SQL hierarchical profiler

reports, 1040–1043
uploading LOBs to web pages, 406–410

I

ID-dependent relationships, 751
IDE tools, for Oracle development, 4
identifiers

compilation errors and, 263
forward referencing, 349
parsing and, 59–60
types of, 118
user-defined variables and types and,

118–119
identity columns

creating, 743–744, 746–747
mapping to sequences, 745
overview of, 23–24

IDL (Interface Definition Language), 730
IEEE 754-format data types, 138–140
IF statements

if-then-else, 162–165

24-Index.indd 1122 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1123

if-then-elsif-then-else,
165–166

overview of, 81–82, 162
in recursive functions, 334

implicit conversion, of variable types,
123–124

implicit cursors
dynamic, 190
multiple-row, 188
overview of, 185–186
single-row, 186–188
static, 189–190

IN mode (read-only) parameter
creating functions and, 307
pass-by-reference functions, 336
pass-by-value functions, 322–323
pass-by-value procedures, 340
placing parameters as arguments,

551–552
procedure support for, 336
qualifying functions and procedures,

299–300
IN operator, description of comparison

operators, 156
IN OUT mode (read-write) parameter

creating functions and, 307
handling input and output variables in

NDS, 557
pass-by-reference functions, 336
placing parameters as arguments,

551–552
procedure support for, 336
qualifying functions and procedures,

299–300
index-by tables. See associative arrays
index-organized tables, 753
indexes

for associative arrays, 241–242
commenting, 795
deterministic functions in, 310
DROP INDEX statement, 793
enabling/disabling, 785–786
key (or string) indexed associative

arrays, 244–245
making changes with ALTER

statement, 785

numeric index values in varrays and
table collections, 228–229

numerically indexed associative arrays,
242–243

overview of, 752–753
SQL tuning scan modes, 687
types of, 753–755
unique indexes, 666

inheritance
anchoring and, 10
joins in UML inheritance diagrams,

876–877
object data types, 475–476
of privileges, 349

INITCAP character function, 896
inline programs, running functions and

procedures, 297
inline views

example in FROM clause, 852–853
example in WITH clause, 852–855
overview of, 852

inlining, subroutine calls, 344
inner joins

defined, 876
overview of, 882–884

input variables
dynamic statements with inputs and

outputs (NDS), 554–557
dynamic statements with inputs

(dbms_sql), 564–566
dynamic statements with inputs (NDS),

550–553
dynamic statements with unknown

number of inputs (NDS), 558–559
dynamic statements with variable inputs

and fixed outputs (dbms_sql),
566–569

dynamic statements with variable inputs
and variable outputs (dbms_sql),
571–576

INSERT statements
ACID-compliant, 796–797
for BLOBs, 392
capturing last sequence value, 805–806
for CLOBs, 391
control structures, 208–209

24-Index.indd 1123 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1124 Oracle Database 12c PL/SQL Programming

INSERT statements (cont.)
data type conversion, 807–808
database triggers and, 108
default values for explicit null insertion,

22–23
DML transactions and, 616
DML triggers and, 515
handling large objects, 805–806
indexes speeding up DML command

processing, 752–753
INSERT by values, 801–802
inserting arrays and nested tables,

808–811
inserting scalar data types, 802–805
INSTEAD OF triggers, 532
multiple-table INSERT statements,

811–815
for NCLOBs, 391
overview of, 799–801
seeding object tables, 732
TCL commands verifying success or

failure of, 106–107
triggers on, 492
writing Oracle Data Pump files, 766

instance method, in OOP, 452
instances

class, 451
comparing object instances, 467–468
comparing object instances with MAP

member function, 468–470
comparing object instances with ORDER

member function, 471–474
creating object instances, 455
of database, 8
functions and procedures defined as

instance-level subroutines, 294
in Oracle database architecture, 598–599

INSTANTIABLE clause, 455
instantiation, class, 453
INSTEAD OF triggers

architecture of, 496
building, 532–534
example of, 534–535
overview of, 493
pipelined functions and, 316
restrictions, 495
types of database triggers, 109

INSTR function
LOB introspection methods, 438–439
SQL character functions, 897

integers
declaring, 140
NUMBER data type, 721–722
PLS_INTEGER data type, 141

interactive mode (SQL*Plus), passing
parameters to scripts, 635–636

Interface Definition Language (IDL), 730
interfaces

AFI (Advanced Friendly Interface), 625
types of, 8–9

internal view
metadata in, 704
SPARC architecture, 652–653

International Standards Organization
(ISO), 619

INTERSECT set operator, 888, 890–891
interval data types

INTERVAL DAY data type, 701,
807–808

INTERVAL DAY TO SECOND data
type, 134

INTERVAL YEAR data type, 701
INTERVAL YEAR TO MONTH data

type, 134
interval functions

TO_DSINTERVAL function, 918
TO_YMINTERVAL function, 919–920

introspection methods, in dbms_lob
package, 436–440

invisible columns
creating, 738–741
creating tables and, 713
hiding columns from blanket queries,

720–721
tables and, 716
USER_TAB_COLUMNS view, 776

INVISIBLE keyword
columns and, 715, 739
indexes and, 786

invoker rights model
caching, 32
defining functions, procedures,

packages, or object types, 300
overview of, 621–622

24-Index.indd 1124 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1125

packages and, 356
RESULT_CACHE clause and, 319
schema-level programs and, 359
vs. definer rights, 375–377

IS A SET operator, 158
IS EMPTY operator, 157
IS NULL operator, 157
ISO (International Standards

Organization), 619
isolated property. See ACID (atomic,

consistent, isolated, durable)
isolation control, DML (Data Manipulation

Language), 619–620
isopen function, checking for open

LOBs, 430
is_open function, in dbms_sql

package, 585
%ISOPEN, in simple loops, 88
ISSECUREFILE function, LOB manipulation

methods, 433–434
ISTEMPORARY function, LOB manipulation

methods, 442
iterative statements

cursor use in loops, 618
dynamic simple loops, 176–178
FOR loops, 84–85, 179
overview of, 83–84, 172
range FOR loops, 180–181
simple loop statements, 172–174
skipping iterations, 178–179
SQL not supporting loops, 876
static simple loops, 174–176
WHERE CURRENT OF clause, 86–87
WHILE loops, 87–88, 181–184

J

Java Database Connectivity. See JDBC (Java
Database Connectivity)

Java Development Kit (JDK), 645
Java language

comparing PL/SQL with, 122
equals method for object

comparisons, 467
inheritance and, 476
writing triggers, 492

Java libraries, 328–329
Java Virtual Machine (JVM), 5
JDBC (Java Database Connectivity)

accessing SQL*Plus call mode, 12
embedding dynamic query in external

program, 28
making calls directly to PL/SQL, 11
nested tables and, 822

JDK (Java Development Kit), 645
job management packages, 969
joins. See also correlated queries

collection, 888
correlation of data and, 815
cross joins, 879–880
in dbms_xplan, 687
enhancements to APPLY statements,

29–31
foreign keys and, 668
inner joins, 882–884
LEFT OUTER JOIN syntax

enhancements, 20
natural joins, 884
nested tables, 881–882
outer joins, 884–888
results, 876–878
row, 878
support for correlated queries, 833–834

JVM (Java Virtual Machine), 5

K

keys
foreign. See foreign key constraints
index, 753
key (or string) indexed associative

arrays, 244–245
natural. See natural keys
primary. See primary key constraints

keywords. See reserved words/keywords

L

large objects. See LOBs (large objects)
LAST method

Collection API, 255
definition of, 248

24-Index.indd 1125 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1126 Oracle Database 12c PL/SQL Programming

LAST_DAY, date-time conversion functions,
913–914

last_error_position function, in
dbms_sql package, 586

last_row_count function, in dbms_sql
package, 586

last_row_id function, in dbms_sql
package, 586

last_sql_function_code function, in
dbms_sql package, 586

LATERAL clause, enhancements to APPLY
statements, 30–31

LDAP (Lightweight Directory Access Protocol)
creating CDB users, 654
user names and, 706

LEAST function
in object comparison example, 469
SQL built-in functions, 951–952

left joins, 877
left outer joins, 20, 885–886
LENGTH character function, 142,

897–898
less than or equal to (<=), as comparison

operator, 55
lexical units

comments, 121
compilation errors and, 263, 265
delimiters, 112–117
identifiers, 118–119
literals, 119–121
overview of, 112
review answers, 1063–1065
review questions, 150–151

LGWR (Log Writer) process, in Oracle
database architecture, 599

libraries
of object types, 475
packages stored in, 348

LIBRARY objects, creating, 19
Lightweight Directory Access Protocol (LDAP)

creating CDB users, 654
user names and, 706

LIKE operator, description of, 158
LIMIT method

Collection API, 255–256
definition of, 249

LIMIT statements, LIMIT-constrained
collection targets, 206

linear recursion, 333–334
Linux. See Unix/Linux
list partitions, partitioned tables, 769–770
listener.ora file, 610–611
listeners

hardening, 677–680
listener pattern in two-tier database

model, 13
receiving Net8 transmissions, 600–601
starting/stopping, 610–615
white listing, 681

lists. See also nested tables
collections as, 147
defined, 218
vs. arrays, 748

literals
overview of, 119
regular expressions, 1007
string literals, 119
types of, 119–121

LOADBLOBFROMFILE procedure, LOB
manipulation methods, 434

LOADCLOBFROMFILE procedure, LOB
manipulation methods, 434–435

loader files, import sources, 834
LOADFROMFILE procedure, LOB

manipulation methods, 435
LOBs (large objects)

assigning CLOBs, 397–398
assignments over 32K, 389–391
assignments under 32K, 387–389
BFILE data type, 142
BFILE methods, 440–441
BLOB data type, 143
CLOB data type, 143–144
close procedure, 429
converting LONG type to CLOB type,

394–396
creating virtual directories for BFILEs,

413–419
in dbms_lob package, 426
defining table with large strings,

725–729
handling, 805–806

24-Index.indd 1126 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1127

HTML and PHP components for web
display, 410–412

HTML and PHP components for web
upload, 406–410

INSERT and UPDATE statements,
391–393

introspection methods, 436–440
isopen function, 430
manipulation methods, 430–436
NCLOB data type, 144
open procedure, 430
overview of, 142, 386
package constants, 426–427
package exceptions, 428–429
procedures for web upload, 405–406
reading canonical path names and

filenames for BFILEs, 419–426
reading files into internally stored

columns, 398–399
reading local files into BLOB columns,

402–404
reading local files into CLOB or NCLOB

columns, 399–402
resolving LOB storage using system-

generated names, 737–738
review answers, 1076–1078
review questions, 446–448
security link methods, 442–445
temporary methods, 441–442
TO_LOB function, 908–910
updating, 827–828
working with, 387
working with BFILEs, 413
working with via web pages, 404–405

local connectivity, Oracle Database and, 600
local named blocks, 57–60
local scope, variables, 50
LOCALTIMESTAMP, date-time conversion

functions, 914
LOCK TABLE command, SQL

commands, 619
locks

causes of row locks, 619
DML, 619–620

log files, writing with SQL*Plus, 643–644
Log Writer (LGWR) process, in Oracle

database architecture, 599

logging table, triggers and, 501–502
logical operators, 831
logon/logoff, auditing, 536–537
LONG data type

converting to CLOB, 394–396, 494,
567–568

converting to VARCHAR2, 494,
567–568

overview of, 129–130
SQL data types, 700
trigger restrictions, 539
triggers stored in, 495

LONG RAW data type
converting to CLOB or VARCHAR2,

567–568
overview of, 129–130
SQL data types, 702
trigger restrictions, 539

lookup operators, 832
LOOP reserved word, 172
loops. See iterative statements
LOWER character function, 898
LPAD character function, 898–899
lsnrctl utility

managing Oracle listener,
613–614

starting Oracle listener, 610
LTRIM character function, 899

M

malware, 671
manipulation methods, in dbms_lob

package, 430–436
MAP function

comparing object instances,
467–470

declaring subclasses, 477
in object declaration,

453–454
materialized views

commenting, 795
deterministic functions in, 310
overview of, 311
types of local data, 301

math operators, 117

24-Index.indd 1127 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1128 Oracle Database 12c PL/SQL Programming

MAX function
aggregation and, 861
GROUP BY clause and, 866
use with numbers, 863–864

MEMBER function
returning scalar or composite types, 456
supported by PL/SQL, 639

MEMBER OF operator, 159
MEMBER procedure, 456
MERGE statement

in bulk imports, 835–841
database triggers and, 108
in DML transactions, 616
indexes speeding up DML command

processing, 752–753
overview of, 834–835

message coupling, when to use pass-by-value
functions, 307

metacharacters
character-class metacharacters, 1000
regular expressions, 1004–1005

metadata
creating databases and, 8
in database catalog, 598
in internal view, 653, 704
reading/writing session metadata, 531

metasequences, 1006–1007
methods

in dbms_sql package, 547–548
object, 454
overloading, 800

Microsoft Windows
configuring SQL Developer, 645
database operations, 609–610
launching SQL Developer, 644
Oracle configuration files, 610–611
Oracle services for, 602

middleware tier, in n-tier database
model, 13

migration, object data to tables, 714–715
MIN function

aggregation and, 861
GROUP BY clause and, 866
use with numbers, 863–864

mining model, 795
MINUS set operator, 888, 891

mixed notation
calling functions, 304
defined, 303
in SQL function call, 305

MOD, number function, 934
modularization

of functions, 450
putting code into named program, 59

MONTHS_BETWEEN, date-time conversion
functions, 914–915

morphing, 475
multilevel collections

chaining operations, 239
creating, 233, 747–750
defined, 231

multiple-branching expressions
if-then-elsif-then-else

statements, 165–166
truth table for, 161–162
types of conditional statements, 154

multiple-row implicit cursors, 188
multiple row subqueries, 849–851
multiple-table INSERT statements, 811–815
multiple table nesting, 822
MULTISET, collection set operator, 929–930
MULTISET EXCEPT, collection set

operator, 930
MULTISET INTERSECT, collection set

operator, 930–931
MULTISET UNION, collection set

operator, 931
multitenant architecture, 8
Multiversion Concurrency Control (MVCC),

615–616
mutating tables, 539–540
MVCC (Multiversion Concurrency Control),

615–616
MySQL applications, database driver for, 29

N

n-tier database model, 13–15
named blocks

executing with SQL*Plus, 641–643
function prototype, 306
functions and procedures stored as, 294

24-Index.indd 1128 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1129

local, 57–60
as PL/SQL programming unit, 122
PL/SQL support, 47
procedure prototype, 339
stored, 60–62
supported by PL/SQL, 639–640

named notation
calling deterministic pass-by-value

function, 327
calling functions, 304
defined, 303

names
case sensitivity of table and column

names, 718
object, 453

namespaces
schemas as, 704
user accounts vs., 601

NaN (not a number), NUMBER data type
and, 140

NANVL function, SQL built-in functions, 953
Native Dynamic SQL. See NDS (Native

Dynamic SQL)
natural joins, 877, 884
natural keys

inserting scalar data types and, 802
as primary key, 719
UNIQUE constraints and, 664–665

NCHAR data type
in CASE statements, 82
converting, 807–808
fixed-length strings and, 63–64
overview of, 137
SQL data types, 699
syntax for, 725
TO_NCHAR function, 910

NCLOB (National Character LOB) data type
assignments over 32K, 389–390
assignments under 32K, 388
data state options, 390
INSERT statement for, 391
overview of, 144
procedures for web upload, 405–406
reading local files into NCLOB columns,

399–402
SQL data types, 700

syntax for, 725
TO_NCLOB function, 910
UPDATE statement for, 392

NDS (Native Dynamic SQL)
architecture, 547
converting LONG and LONG RAW types

to CLOB or VARCHAR2, 567–568
dynamic DDL statements, 549
dynamic DML statements,

549–550
dynamic SQL, 11
dynamic statements, 548–549
dynamic statements with inputs,

550–553
dynamic statements with inputs and

outputs, 554–557
dynamic statements with unknown

number of inputs, 558–559
methods in dbms_sql package,

547–548
overview of, 546
review answers, 1082–1084
review questions, 591–592

negation comparison operators, 55
nested anonymous blocks, 55–57
nested collections

composite table collections, 231
creating, 747–750

nested named blocks, 339
nested tables

assigning row-by-row values
to, 1034

collections as, 144
deleting row elements, 832–833
design pattern, 751
inserting, 808–811
mapping PL/SQL types to non-PL/SQL

types, 219
unnesting queries, 881–882
updating, 821–825

Net Manager, 679–680
Net8

conforming to OSI (Open Systems
Interconnection), 600

verifying connectivity, 614–615
netmgr command, 679

24-Index.indd 1129 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1130 Oracle Database 12c PL/SQL Programming

new features, PL/SQL
caching invoker rights functions, 32
EXPAND_SQL_TEXT added to

dbms_utility, 34–35
formal schema for dbms_sql package

parse procedure, 35
native client API support, 34
new functions inside SQL WITH clause,

35–37
overview of, 32
PL/SQL data types allowed in SQL,

37–39
REF CURSOR parameter binding, 40
review answers, 1058–1060
review questions, 41–42
utl_call_stack package, 34
white listing users for calling stored

procedures, 32–33
new features, SQL

APPLY statement enhancements,
29–31

associating sequences with tables,
20–22

database driver for MySQL
applications, 29

default values for explicit null insertion,
22–23

identity columns, 23–24
LEFT OUTER JOIN syntax

enhancements, 20
LIBRARY objects, 19
overview of, 18–19
query row limits and offsets natively

supported, 26–29
review answers, 1058–1060
review questions, 41–42
size limits for strings and raw types, 24
SQL statement results sent to external

programs, 24–26
view privilege definitions, 31
VT (valid-time) support for tables, 19–20

NEW_TIME, date-time conversion
functions, 915

NEXT method
Collection API, 256
definition of, 249

.nextval pseudocolumn
capturing last sequence value, 805–806
sequences and, 742–743
statement-level DML triggers and, 517

nondeterministic pass-by-value functions,
330–331

nonlinear recursion, 333
NOT FINAL clause, object types and, 788
NOT NULL constraints

adding column constraints, 781–782
database constraints, 662–664, 712
primary keys and, 667

NOT operator, description of, 159
notation calls, functions and procedures,

304–305
%NOTFOUND, in simple loops, 89
NOWAIT, lock prevention, 619
null values

default values for explicit null insertion,
22–23

handling at runtime, 164
in three-value logic, 155

NULLIF function, SQL built-in functions,
953–954

NUMBER data type
converting, 807–808
IEEE 754-format, 138–140
overview of, 140–141, 721–723
pipelined function defining as varray

collection, 312–313
scalar data types, 65
SQL data types, 701
TO_NUMBER function, 910–911

number functions, SQL built-in
CEIL function, 933–934
FLOOR function, 934
MOD function, 934
overview of, 863–864
POWER function, 936
REMAINDER function, 937–938
ROUND function, 938

numbers
automatic numbering of primary key

column, 524–525
built-in functions. See number

functions, SQL built-in

24-Index.indd 1130 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1131

data type for. See NUMBER data type
defining as varray collection, 312–313
handling a collection of, 77
MOD function, 934
numeric indexes, 228–229, 242–243
numeric literals, 119–120
overview of, 137
recursive function applied to Fibonacci

numbers, 334–335
TO_NUMBER function, 910–911

numeric indexes
associative arrays, 242–243
varrays and table collections, 228–229

NVARCHAR2 data type
converting, 807–808
dynamically sized strings and, 63
overview of, 137
size limits of, 24
SQL data types, 700
syntax for, 725

NVL function
handling null values at runtime, 164
SQL built-in functions, 954
three-valued logic and, 81–82

O

object bodies
CONSTRUCTOR function, 458–461
implementing, 790–791
overview of, 456
parameters, 458
parts of object types, 730
prototype for, 457

object data types
associative array of, 243
casting values into collections,

735–736
changes with ALTER statement,

787–791
collections of, 730
comparing object instances, 467–468
comparing object instances with MAP

member function, 468–470
comparing object instances with ORDER

member function, 471–474

creating associative arrays, 241,
245–247

creating composite types, 231
declaring, 453–456, 730–731
declaring collections, 483
declaring subclasses, 477–478
defining tables based on, 731–735
deploying functions and

procedures as, 294
getters and setters, 463–465
implementing collections, 483–487
implementing object bodies, 456–461
implementing subclasses, 478–481
inheritance and polymorphism,

475–476
initializing objects, 389
large objects. See LOBs (large objects)
migrating object data to tables,

714–715
overview of, 145–147, 450–453
parts of, 730
PL/SQL and, 639
privileges, 658
record types compared with, 220–221
review answers, 1078–1080
review questions, 488–489
SQL and, 68–71, 763–765
static member methods, 465–467
subclasses, 735
synonyms simplifying access to

objects, 710
transferring to record structure or to

collections, 234–235
type evolution, 481–482
white listing, 461–463

object-modeling technique (OMT), 452
object-orientation

features of Oracle database, 10
granting object privileges, 708–710

object-oriented analysis and design (OOAD),
451–452, 495, 763

object-oriented programming (OOP). See
OOP (object-oriented programming)

object-relational database management
system. See ORDBMS (object-relational
database management system)

24-Index.indd 1131 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1132 Oracle Database 12c PL/SQL Programming

Object Relational Model (ORM), 751
object table functions

converting SQL collections to SQL
result set, 318–319

returning collections, 76
uses of, 308
views, 758–761

observer pattern
OOAD (object-oriented analysis and

design), 495
in two-tier database model, 13

OCI (Oracle Call Interface)
handling collection data types, 204
making calls directly to PL/SQL, 11
nested tables and, 822

ODBC (Open Database Connectivity)
accessing SQL*Plus call mode, 12
embedding dynamic query in external

program, 28
nested tables and, 822

OEM (Oracle Enterprise Manager)
managing database, 604
optimistic processing and, 14
starting, 605

offsets, native SQL support for, 26–29
OLAP (online analytical processing), 685
OLTP (online transaction processing)

SQL tuning and, 684–685
UNIQUE constraints and, 666

OMT (object-modeling technique), 452
online analytical processing (OLAP), 685
online transaction processing (OLTP)

SQL tuning and, 684–685
UNIQUE constraints and, 666

OOAD (object-oriented analysis and design),
451–452, 495, 763

OOP (object-oriented programming)
comparing objects, 467
defining object types, 747
getters and setters, 463
inheritance and polymorphism,

475–476
overloading and, 352
overview of, 451–452
packages compared with classes, 368

Open Database Connectivity. See ODBC
(Open Database Connectivity)

open procedure, opening LOBS, 430
OPEN system_reference_cursor, 552
Open Systems Interconnection (OSI), 600
open_cursor function, in dbms_sql

package, 586
operational scope, 618
operators

assignment operators. See assignment
operators

collection set operators. See collection
set operators, SQL built-in

commenting, 795
comparison operators. See comparison

operators
concatenation operators, 114
lookup operators, 832
set operators. See set operators

optimistic processing model, in n-tier
database model, 14

OR operator
description of, 159
using inside WHERE clause, 831

Oracle Call Interface. See OCI (Oracle Call
Interface)

Oracle Data Provider for .NET (ORD.NET), 40
Oracle Data Pump files, 766, 768–769
Oracle Database Configuration Assistant, 7–8
Oracle Database primer

background processes, 598–600
data transactions, 616–619
definer rights model, 620–621
DML locking and isolation control,

619–620
editions, 596–597
invoker rights model, 621–622
local and remote connectivity, 600
MVCC (Multiversion Concurrency

Control), 615–616
overview of, 596
services, 597–598
SQL interactive and batch processing.

See SQL*Plus
starting/stopping database server,

603–604
starting/stopping listener, 610–615
Unix/Linux operations, 604–609
user accounts (schemas), 602

24-Index.indd 1132 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1133

utilities, 600
Windows operations, 609–610

Oracle Enterprise Manager. See OEM (Oracle
Enterprise Manager)

Oracle PL/SQL. See PL/SQL
oracle, Unix/Linux database user, 604
ORA_CLIENT_IP_ADDRESS, DDL

triggers, 503
ORA_DATABASE_NAME, DDL triggers,

503–504
ORA_DES_ENCRYPTED_PASSWORD, system

event attribute functions, 504
ORA_DICT_OBJ_NAME, system event

attribute functions, 504
ORA_DICT_OBJ_NAME_LIST, system event

attribute functions, 504
ORA_DICT_OBJ_OWNER, system event

attribute functions, 505
ORA_DICT_OBJ_OWNER_LIST, system

event attribute functions, 505
ORA_DICT_OBJ_TYPE, system event

attribute functions, 505
ORADMIN utility, for Microsoft Windows,

602, 609
ORA_GRANTEE, system event attribute

functions, 505–506
ORA_INSTANCE_NUM, system event attribute

functions, 506
ORA_IS_ALTER_COLUMN, system event

attribute functions, 506–507
ORA_IS_CREATING_NESTED_TABLE,

system event attribute functions, 507
ORA_IS_DROP_COLUMN, system event

attribute functions, 508
ORA_IS_SERVERERROR, system event

attribute functions, 508
ORA_LOGIN_USER, system event attribute

functions, 508
ORA_PARTITION_POS, system event

attribute functions, 509
ORA_PRIVILEGE_LIST, system event

attribute functions, 509–510
ORA_REVOKEE, system event attribute

functions, 510
ORA_SERVER_ERROR, system event attribute

functions, 510

ORA_SERVER_ERROR_DEPTH, system event
attribute functions, 510

ORA_SERVER_ERROR_MSG, system event
attribute functions, 510–511

ORA_SERVER_ERROR_NUM_PARAMS, system
event attribute functions, 511

ORA_SERVER_ERROR_PARAMS, system
event attribute functions, 511

ORA_SQL_TXT, system event attribute
functions, 511

ORA_SYSEVENT, system event attribute
functions, 511

ORA_WITH_GRANT_OPTION, system event
attribute functions, 512

ORDBMS (object-relational database
management system)

cardinality rule and, 663
defining object types, 747
in history of PL/SQL, 5

ORDER BY clause
aggregation, 861–862
joining collections, 888

ORDER function
declaring subclasses and,

477–478
in object declaration, 453–454

ORDER member function, comparing object
instances, 467–468, 471–474

ORD.NET (Oracle Data Provider
for .NET), 40

ORM (Object Relational Model), 751
OSI (Open Systems Interconnection), 600
OTHERS keyword, catching exceptions

and, 92
OUT mode (write-only) parameter

creating functions and, 307
handling input and output variables in

NDS, 555
pass-by-reference functions, 336
placing parameters as arguments,

551–552
procedure support for, 336
qualifying functions and procedures,

299–300
OUTER APPLY statement, enhancements to

APPLY statements, 29–31

24-Index.indd 1133 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1134 Oracle Database 12c PL/SQL Programming

outer joins
defined, 877
full outer join, 887–888
left outer join, 885–886
overview of, 884–885
right outer join, 886–887

output, advanced formatting options,
636–638

output variables
dynamic statements with inputs and

outputs (NDS), 554–557
dynamic statements with variable inputs

and fixed outputs (dbms_sql),
566–569

dynamic statements with variable inputs
and variable outputs (dbms_sql),
571–576

overloading
create_wrapped procedure as

overloaded function, 1026–1028
packages, 352–354
vs. overriding, 800
WRAP function as overloaded

function, 1022
overriding

functions or procedures in
subclassing, 477

implementing object type
collections, 486

implementing subclasses, 478
vs. overloading, 800

overriding signature, 800, 802

P

package body
components in, 371–374
data types in, 371
overview of, 365–366
prototype for, 366–368
variables in, 368–370

package specification
components in, 364–365
data types in, 361–364
overview of, 354–355
prototype for, 355–358

serially reusable precompiler directive,
358–359

variables in, 359–361
packages

architecture of, 348–352
building, 762–763
checking dependencies, 380–381
components in package body, 371–374
components in package specification,

364–365
creating body of, 102–104
data types in package body, 371
data types in package specification,

361–364
data types supported, 102
data warehousing, 968
dbms_application_info, 974–979
dbms_comparison, 979–986
dbms_crypto, 986–989
dbms_fga, 990–991
debug-related, 968
definer rights vs. invoker rights,

375–377
deploying functions and procedures

in, 294
deploying with shared cursors,

100–101
DROP PACKAGE statement, 794
finding, validating, and describing,

379–380
implementing varray and table

collections in, 315
job management, 969
managing in database catalog, 378
as named blocks, 122
new in Oracle 11g and 12c, 966–967
overloading and, 102, 352–354
overview of, 348
package body, 365–366
performance, 970
prototype for package body, 366–368
prototype for package specification,

101, 355–358
review answers, 1074–1076
review questions, 382–384
security-related, 969

24-Index.indd 1134 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1135

serially reusable precompiler directive,
358–359

specification, 354–355
streams-related, 970
supported by PL/SQL, 639
testing, 104–105
utility, 971–973
validation methods, 381–382
variables in package body, 368–370
variables in package specification,

359–361
XML, 973

packet-sniffers, protecting network traffic, 679
parallel collection targets, 204–207
parallel functions

creating, 311–312
pass-by-value functions, 322–323

PARALLEL_ENABLE clause, 308, 311–312
parameters

defining procedures and, 339
in function and procedure

architecture, 295
passing to scripts, 635–636, 638–639

parse procedure, 35, 586–588
parsing

blocks and, 46
identifiers and, 59–60
recursive functions applied to advanced

parsing, 333
partitioned tables

composite partitions, 771–772
hash partitions, 770–771
list partitions, 769–770
overview of, 769
range partitions, 770

pass-by-reference functions
defined, 296
overview of, 336–338
rules in defining, 336
vs. pass-by-value, 307–308

pass-by-reference procedures
defining, 99–100
example, 343–344
overview of, 296
rules in defining, 342–343

pass-by-value functions
defined, 296

deterministic, 326–330
DML-enabled, 331–333
embedding, 323
nondeterministic, 330–331
overview of, 322–324
recursive functions, 333–335
rules in defining, 325
in SQL statements, 298
system reference cursor functions,

325–326
vs. pass-by-reference, 307–308
wrapping Java libraries, 328–329

pass-by-value procedures
defining, 99–100
example of procedure that inserts

values into two tables, 340–342
overview of, 296, 339–340
rules in defining, 340

passwords
causes of data breaches, 671
expiration settings, 655
hardening, 672–673
random, 674–677
rules and regulations, 706
sysdba user changing, 657
user, 706
verifying, 677

path environment variable, 622–625
pattern matching, metacharacters in, 1004
PDBs (pluggable databases)

architectural changes, 596
creating, 8
creating generic user, 626
creating PDB users, 656–657
database links in, 982
options for starting, 608
SID (System Identifier) for, 603–604
sys and system schemas, 602

performance, packages and, 970
period (.), aborting SQL statements, 634
Perl language

metasequences, 1006
regular expressions, 1000

permissions. See also privileges
security privileges as, 658
white listing users for calling stored

procedures, 32–33

24-Index.indd 1135 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1136 Oracle Database 12c PL/SQL Programming

persistent objects
defined, 763
overview of, 452–453
type evolution and, 481
unique object identifiers of, 470

pessimistic functions, 298–299, 331–333
PGA (Program Global Area), 147, 225
PHP

displaying LOBs on web pages,
410–412

regular expressions in, 1000
uploading LOBs to web pages,

406–410
working with LOBs via web pages,

404–405
writing CLOB column from, 820

piped concatenation, 847
PIPELINED clause

accessing PL/SQL collections in SQL
statements, 316–317

declaring pipelined packages, 362
defining numbers as varray collection,

312–313
options for creating functions, 308
PL/SQL collections and, 313–316

pipes (||), 847
PL/SQL

ADT collections, 72–75, 77
associative arrays of composite

variables, 79–80
associative arrays of scalar variables,

77–78
attributes and table anchoring, 65–68
block execution, 44–45
block structure, 45–48
bulk operations, 95–96
CASE statements, 82–83
collections. See collections, PL/SQL
composite data types, 68
control structures, 81
database triggers, 108–109
declaration blocks, 48–49
defining associative array data type,

1025–1026
development environment. See

development environment, PL/SQL

dynamic user-defined exceptions, 94
exception blocks, 49–50
exceptions, 92–93
functions, 97–99
hierarchical profiler. See hierarchical

profiler, PL/SQL
if, elsif, and else statements,

81–82
inheritance and, 476
iterative structures, 83–84
local named blocks, 57–60
for loops, 84–85
nested anonymous blocks, 55–57
numbers, 65
overview of, 9–12, 44
packages, 100–105
procedures, 99–100
record type. See record data type
reserved and key words, 1046–1051
review answers, 1060–1062
review questions, 109–110
scalar data types, 63
script for querying and formatting

reserved words, 1051–1053
session variables in, 641
simple loop statements, 88–91
SQL collections, 72
SQL UDT object type, 68–71
stored named blocks, 60–62
strings, 63–64
tables. See associative arrays
transaction scope, 106–108
UDT collections, 75–76, 78–79
updating ADT elements, 825–827
user-defined exceptions, 93–94
variables in anonymous blocks, 50–55
WHERE CURRENT OF clause,

86–87
while loops, 87–88
wrapping code in database. See

wrapping PL/SQL code
writing triggers, 492

PL/SQL, new features
caching invoker rights functions, 32
EXPAND_SQL_TEXT added to

DBMS_UTILITY, 34–35

24-Index.indd 1136 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1137

formal schema for dbms_sql package
parse procedure, 35

native client API support, 34
new functions inside SQL WITH clause,

35–37
overview of, 32
PL/SQL data types allowed in SQL,

37–39
REF CURSOR parameter binding, 40
review answers, 1058–1060
review questions, 41–42
utl_call_stack package, 34
white listing users for calling stored

procedures, 32–33
PLS_BINARY_INTEGER data type, 141
plshprof command-line utility, 1040–1043
PLS_INTEGER data type, 141, 721
PMON (Process Monitor), in Oracle database

architecture, 598
polymorphism, 475–476
Portable Operating System. See POSIX

(Portable Operating System)
positional notation

calling functions, 304
defined, 303

POSIX (Portable Operating System)
character classes, 1000–1001
collation classes, 1003
implementing regular expressions, 1007
metacharacters, 1004–1005
metasequences, 1006

POWER, number function, 936
POWERMULTISET, collection management

functions, 925–926
POWERMULTISET_BY_CARDINALITY,

collection management functions, 926
PowerShell, 634
PRAGMA (precompiler), 107
precision constraints, NUMBER data type,

65, 721
precompiler (PRAGMA), 107
predefined identifiers, 118
primary key constraints

adding column constraints, 781–782
applying to single or multiple

columns, 751

column constraints, 711
database constraints, 666–667, 712
defining tables based on object type,

731–732
indexes and, 753
out-of-line constraints, 719
read-only views and, 757

PRIOR keyword, for down-tree navigation,
856–858

PRIOR method
Collection API, 256–257
definition of, 249

privileges
accessing black boxes, 375
benefits of abstraction in granting, 625
dbms_sql package, 561
granting, 376, 708–710
inheritance and, 349
Oracle privileges, 659–660
provisioning database users, 653–655
revoking, 660–661
roles as groups of, 709
security privileges, 658–659
superusers, 704
triggers and, 494
viewing privilege definitions, 31
white listing and. See white listing

procedures
architecture of, 295–301
BFILE methods, 440–441
building, 762–763
calling subroutines, 303–304
in Collection API, 247
create_wrapped procedure,

1026–1028
in dbms_sql package, 578–590
defining, 99–100
DELETE method, 251–252
DROP PROCEDURE statement, 793
EXTEND method, 253–254
forward references to, 60
functions compared with, 296–297
LOB introspection methods, 438–439
LOB manipulation methods, 431–436
local named blocks, 57–59
as named blocks, 122

24-Index.indd 1137 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1138 Oracle Database 12c PL/SQL Programming

procedures (cont.)
notation calls, 304–305
overloading, 352–354
overview of, 99, 294, 338–339
package-level variables and, 368–370
package-only scope, 349
pass-by-reference, 342–344
pass-by-value, 339–342
published in package specification, 354
review answers, 1071–1073
review questions, 345–346
running with EXECUTE command, 642
scope identifiers, 118–119
security link methods, 443–445
temporary LOB methods, 441–442
transaction scope and, 302–303
TRIM method, 257–258
for uploading LOBs to web page,

405–406
Process Monitor (PMON), in Oracle database

architecture, 598
processing architecture, Oracle, 12–13
production systems, uses of DDL triggers, 499
profiles

restrictions in, 655
in security hardening, 673–674
user, 707

Program Global Area (PGA), 147, 225
programming languages

assigning values to variables, 53–54
comparing, 122

programs, as service component, 598
protected (private) variable, package-level

variables, 368
pseudotypes, 362
PUBLIC account

creating synonyms and, 772–773
granting privileges to, 710

Q

queries. See SELECT statements
query tool case study, 991–997
query work area, 147
QUIT, exiting SQL*Plus environment, 631
quoted identifiers, 118

R

rainbow tables, for password attacks, 672
RAISE statement, for throwing

exceptions, 276
raise_application_error function,

276, 278–281
range FOR loop statements, 180–181
range partitions, partitioned tables, 770
RAW data type

converting, 807–808
converting hexadecimal streams into

raw streams, 130
size limits of, 24
SQL data types, 702

RDBRMSs (relational database management
systems), 4

read-only files, external tables and, 765
read-only parameter. See IN mode (read-

only) parameter
read-only views, 757–758
READ procedure, LOB introspection

methods, 439
read property, DML, 696–697
read/write files, external tables and, 765
read-write parameter. See IN OUT mode

(read-write) parameter
read-writeable views, 756–757
reading LOB files, into internal stored

columns, 398–399
record data type

associative arrays of, 79–80
comparing with object types,

220–221
as composite data type, 68
creating associative arrays, 241
creating composite types, 245–247
creating UDT collections, 78–79
dbms_sql package supporting,

577–578
declaring in packages, 362
overview of, 71, 145
record collection targets, 205–208
transferring object data types to,

234–237
record structure

attributes, 763

24-Index.indd 1138 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1139

creating nested collections and, 747
tables and, 711

recursive functions, 333–335
recursive queries, 1039–1040
reference cursors

in package specification, 363–364
REF CURSOR parameter, 40

referential integrity, foreign keys and, 668
REGEXP_COUNT function, 1007–1011
REGEXP_INSTR function, 1011–1013
REGEXP_LIKE function, 1002, 1013–1014
REGEXP_REPLACE function, 1014–1015
REGEXP_SUBSTR function, 1015–1017
regular expressions

alternative for, 848
character classes, 1000–1003
collation classes, 1003
implementing, 1007
literals, 1007
metacharacters, 1004–1005
metasequences, 1006–1007
overview of, 1000
REGEXP_COUNT function, 1007–1011
REGEXP_INSTR function,

1011–1013
REGEXP_LIKE function,

1013–1014
REGEXP_REPLACE function,

1014–1015
REGEXP_SUBSTR function,

1015–1017
relational database management systems

(RDBRMSs), 4
relational tables

cloning, 713
migrating object data to, 714–715
prototype for, 715

release engineering, 779
REMAINDER, number function, 937–938
remote calls, between database

instances, 378
remote connectivity, Oracle Database

and, 600
remote procedure calls (RPCs), 600
RENAME statement, renaming tables,

synonyms, and views, 791–792

repeat until loops, 172
REPLACE character function, 899–900
REPLACE statement

building functions, procedures, and
packages, 762–763

SQL object types, 764–765
reports, data governance, 684
reserved words/keywords

compilation errors and, 263
delimiter functions, 117
list of PL/SQL, 1046–1051
script for querying and formatting

reserved words, 1051–1053
types of identifiers, 118

RESOURCE roles, 625
result cache, for designer rights

functions, 308
RESULT_CACHE clause, 308, 319–321
RETURNING INTO clause

appending to UPDATE statements,
818–821

DML statements and, 548, 552
returning input and output variables,

555–557
return_results procedure, in dbms_sql

package, 24–25
reusable code, 475–476
REVERSE character function, 900
reverse key indexes, 754
REVOKE privileges, monitoring with DDL

triggers, 500
revoking privileges, 660–661, 711
right joins, 877
right operands, 336
right outer join, 886–887
roles

abstraction in, 625
granting groups of privileges, 709
in security hardening, 673–674

ROLLBACK statement
canceling transactions, 617–618
controlling transaction scope, 303
description of, 842
TCL session control commands, 106
in transaction management, 830
when DML statement fails, 841

24-Index.indd 1139 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1140 Oracle Database 12c PL/SQL Programming

ROUND function
SQL date-time conversion functions, 916
SQL number functions, 938

ROW EXCLUSIVE table locks, 620
row-level triggers

architecture of, 496
automatic numbering of primary key

column, 524–525
compound triggers, 527–531
consolidating two triggers into single

trigger, 521
DML triggers as, 515
logging data with, 521–524
processing rules, 525
pseudo-records, 518–519
raising exceptions, 524
testing with INSERT statements,

519–520
types of database triggers, 109

ROW SHARE table locks, 620
%ROWCOUNT, in simple loops, 89
ROWID data type

converting, 807–808
converting into character string, 130
overview of, 130
SQL data types, 703

ROWIDTOCHAR function, 130
ROWNUM operation, native SQL support for,

26–29
rows

anchoring data types to, 361
assigning row-by-row values to nested

tables, 1034
causes of row locks, 619
deleting nested table row elements,

832–833
joins, 878
query row limits, 26–29
row-by-row statement processing,

569–571
single row and multiple row subqueries,

849–851
single-row implicit cursors, 186–188

%ROWTYPE
anchoring data types to rows, 361
as pseudotype, 362

RPAD character function, 900–901
RPCs (remote procedure calls), 600
RTRIM character function, 901
runtime errors

exception types and scope, 262–263
overview of, 266–267
types of PL/SQL errors, 262

runtime, parsing and, 59–60

S

SAVEPOINT statement
in controlling transaction scope, 303
description of, 842
setting before running DML

statements, 841
TCL session control commands, 106
in transaction management, 830

scalar data types
appending RETURNING INTO clause to

UPDATE statements, 819–821
associative arrays of, 77–78, 241–242
attributes and table anchoring, 65–68
BFILE data type, 142
BINARY_INTEGER data type, 138
BLOB data type, 143
BOOLEAN data type, 126–128
capturing last sequence value, 805–806
CHAR data type, 128–129
characters and strings, 128
CLOB data type, 143–144
collections. See ADTs (Attribute

Data Types)
in columns, 720–721
comparing scalar and composite

variables, 123
creating collections of, 747
DATE data type, 132–134
dates, 64
handling large objects, 805–806
IEEE 754-format data types, 138–140
inserting, 802–805
INTERVAL subtypes of DATE,

134–135
list of, 127
LOBs (large objects), 142

24-Index.indd 1140 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1141

LONG and LONG RAW data types,
129–130

MAP function validating against, 468
NCHAR and NVARCHAR2 data

types, 137
NCLOB data type, 144
NUMBER data type, 65, 137, 140–141
overview of, 63, 126
PL/SQL support for scalar variables, 50
PLS_INTEGER and PLS_BINARY_

INTEGER data types, 141
review answers, 1063–1065
review questions, 150–151
ROWID and UROWID data types,

130–131
strings, 63–64
TIMESTAMP subtypes of DATE, 135–137
Unicode characters and strings, 137
VARCHAR2 data type, 131–132

scalar subqueries, 849
scalar table table collections, 225–229
scale constraints, NUMBER data type, 65, 721
schema. See also user accounts

configuring for PL/SQL hierarchical
profiler, 1030–1032

as container of stored programs, 375
creating Oracle users, 705–708
schema-level functions and

procedures, 294
schema-level objects, 221
schema-level programs, 359

scope
making changes to SQL scope

access, 1025
of objects, 453
of packages, 349

scope error, local named blocks and, 59
scope identifiers, 118–119
scripts

anonymous blocks supporting, 47
batch mode for passing parameters to

scripts, 638–639
calling and running, 634–635
interactive mode for passing parameters

to, 635–636
portability to other databases, 720

for querying and formatting reserved
words, 1051–1053

running from command line, 9
searched CASE statements, 83, 168–169
secure shell (ssh), 600–601
Secure Sockets Layer (SSL)

creating CDB users, 654
name authentication and, 706–707

SecureFiles, 386
security

attacker categories, 671–672
Audit Vault and Database Firewall, 672
DDL triggers as security tool, 500
generating random passwords, 674–677
granting security privileges, 658–659,

708–710
hardening, 670–671
listener hardening, 677–680
listener white listing, 681
password hardening, 672–673
password verification, 677
security-related packages, 969
triggers enforcing security policies, 493
user roles and profiles, 673–674

security link methods, in dbms_lob package,
442–445

SELECT statements
aggregation queries, 861–866
bulk statement processing, 571
clauses of, 844
debugging, 569
down-tree navigation, 856–858
dynamic statements with variable inputs

and fixed outputs (dbms_sql),
566–569

dynamic statements with variable inputs
and variable outputs, 571–576

executing dynamic statements, 552
finding packages, 379
functions supporting parallel, 311
hierarchical queries, 855–856
indexes speeding up processing,

752–753
for inline views, 852–855
locks and, 619
overview of, 843–845

24-Index.indd 1141 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1142 Oracle Database 12c PL/SQL Programming

SELECT statements (cont.)
queries that return columns or column

results, 845–848
query row limits, 26–29
querying object types, 789
read-only views and, 757
reading Oracle Data Pump files, 766
row-by-row processing, 569–571
selective queries, 866
subqueries, 848–852
top-n query syntax, 235
transaction processes, 618
up-tree navigation, 858–860
UPDATE by correlated queries, 829
UPDATE by values and queries,

816–818
selective aggregation, 875–876
selective queries, 866
selectors, CASE statements defining, 166
SELF, referring to object instance, 457
semantic errors. See also runtime errors, 262
semicolon (;), for statement termination, 748
sentinel values, in iterative statements, 172
sequences

associating with tables, 20–22
capturing last sequence value, 805–806
creating, 741–743
inserting scalar data types and, 802
mapping identity columns to, 745

SERIALLY_REUSABLE PRAGMA
defining packages, 359
making packages state aware, 348
precompiler directive, 358–359

SERVEROUTPUT environment variable, 46,
642–643

services, Oracle Database, 597–598
sessions

database, 773
operational context of, 303
setting session variables inside

PL/SQL, 641
shelling out, 630–631
tracing session statements, 691–693
transaction scope and, 106

set-based declarative languages. See also SQL
(Structured Query Language), 696

SET clause, of UPDATE statement, 816
SET, collection management functions, 926
SET operator, SQL collection operators,

932–933
set operators

INTERSECT, 890–891
MINUS, 891
types of, 888
UNION, 888–889
UNION ALL, 888–890

SETCONTENTTYPE procedure, security link
methods, 445

SET_DBFS_LINK procedure, security link
methods, 445

SETOPTIONS procedure, LOB manipulation
methods, 435–436

setters, object data types, 463–465
SGA (System Global Area)

resource limits in table collections, 225
results cache stored in, 308
viewing SGA values, 605

SHARE ROW EXCLUSIVE table lock, 620
SHARE table lock, 620
shared cursors

in package specification, 362–363
packages and, 100–101, 351

shelling out, SQL*Plus, 630–631
SHOW command, SQL*Plus, 627
shutdown operation, 606
SID (System Identifier), for database

instances, 603–604
simple CASE statements, 167–168
simple loop statements

dynamic simple loops, 176–178
overview of, 172–174
as PL/SQL control structure, 88–91
static simple loops, 174–176

single-branching expressions
if-then-else statements,

162–165
truth table for, 161
types of conditional statements, 154

single precision numbers, 138
single-row implicit cursors, 186–188
single row subqueries, 849
singleton design pattern, 371

24-Index.indd 1142 12/17/13 4:49 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1143

SMON (System Monitor) process, in Oracle
database architecture, 598

SPACE_ERROR_INFO, 512
SPARC architecture, 652–653
SQL Developer

configuring, 644–648
displaying information from data

catalog views, 776–778
launching, 644
working with, 649–652

SQL injection attacks, 547, 549, 551, 621
SQL (Structured Query Language)

aborting statements, 634
accessing PL/SQL collections from,

316–317
ACID-compliant DELETE statements,

797–799
ACID-compliant INSERT statements,

796–797
ACID-compliant transactions, 795
ACID-compliant UPDATE

statements, 797
ALTER statement, 773
analyzing statement performance, 686
ANSI/ISO standards, 619
appending RETURNING INTO clause to

UPDATE statements, 818–821
BLOB data type, 736
Boolean data type, 729–730
built-in functions. See functions, SQL

built-in
capturing last sequence value, 806–807
case sensitivity, 718
CASE statements, 870–871
character data types, 724–725
cloning relational tables, 713
collections. See collections, SQL
column changes with ALTER statement,

778–780, 783–784
column maintenance with ALTER

statement, 780–782
COMMENT statement, 795
constraints, 711–712
at core of Oracle database

architecture, 6
creating functions for statements, 308

creating object types as SQL data
types, 452

creating tables, 713, 715, 717
cross joins, 879–880
cursor structures returned from

statements, 185
data catalog table definitions, 776–778
data type conversion, 807–808
data types, 699–703
data types supported by tables,

712–713
date functions, 871–875
DDL CREATE statement, 704–708
DDL (Data Definition Language),

703–704
declaring variables, 124
DECODE function, 866–870
defining tables, 711
DELETE by values, 830–832
DELETE statement, 829
DELETE statement support for

correlated queries, 833–834
deleting nested table row elements,

832–833
developing business applications, 616
DML (Data Manipulation

Language), 795
DROP statement, 792–794
dynamic statements using dbms_sql

package. See dynamic SQL
statements, in dbms_sql package

dynamic statements using NDS. See
dynamic SQL statements, using NDS

editing statements, 633
event categories, 696
external tables, 765–766
functions in statements, 298
functions, procedures, and packages,

762–763
granting privileges, 708–710
handling large objects, 805–806
in history of PL/SQL, 4
identity columns, 743–747
inability to call procedures from, 338
index changes with ALTER statement,

785–786

24-Index.indd 1143 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1144 Oracle Database 12c PL/SQL Programming

SQL (Structured Query Language) (cont.)
indexes, 752–755
inner joins, 882–884
INSERT by values, 801–802
INSERT statement, 799–801
inserting arrays and nested tables,

808–811
inserting scalar data types, 802–805
interactive and batch processing. See

SQL*Plus
INTERSECT set operator, 890–891
invisible columns, 713, 716, 738–741
join results, 876–878
joining collections, 888
joining nested tables (unnesting

queries), 881–882
joining rows, 878
LOBs (large objects), 725–729,

737–738
LOCK TABLE command, 619
MERGE statement, 834–835
MERGE statement in bulk imports,

835–841
migrating object data to tables,

714–715
MINUS set operator, 891
multiple-table INSERT statements,

811–815
natural joins, 884
nested collections, 747–750
NUMBER data type, 721–723
object changes with ALTER statement,

787–791
object data type, 730–736
object table function views, 758–761
object types, 763–765
Oracle Data Pump files, 768–769
in Oracle processing architecture, 12
outer joins, 884–888
overview of, 696–699, 723–724
partitioned tables, 769–771
PL/SQL runtime support for, 11
processing steps for SQL statements, 845
prototype for relational tables, 715
read-only views, 757–758
read-writeable views, 756–757

as relational programming
language, 598

RENAME statement, 791–792
rerunning statements from buffer,

633–634
revoking privileges, 711
saving statements, 631–632
scalar data types in columns, 720–721
SELECT statements, 843–845
SELECT statements for aggregation

queries, 861–866
SELECT statements for down-tree

navigation, 856–858
SELECT statements for hierarchical

queries, 855–856
SELECT statements for inline views,

852–855
SELECT statements for queries that

return columns or column results,
845–848

SELECT statements for selective
queries, 866

SELECT statements for subqueries,
848–852

SELECT statements for up-tree
navigation, 858–860

selective aggregation, 875–876
sending results to external programs,

24–26
sequences, 741–743
SQL*Loader files, 766–768
synonyms, 772–773
table changes with ALTER

statement, 776
table constraints, 717, 719–720,

750–752
TCL (Transaction Control Language)

and, 841–843
transaction processes, 617–618
trigger restrictions, 538–539
TRUNCATE statement, 794
UNION ALL set operator, 889–890
UNION set operator, 889
update by correlated queries, 829
update by value, 816–818
UPDATE statement, 815–816

24-Index.indd 1144 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1145

updateable columns in views, 761–762
updating ADT elements, 825–827
updating LOBs (large objects), 827–828
updating nested tables, 821–825
user changes with ALTER statement,

773–776
using SQL data types, 124
views, 755–756
virtual columns, 736, 738
virtual directories, 766
writing statements, 631
XMLTYPE data type, 736

SQL (Structured Query Language), new
features

APPLY statement enhancements,
29–31

associating sequences with tables,
20–22

database driver for MySQL
applications, 29

default values for explicit null insertion,
22–23

identity columns, 23–24
LEFT OUTER JOIN syntax

enhancements, 20
LIBRARY objects, 19
overview of, 18–19
query row limits and offsets natively

supported, 26–29
review answers, 1058–1060
review questions, 41–42
size limits for strings and raw types, 24
SQL statement results sent to external

programs, 24–26
view privilege definitions, 31
VT (valid-time) support for tables, 19–20

SQL UDT
as composite data type, 68
creating UDT collections of, 78–79
overview of, 68–71

SQLCODE
built-in exception management

functions, 267–268
finding error codes with, 274
SQL error reporting functions,

938–939
SQL*Loader, 766–768

sqlnet.ora file, 610, 615, 656
SQL*Plus

aborting statements, 634
advanced formatting options for output,

636–638
batch mode, 638–639
call mode, 12
calling and running scripts, 634–635
calling PL/SQL programs, 639–640
command-line interface, 622
configuring, 626–629
connecting to/disconnecting from,

622–625
editing SQL statements, 633
executing anonymous block programs,

640–641
executing named block programs,

641–643
exiting, 631
function calls, 306–307
interactive help console, 629–630
interactive mode, 635–636
output buffer between SQL*Plus and

PL/SQL engines, 125–126
querying table definition and scope, 733
rerunning statements from buffer,

633–634
saving statements, 631–632
SERVEROUTPUT environment

variable, 46
setting session variables inside

PL/SQL, 641
shelling out, 630–631
using for Oracle development, 4
viewing current user name, 605
viewing package functions and

procedures, 354
working with, 625–626
writing log files, 643–644
writing statements, 631

sqlplus
connecting to/disconnecting from

SQL*Plus, 622–625
connecting to Windows users, 609–610
managing database or listener, 604
starting/stopping Oracle Database

server, 603

24-Index.indd 1145 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1146 Oracle Database 12c PL/SQL Programming

SQLTERM function
built-in exception management

functions, 267–268
finding error codes and error messages

with, 274
SQL error reporting functions, 939–940

ssh (secure shell), 600–601
SSL (Secure Sockets Layer)

creating CDB users, 654
name authentication and, 706–707

stack trace management function, in
dbms_utility package, 94

stage systems, uses of DDL triggers, 499
STANDARD package

built-in functions in, 118
predefined exceptions, 274–275

standards, PL/SQL language, 10
START WITH clause, for up-tree

navigation, 858
starting/stopping database server, 603–604
startup operation, 606–607
startup/shutdown, auditing with system

triggers, 536
statement controls, delimiter functions, 117
statement-level triggers

compound triggers, 527–531
DML triggers as, 515
overview of, 516–518

static assignments, in declaration blocks,
51–54

static cursors, FOR loop variant of,
194–195

static data types
APIs (application programming

interfaces) and, 452
in package body, 371
in package specification, 361

static explicit cursors, 192–194
STATIC function

member methods, 465–467
returning scalar or composite

types, 455
static methods in OOP, 452
supported by PL/SQL, 639

static implicit cursors, 189–190
static simple loops, 174–176

stored functions
overview of, 97–99
stored named blocks and, 60–61

stored procedures
calling with NDS, 556–557
operational scope, 618
prototype for, 99
stored named blocks and, 60–61
white listing users for calling, 32–33

stored programs
in development of business

applications, 616
supported by PL/SQL, 639–640
transactions grouped, 615

streams-related packages, 970
STRING data types

CHAR data type, 128–129
CHARACTER data type, 129
LONG and LONG RAW data types,

129–130
overview of, 63–64, 128, 132
regular expressions. See regular

expressions
ROWID and UROWID data types,

130–131
size limits of, 24
SQL data types, 699
STRING and VARCHAR subtypes, 132
Unicode strings, 137
VARCHAR2 data type, 131

string literals, 119, 1007
striped views, 653, 705
structures

objects. See object data types
records. See record data type

stubs
forward referencing, 364
implementing local named blocks

and, 60
su command, changing database user in

Unix/Linux, 604
subclasses

declaring, 477–478
extending data type behavior, 735
implementing, 478–481
inheritance and, 475–476

24-Index.indd 1146 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1147

subcursors, 197–202
SUBMULTISET OF, collection set operator,

160, 933
subqueries

correlated, 851–852
overview of, 844, 848–849
scalar, 849
single row and multiple row, 849–851
update by correlated queries, 829

subroutines
as black box, 295
functions. See functions
inlining subroutine calls, 344
overview of, 57
procedures. See procedures
scope of, 263
stored named blocks as, 60
types of, 296

substitution variables
acting as placeholders in scripts,

635–636
declaration block errors and, 271–272
EXPLAIN PLAN statement and,

685–686
when to disable, 638

SUBSTR function, LOB introspection
methods, 439–440

subtypes, migrating to tables, 714–715
SUM

aggregation, 861
GROUP BY clause and, 866
use with numbers, 863–864

superclasses
implementing subclasses and, 479
overview of, 475–476

superusers
privileges, 704
provisioning database users, 652

surrogate keys
inserting scalar data types and, 802
sequences and, 741–742
UNIQUE constraints and, 664–665

synonyms
creating, 376, 772–773
renaming, 791–792
simplifying user access, 660

simplifying user access to objects, 710
types of local data, 301

syntax errors. See also compilation time, 262
SYS schema, 1030–1032
sys user

object access, 772
provisioning database users, 652–653
superuser schemas, 601
types of superusers, 704

SYS_CONTEXT function, SQL built-in
functions, 954–958

SYSDATE, date-time conversion functions,
135, 916

sysdba user
changing passwords, 657
connecting to, 1030
EXECUTE privileges for dbms_crypto

package, 987
performing administrative tasks, 605
provisioning database users, 653–654

sysoper (system operator), 653
system event attribute functions

building DDL triggers, 513–514
overview of, 501
use with DDL triggers, 503–512

system event triggers
example, 537–538
overview of, 494, 536
prototype for building, 536–537
restrictions on/limitations of,

540–541
types of database triggers, 109

System Global Area. See SGA (System Global
Area)

System Identifier (SID), for database
instances, 603–604

System Monitor (SMON) process, in Oracle
database architecture, 598

system privileges, granting, 708–710
system reference cursors

functions for accessing, 325–326
overview of, 147–149
pseudo exception in variable

declaration, 124
review answers, 1063–1065
review questions, 151

24-Index.indd 1147 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1148 Oracle Database 12c PL/SQL Programming

system user
applying dbms_comparison

package, 982
privileges, 561
provisioning database users, 652–653
superuser schemas, 601
types of superusers, 704

SYSTIMESTAMP, date-time conversion
functions, 135, 917

T

tab-separated values (TSV), external tables
and, 765

table collections
associative arrays compared with, 241
asymmetrical composite, 238–239
Collection API supporting, 247
composite, 231
implementing as associative arrays,

229–231
implementing in packages, 315
numeric index values, 228–229
overview of, 225
PIPELINED clause for functions that

return collections, 312
scalar, 225–231
symmetrical composite, 231–237

table constraints
applying to single or multiple

columns, 750
CREATE TABLE statement and, 717
defined, 711
dropping columns and, 784
multiple-column constraints, 722, 751

TABLE function, SQL built-in functions,
958–960

table-level triggers. See statement-level
triggers

tables
aliases, 846
anchoring, 65–68
case sensitivity, 718
cloning relational tables, 713
commenting, 795
comparing with nested tables, 144

creating, 713, 715, 717, 836–837
data catalog table definitions, 776–778
data types, 712–713
definer rights model and, 620–621
defining, 711
defining for PL/SQL hierarchical

profiler, 1037–1039
DROP TABLE statement, 792–793
external tables, 765–766
index-organized tables, 753–755
invisible columns, 713, 716
invoker rights model and, 621–622
joins, 876
locks, 619–620
making changes with ALTER

statement, 776
migrating object data, 714–715
multiple-table INSERT statements,

811–815
mutating tables, 539–540
nested. See nested tables
partitioned tables, 769–771
prototype for relational tables, 715
renaming, 791–792
scalar data types in columns,

720–721
sequences associated with, 20–22
SQL lists implemented as table data

type, 218
states, 224
substitutability of, 731–732
TRUNCATE statement, 794
types of local data, 301
VT (valid-time) support, 19–20

tablespaces
assigning, 659, 710
dropping, 792

TCL (Transaction Control Language)
applying TCL commands to single

transaction scope, 106–107
in Oracle processing architecture, 12
overview of, 841–843
in pessimistic functions, 331–333
session control commands, 106
SQL commands, 696–697
trigger restrictions, 538

24-Index.indd 1148 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1149

telnet, thick-client communication and,
600–601

temporary methods, in dbms_lob package,
441–442

temporary tables, 717
test systems, uses of DDL triggers, 499
thick-client communication, 600–601
thin-client communication, 600–601
three-value logic, in conditional statements,

81–82, 155
time

built-in functions for. See date-time
conversion functions, SQL built-in

NEW_TIME function, 915
time literals, 120–121

time zones
DBTIMEZONE function, 912
FROM_TZ function, 913
TZ_OFFSET function, 920

TIMESTAMP data type
converting, 807–808
CURRENT_TIMESTAMP function, 912
LOCALTIMESTAMP function, 914
overview of, 723–724
SQL data types, 702
subtype of DATE data type,

135–137
SYSTIMESTAMP function, 917
TO_TIMESTAMP function, 918–919
TO_TIMESTAMP_TZ function, 919

TIMESTAMP WITH TIME ZONE data
type, 702

tkprof utility, converting raw trace files,
693–694

TNS (Transparent Network Substrate), 655
tnsnames.ora file, 610
tnsping utility, verifying Net8 connectivity,

614–615
Toad for Oracle, 776–778
TO_CHAR, data type conversion function,

905–907, 917–918
TO_CLOB, data type conversion function, 907
to_cursor_member function, in

dbms_sql package, 589
TO_DATE, data type conversion function,

133, 907–908

TO_DSINTERVAL, data type conversion
function, 918

TO_LOB, data type conversion function,
908–910

TO_NCHAR, data type conversion
function, 910

TO_NCLOB, data type conversion
function, 910

TO_NUMBER, data type conversion function,
910–911

top-n query syntax, 235
to_refcursor function, in dbms_sql

package, 589
TO_TIMESTAMP, date-time conversion

function, 918–919
TO_TIMESTAMP_TZ, date-time conversion

function, 919
TO_YMINTERVAL, date-time conversion

function, 919–920
traces/tracing

configuring network tracing, 656
converting raw trace file to readable

trace files, 693–694
overview of, 690
session statements, 691–693

Transaction Control Language. See TCL
(Transaction Control Language)

transaction processes, 617
transactions

ACID-compliant, 598, 615, 795
cursors and, 618
DCL and, 617
DML and, 616
functions and procedures and, 302–303
managing, 830
scope, 106–108, 618–619
triggers and, 618

transient objects
declaring, 453–456
defined, 763
implementing object bodies, 456–461
overview of, 452–453
static member methods, 465–467
subclasses compared with, 480
type evolution and, 481

Transparent Network Substrate (TNS), 655

24-Index.indd 1149 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1150 Oracle Database 12c PL/SQL Programming

TREAT function
implementing subclasses and, 480–481
instantiation of objects, 791
persistent objects and, 470
SQL built-in functions, 960–961

triggers
anonymous blocks stored as trigger

bodies, 639
architecture of, 495–499
auditing or data protecting function of,

615–616
building DDL triggers, 512–514
compound triggers, 527–531
DDL triggers, 499–500
DML triggers, 515–516
event attribute functions and, 501,

503–512
INSTEAD OF triggers, 532–535
logging table, 501–502
overview of, 492
restrictions on/limitations of, 538–541
review answers, 1080–1082
review questions, 541–543
row-level triggers, 518–526
sequences and, 743
statement-level triggers, 516–518
system and database event triggers,

536–538
transactions and, 618
types of, 493–494
uses of, 492–493

TRIM method
Collection API, 257–258
definition of, 249

TRIM procedure, LOB manipulation
methods, 436

TRUNC function
date math and, 871–872
date-time values and, 724
extracting date from timestamp,

133–134
SQL date-time conversion

functions, 920
TRUNCATE statement

DELETE statement compared with, 829
overview of, 794
table maintenance with, 713

truth tables
for multiple-branching expressions,

161–162
for single-branching expressions, 161

TSV (tab-separated values), external tables
and, 765

tuning SQL
dbms_xplan package in, 686–690
EXPLAIN PLAN statement in,

685–686
overview of, 684–685

two-phase commit (2PC) protocol, 617
two-tier database model, 13
two-value logic, in conditional

statements, 155
%TYPE

anchoring data types to columns, 361
as pseudotype, 362

type evolution, object data types, 481–482
TZ_OFFSET, date-time conversion

functions, 920

U

UDTs (user-defined types)
collections of object data types, 221
collections of SQL structures, 821
creating collections of record and

object types, 78–79
creating SQL UDT, 318
identifiers and, 118
implementing, 75–76
object table function views and, 758
object type in creating, 730
overview of, 787
in packages, 350
SQL object types, 763–765
updating nested tables, 823–825

UI (user interface), 8–9
UML (Unified Modeling Language), 452,

876–877
unconstrained subtypes, CHARACTER subtype

as, 129
Unicode characters and strings, 137
Unified Modeling Language (UML), 452,

876–877

24-Index.indd 1150 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1151

UNION ALL set operator, 888–890
UNION set operator, 888–889
UNIQUE constraints

adding column constraints, 781–782
applying constraints to single or

multiple columns, 751–752
database constraints, 664–666, 712
indexes and, 753
out-of-line constraints, 719
primary keys and, 667

Unix/Linux
configuring SQL Developer, 645
database operations, 604–609
launching SQL Developer, 644
managing database users, 604
Oracle configuration files, 610
performing administrative tasks with

sysdba, 605
shelling out of sessions, 631
shutdown/startup operations,

606–609
viewing current user name, 605
viewing SGA values, 605

unnesting queries, 881–882
up-tree navigation, 858–860
update property, DML, 696–697
UPDATE statements

ACID-compliant, 797
appending RETURNING INTO clause

to, 818–821
for BLOBs, 393
for CLOBs, 392
control structures, 209–210
database triggers and, 108
DML transactions and, 616
DML triggers and, 515
indexes speeding up DML command

processing, 752–753
INSTEAD OF triggers, 532
for NCLOBs, 392
overview of, 815–816
table aliases and, 732–733
triggers on, 492
update by correlated queries, 829
update by value, 816–818
updating ADT elements, 825–827

updating LOBs (large objects), 827–828
updating nested tables, 821–825

UPPER, character function, 901
UROWID data type

converting, 807–808
overview of, 131
SQL data types, 703

user accounts
contrasted with namespaces, 601–602
creating CDB users, 654–656
creating Oracle users, 705–708
creating PDB users, 626, 656–657
DROP USER statement, 792
making changes with ALTER statement,

773–776
Oracle Database primer, 602
provisioning database users, 652–654
roles and profiles, 673–674

user-defined exceptions
declaring, 276–278
dynamic, 278–281
overview of, 93–94

user-defined types. See UDTs (user-defined
types)

user interface (UI), 8–9
USERENV function, SQL built-in functions,

961–963
USER_OBJECTS administrative view

checking package dependencies,
380–381

finding packages, 379
validation methods and, 381–382

USER_TAB_COLUMNS view, 776
USING clause, 550–551
USING INDEX clause, 719
UTF8, 137
utilities. See also dbms_utility package

lsnrctl utility, 610, 613–614
Oracle Database primer, 600
ORADMIN utility, 602, 609
packages, 971–973
plshprof command-line utility,

1040–1043
tkprof utility, 693–694
tnsping utility, 614–615
wrap command-line utility for, 1021

24-Index.indd 1151 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1152 Oracle Database 12c PL/SQL Programming

utl_call_stack package
error management functions in,

281, 282
improving error stack handling, 34

utlpwdmg.sql script, for password
verification, 677

V

valid-time (VT), support for tables, 19–20
validation

black box testing, 295
comparing methods, 381–382
of packages, 379–380

VALUE, casting object values into collections,
735–736

VALUES clause
DELETE statement, 830–832
INSERT statement, 799, 801–802
UPDATE statement, 816–818

VARCHAR data type
overview of, 132
SQL data types, 700

VARCHAR2 data type
building collection of, 320–321
in CASE statements, 82
converting, 807–808
converting LONG and LONG RAW types

to, 567–568
dynamically sized strings and, 63
overview of, 131
size limits of, 24
SQL data types, 700
subtypes of, 132
syntax for, 725

variables
access rules, 370
acting like constants, 51
assigning values in declaration blocks,

51–54
casting value between two data types,

54–55
composite types. See composite data

types
declaring, 123–124

dynamic statements with inputs.
See input variables

local scope, 50
overview of, 122
in package body, 368–370
in package specification,

359–361
in packages, 351
scalar types. See scalar data types
scope, 263
setting session variables inside

PL/SQL, 641
types, 123
viewing package variables, 354

variable_value function, in dbms_sql
package, 589

variable_value_char procedure, in
dbms_sql package, 589

variable_value_raw procedure, in
dbms_sql package, 590

variable_value_rowid procedure, in
dbms_sql package, 590

varrays
associative arrays compared

with, 241
Collection API supporting, 247
collections as, 144
comparing with table

collections, 240
creating in PL/SQL, 223
creating in SQL, 221–222
creating varray ADT, 747–749
defining three-element varray of strings,

222–223
implementing in packages, 315
mapping PL/SQL types to non-PL/SQL

types, 219
numeric index values, 228–229
PIPELINED clause for functions that

return collections, 312
pipelined function defining numbers as

varray collection, 312–313
SQL array implemented as, 218
states, 224
storing, 748

24-Index.indd 1152 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

Index 1153

VCHAR data type
overview of, 132
syntax for variable-length string,

724–725
Venn diagrams, 882
verification, white box testing, 295
views

building by calls to pipelined
functions, 316

commenting, 795
creating, 755
data dictionary views, 985
database, 704–705
DROP VIEW statement, 793
invoker rights model and, 621–622
joins, 876
object table views, 758–761
privileges for, 31
read-only views, 757–758
read-writeable views, 756–757
renaming, 791–792
SPARC architecture and, 652–653
types of local data, 301
updateable columns in, 761–762
USER_TAB_COLUMNS view, 776
variable and subroutine scope, 263

virtual columns
creating, 720–721, 738
function of, 736

virtual directories
Apache, 414
for BFILE data type, 413–419
creating, 835–836
overview of, 766
reading LOBs files into internally stored

columns, 398–399
Virtual Private Databases (VPDs)

alternative models for, 756
definer rights model and, 621

VISIBLE keyword, 786
VPDs (Virtual Private Databases)

alternative models for, 756
definer rights model and, 621

VSIZE function, SQL built-in functions, 963
VT (valid-time), support for tables,

19–20

W

WAIT, lock prevention, 619
web pages

HTML and PHP components for page
display, 410–412

HTML and PHP components for page
upload, 406–410

procedures uploading large objects,
405–406

using LOBs (large objects) on, 404–405
WHEN block

exception blocks, 49
runtime errors and, 266–267

WHEN clauses
in CASE statements, 82
multiple-table inserts and, 812–815
trigger restrictions, 495

WHEN OTHERS block, exception blocks, 49
WHERE clause

DELETE statement, 829–831
in function-based indexes, 754
SELECT statement, 847
UPDATE statement, 797, 815–816

WHERE CURRENT OF clause, of FOR loops,
86–87

WHILE loops
implementing with comparison

condition, 181–184
key (or string) indexing of associative

array, 244–245
overview of, 87–88, 181

white box testing, 295
white listing

function access, 306–307, 323–324
listeners, 681
object access, 455, 461–463
package access, 348, 355, 357
procedure access, 339
stored procedures access, 32–33
subroutine access, 97–98

Wireshank packet sniffer, 679
WITH clause

embedding deterministic function in, 327
inline views and, 852–855
new PL/SQL functions in SQL, 35–37

24-Index.indd 1153 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

1154 Oracle Database 12c PL/SQL Programming

wrap command-line utility, for wrapping
PL/SQL code, 1021

WRAP function
limitations of, 1021
for wrapping PL/SQL code, 1022–1026

wrapping PL/SQL code
dbms_ddl package create_

wrapped function, 1026–1028
dbms_ddl package WRAP function,

1022–1026
limitations of, 1020–1021
overview of, 1020
wrap command-line utility for, 1021

write-only parameter. See OUT mode (write-
only) parameter

WRITE procedure, LOB manipulation
methods, 436

WRITEAPPEND procedure, LOB manipulation
methods, 436

X

XML (Extensible Markup Language)
import/export and, 834
packages, 973

XMLTYPE data type
overview of, 736
SQL data types, 703

Z

zero tolerance policy, data governance
and, 682

24-Index.indd 1154 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

24-Index.indd 1155 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

24-Index.indd 1156 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

24-Index.indd 1157 12/17/13 2:23 PM

Oracle TIGHT / Oracle Database 12c PL/SQL Programming / Michael McLaughlin / 181243-1

24-Index.indd 1158 12/17/13 2:23 PM

Join the Oracle Press Community at

OraclePressBooks.com
Find the latest information on Oracle products and
technologies. Get exclusive discounts on Oracle
Press books. Interact with expert Oracle Press
authors and other Oracle Press Community members.
Read blog posts, download content and multimedia,
and so much more. Join today!

Join the Oracle Press Community today

and get these benefits:

• Exclusive members-only discounts and offers

• Full access to all the features on the site: sample

chapters, free code and downloads, author blogs,

podcasts, videos, and more

• Interact with authors and Oracle enthusiasts

• Follow your favorite authors and topics and

receive updates

• Newsletter packed with exclusive offers and

discounts, sneak previews, and author podcasts

and interviews

@OraclePress

	Cover
	Title Page
	Copyright Page
	About the Author
	About the Contributing Author
	About the Technical Editor

	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	Book Outline
	Part I: PL/SQL Fundamentals
	Part II: PL/SQL Programming
	Part III: Appendixes and Glossary

	Lexicon
	SQL Lexicon
	PL/SQL Stored Programs
	Other Conventions

	Data Model and Source Code to Download

	Part I: Oracle PL/SQL
	Chapter 1: Oracle PL/SQL Development Overview
	PL/SQL’s History and Background
	Oracle Development Architecture
	The Database
	The PL/SQL Language
	The Oracle Processing Architecture
	Two-Tier Model
	N-Tier Model

	Summary
	Mastery Check

	Chapter 2: New Features
	New SQL Features
	Data Catalog DIRECTORY Qualifies a LIBRARY Object
	Define Tables with Valid-Time (VT) Support
	Enhanced Oracle Native LEFT OUTER JOIN Syntax
	Default Values for Columns Based on Sequences
	Default Values for Explicit Null Insertion
	Identity Columns
	Increased Size Limits of String and Raw Types
	Pass Results from SQL Statements to External Programs
	Native SQL Support for Query Row Limits and Offsets
	Oracle Database Driver for MySQL Applications
	SQL CROSS APPLY, OUTER APPLY, and LATERAL
	Bequeath CURRENT_USER Views

	New PL/SQL Features
	Caching of Invoker Rights Functions
	Ability to White List PL/SQL Program Unit Callers
	Native Client API Support for PL/SQL Types
	New PL/SQL Package UTL_CALL_STACK
	DBMS_UTILITY Adds EXPAND_SQL_TEXT Subprogram
	DBMS_SQL Adds a New Formal Schema to the PARSE Procedure
	PL/SQL Functions in SQL WITH Clause
	PL/SQL-Specific Data Types Allowed in SQL
	Implicit REF CURSOR Parameter Binding

	Supporting Scripts
	Summary
	Mastery Check

	Chapter 3: PL/SQL Basics
	Block Structure
	Execution Block
	Basic Block Structure
	Declaration Block
	Exception Block

	Behavior of Variables in Blocks
	Anonymous Blocks
	Nested Anonymous Blocks
	Local Named Blocks
	Stored Named Blocks

	Basic Scalar and Composite Data Types
	Scalar Data Types
	Attribute and Table Anchoring
	Composite Data Types

	Control Structures
	Conditional Structures
	Iterative Structures

	Exceptions
	User-Defined Exceptions
	Dynamic User-Defined Exceptions

	Bulk Operations
	Functions, Procedures, and Packages
	Functions
	Procedures
	Packages

	Transaction Scope
	Single Transaction Scope
	Multiple Transaction Scopes

	Database Triggers
	Summary
	Mastery Check

	Chapter 4: Language Fundamentals
	Lexical Units
	Delimiters
	Identifiers
	Literals
	Comments

	Variables and Data Types
	Variable Data Types
	Scalar Data Types
	Large Objects (LOBs)
	Composite Data Types
	System Reference Cursors

	Summary
	Mastery Check

	Chapter 5: Control Structures
	Conditional Statements
	IF Statements
	CASE Statements
	Conditional Compilation Statements

	Iterative Statements
	Simple Loop Statements
	FOR Loop Statements
	WHILE Loop Statements

	Cursor Structures
	Implicit Cursors
	Explicit Cursors

	Bulk Statements
	BULK COLLECT INTO Statements
	FORALL Statements

	Supporting Scripts
	Summary
	Mastery Check

	Chapter 6: Collections
	Introduction to Collections
	Object Types: Varray and Table Collections
	Varray Collections
	Table Collections

	Associative Arrays
	Defining and Using Associative Arrays

	Oracle Collection API
	COUNT Method
	DELETE Method
	EXISTS Method
	EXTEND Method
	FIRST Method
	LAST Method
	LIMIT Method
	NEXT Method
	PRIOR Method
	TRIM Method

	Supporting Scripts
	Summary
	Mastery Check

	Chapter 7: Error Management
	Exception Types and Scope
	Compilation Errors
	Runtime Errors

	Exception Management Built-in Functions
	User-Defined Exceptions
	Declaring User-Defined Exceptions
	Dynamic User-Defined Exceptions

	Exception Stack Functions
	Supporting Scripts
	Summary
	Mastery Check

	Part II: PL/SQL Programming
	Chapter 8: Functions and Procedures
	Function and Procedure Architecture
	Transaction Scope
	Calling Subroutines
	Positional Notation
	Named Notation
	Mixed Notation
	Exclusionary Notation
	SQL Call Notation

	Functions
	Function Model Choices
	Creation Options
	Pass-by-Value Functions
	Pass-by-Reference Functions

	Procedures
	Pass-by-Value Procedures
	Pass-by-Reference Procedures

	Supporting Scripts
	Summary
	Mastery Check

	Chapter 9: Packages
	Package Architecture
	Package Specification
	Prototype Features
	Serially Reusable Precompiler Directive
	Variables
	Types
	Components: Functions and Procedures

	Package Body
	Prototype Features
	Variables
	Types
	Components: Functions and Procedures

	Definer vs. Invoker Rights Mechanics
	Managing Packages in the Database Catalog
	Finding, Validating, and Describing Packages
	Checking Dependencies
	Comparing Validation Methods: Timestamp vs. Signature

	Summary
	Mastery Check

	Chapter 10: Large Objects
	Working with Internally Stored LOB Types
	LOB Assignments Under 32K
	LOB Assignments over 32K

	Reading Files into Internally Stored Columns
	Reading Local Files into CLOB or NCLOB Columns
	Reading Local Files into BLOB Columns
	Working with LOBs Through Web Pages

	Working with Binary Files (BFILEs)
	Creating and Using Virtual Directories
	Reading Canonical Path Names and Filenames

	Understanding the DBMS_LOB Package
	Package Constants
	Package Exceptions
	Opening and Closing Methods
	Manipulation Methods
	Introspection Methods
	BFILE Methods
	Temporary LOB Methods
	Security Link Methods

	Supporting Scripts
	The LONG to CLOB Script
	Manage LOBs from the File System
	Manage CLOB and BLOB LOBs Through the Web
	Manage BFILE LOBs Through the Web

	Summary
	Mastery Check

	Chapter 11: Object Types
	Object Basics
	Declaring Objects Types
	Implementing Object Bodies
	White Listing Object Types
	Getters and Setters
	Static Member Methods
	Comparing Objects

	Inheritance and Polymorphism
	Declaring Subclasses
	Implementing Subclasses
	Type Evolution

	Implementing Object Type Collections
	Declaring Object Type Collections
	Implementing Object Type Collections

	Supporting Scripts
	Summary
	Mastery Check

	Chapter 12: Triggers
	Introduction to Triggers
	Database Trigger Architecture
	Data Definition Language Triggers
	Event Attribute Functions
	Building DDL Triggers

	Data Manipulation Language Triggers
	Statement-Level Triggers
	Row-Level Triggers

	Compound Triggers
	INSTEAD OF Triggers
	System and Database Event Triggers
	Trigger Restrictions
	Maximum Trigger Size
	SQL Statements
	LONG and LONG RAW Data Types
	Mutating Tables
	System Triggers

	Supporting Scripts
	Summary
	Mastery Check

	Chapter 13: Dynamic SQL
	Dynamic SQL Architecture
	Native Dynamic SQL (NDS)
	Dynamic Statements
	Dynamic Statements with Inputs
	Dynamic Statements with Inputs and Outputs
	Dynamic Statements with an Unknown Number of Inputs

	DBMS_SQL Package
	Dynamic Statements
	Dynamic Statements with Input Variables
	Dynamic Statements with Variable Inputs and Fixed Outputs
	Dynamic Statements with Variable Inputs and Outputs
	DBMS_SQL Package Definition

	Supporting Scripts
	Summary
	Mastery Check

	Part III: Appendixes and Glossary
	Appendix A: Oracle Database Primer
	Oracle Database Architecture
	Starting and Stopping the Oracle Database 12c Server
	Unix or Linux Operations
	Microsoft Windows Operations

	Starting and Stopping the Oracle Listener
	Multiversion Concurrency Control
	Data Transactions
	DML Locking and Isolation Control

	Definer Rights and Invoker Rights
	Definer Rights
	Invoker Rights

	SQL Interactive and Batch Processing
	SQL*Plus Command-Line Interface
	Oracle SQL Developer Interface

	Database Administration
	Provisioning Users
	Using Database Constraints
	Security Hardening
	Data Governance

	SQL Tuning
	EXPLAIN PLAN Statement
	DBMS_XPLAN Package

	SQL Tracing
	Tracing Session Statements
	Convert Raw Trace Files to Readable Trace Files

	Summary

	Appendix B: SQL Primer
	Oracle SQL Data Types
	Data Definition Language (DDL)
	CREATE Statement
	ALTER Statement
	RENAME Statement
	DROP Statement
	TRUNCATE Statement
	COMMENT Statement

	Data Manipulation Language (DML)
	ACID Compliant Transactions
	INSERT Statement
	UPDATE Statement
	DELETE Statement
	MERGE Statement

	Transaction Control Language (TCL)
	Queries: SELECT Statements
	Queries that Return Columns or Results from Columns
	Queries that Aggregate
	Queries that Return Columns or Results Selectively

	Join Results
	Joins that Splice Together Rows
	Joins that Splice Collections

	Summary

	Appendix C: SQL Built-in Functions
	Character Functions
	ASCII Function
	ASCIISTR Function
	CHR Function
	CONCAT Function
	INITCAP Function
	INSTR Function
	LENGTH Function
	LOWER Function
	LPAD Function
	LTRIM Function
	REPLACE Function
	REVERSE Function
	RPAD Function
	RTRIM Function
	UPPER Function

	Data Type Conversion Functions
	CAST Function
	CONVERT Function
	TO_CHAR Function
	TO_CLOB Function
	TO_DATE Function
	TO_LOB Function
	TO_NCHAR Function
	TO_NCLOB Function
	TO_NUMBER Function

	Date-time Conversion Functions
	ADD_MONTHS Function
	CURRENT_DATE Function
	CURRENT_TIMESTAMP Function
	DBTIMEZONE Function
	EXTRACT Function
	FROM_TZ Function
	LAST_DAY Function
	LOCALTIMESTAMP Function
	MONTHS_BETWEEN Function
	NEW_TIME Function
	ROUND Function
	SYSDATE Function
	SYSTIMESTAMP Function
	TO_CHAR(date) Function
	TO_DSINTERVAL Function
	TO_TIMESTAMP Function
	TO_TIMESTAMP_TZ Function
	TO_YMINTERVAL Function
	TRUNC(date) Function
	TZ_OFFSET Function

	Collection Management Functions
	CARDINALITY Function
	COLLECT Function
	POWERMULTISET Function
	POWERMULTISET_BY_CARDINALITY Function
	SET Function

	Collection Set Operators
	CARDINALITY Operator
	EMPTY Operator
	MULTISET Operator
	MULTISET EXCEPT Operator
	MULTISET INTERSECT Operator
	MULTISET UNION Operator
	SET Operator
	SUBMULTISET OF Operator

	Number Functions
	CEIL Function
	FLOOR Function
	MOD Function
	POWER Function
	REMAINDER Function
	ROUND Function

	Error Reporting Functions
	SQLCODE Function
	SQLERRM Function

	Miscellaneous Functions
	BFILENAME Function
	COALESCE Function
	DECODE Function
	DUMP Function
	EMPTY_BLOB Function
	EMPTY_CLOB Function
	GREATEST Function
	LEAST Function
	NANVL Function
	NULLIF Function
	NVL Function
	SYS_CONTEXT Function
	TABLE Function
	TREAT Function
	USERENV Function
	VSIZE Function

	Summary

	Appendix D: PL/SQL Built-in Packages and Types
	Oracle Database 11g and 12c New Packages
	Examples of Package Use
	DBMS_APPLICATION_INFO Example
	DBMS_COMPARISON
	DBMS_CRYPTO
	DBMS_FGA
	Case Study: Query Tool

	Supporting Scripts
	Summary

	Appendix E: Regular Expression Primer
	Regular Expression Introduction
	Character Classes
	Collation Classes
	Metacharacters
	Metasequences
	Literals

	Regular Expression Implementation
	REGEXP_COUNT Function
	REGEXP_INSTR Function
	REGEXP_LIKE Function
	REGEXP_REPLACE Function
	REGEXP_SUBSTR Function

	Supporting Scripts
	Summary

	Appendix F: Wrapping PL/SQL Code Primer
	Limitations of Wrapping PL/SQL
	Limitations of the PL/SQL wrap Utility
	Limitations of the DBMS_DDL.WRAP Function

	Using the wrap Command-Line Utility
	Using the DBMS_DDL Command-Line Utility
	WRAP Function
	CREATE_WRAPPED Procedure

	Summary

	Appendix G: PL/SQL Hierarchical Profiler Primer
	Configuring the Schema
	Collecting Profiler Data
	Understanding Profiler Data
	Reading the Raw Output
	Defining the PL/SQL Profiler Tables
	Querying the Analyzed Data

	Using the plshprof Command-Line Utility
	Supporting Scripts
	Summary

	Appendix H: PL/SQL Reserved Words and Keywords
	Summary

	Appendix I: Mastery Check Answers
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

	Glossary
	Index

